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Jacobi is remembered for his contributions to many fields of mathemat-
ics, including differential geometry, mechanics, and number theory as well
as elliptic functions. He was a great admirer of Euler and planned the edi-
tion of Euler’s works that eventually began to appear, on a reduced scale,
in 1911. In fact, in many ways Jacobi was a second, if lesser, Euler. He saw
elliptic functions not so much as things in themselves, as Abel did, but as
a source of dazzling formulas with implications in number theory. An as-
tounding collection of formulas may be found in his major work on elliptic
functions, the Fundamenta nova [Jacobi (1829)]. At the same time, he was
deeply impressed by Abel’s ideas and selflessly campaigned to make them
better known. He introduced the terms “Abelian integral” and “Abelian
function” for the generalizations of elliptic integrals and functions consid-
ered by Abel as well as “Abelian theorem” for Abel’s theorem, which he
described as “the greatest mathematical discovery of our time.”

13

Mechanics

13.1 Mechanics before Calcu!us

The ambiguous title reflects the dual purpose of this section: to give a brief
survey of the mechanics that came before calculus and to introduce the
thesis that mechanics was psychologically, if not logically, a prerequisite
for calculus itself. The remainder of the chapter expands on this thesis,
demonstrating how several important fields in calculus (and beyond) orig-
inated in the study of mechanical problems. Lack of space, not to mention
lack of expertise, prevents my venturing far into the history of mechanical
concepts, so I shall assume some understanding of time, velocity, acceler-
ation, force, and the like, and concentrate on the mathematics that emerged
from reflection on these notions. These mathematical developments will
be pursued as far as the nineteenth century. More details may be found in
Dugas (1957, 1958) and Truesdell (1954, 1960). In the last century, math-
ematics seems to have been the motivation for mechanics rather than the
other way round. The outstanding mechanical concepts of the twentieth
century—relativity and quantum mechanics—would not have been con-
ceivable without nineteenth-century advances in pure mathematics, some
of which we discuss later.

It is mentioned in Section 4.5 that Archimedes made the only sub-
stantial contribution to mechanics in antiquity by introducing the basics of
statics (balance of a lever requires equality of moments on the two sides)
and hydrostatics (a body immersed in a fluid experiences an upward force
equal to the weight of fluid displaced). Archimedes’ famous results on
areas and volumes were in fact discovered, as he revealed in his Method,
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by hypothetically balancing thin slices of different figures. Thus the ear-
liest nontrivial results in calculus, if by calculus one means a method for
discovering results about limits, relied on concepts from mechanics.

The medieval mathematician Oresme also was mentioned (Section 7.1)
for his use of coordinates to give a geometric representation of functions.
The relationship Oresme represented was in fact velocity v as a function
of time ¢. He understood that displacement is then represented by the area
under the curve, and hence in the case of constant acceleration (or “uni-
formly deformed velocity,” as he called it) the displacement equals total
time x velocity at the middle instant (Figure 13.1). This result is known
as the “Merton acceleration theorem” [see, for example, Clagett (1959),
p. 355] because it originated in the work of a group of mathematicians at
Merton College, Oxford, in the 1330s. The first proofs were arithmetical
and far less transparent than Oresme’s figure.

Figure 13.1: The Merton acceleration theorem

While constant acceleration was understood theoretically in the 1330s,
it was not clear that it was actually a natural occurrence—namely, with
falling bodies—until the time of Galileo (1564—1642). Galileo announced
the equivalent result, that displacement of a body falling from rest at time
¢t = 0 is proportional to ¢2, in a letter [Galileo (1604)]. At first he was
uncertain whether this derived from a velocity proportional to time v = kt
(that is, constant acceleration) or proportional to distance v = ks, but he
resolved the question correctly in favor of v = kt later [Galileo (1638)]. By
composing the uniformly increasing vertical velocity with constant hori-
zontal velocity, Galileo derived for the first time the correct trajectory of a
projectile: the parabola.

The motion of projectiles was a matter of weighty importance in the
Renaissance, and presumably observed often, yet the trajectories suggested
before Galileo were quite preposterous (see, for example, Figure 6.3). The
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belief, deriving from Aristotle, that motion could be sustained only by con-
tinued application of a force led mathematicians to ignore the evidence
and to draw trajectories in which the horizontal velocity dwindled to zero.
Galileo overthrew this mistaken belief by affirming the principle of inertia:
a body not subject to external forces travels with constant velocity.

The principle of inertia was Newton’s starting point in mechanics; in-
deed, it is often called Newton’s first law. It is a special case of his sec-
ond law, that force is proportional to mass X acceleration [Newton (1687),
p- 13]. Under this law, the motion of a body is determined by composition
of the forces acting on it. The correct law for the composition of forces,
that forces add vectorially, had been discovered in the case of perpendicu-
lar forces by Stevin (1586) and in the general case by Roberval [published
in Mersenne (1636)]. The motion is thus determined by vector addition of
the corresponding accelerations, the method Galileo used in the case of the
projectile. !

