Responsable : Alessandra Occelli

Séminaires à venir
TBA
TBA
TBA
TBA
Séminaires passés
This talk explores the intriguing realm of scattering resonances within two-dimensional transparent cavities, which arose in the modeling of micro-resonators constructed from dielectric materials (with positive permittivity) or metallic nanoparticles (with negative permittivity). Specifically, our investigation is focused on resonances that closely align with the real axis, characterized by highly oscillatory behavior and localization along the interface separating the cavity from its external environment. Notable exemplars of such resonances include whispering-gallery modes observed in dielectric cavities and surface plasmon waves associated with metallic particles.
The asymptotic behaviour of the partition function is one of the central questions of statistical mechanics. The asymptotic expansion of this partition function can be regarded as an infinite dimensional version of the Laplace method, since the number of integrations is also growing with N. By analogy, if the potential is complex one needs an infinite dimensional version of the steepest descent (Saddle point) method. We address this problem in the context of Beta ensembles. This is joint work with A. Guionnet and K. Kozlowski.
Dans cet exposé, nous nous intéressons à la théorie de la diffusion pour un modèle abstrait d'opérateurs non-auto-adjoints agissant sur un espace de Hilbert. L'opérateur non-auto-adjoint H est donné par une perturbation relativement compacte V d'un opérateur auto-adjoint H_0. Sous des hypothèses de principe d'absorption limite, nous expliquerons comment les opérateurs d'ondes non-unitaires associés à H et H_0 peuvent être définis et présenterons leurs propriétés. Finalement nous définirons la notion de complétude asymptotique pour ces opérateurs d'ondes et la relierons à la notion de singularité spectrale. Nos résultats s'appliquent à des opérateurs de Schrödinger avec des potentiels à valeurs complexes.
Dans cet exposé, je présenterai les propriétés de stabilité des ondes planes pour un système qui décrit des particules quantiques interagissant avec un environnement complexe. D’un point de vue mathématique, cela revient à étudier un système d’EDP couplées de façon non locale (en temps et en espace) ce qui complique considérablement l’analyse par rapport aux équations de Schrödinger non linéaires habituelles. La stratégie utilisée repose sur l'identification de structures hamiltoniennes et de fonctionnelles de Lyapounov appropriées. Travail en collaboration avec T. Goudon.
Dans cet exposé, on s'intéresse au comportement qualitatif des solutions de l'équation de Gross-Pitaevskii, qui décrit les superfluides et les superconducteurs. Il s'agit d'une équation de type Schrödinger non linéaire, mais la dispersion y est plus mauvaise. En particulier, les méthodes usuelles pour démontrer la stabilité de certains solutions ne s'appliquent plus. Après avoir rappelé ces arguments classiques et les obstacles spécifiques à Gross-Pitaevskii, on expliquera deux nouvelles approches pour résoudre ces difficultés.