Publications des membres du LAREMA présentes sur la base HAL du CNRS.
Voici la nouvelle charte graphique votée par l’Université d’Angers
Prénom Nom, Univ Angers, CNRS, LAREMA, SFR MATHSTIC, F-49000 Angers, France
848 documents
- Tomasz Skalski. Geometric and Combinatorial Aspects of Statistical Models. Statistics [math.ST]. Université d'Angers; Politechnika Wrocławska, 2023. English. ⟨NNT : 2023ANGE0026⟩. ⟨tel-04448252⟩
- Rayan Fahs. ON THE SEMI-CLASSICAL ANALYSIS OF SCHRÖDINGER OPERATORS WITH LINEAR ELECTRIC POTENTIALS ON A BOUNDED DOMAIN. Asymptotic Analysis, 2023, 135 (1-2), pp.81-113. ⟨10.3233/ASY-231848⟩. ⟨hal-03875344v2⟩
- Marie Badreau, Frédéric Proïa. Consistency and asymptotic normality in a class of nearly unstable processes. Statistical Inference for Stochastic Processes, 2023, 26 (3), pp.619-641. ⟨10.1007/s11203-023-09290-2⟩. ⟨hal-04233891⟩
- Tristan Bozec, Damien Calaque, Sarah Scherotzke. Calabi-Yau structures on (quasi-)bisymplectic algebras. Forum of Mathematics, Sigma, 2023, 11, pp.e87. ⟨10.1017/fms.2023.88⟩. ⟨hal-03624186v2⟩
- Geoffrey Powell. On the Passi and the Mal'cev functors. 2023. ⟨hal-04208067⟩
- Geoffrey Powell. On fundamental structure underlying Lie algebra homology with coefficients tensor products of the adjoint representation. 2023. ⟨hal-04208071⟩
- Jean-Pierre Magnot, Enrique Reyes, Vladimir Roubtsov. A Kadomtsev-Petviashvili hierarchy driven by equation manifolds. Lobachevskii Journal of Mathematics, 2023, 44 (9), pp.3963-3972. ⟨10.1134/S1995080223090238⟩. ⟨hal-04176435⟩
- Guy Fayolle, Sandro Franceschi, Kilian Raschel. Stationary brownian motion in a 3/4-plane: Reduction to a riemann-hilbert problem via fourier transforms. Indagationes Mathematicae, 2023, 34 (5), pp.17 (874-890). ⟨10.1016/j.indag.2022.10.008⟩. ⟨hal-03832431v2⟩
- Fabien Panloup, Julien Reygner. Asymptotically unbiased approximation of the QSD of diffusion processes with a decreasing time step Euler scheme. 2023. ⟨hal-04185301⟩
- Søren Fournais, Léo Morin, Nicolas Raymond. Purely magnetic tunneling between radial magnetic wells. 2023. ⟨hal-04178958⟩