The determination of velocity and displacement from acceleration are
of course problems of integration, so mechanics contributed a natural class
of problems to calculus just at the time the subject was emerging. But more
than this was true. The early practitioners of calculus believed that conti-
nuity was an essential attribute of functions, and the only way they were
able to define continuity was ultimately by falling back on the dependence
of a velocity or displacement on time. From this viewpoint, all problems
of integration and differentiation were problems of mechanics, and Newton
described them as such when explaining how his calculus of infinite series
could be applied:

It now remains, in illustration of this analytical art, to deliver
some typical problems and such especially as the nature of
curves will present. But first of all I would observe that diffi-
culties of this sort may all be reduced to these two problems
alone, which I may be permitted to propose with regard to the
space traversed by any local motion however accelerated or
retarded:

1. Given the length of space continuously (that is, at every
time), to find the speed of motion at any time proposed.
2. Given the speed of motion continuously, to find the length
of space described at any time proposed
[Newton (1671), p. 71].
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Of course we now know that the first problem requires differentiability
rather than continuity for its solution, but the pioneers of calculus thought
that differentiability was implied by continuity, and hence did not recog-
nize it as a distinct notion. In fact it was a mechanical question—the prob-
lem of the vibrating string—whose investigation brought the distinction to
light (see Section 13.4).

13.2 Celestial Mechanics

Astronomy has been a powerful stimulus to mathematics since ancient
times. The epicyclic theory of Apollonius and Ptolemy introduced an in-
teresting family of algebraic and transcendental curves, as we saw in Sec-
tion 2.5, and the theory itself ruled Western astronomy until the seventeenth
century. Even Copernicus (1472-1543), when he overthrew Ptolemy’s
earth-centered system with a sun-centered system in his De revolutionibus
orbium coelestium [Copernicus (1543)], was unwilling to give up epicy-
cles. Taking the sun as the center of the system simplifies the orbits of
the planets but does not make them circular, so Copernicus, accepting the
Ptolemaic philosophy that orbits must be generated by circular motions,
modeled them by epicycles. In fact he used more epicycles than Ptolemy.

A more important advance, from the mathematical point of view, was
Kepler’s introduction of elliptical orbits in his Astronomia nova [Kepler
(1609)]. When Newton explained these orbits as a consequence of the in-
verse square law of gravitation in the Principia [Newton (1687), p. 56]
he showed that there was a deeper level of explanation—the infinitesimal
level—where simplicity could be attained even when it was not possible at
the global level. The force on a given body B, is simply the vector sum of
the forces due to the other bodies B,,...,B, in the system, determined by
their masses and distances from B, by the inverse square law and, by New-
ton’s second law, this determines the acceleration of B,. The accelerations
of B,,...,B, are similarly determined, hence the behavior of the system is
completely determined by the inverse square law, once initial positions and
velocities are given. The inverse square law is an infinitesimal law in the
sense that it describes the limiting behavior of a body—its acceleration—
and not its global behavior such as the shape or period of its orbit.

As we now know, it is rarely possible to describe the global behavior of
a dynamical system explicitly, so Newton found the only viable basis for
dynamics in directing attention to infinitesimal behavior. Unfortunately,

13.2 Celestial Mechanics 235

he communicated this insight poorly by expressing it in geometrical terms,
in the belief that calculus, which he had used to discover his results, was
inappropriate in a serious publication. By the eighteenth century this belief
had been dispelled by Leibniz and his followers, and definitive formula-
tions of dynamics in terms of calculus were given by Euler and Lagrange.
They recognized that the infinitesimal behavior of a dynamical system was
typically described by a system of differential equations and that the global
behavior was derivable from these equations, in principle, by integration.

The question remained, however, whether the inverse square law did
indeed account for the observed global behavior of the solar system. In
a system with only two bodies, Newton showed [Newton (1687), p. 166]
that each describes a conic section relative to the other, in normal cases an
ellipse as stated by Kepler. With a three-body system, such as the earth—
moon-sun, no simple global description was possible, and Newton could
obtain only qualitative results through approximations. With the many bod-
ies in the solar system, extremely complex behavior was possible, and for
100 years mathematicians were unable to account for some of the phenom-
ena actually observed.

A famous example was the so-called secular variation of Jupiter and
Saturn, which was detected by Halley in 1695 from the observations then
available. For several centuries Jupiter had been speeding up (spiraling to-
ward the sun) and Saturn had been slowing down (spiraling outward). The
problem was to explain this behavior and to determine whether it would
continue, with the eventual destruction of Jupiter and disappearance of Sat-
urn. Euler and Lagrange worked on the problem without success; then, in
the centenary year of Principia, Laplace (1787) succeeded in explaining
the phenomenon. He showed that the secular variation was actually peri-
odic, with Jupiter and Saturn returning to their initial positions every 929
years. Laplace viewed this as confirmation not only of the Newtonian the-
ory but also of the stability of the solar system, though it seems that the
latter is still an open question.

