• LAREMA UMR 6093 CNRS
  • SFR Math-STIC
  • Faculté des sciences
  • Université d’Angers

Mathématiques à Angers

  • Accueil
    • Contacts
    • Nous visiter
    • Bibliothèque de Mathématiques
  • Annuaire
  • Les formations
    • Licence de Mathématiques
    • Double licence Mathématiques-Économie
    • Licence de mathématiques à distance
    • Master Mathématiques Fondamentales et Applications
    • Master MEEF Mathématiques
    • Master Data Science
  • Recherche
    • Équipe Algèbre et Géométries
    • Équipe Analyse, Probabilités et Statistique
    • Publications du LAREMA
    • Séminaires du LAREMA
    • Invités du LAREMA
    • Annales Henri Lebesgue
  • Liens internes
    • Intranet
    • plmbox du LAREMA
    • Gestion des séminaires
  • Grand public
    • Années des mathématiques
    • Pourquoi faire des maths ?
    • Math en Jeans
    • Fête de la science
    • Les cinq minutes Lebesgue
    • Images des mathématiques
    • Maison mathématique de l’Ouest
    • Agence Lebesgue
You are here: Home / Séminaires du LAREMA / Séminaire de géométrie algébrique

Séminaire de géométrie algébrique

Responsable : Susanna Zimmermann

Le séminaire de géométrie algébrique a lieu généralement le jeudi, 11–12h en salle I001.

Prochains séminaires

Dans cet exposé je donnerai un procédé pour construire des sous-variétés lagrangiennes de variétés carquois. Je m'inspirerai d'outils de géométrie symplectique pour définir de telles sous-variétés, a priori nouvelles, par exemple dans le schéma de Hilbert de points sur le plan. La construction généralise les algèbres différentielles graduées de Ginzburg (analogue 'dérivé' des algèbres préprojectives), et on verra que le pendant algébrique des variétés lagrangiennes consiste en des structures dites Calabi-Yau. Le travail reporté a été réalisé avec Damien Calaque et Sarah Scherotzke.

Moduli spaces of stable maps in genus bigger than zero include many components of different dimensions meeting each other in complicated ways, and the closure of the smooth locus is difficult to describe. We will look at examples of genus one and two maps of low degree in the projective plane to get a feeling of how complicated these spaces can be. Afterwords, we will sketch the construction of a modular desingularization of the space of genus 2 maps to projective spaces using combinatorial techniques from tropical geometry and maps from certain exotic curve singularities.

Séminaires passés

Given a closed 4-manifold X with an indefinite intersection form, we consider smoothly embedded surfaces in X-int(B^4), with boundary a given knot K in the 3-sphere. We give several methods to bound the genus of such surfaces in a fixed homology class. Our techniques include adjunction inequalities from Heegaard Floer homology and the Bauer-Furuta invariants, and the 10/8 theorem. In particular, we present obstructions to a knot being H-slice (that is, bounding a null-homologous disc) in a 4-manifold and show that the set of H-slice knots can detect exotic smooth structures on closed 4-manifolds. This is joint work with Ciprian Manolescu and Lisa Piccirillo.

In this talk, I will introduce you to two important classes of symplectic manifolds: toric manifolds, which are equipped with an effective Hamiltonian action of the torus, and Weinstein manifolds, which come with a handle decomposition compatible with its symplectic structure. I will then show you an algorithm which produces the Weinstein handlebody diagram for the complement of a smoothed toric divisor in a "centered" toric 4-manifold. This is based on joint work with Acu, Capovilla-Searle, Gadbled, Marinkovi?, Murphy, and Starkston.

The goal of the talk is to show you a beautiful matrix and then to explain its geometric significance. This will enable me to explain why two rival geometric interpretations of `Reid's recipe' are equivalent. To begin, I'll set the scene by discussing the classical McKay correspondence in dimension two and I'll go on to discuss how this extends naturally to dimension three. I'll introduce Reid's recipe by studying a resolution of C^3 by an action of the cyclic group of order 19 that gives rise to the beautiful matrix. I'll reveal the geometry that this matrix encodes, and as a result, we'll see that two conjectures for certain toric algebras arising in strong theory are equivalent.

Exotic manifolds are smooth manifolds which are homeomorphic but not diffeomorphic to each other. Constructing exotic manifolds in dimension four has been an active research area in low dimensional and symplectic topology over the last 30 years. In this talk, we will first discuss major open problems and some recent progress in 4-manifolds theory. Then we will discuss our constructions of exotic 4-manifolds via pencils of complex curves of small genus and via symplectic and smooth surgeries. Some of our results that will be presented are joint with A. Akhmedov.

This talk concerns Gabrielov’s rank Theorem, a fundamental result in local complex and real-analytic geometry, proved in the 1970’s. Contrasting with the algebraic case, it is not in general true that the analytic rank of an analytic map (that is, the dimension of the analytic-Zariski closure of its image) is equal to the generic rank of the map (that is, the generic dimension of its image). This phenomenon is involved in several pathological examples in local real-analytic geometry. Gabrielov’s rank Theorem provides a formal condition for the equality to hold. Despite its importance, the original proof is considered very difficult. There is no alternative proof in the literature, besides a work from Tougeron, which is itself considered very difficult. I will present a new work in collaboration with André Belotto da Silva and Guillaume Rond, where we provide a complete proof of Gabrielov’s rank Theorem, for which we develop formal-geometric techniques, inspired by ideas from Gabrielov and Tougeron, which clarify the proof. I will start with some fundamental examples of the phenomenon at hand, and expose the main ingredients of the strategy of this difficult proof.

Étudier les variétés à travers des dégénérescences est une technique standard en géométrie algébrique. Dans ce projet avec Böhning et von Bothmer, nous appliquons cette technique aux anneaux de Chow. Pour des dégénérescences semistables, nous construisons un anneaux de Chow prelog associé à la fibre spécial qui reçoit une flèche de l'anneaux de Chow de la fibre générique. Comme application, nous démontrons que une décomposition de la diagonale se spécialise en une décomposition prelog de la diagonale. En ce faisant, nous rendons applicables à des familles semistables le critère de Colliot-Thélène et Voisin.

Les principaux séminaires

  • Séminaire de probabilités et statistique
  • Séminaires systèmes dynamiques et géométrie
  • Séminaire de géométrie algébrique
  • Séminaire de physique mathématique et topologie algébrique
  • Théorie Spectrale et Équations aux Dérivées Partielles
  • Colloquium
  • Groupe de travail Structures d’Airy
  • Groupe de travail « Cohomologie prismatique
  • Séminaire Quimpériodique
  • Journées réelles du CHL, Angers-Brest-Nantes-Rennes

Site hébergé par l'Université d'Angers.
Directeurs de la publication : Nicolas Raymond et Laurent Meersseman