The cotangent complex in characteristic 0

Marco Manetti

We use the same notation and conventions of [8]; in particular K will be a fixed field of
characteristic 0.

1 Homotopy of differential graded algebras

Let A be a graded algebra, if A — B is a morphism of graded algebras then B has a natural
structure of A-algebra. Given two A-algebras B, C' it is defined their tensor product B ® 4 C
as the quotient of B ®x C = @&y m B, ®k Cp, by the ideal generated by ba ® ¢ — b ® ac for
every a € A, b € B, c € C. B®4 C has a natural structure of graded algebra with degrees
b®c = b+ ¢ and multiplication (b ® ¢)(8 ® v) = (—=1)°bB ® ¢y. Note in particular that
Al{z:}] = Ao K [{z:}].

Given a dg-algebra A and h € K it is defined an evaluation morphism ey, : Alt, dt] — A,
en(a®@p(t)) = ap(h), ep(a ® q(t)dt) = 0.

Lemma 1.1. For every dg-algebra A the evaluation map ep: Alt,dt] — A induces an iso-
morphism H(A[t,dt]) — H(A) independent from h € K.

Proof. Let 1: A — A[t,dt] be the inclusion, since et = Idy it is sufficient to prove that
12 H(A) — H(A[t,dt]) is bijective. For every n > 0 denote B, = At" & At"~1dt; since
d(Bp) C B, and Alt,dt] = 1(A)ED,,- B it is sufficient to prove that H(B,) = 0 for every
n. Let z € Z;(B,,), z = at™ + nbt"~'dt, then 0 = dz = dat™ + ((—1)%a + db)nt™~1dt which
implies a = (—1)*"!db and then z = (—1)*"1d(bt"). O

Definition 1.2. Given two morphisms of dg-algebras f,g: A — B, a homotopy between f
and g is a morphism H: A — Bl[t,dt] such that Hy := ego H = f, Hy :=e; 0 H = g. We
denote by [A, B] the quotient of Hompga (4, B) by the equivalence relation ~ generated by
homotopy. If B — C' is a morphism of dg-algebras with kernel J, a homotopy H: A — BIt, dt]
is called constant on C' if the image of H is contained in B ©j>¢ (JVT @& Jt/dt). Two dg-
algebras A, B are said to be homotopically equivalent if there exist morphisms f: A — B,
g: B — A such that fg ~ Idg, gf ~ I1da.

According to Lemma 1.1 homotopic morphisms induce the same morphism in homology.

Lemma 1.3. Given morphisms of dg-algebras,

if f~gandh ~1 then hf ~lg.

Proof. Tt is obvious from the definitions that hg ~ lg. For every a € K there exists a
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commutative diagram

BoK[td] 22L c oKt di .

Lk

B——C

If F: A — Blt,dt] is a homotopy between f and g, then, considering the composition of F
with h ® Id, we get a homotopy between hf and hg. O

Example 1.4. Let A be a dg-algebra, {z;} a set of indeterminates of integral degree and
consider the dg-algebra B = A[{x;, dz;}], where dz; is an indeterminate of degree dz; = T;+1
and the differential dp is the unique extension of d4 such that dp(z;) = dz;, dg(dz;) = 0
for every i. The inclusion i: A — B and the projection 7: B — A, w(x;) = w(dz;) = 0 give
a homotopy equivalence between A and B. In fact mi = Idy; consider now the homotopy
H: B — BIJt,dt] given by

H(z;) = zt, H(dw;) = dH(z;) = dwit + (—=1)"2;dt, H(a)=a, Va € A.

Taking the evaluation at ¢t = 0,1 we get Hy = ip, H; = Idp.

Exercise 1.5. Let f,g: A — C, h: B — C be morphisms of dg-algebras. If f ~ ¢ then
fQ@h~gh: A®Qgx B — C. A

Remark 1.6. In view of future geometric applications, it seems reasonable to define the
spectrum of a unitary dg-algebra A as the usual spectrum of the commutative ring Zo(A).

If S C Zy(A) is a multiplicative part we can consider the localized dg-algebra S™*A with
differential d(a/s) = da/s. Since the localization is an exact functor in the category of Zy(A)
modules we have H(S7YA) = S~YH(A). If p: A — C is a morphism of dg-algebras and ¢(s)
is invertible for every s € S then there is a unique morphism ¢: ST'A — C extending ¢.
Moreover if ¢ is a quastisomorphism then also 1 is a quasiisomorphism (easy exercise).