Laplace introduced the term “celestial mechanics” and left no doubt
that the theory had arrived with his monumental Mécanique céleste, a work
of five volumes that appeared between 1799 and 1825. In astronomy, the
theory had its finest hour in 1846, with the discovery of Neptune, whose
position had been computed by Adams and Leverrier from observed per-
turbations in the orbit of Uranus. The difficult question of stability was
taken up again in the three volume Les méthodes nouvelles de la mécanique
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céleste of Poincaré (1892, 1893, 1899). In this work Poincaré directed at-
tention toward asymptotic behavior, in a sense complementing Newton’s
infinitesimal view with a view toward infinity, and his methods have be-
come highly influential in twentieth-century dynamics.

13.3 Mechanical Curves

When Descartes gave his reasons for restricting La Géoméirie to algebraic
curves (which he called “geometric”; see Section 7.3), he explicitly ex-
cluded certain classical curves on the rather vague grounds that they

belong only to mechanics, and are not among those curves
that I think should be included here, since they must be con-
ceived of as described by two separate movements whose re-
lation does not admit of exact determination.

[Descartes (1637), p. 44]

The curves that Descartes relegated “to mechanics” were those the
Greeks had defined by certain hypothetical mechanisms, for example, the
epicycles (described by rolling one circle on another) and the spiral of
Archimedes (described by a point moving at constant speed along a uni-
formly rotating line). He was probably aware that the spiral is transcen-
dental by virtue of the fact that it meets a straight line in infinitely ‘many
points. This is contrary to the behavior of an algebraic curve p(x,y) = 0,
which meets a straight line y = mx+ ¢ in only finitely many points, cor-
responding to the finitely many solutions of p(x,mx+c) = 0. This proof
that there are transcendental curves was given explicitly by Newton (1687),
Lemma XXVIIL

We do not know whether Descartes distinguished, say, the algebraic
epicycles from the transcendental ones; nevertheless, it is broadly true that
his “mechanical” curves were transcendental. This remained true with the
great expansion of mechanics and calculus in the seventeenth century, and
indeed most of the new transcendental curves originated in mechanics. In
this section we shall look at three of the most important of them: the cate-
nary, the cycloid, and the elastica.

The catenary is the shape of a hanging cord, assumed to be perfectly
flexible and with mass uniformly distributed along its length. In practice,
the flexibility and uniformity of mass are realized better by a hanging chain,
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hence the name “catenary,” which comes from the Latin catena for chain.
Hooke (1675) observed that the same curve occurs as the shape of an arch
of infinitesimal stones. The catenary looks very much like a parabola and
was at first conjectured to be one by Galileo. This was disproved by the 17-
year-old Huygens (1646), though at the time he was unable to determine
the correct curve. He did show, however, that the parabola was the shape
assumed by a flexible cord loaded by weights that are uniformly distributed
in the horizontal direction (as is approximately the case for the cable of a
suspension bridge).

The problem of the catenary was finally solved independently by Jo-
hann Bernoulli (1691), Huygens (1691), and Leibniz (1691), in response
to a challenge from Jakob Bernoulli in 1690. Johann Bernoulli showed that
the curve satisfied the differential equation

dy s

dx a’

where a is constant and s = arc length OP (Figure 13.2). He derived this
equation by replacing the portion OP of the chain, which is held in equi-
librium by the tangential force F, at P and the horizontal force Fy,, which
is independent of P, by a point mass W equal to the weight of OP (hence
proportional to s) held in equilibrium by the same forces. Comparing the
directions and magnitudes of the forces gives

dy W s
dx Fy, a'
By ingenious transformations Bernoulli reduced the equation to

ady
e

in other words, to an integral. This solution was as simple as could be
stated at the time, since x is a transcendental function of y and hence can
be expressed, at best, as an integral. Today, of course, we recognize the
function as one of the “standard” ones and abbreviate the solution as

dx =

X
y=acosh— —a.
a

The cycloid is the curve generated by a point on the circumference of
a circle rolling on a straight line. Despite being a natural limiting case in
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Figure 13.2: The catenary

the epicyclic family, the cycloid does not seem to have been investigated
until the seventeenth century, when it became a favorite curve with math-
ematicians. It has many beautiful geometric properties, and even more
remarkable mechanical properties. The first of these, discovered by Huy-
gens (1659b), is that the cycloid is the tautochrone (equal-time curve). A
particle constrained to slide along an inverted cycloid takes the same time
to descend to the lowest point, regardless of its starting point.

Huygens (1673) made a classic application of this property to pendu-
lum clocks, using a geometric property of the cycloid (Huygens, 1659c¢). If
the pendulum, taken to be a weightless cord with a point mass at the end,
is constrained to swing between two cycloidal “‘cheeks,” as Huygens called
them (Figure 13.3), then the point mass will travel along a cycloid. Con-
sequently, the period of the cycloidal pendulum is independent of ampli-
tude. This makes it theoretically superior to the ordinary pendulum whose
period, though approximately constant for small amplitudes, actually in-
volves an elliptic function. In practice, problems such as friction make
the cycloidal pendulum no more accurate than the ordinary pendulum, but
its theoretical superiority shut the ordinary pendulum out of mechanics for
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some time. Newton’s Principia, for example, often mentions the cycloidal
pendulum but never the simple pendulum.

