• LAREMA UMR 6093 CNRS
  • SFR Math-STIC
  • Faculté des sciences
  • Université d’Angers

Mathématiques à Angers

  • Accueil
    • Contacts
    • Nous visiter
    • Commission parité
    • Bibliothèque de Mathématiques
  • Annuaire
  • Les formations
    • Licence de Mathématiques
    • Double Licence Mathématiques-Économie
    • Double licence Mathématiques-Informatique
    • Licence de mathématiques à distance
    • Master Mathématiques Fondamentales et Applications
    • Master MEEF Mathématiques
    • Master Data Science
    • Parcours d’étudiants
  • Recherche
    • Équipe Algèbre et Géométries
    • Équipe Analyse, Probabilités et Statistique
    • Publications du LAREMA
    • Séminaires du LAREMA
  • Liens internes
    • Intranet
    • plmbox du LAREMA
    • Gestion des séminaires
  • Grand public
    • Années des mathématiques
    • Pourquoi faire des maths ?
    • Math en Jeans
    • Fête de la science
    • Les cinq minutes Lebesgue
    • Images des mathématiques
    • Maison mathématique de l’Ouest
    • Agence Lebesgue
    • Math in France
  • Prix mathématique Ducrot
    • Comment candidater ?
    • Soutenir le prix
    • Cérémonie 2023

Workshop on mixed Hodge modules and Hodge ideals

Réunion annuelle du GDR Singularité et applications, 1-5 Avril 2019 Nero Budur : Hodge ideals Michel Granger : Bernstein polynomials Claude Sabbah : Mixed Hodge module

Journées réelles du CHL, 3-4 décembre 2018

Les journées réelles du CHL réunissent des géomètres des laboratoires de mathématiques d’Angers, Brest, Nantes et Rennes intéressés par la géométrie algébrique réelle. Ces journées sont organisées grâce au soutien du Centre Henri Lebesgue. page web des Journées réelles du CHL Lieu: Angers, Campus Belle-Beille, salle I001 Monday: 14h30 – 15h20: Egor Yasinsky 15h40 – 16h30: […]

International Conference on « Advanced Methods in Mathematical Finance »

28-31 August 2018 This conference is dedicated to innovations in the mathematical analysis of financial data, new numerical methods for finance and applications to risk modeling. The selected topics include actuarial theory, risk measures, ruin theory, credit default models, stochastic control and its applications to portfolio choice and liquidation, models of liquidity and with transaction […]

Retakh Fest

Colloque Non-commutative structures, cluster algebras and applications. 25 au 30 juin 2018 Les algèbres amassées introduites par S. Fomin et A. Zelevinsky en 2001 sont des anneaux commutatifs munis de générateurs distingués (variables d’amas), engendrés par une procédure itérative (mutation). Les motivations initiales étaient liées à la théorie de Lie (positivité totale, bases canoniques) et […]

« Page précédente

Séminaires à venir

Séminaire de probabilités et statistiques
During an epidemic outbreak, decision makers crucially need accurate and robust tools to monitor the pathogen propagation. The effective reproduction number, defined as the expected number of secondary infections stemming from one contaminated individual, is a state-of-the-art indicator quantifying the epidemic intensity. Numerous estimators have been developed to precisely track the reproduction number temporal evolution. Yet, COVID-19 pandemic surveillance raised unprecedented challenges due to the poor quality of worldwide reported infection counts. When monitoring the epidemic in different territories simultaneously, leveraging the spatial structure of data significantly enhances both the accuracy and robustness of reproduction number estimates. However, this requires a good estimate of the spatial structure. To tackle this major limitation, the present work proposes a joint estimator of the reproduction number and connectivity structure. The procedure is assessed through intensive numerical simulations on carefully designed synthetic data and illustrated on real COVID-19 spatiotemporal infection counts. Joint work with Barbara Pascal.

Séminaire de topologie et géométrie algébriques

Séminaire de probabilités et statistiques
TBA

Séminaire de topologie et géométrie algébriques

Séminaire de probabilités et statistiques
TBA

Séminaires systèmes dynamiques et géométrie
Let $(X,0) be the germ of an equidimensional analytic set in $(C^n,0)$ and $F=(f,g_1,..., g_p)$ a map-germ into $C^{p+1}$ defined on $X$. We investigate topological invariants associated to the pair $(F,X)$, among them, the Chern obstruction of families of differential forms associated to $F$. The topological information provided by this invariant is useful, although difficult to calculate. We introduce the relative Bruce-Roberts number as a useful algebraic tool to capture the topological information given by the Chern obstruction. Closed formulas are given when $X$, $X \cap F^{-1}(0)$, $X \cap G^{-1}(0)$ are ICIS, for $G=(g_1,..., g_p)$.

Les derniers séminaires

Séminaire de topologie et géométrie algébriques
La géométrie de Poisson décalée est une généralisation en géométrie algébrique dérivée de la géométrie de Poisson classique. Localement, si A est une cdga connective, une structure de Poisson n-décalée sur A est la donnée d'un relèvement (à homotopie près) de sa structure d'algèbre commutative en une structure d'algèbre Pn+1, c'est-à-dire qu'on se donne un crochet de Poisson de degré -n. En géométrie différentielle, il est connu que la donnée d'une structure de Poisson sur une variété est équivalente à la donnée d'un feuilletage symplectique. Dans cet exposé, je présenterai l'énoncé analogue pour les structures de Poisson décalées, je donnerai l'idée de la preuve et quelques conséquences.

Séminaire des doctorant.es
The foundations of Probability Theory rest upon Kolmogorov’s axioms and a measure-theoretic framework. However, in several applications, the underlying measure space is often abstracted, with the focus shifted to random variables and the operators acting on them, particularly the expectation. In this context, the independence of random variables implies their commutativity. In contrast, Free Probability Theory dispenses with the measure-theoretic framework. Instead, it defines a probability space as an algebra of random variables along with a linear functional, possessing properties that generalize certain spaces of measurable functions. This abstraction from the measure-theoretic structure allows for the exploration of the non-commutativity of random variables and the emergence of new forms of independence. In this presentation, we will provide a brief introduction to Free Probability, outlining its key definitions and the combinatorial tools used within the theory. If time permits, we will also demonstrate these techniques with a proof of the Free Law of Large Numbers.

Séminaires systèmes dynamiques et géométrie
Le degré de la distance euclidienne d'une variété algébrique X est le nombre de points critiques de la fonction de distance à partir d'un point général extérieur à X. Cette définition, conçue pour les variétés algébriques réelles dans le but de mesurer la complexité algébrique des solutions de plusieurs problèmes d'optimisation, a été adaptée et développée pour les variétés affines et projectives complexes. Dans cet exposé, je discuterai des résultats récents impliquant plusieurs constructions topologiques et géométriques classiques de la géométrie algébrique complexe.

Site hébergé par l'Université d'Angers.
Directeurs de la publication : Laurent Meersseman et Jean-Philippe Monnier