If P C Zo(A) is a prime ideal, then we denote as usual Ap = S~YA, where S = Zy(A)—P.
It is therefore natural to define Spec(A) as the ringed space (X, 121), where X s the spectrum
of A and A is the (quasi coherent) sheaf of dg-algebras with stalks Ap, P € X.

2 Differential graded modules

Let (A, s) be a fixed dg-algebra, by an A-dg-module we mean a differential graded vector space
(M, s) together two associative distributive multiplication maps A x M — M, M x A — M
with the properties:

1. AlMJ C Mi+]‘, MZAJ C Mi+j~
2. am = (—1)"™ma, for homogeneous a € A, m € M.
3. s(am) = s(a)m + (—1)%as(m).

If A= Ay we recover the usual notion of complex of A-modules.
If M is an A-dg-module then M[n] = K[n] ®x M has a natural structure of A-dg-module
with multiplication maps

(e ® m)a = e ® ma, ale®@m) = (—=1)"e ® am, ecKin]l,me M, acA.
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The tensor product N ® 4 M is defined as the quotient of N ®g M by the graded sub-
modules generated by all the elements na ® m —n ® am.
Given two A-dg-modules (M, dys), (N, dy) we denote by

Hom'y (M, N) ={f € Homg (M, N)| f(ma) = f(m)a, m € M,a € A}

Hom’ (M, N) = @5 Hom'; (M, N).
neZ

The graded vector space Hom? (M, N) has a natural structure of A-dg-module with left
multiplication (af)(m) = af(m) and differential

d: Hom'y(M,N) — Hom" "' (M,N),  df =[d,f]=dyof—(—1)"fody.

Note that f € Hom%(M,N) is a morphism of A-dg-modules if and only if df = 0.
A homotopy between two morphism of dg-modules f,g: M — N is a h € Homgl(M, N)
such that f — g = dh = dyh + hdjy;. Homotopically equivalent morphisms induce the same
morphism in homology.

Morphisms of A-dg-modules f: L — M, h: N — P induce, by composition, morphisms
f*: Hom% (M, N) — Hom’ (L, N), h.: Hom’ (M, N) — Hom’ (M, P);

Lemma 2.1. In the above notation if f is homotopic to g and h is homotopic to | then f*
is homotopic to g* and l, is homotopic to h,.

Proof. Let p € Homzl(L,M ) be a homotopy between f and g, It is a straightforward veri-
fication to see that the composition with p is a homotopy between f* and g*. Similarly we
prove that h, is homotopic to I,. O

Lemma 2.2. Let A — B be a morphism of unitary dg-algebras, M an A-dg-module, N a
B-dg-modules. Then there exists a natural isomorphism of B-dg-modules

Hom’ (M, N) ~ Homjz(M ® 4 B, N).

Proof. Consider the natural maps:

L
Hom’ (M, N) —=Hompz(M ®4 B,N) ,
R

Lf(m@b) = f(m)b,  Rg(m) = g(m®1).

We left as exercise the easy verification that L, R = L' are isomorphism of B-dg-modules.
O

Given a morphism of dg-algebras B — A and an A-dg-module M we set:
Dery (A, M) = {¢ € Homy (A, M)|d(ad) = p(a)b + (—1)""ag(b), ¢(B)=0}

Dery; (A, M) = €D Derf (A, M).
neZ

As in the case of Hom™, there exists a structure of A-dg-module on Der;(A, M) with product
(ad)(b) = ag(b) and differential

d: Dery(A, M) — Der’st (A, M), dp = [d, ¢] = dprp — (—1)"¢d a.

Given ¢ € Der'y(A, M) and f € Hom'y (M, N) their composition f¢ belongs to Der’;"™ (A, N).
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Proposition 2.3. Let B — A be a morphisms of dg-algebras: there exists an A-dg-module
Q4B together a closed derivation 6: A — Q4,p of degree 0 such that, for every A-dg-module
M, the composition with § gives an isomorphism

Hom’s (4,5, M) = Derg(A, M).
Proof. Consider the graded vector space
Fa= @ Adx, x € A homogeneous, ox =T.
F, is an A-dg-module with multiplication a(bdz) = abdzx and differential
d(adx) = dadz + (—1)*ad(dz).
Note in particular that d(éx) = 6(dx). Let I C F4 be the homogeneous submodule generated
by the elements
8(z +y) — bz — 8y, d(xy) —x(0y) — (~=1)"Vy(dz), d(b).b€ B,