K

Figure 13.3: The cycloidal pendulum

The second remarkable property of the cycloid is that it is the brachis-
tochrone, the curve of shortest time. Johann Bernoulli (1696) posed the
problem of finding the curve, between given points A and B, along which a
point mass descends in the shortest time. He already knew that the solution
was a cycloid, and solutions were found independently by Jakob Bernoulli
(1697), ’'Hopital (1697), Leibniz (1697), and Newton (1697). The prob-
lem is deeper than that of the tautochrone, because the cycloid has to be
singled out from all possible curves between A and B. Jakob Bernoulli’s
solution was the most profound because it recognized the “variable curve”
aspect of the problem, and it is now considered to be the first major step in
the development of the calculus of variations.

The elastica was another of Jakob Bernoulli’s discoveries, and like-
wise important in the development of another field—the theory of elliptic
functions. The elastica is the curve assumed by a thin elastic rod com-
pressed at the ends. Jakob Bernoulli (1694) showed that the curve satisfied
a differential equation that he reduced to the form

dx

ds = .
1—x*
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To interpret this integral geometrically, he introduced the lemniscate and
showed that its arc length was expressed by precisely the same integral.
This was the beginning of the investigations of the lemniscatic integral,
which included the important discoveries of Fagnano and Gauss mentioned
in the last chapter. Euler’s investigations of elliptic integrals were also
stimulated by the elastica. Euler (1743) gave pictures of elastica that show
they have periodic forms (Figure 13.4). These drawings were the first to
show the real period of elliptic functions, though of course periodicity was
implicit in the first elliptic integral, the arc length of the ellipse (the real
period being the circumference of the ellipse).

b

di
1)

Figure 13.4: Forms of the elastica
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EXERCISES
The derivation of the cosh function from the catenary equation is helped by a
2
tricky formula for j—f}, which you should verify first if it is not familiar to you.

X
13.3.1 Use

2 2
ds = +/dx?+dy? and dy dl(d—y)

dx? 255 dx

to transform the differential equation

dy_8
dr @
to
R M
dz 1+’

where z = dy/dx.

13.3.2 Solve (1) for x and hence show that the E)riginal equation has solution

x
y = acosh — + const.
a

It is considerably easier to solve the suspension bridge equation, which per-
haps is why Huygens was able to do it at age 17, and before much calculus was
known.

13.3.3 How should the formula j—} = £ be modified if the load is uniformly dis-

tributed in the horizontal direction (as in a suspension bridge)?

13.3.4 Solve the modified equation from Exercise 13.3.3, and hence show that
the solution is a parabola.

Finally, we can verify that the catenary is indeed a transcendental curve.

13.3.5 Show that the functions sin and cos, and hence the functions sinh and cosh,
are transcendental. Hint: You may need to use complex numbers.

13.4 The Vibrating String

The problem of the vibrating string is one of the most fertile in mathemat-
ics, being the source of such diverse fields as partial differential equations,
Fourier series, and set theory. It is also remarkable in being perhaps the
only setting in which the sense of hearing led to important mathemati-
cal discoveries. As we saw in Section 1.5, the Pythagoreans discovered
the relationship between pitch and length by hearing the harmonious tones
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produced by two strings whose lengths were in a simple whole-number
ratio. Thus in a sense it was possible to “hear the length of the string”
and some later discoveries of mathematically significant properties of the
strings—overtones, for example—were initially prompted by hearing [see
Dostrovsky (1975)].

Various authors in ancient times suggested that the physical basis of
pitch was frequency of vibration, but it was not until the seventeenth cen-
tury that the precise relationship between frequency and length was dis-
covered, by Descartes’ mentor Isaac Beeckman. In 1615 Beeckman gave
a simple geometric argument to show that frequency is inversely propor-
tional to length; hence the Pythagorean ratios of lengths can also be inter-
preted as (reciprocal) ratios of frequencies. The latter interpretation is more
fundamental because frequency alone determines pitch, whereas length de-
termines pitch only when the material, cross section, and tension of the
string are fixed. The relation between frequency v, and tension T, cross-
sectional area A, and length I was discovered experimentally by Mersenne
(1625) to be

1 4T
W oec ? Z .

The first derivation of Mersenne’s law from mathematical assumptions
was given by Taylor (1713), in a paper that marks the beginning of the
modern theory of the vibrating string. In it he discovered the simplest
possibility for the instantaneous shape of the string, the half sine wave

ymksin?

and established generally that the force on an element was proportional to
d*y/dx*.

