Publications des membres du LAREMA présentes sur la base HAL du CNRS.
Voici la nouvelle charte graphique votée par l’Université d’Angers
Prénom Nom, Univ Angers, CNRS, LAREMA, SFR MATHSTIC, F-49000 Angers, France
848 documents
- Jean-Pierre Magnot. Contributions to infinite dimensional geometry and analysis. Mathematical Physics [math-ph]. Université de Cergy Pontoise, 2022. ⟨tel-04176431⟩
- Nicolas Dutertre, Juan Antonio Moya Pérez. TOPOLOGY OF 1-PARAMETER DEFORMATIONS OF NON-ISOLATED REAL SINGULARITIES. Glasgow Mathematical Journal, 2022, 64 (2), pp.484-498. ⟨10.1017/S0017089521000239⟩. ⟨hal-03310340⟩
- François Bernard. Seminormalization and regulous functions on complex affine varieties. 2022. ⟨hal-03343128v2⟩
- Małgorzata Bogdan, Piotr Graczyk, Bartosz Kołodziejek, Tomasz Skalski, Maciej Wilczyński. PATTERN RECOVERY BY SLOPE. 2022. ⟨hal-03616832v1⟩
- François Bernard, Goulwen Fichou, Jean-Philippe Monnier, Ronan Quarez. Algebraic characterizations of homeomorphisms between algebraic varieties. 2022. ⟨hal-03613513v1⟩
- Tomasz Skalski, Piotr Graczyk, Bartosz Kolodziejek, Maciej Wilczyński. Pattern recovery and signal denoising by SLOPE when the design matrix is orthogonal. 2022. ⟨hal-03610548⟩
- Frédéric Hérau, Nicolas Raymond. Semiclassical spectral gaps of the 3D Neumann Laplacian with constant magnetic field. 2022. ⟨hal-03606341⟩
- Geoffrey Powell, Christine Vespa. A Pirashvili-type theorem for functors on non-empty finite sets. Glasgow Mathematical Journal, 2022, 65 (1), pp.1-61. ⟨10.1017/S0017089522000039⟩. ⟨hal-02945661⟩
- Yousri Slaoui, Salima Helali. Recursive regression estimation based on the two-time-scale stochastic approximation method and Bernstein polynomials. Monte Carlo Methods and Applications, 2022, 28, pp.45 - 59. ⟨10.1515/mcma-2022-2104⟩. ⟨hal-04389619⟩
- Nicolas Raymond, Éric Soccorsi. Magnetic quantum currents in the presence of a Neumann wall. 2022. ⟨hal-03561109⟩