Since d(I) C I the quotient Q4,p = F'a/I is still an A-dg-module. By construction the map
§: A — Qy/pis aderivation of degree 0 such that do = dod—dda = 0. Let 0d: Hom’y (Q4/5, M) —
Der; (A, M) be the composition with ¢:

a) L is a morphism of A-dg-modules. In fact (af) o d = a(f o) for every a € A and
A(f 0 8)(w) = dar(f(82)) = (1) fé(dr) =

= du(f(62)) — (~1)! f(d(0x)) = df o 6.

b) od is surjective. Let ¢ € Derp(A, M); define a morphism f € Hom" (Fa, M) by the rule
f(adz) = (—1)"%a¢p(x); an easy computation shows that f(I) = 0 and then f factors
to f € Hom, (24,5, M): by construction fod = ¢.

c) od is injective. In fact the image of § generate Q,4,p.

O

When B=K we denote for notational simplicity Der”" (A, M)=Dery (A, M), Q1 = Q4 /x .
Note that if C' — B is a morphism of dg-algebras, then the natural map Q4,0 — Q4/p is
surjective and 4, = Q4/p whenever C' — B is surjective.

Definition 2.4. The module Q4/p is called the module of relative Kéhler differentials of A
over B and § the universal derivation.

By the universal property, the module of differential and the universal derivation are
unique up to isomorphism.

Example 2.5. If Ay = K[{z;}] is a polynomial algebra then Q4 = @®;Adx; and §: A — Q4
is the unique derivation such that §(z;) = dx;.

Proposition 2.6. Let B — A be a morphism of dg-algebras and S C Zy(A) a multiplicative
part. Then there exists a natural isomorphism S_lﬂA/B =Qg-14/B-

Proof. The closed derivation 0: A — €Q4,p extends naturally to d: sS4 — S*IQA/B,
§(a/s) = da/s, and by the universal property there exists a unique morphism of S~'A mod-
ules f: Qg-14/p — S_IQA/B and a unique morphism of A modules g: Q4,5 — Qg-14/5.
The morphism ¢ extends to a morphism of S~!'A modules g: S_lQA/B — Qg-14/p- Clearly
these morphisms commute with the universal closed derivations and then ¢gf = Id. On the
other hand, by the universal property, the restriction of fg to {24,p must be the natural
inclusion Q4,5 — SilﬁA/B and then also fg = Id. O
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3 Projective modules

Definition 3.1. An A-dg-module P is called projective if for every surjective quasiisomor-
phism f: M — N and every g: P — N there exists h: P — M such that fh = g.

M = M .
fiqis /fiqis
P——>N = P——N

Exercise 3.2. Prove that if A = Ay and P = P, then P is projective in the sense of 3.1 if
and only if Py is projective in the usual sense. A

Lemma 3.3. Let P be a projective A-dg-module, f: P — M a morphism of A-dg-modules
and ¢: M — N a surjective quasiisomorphism. If ¢f is homotopic to 0 then also f is
homotopic to 0.

Proof. We first note that there exist natural isomorphisms Hom’, (P, M[j]) = Hom',” (P, M).
Let h: P — N[—1] be a homotopy between ¢f and 0 and consider the A-dg-modules M @&
N[-1], M & M[—1] endowed with the differentials

d: Mn S Nn—l - Mn+1 @ Nn7 d(mlan2> = (dm17f(m1) - dn2))

d: M, ® M,_1 — Mn+1 & M, d(ml,mg) = (dml,ml — dmg)

The map Idy@®f: M®&M[—-1] — M@&N|[—1] is a surjective quasiisomorphism and (¢, h): P —
M @ N[—1] is morphism of A-dg-modules. If (¢,1): P — M @& M[—1] is a lifting of (¢, h) then
l is a homotopy between ¢ and 0. O

Lemma 3.4. Let f: M — N be a morphism of A-dg-modules, then there exist morphisms
of A-dg-modules w: L — M, g: L — N such that g is surjective, 7 is a homotopy equivalence
and g is homotopically equivalent to f.

Proof. Consider L = M & N @ N[—1] with differential
d: My ® N, ® Npy_1 — My @ Nyyp1 @ Ny, d(m,ng,ng) = (dm,dny,ny — dnas).