The latter result was the starting point for a dramatic advance in the
theory by d’Alembert (1747). Taking into account the dependence of y
on time ¢ as well as x, d’Alembert realized that acceleration should be
expressed by d2y/dt? and the force found by Taylor by 9%y/dx2, hence
partial derivatives are involved. Newton’s second law then gives what is
now called the wave equation,

%y _ 1%

ox2  ¢2 912’
writing the constant of proportionality as 1/ ¢2. Undeterred by the novelty
of this partial differential equation, d’ Alembert forged ahead to a general
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solution as follows. The equation may be simplified by a change of time
scale s = ct to
2y _ o 1
ox2 952’ M

The chain rule gives

2 2
d(ay:bay) L ) (dsidx):tayds

ox~ ds Ix? dxds ds?
2y
( ds? = c?xc?s) (asd-2)
from which d’ Alembert concluded that
52 2
2, Y
ds?  dxds
is a function of s + x and ‘
% 9y
ds?  dxds

is a function of s — x, whence, say

dy dy _ %y 9%
a”Lﬁ‘ (8.92+88)d(s+x) f(s+x)

and similarly

dy oy _

ox ds 4
This gives

d
2 = L (flst D +al-n), D=

and finally

i dy dy

e j (adx+ gds)
=/%(f(s+x)(ds+dx)—g(S—x)(dS—dx))
=®(s+x) +¥(s—x).

Reversing the argument, we see that the functions & and ¥ can be arbitrary,
at least as long as they admit the various differentiations involved.
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But how arbitrary is an arbitrary function? Is it as arbitrary as an ar-
bitrarily shaped string? The vibrating string problem caught eighteenth-
century mathematicians unprepared to answer these questions. They had
understood a function to be something expressed by a formula, possibly
an infinite series, and this had been thought to guarantee differentiability.
Yet the most natural shape of the vibrating string was one with a nondif-
ferentiable point—the triangle of the plucked string as it is released—so
nature seemed to demand an extension of the concept of function beyond
the world of formulas.

The confusion was heightened when Daniel Bernoulli (1753) claimed,
on physical grounds, that a general solution of the wave equation could be
expressed by a formula, the infinite trigonometric series

o R et o AT 27t
y = a, sin — cos — +a, 8sin ——cos —— +---.
l l l l
This amounts to claiming that any mode of vibration results from the su-
perposition of simple modes, a fact he considered to be intuitively evident.
The nth term in the series represents the nth mode, generalizing Taylor’s
formula for the fundamental mode and building in the time dependence;
but Daniel Bernoulli gave no method for calculating the coefficient a,.

We now know that his intuition was correct and that the triangular wave
form, among others, is representable by a trigonometric series. However,
it was well into the nineteenth century before anything like a clear under-
standing of trigonometric series was obtained. The fact that the triangular
wave could be represented by a series made it a bona fide function by clas-
sical standards, hence mathematicians were brought to the realization that
a series representation does not guarantee differentiability. Later, continu-
ity was also called into question, and infinitely subtle problems concerning
the convergence of trigonometric series led Cantor to develop the theory of
sets (see Chapter 23).

These remarkably remote consequences of what seemed at first to be a
purely physical question were of course not the only fruits of the vibrating
string investigations. Trigonometric series proved to be valuable all over
mathematics, from the theory of heat, where Fourier applied them with
such success that they became known as Fourier series, to the theory of
numbers. Their most famous application to number theory is probably the
Dirichlet (1837) proof that any arithmetic progression a, a+ b, a+2b, ...,
where gcd(a,b) = 1, contains infinitely many primes. Pythagoras would
surely have approved!
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EXERCISES

The simplest heat equation is the one-dimensional version,

oT T

o "o

for the temperature T at time ¢ and position x along an infinite straight wire. This
equation may be derived from Newton’s law of cooling, which asserts that the rate
of heat flow between two points is proportional to their temperature difference.

Thus the approximate difference -a—i:dx between T at x and x + dx will induce

heat to flow from x 4 dx to x at a rate proportional to %%dx. However, at the same
time, heat will flow from x — dx to x at approximately the same rate. To find the
net flow toward x, and hence the rate %% of temperature increase, we need to take

into account the rate of change of 31" , namely %_i%:
13.4.1 By pursuing this line of argument, give a plausible derivation of the heat
equation

E‘Kaxi‘

Sines and cosines arise from the heat equation when one solves it by the
method of separation of variables.

o _ T

13.4.2 Suppose the heat equation has a solution of the form T'(x,7) = X(x)¥ (¢),
where X and ¥ are functions of the single variables x and ¢, respectively.
Show that
1 dy(r)  « d*X(x)
Y(1) dt  X(x) dx?

= constant.

13.4.3 Now explain how sines and cosines are involved in solving for X (x).

13.5 Hydrodynamics

The properties of fluid flow have been investigated since ancient times,
initially in connection with practical questions such as water supply and
water-powered machinery. However, nothing like a mathematical theory
was obtained before the Renaissance, and until the advent of calculus it
was only possible to deal with fairly coarse macroscopic quantities such
as the average speed of emission from an opening in a container. Newton
(1687), Book II, introduced infinitesimal methods into the study of fluids,
but much of his reasoning is incomplete, based on inappropriate mathe-
matical models, or simply wrong. As late as 1738, when the field of hy-
drodynamics finally got its name in the classic Hydrodynamica of Daniel
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Bernoulli, the basic infinitesimal laws of fluid motion had still not been
discovered.

