• LAREMA UMR 6093 CNRS
  • SFR Math-STIC
  • Faculté des sciences
  • Université d’Angers

Mathématiques à Angers

  • Accueil
    • Contacts
    • Nous visiter
    • Commission parité
    • Bibliothèque de Mathématiques
  • Annuaire
  • Les formations
    • Licence de Mathématiques
    • Double Licence Mathématiques-Économie
    • Double licence Mathématiques-Informatique
    • Licence de mathématiques à distance
    • Master Mathématiques Fondamentales et Applications
    • Master MEEF Mathématiques
    • Master Data Science
    • Parcours d’étudiants
  • Recherche
    • Équipe Algèbre et Géométries
    • Équipe Analyse, Probabilités et Statistique
    • Publications du LAREMA
    • Séminaires du LAREMA
  • Liens internes
    • Intranet
    • plmbox du LAREMA
    • Gestion des séminaires
  • Grand public
    • Années des mathématiques
    • Pourquoi faire des maths ?
    • Math en Jeans
    • Fête de la science
    • Les cinq minutes Lebesgue
    • Images des mathématiques
    • Maison mathématique de l’Ouest
    • Agence Lebesgue
    • Math in France
  • Prix mathématique Ducrot
    • Comment candidater ?
    • Soutenir le prix
    • Cérémonie 2023
Vous êtes ici : Accueil / Comment candidater ?

Comment candidater ?

DATE LIMITE DE CANDIDATURE : le 15 juillet  2025

Le jury examinera les dossiers des candidats satisfaisant aux deux conditions suivantes :

  1.  

    • Prix Espoir pour les L1 (et aussi PPPE 1 et 2), il faudra avoir plus de 17 de moyenne  sur les modules de mathématiques
    • Prix Ducrot pour les L2,  il faudra avoir plus de 16,5 de moyenne  sur les modules de mathématiques
    • Prix Ducrot pour les L3 et Master (MFA, MEEF, DS), il faudra avoir plus de 16 de moyenne  sur les modules de mathématiques
    • Les secondes chances sont prises en compte dans cette moyenne.
  2. Être inscrit dans une formation du département de mathématiques à l’université d’Angers, c’est-à-dire L1, L2, L3, doubles licences ou master, voir ci-dessous la liste complète et les conditions particulières. Les licences 2 et licence 3 à distance ne peuvent pas candidater.

Attention, on ne prend en compte que les notes de mathématiques c’est-à-dire:

  • Pour les licences de mathématiques (MPC-M, MI-M, M, MA et PPPE) et double licence (math-info et math-éco), il faut prendre les notes des modules apparaissant sur l’espace Moodle « Licence de mathématiques » sans les notes de stage.
  • Pour les PPPE, on ne prend pas en compte les notes du lycée Bergson.
  • Pour le master MEEF: on ne prend pas en compte les notes de l’INSPE.
  • Pour le master DS: on ne prend pas en compte les notes d’informatique, de modules professionnels et de stage.
  • Pour le master MFA: on ne prend pas en compte la note de stage.

Les étudiants de L1 de tous ces parcours, et les étudiants de L2 PPE, sont dans la catégorie Espoir avec une dotation moindre.

Le règlement du prix est consultable ici.

Pour candidater, il suffit d’envoyer un courriel à l’adresse « prix.mathematique.ducrot@contact.univ-angers.fr » avec son relevé de notes en mathématiques à partir de juin-juillet 2025.

Montant du prix

Pour calculer le montant du prix, nous allons prendre l’argent des sponsors récurrents auquel nous ajoutons un quart des sommes reçus par les dons privés (voici la page pour soutenir le prix). Nous divisons cette somme par le nombre de personnes récipiendaires du prix. Notre objectif initial était d’avoir un prix de 1000 euros.

En 2023, les montants étaient

  • 100€ pour les étudiants de L1 (prix espoir)
  • 350€ pour les étudiants de L2, L3 et master

En 2024, les montants étaient

  • 100€ pour les étudiants de L1 (prix espoir)
  • 300€ pour les étudiants de L2, L3 et master

Remise du prix:  le jeudi 25 septembre 2025

Cérémonie 2024

Le livret des lauréats et des alumni est consultable à cette page.

Remise du Prix Ducrot 2024

Cérémonie 2023

Remise du Prix Ducrot 2023

Séminaires à venir

Les derniers séminaires

Séminaire des doctorant.es
In this presentation, I focus on the semiclassical Schrödinger equation, a fundamental equation in quantum mechanics that describes the evolution of quantum particles over time. Since exact solutions to this equation are rarely explicit and conventional numerical methods are often impractical, my goal is to develop approximate solutions that are both easier to compute and accurate. To achieve this, I study special functions called wave packets, which represent localized quantum states. First, I will present how, starting from initial data defined by a wave packet, we can construct a good approximate solution using a wave packet, for the scalar semiclassical Schrödinger equation. Then, I will explain how this approach can be extended to more complex vector-valued systems, where new phenomena arise.

Séminaire des doctorant.es
In this talk, we will explore the behavior of a random walk when conditioned to remain within a cone. We will begin by introducing the problem of conditioning a random walk to never escape a cone. To address this, we will examine the concept of the Doob h-transform and its role in shaping the walk's behavior. Next, we will delve into the set of harmonic functions associated with random walks and discuss their significance in the context of conditioning the walk. Finally, we will derive the conditions under which a unique discrete harmonic function exists for a Dirichlet problem posed within a cone under certain assumptions about the transition kernel of the random walk and the cone itself.

Séminaire des doctorant.es
Inference of the tail parameters of a distribution is a question of interest. Indeed, some extreme events can have disastrous consequences and being able to estimate their probability of appearance allows us to prevent them. It is however a difficult question because usual statistics theory does not work well in that case. Extreme value theory has been developed for this purpose. In particular, the Conditional Tail Moments (CTMs) are useful tools in risk quantification. For instance, the Expected Shortfall (ES), a particular case of CTM, is a risk measure widely used in finance. The estimation of CTMs and the demonstration of convergence results on these estimators have been the purpose of my first year of PhD. In this talk, I will start with an introduction and motivation to Extreme Value Theory. I will then define the Conditional Tail Moment and give the mathematical framework in which estimation of extreme CTM is manageable. Finally, if time permits, I would like to present some of the convergence results me and my PhD supervisors have been able to produce so far.

Site hébergé par l'Université d'Angers.
Directeurs de la publication : Hélène Maynadier-Gervais et Laurent Meersseman