The first important law was discovered by Clairaut (1740), in a con-
text that in fact was essentially static. Clairaut was interested in one of the
burning questions of the time, the shape (or “figure”) of the earth. Newton
had argued that the earth must bulge somewhat at the equator as a result of
its spin. Natural as this seems now (and indeed then, since the phenomenon
was clearly observable in Jupiter and Saturn), it was opposed by the anti-
Newtonian Cassini, who argued for a spindle-shaped earth, elongated to-
ward the poles. Clairaut actually took part in an expedition to Lapland that
confirmed Newton’s conjecture by measurement, but he also attacked the
problem theoretically by studying the conditions for the equ111bnum of a
fluid mass.

He considered the vector field of force acting on the ﬁuid and observed
that it must be what we now call a conservative, or potential field. That
is, the integral of the force around any closed path must be zero; otherwise
the fluid would circulate. The condition he actually formulated was the
equivalent one that the integral between any two points be independent of
the path. In the special two-dimensional case where there are components
P, Q of force in the x and y directions, the quantity to be integrated is

Pdx+ Qdy.

Clairaut argued that for the integral to be path-independent, this quantity
must be a complete differential

of , , 9f

df = —d +aydy

Consequently, P = d f/dx, Q = df/dy and P, Q satisfy the condition

? -9 )
y  dx

This condition is indeed necessary, but the existence of the potential f
involved more mathematical subtleties than could have been foreseen at
the time. Clairaut derived the corresponding equations for the components
P, O, R in the physically more natural three-dimensional case and went
as far as studying the equipotential surfaces f = constant. He also found
a satisfying solution to the problem of the figure of the earth. When the
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force at a point is the resultant of gravity and the rotational force, then an
ellipsoid of revolution is an equilibrium figure, with the axis of rotation
being the shorter axis of the ellipse [Clairaut (1743), p. 194].

The two-dimensional equation (1), despite being physically special if
not unnatural, turned out to have a deep mathematical significance. This
was discovered in the dynamic situation, with P, Q taken to be components
of velocity rather than force. In this case, (1) still holds when the flow is
independent and irrotational as d’ Alembert (1752) showed by an argument
similar to Clairaut’s. The crucial additional fact that now emerges is that
P, QO satisfy a second relation

dP dQ

ax 3y
derived by d’Alembert as a consequence of the incompressibility of the
fluid. He considered an infinitesimal rectangle of fluid with corners at the
points (x,y), (x+dx,y), (x,y+dy), (x+dx,y+dy), and the parallelogram
into which it is carried in an infinitesimal time interval by the known ve-
locities (P,Q), (P+ (dP/dx)dx,Q+ (dQ/dx)dx), .... Equating the areas
of these two parallelograms leads to (2). In the three-dimensional case one
similarly gets

=1 (2)

dP dQ OJR

dx dy 0z
but the significance of (1) and (2), as d’Alembert discovered, is that they
can be combined into a single fact about the complex function P + iQ.
This flash of inspiration became the basis for the theory of complex func-
tions developed in the nineteenth century by Cauchy and Riemann (see
Section 16.1).

EXERCISES

=0,

To understand the concept of irrotational flow more directly, it helps to con-
sider a flow that is clearly rotational, for example a rigid rotation of the plane
about the origin at constant angular velocity .

13.5.1 For this flow, show that the velocity components at the point (x,y) are
P=-ay, O=ox,
and deduce that %f - a =-20.

Thus the quarmty ;2 is a measure of the amount of rotation of the flow.
It is, in fact, sometimes called the “rotation” but it is more often called the curl, a
term James Clerk Maxwell introduced in 1870.
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The quantity -3; + %% is called the divergence because it measures the amount
of “expansion”of the fluid. As one would expect, the divergence is zero for the
rigid flow above.

13.5.2 Check that the divergence is zero for the rigid rotation about the origin.

A more direct way to see that divergence is zero for any incompressible flow
in the plane is to consider a fixed rectangle, with fluid flowing through it.

Consider the rectangle with corners fixed in the plane at (x,y), (x+dx,y),
(x,y+dy), (x+dx,y+dy), and consider the instantaneous flux of fluid through it.
Fluid flows in the x end at speed P, hence the influx is proportional to Pdy, and it
flows out the x+ dx end at speed P+ (dP/dx)dx, etc.

13.5.3 Show that the net influx of fluid is

aP do
- ('a—-; + jy') dxdy,

and hence that the divergence is zero for incompressible flow.

13.5.4 Show similarly that

for an incompressible flow in three dimensions.

13.6 Biographical Notes: The Bernoullis

Undoubtedly the most outstanding family in the history of mathematics
was the Bernoulli family of Basel, which included at least eight excel-
lent mathematicians between 1650 and 1800. Three of these, the broth-
ers Jakob (1654—1705) and Johann (1667—-1754) and Johann’s son Daniel
(1700-1782), were among the great mathematicians of all time, as one may
guess from their contributions already mentioned in this chapter. In fact,
all the mathematicians Bernoulli were important in the history of mechan-
ics. One can trace their influence in this field in Szabé (1977), which also
contains portraits of most of them, and in Truesdell (1954, 1960). How-
ever, Jakob, Johann, and Daniel are of interest from a wider point of view,
in mathematics, as well as in their personal lives. The Bernoulli family,
with all its mathematical talent, also had more than its share of arrogance
and jealousy, which turned brother against brother and father against son.
In three successive generations, fathers tried to steer their sons into non-
mathematical careers, only to see them gravitate back to mathematics. The
fiercest conflict occurred among Jakob, Johann, and Daniel.
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Figure 13.5: Portrait of Jakob Bernoulli by Nicholas Bernoulli

Jakob, the first mathematician in the family, was the oldest son of
Nicholas Bernoulli, a successful pharmacist and civic leader in Basel, and
Margaretha Schonauer, the daughter of another wealthy pharmacist. There
were three other sons: Nicholas, who became an artist and in 1686 painted
the portrait of James seen here (Figure 13.5); Johann; and Hieronymus,
who took over the family business. Their father’s wish was that Jakob
should study theology, which he initially did, obtaining his licentiate in
1676. However, Jakob also began to teach himself mathematics and as-
tronomy, and he traveled to France in 1677 to study with the followers of
Descartes. In 1681 his astronomy brought him into conflict with the theolo-
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gians. Inspired by the appearance of a great comet in 1680, he published a
pamphlet that proposed laws governing the behavior of comets and claim-
ing that their appearances could be predicted. His theory was not actually
correct (this was six years before Principia), but it certainly clashed with
the theology of the time, which exploited the unexpectedness of comets
in claiming they were signs of divine displeasure. Jakob decided that his
future was in mathematics rather than theology, and he adopted the motto
Invito Paire, Sidera verso (Against my father’s will, I will turn to the stars).
He made a second study tour, to the Netherlands and England, where he
met Hooke and Boyle, and began to lecture on mechanics in Basel in 1683.

He married Judith Stepanus in 1684, and they eventually had a son
and daughter, neither of whom became a mathematician. In a sense, the
mathematical heir of Jakob was his nephew Nicholas (son of the painter),
who carried on one of Jakob’s most original lines of research, probability
theory. He arranged for the posthumous publication of Jakob’s book on
the subject, the Ars conjectandi [Jakob Bernoulli (1713)], which contains
the first proof of a law of large numbers. Jakob Bernoulli’s law described
the behavior of long sequences of trials for which a positive outcome has a
fixed probability p (such trials are now called Bernoulli trials). In a precise
sense, the proportion of successful trials will be “close” to p for “almost
all” sequences.

In 1687 Jakob became professor of mathematics in Basel and, together
with Johann (whom he had been secretly teaching mathematics), set about

mastering the new methods of calculus that were then appearing in the pa- -

pers of Leibniz. This proved to be difficult, perhaps more for Jakob than
Johann, but by the 1690s the brothers equaled Leibniz himself in the bril-
liance of their discoveries. Jakob, the self-taught mathematician, was the
slower but more penetrating of the two. He sought to get to the bottom of
every problem, whereas Johann was content with any solution, the quicker
the better.

Johann was the tenth child of the family, and his father intended him
to have a business career. When his lack of aptitude for business became
clear, he was allowed to enter the University of Basel in 1683 and became
a master of arts in 1685. During this time he also attended his brother’s
lectures and, as mentioned earlier, learned mathematics from him privately.
Their rivalry did not come to the surface until the catenary contest of 1690,
but Jakob may have felt uneasy about his younger brother’s talent as early
as 1685. In that year he persuaded Johann to take up the study of medicine,
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making the highly optimistic forecast that it offered great opportunities for
the application of mathematics. Johann went into medicine quite seriously,
obtaining a licentiate in 1690 and a doctorate in 1695, but by that time he
was more famous as a mathematician. With the help of Huygens he gained
the chair of mathematics in Groningen, and thus became free to concentrate
on his true calling.

The great applications of mathematics to medicine did not eventuate,
though Johann Bernoulli did make an amusing application of geometric
series which still circulates today as a piece of physiological trivia. In
his De nutritione [Johann Bernoulli (1699)] he used the assumption that
a fixed proportion of bodily substance, homogeneously distributed, is lost
each day and replaced by nutrition, to calculate that almost all the material
in the body would be renewed in three years. This result provoked a se-
rious theological dispute at the time, since it implied the impossibility of
resurrecting the body from all its past substance.

Johann Bernoulli made several important contributions to calculus in
the 1690s, outside mechanics. One was the first textbook in the subject,
the Analyse des infiniment petits. This was published under the name of
his student, the Marquis I’H6pital (1696), apparently in return for generous
financial compensation. Another contribution, made jointly with Leibniz,
was the technique of partial differentiation. The two kept this discovery
secret for 20 years in order to use it as a “secret weapon” in problems
about families of curves [see Engelsman (1984)]. Other discoveries still
remain outside the territory usually explored in calculus, for example,

/lx*d—l L
0 *E T m T T

This startling result of Johann Bernoulli (1697) can be proved using a suit-
able series expansion of x* and integration by parts (see exercises).

The rivalry between Jakob and Johann turned to open hostility in 1697
over the isoperimetric problem, the problem of finding the curve of given
length which encloses the greatest area. Jakob correctly recognized that
this was a calculus of variations problem but withheld his solution, whereas
Johann persisted in publicizing an incorrect solution and claiming that
Jakob had no solution at all. Jakob presented his solution to the Paris
Academy in 1701, but it somehow remained in a sealed envelope until
after his death. Even when the solution was made public in 1706, Johann
refused to admit his own error or the superiority of Jakob’s analysis.
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Johann was married to Dorothea Falkner, the daughter of a parliamen-
tary deputy in Basel, and through his father-in-law’s influence was awarded
the chair of Greek in Basel in 1705. This enabled him to return to Basel
from Groningen, but his real goal was the chair of mathematics, not Greek.
Jakob was then in ill health, and his last days were embittered by the belief
that Johann was plotting to take his place, using the Greek offer as a step-
ping stone. This is precisely what happened, for when Jakob died in 1705
Johann became the professor of mathematics.

With the death of Jakob and the virtual retirement of Leibniz and New-
ton, Johann enjoyed about 20 years as the leading mathematician in the
world. He was particularly proud of his successful defense of Leibniz
against the supporters of Newton:

When in England war was declared against M. Leibniz for
the honour of the first invention of the new calculus of the
infinitely small, I was despite my wishes involved in it; I was
pressed to take part. After the death of M. Leibniz the contest
fell to me alone. A crowd of English antagonists fell upon
my body. It was my lot to meet the attacks of Messrs Keil,
Taylor, Pemberton, Robins and others. In short I alone like
the famous Horatio Cocles kept at bay at the bridge the entire
English army. [Translation by Pearson (1978), p. 235]

His portrait from this era shows the Bernoulli arrogance at its peak:

(Figure 13.6).

Johann Bernoulli finally met his match at the hands of his own pupil
Euler in 1727. There was no open warfare, just a polite exchange of cor-
respondence on the logarithms of negative numbers, but it revealed that
Johann Bernoulli understood some of his own results less well than Eu-
ler did. Johann Bernoulli persisted in his stubborn misunderstanding for
another 20 years, while Euler went on to develop his brilliant theory of
complex logarithms and exponentials (see Section 16.1). Johann Bernoulli
seems not to have minded his pupil’s success at all; instead, he became
consumed with jealousy over the success of his son Daniel.

Daniel Bernoulli (Figure 13.7) was the middle of Johann’s three sons,
all of whom became mathematicians. The oldest, Nicholas (called Nicholas
II by historians to distinguish him from the first mathematician Nicholas),
died of a fever in St. Petersburg in 1725 at the age of 30. The youngest,
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Johann II, was the least distinguished of the three, but he fathered the next
generation of Bernoulli mathematicians, Jakob II and Johann III.

Figure 13.6: Johann Bernoulli

’ Daniel’s path to mathematics was very similar to his father’s. During
his teens he was tutored by his older brother; his father wanted him to go

into business, but when that career failed Daniel was permitted to study
medicine.
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He gained his doctorate in 1721 and made several attempts to win the
chair of anatomy and botany in Basel, finally succeeding in 1733. By that
time, however, he had drifted into mathematics, with such success that he
had been called to the St. Petersburg Academy. During his years there
(1725-1733) he conceived his ideas on modes of vibration and produced
the first draft of his Hydrodynamica. Although he missed finding the basic
partial differential equations of hydrodynamics, the Hydrodynamica made
other important advances. One was the systematic use of a principle of
conservation of energy; another was the kinetic theory of gases, including
the derivation of Boyle’s law that is now standard.|

Figure 13.7: Daniel Bernoulli
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Unfortunately, publication of the Hydrodynamica was delayed until
1738. This left Daniel’s priority open to attack, and the one to take ad-
vantage of him was his own father. The self-styled Horatius of the priority
dispute between Leibniz and Newton attempted the most blatant priority
theft in the history of mathematics by publishing a book on hydrodynam-
ics in 1743 and dating it 1732. Daniel was devastated, and wrote to Euler:

Of my entire Hydrodynamics, not one iota of which do in fact
I owe to my father, I am all at once robbed completely and
lose thus in one moment the fruits of the work of ten years.
All propositions are taken from my Hydrodynamics, and then
my father calls his writings Hydraulics, now for the first time
disclosed, 1732, since my Hydrodynamics was printed only in
1738.

[Daniel Bernoulli (1743), in the Truesdell (1960) translation]

The situation was not quite as clear-cut as Daniel claimed [a detailed
assessment is in Truesdell (1960)], but at any rate Johann Bernoulli’s move
backfired. His reputation was so tarnished by the episode that he did not
even receive credit for parts of his work that were original. Daniel went
on to enjoy fame and a long career, becoming professor of physics in 1750
and lecturing to enthusiastic audiences until 1776.

EXERCISES

13.6.1 Use integration by parts to show that

(=1)"n!

1
Aﬂ(logx] dx = W'

13.6.2 Deduce that i i

1 1
f0 Fdr=1-sztm =+

using a series expansion of x* = ¢*18%,
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