We define g(m,ni,n2) = f(m) + ny, m(m,n1,n2) = m and s: M — L, s(m) = (m,0,0).
Since gs = f and ws = Idy; it is sufficient to prove that sm is homotopic to Idy. Take
h € Hole(L,L)7 h(m,ni,n2) = (0,n2,0); then

d(h(m,n1,n2)) + hd(m,nq1,n9) = (0,n1,n9) = (Idy, — sm)(m,ny,ns).
O

Theorem 3.5. Let P be a projective A-dg-module: For every quasiisomorphism f: M — N
the induced map Hom® (P, M) — Hom’ (P, N) is a quasiisomorphism.

Proof. By Lemma 3.4 it is not restrictive to assume f surjective. For a fixed integer i we
want to prove that H(Hom® (P, M)) = H*(Hom’ (P, N)). Replacing M and N with M]i]
and N[i] it is not restrictive to assume i = 0. Since Z°(Hom’ (P, N)) is the set of morphisms
of A-dg-modules and P is projective, the map

79 (Hom’s (P, M)) — Z°(How’s (P, N)
is surjective. If ¢ € Z°(Hom® (P, M)) and f¢ € B°(Hom’ (P, N)) then by Lemma 3.3 also ¢

is a coboundary. O

44



A projective resolution of an A-dg-module M is a surjective quasiisomorphism P — M
with P projective. We will show in next section that projective resolutions always exist. This
allows to define for every pair of of A-dg-modules M, N

Ext‘(M, N) = H'(Hom% (P, N)),
where P — M is a projective resolution.

Exercise 3.6. Prove that the definition of Ext’s is independent from the choice of the pro-
jective resolution. A

4 Semifree resolutions

From now on K is a fixed dg-algebra.
Definition 4.1. A K-dg-algebra (R, s) is called semifree if:
1. The underlying graded algebra R is a polynomial algebra over K K[{x;}], i € I.

2. There exists a filtration ) = 1(0) C I(1) C ... , UpenI(n) = I, such that s(z;) € R(n)
for every i € I(n+ 1), where by definition R(n) = K[{z;}], i € I(n).

Note that R(0) = K, R(n) is a dg-subalgebra of R and R = UR(n).

Let R = K[{z;}] = UR(n) be a semifree K-dg-algebra, S a K-dg-algebra; to give a
morphism f: R — S is the same to give a sequence of morphisms f,: R(n) — S such
that f,.1 extends f, for every m. Given a morphism f,: R(n) — S, the set of extensions
fat1: R(n+1) — S is in bijection with the set of sequences {fn4+1(zi)}, ¢ € I(n+1) — I(n),
such that $(fo1 (2)) = fa(5(2:)), Fos1(1) = T2

Example 4.2. K[t,dt] is semifree with filtration K & Kdt C K|[¢t,dt]. For every dg-algebra
A and every a € A there exists a unique morphism f: K[¢t,dt] — A such that f(¢) = a.

Exercise 4.3. Let (V) s) be a complex of vector spaces, the differential s extends to a unique
differential s on the symmetric algebra () V such that s(" V) Cc Q" V for every n. Prove
that ((OV, s) is semifree. A

Exercise 4.4. The tensor product (over K) of two semifree K-dg-algebras is semifree. A

Proposition 4.5. Let (R = K[{x;}],s), ¢ € UI(n), be a semifree K-dg-algebra: for every
surjective quasiisomorphism of K-dg-algebras f: A — B and every morphism g: R — B
there exists a lifting h: R — A such that fh = g. Moreover any two of such liftings are
homotopic by a homotopy constant on B.

Proof. Assume by induction on n that it is defined a morphism h,,: R(n) — A such that
fhy equals the restriction of g to R(n) = K[{z;}], ¢ € I(n). Let i € I(n + 1) — I(n), we
need to define h,1(x;) with the properties fh,i1(z;) = g(x;), dhpi1(z;) = hp(dx;) and
hnt1(x;) = T;. Since dhy(dz;) = 0 and fhy,(dz;) = g(dx;) = dg(x;) we have that h,(dz;) is
exact in A, say hp(dz;) = da;; moreover d(f(a;) — g(z;)) = f(da;) — g(dz;) = 0 and, since
Z(A) — Z(B) is surjective there exists b; € A such that f(a; +b;) = g(z;) and then we may
define hy,y1(x;) = a; + b;. The inverse limit of h,, gives the required lifting.

Let h,l: R — A be liftings of g and denote by J C A the kernel of f; by assumption J is
acyclic and consider the dg-subalgebra C' C Alt, dt],

C=A®j5 (JUT @ Jtdt).
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We construct by induction on n a coherent sequence of morphisms H,,: R(n) — C giving a
homotopy between h and I. Denote by N C K [¢, dt] the differential ideal generated by ¢(t—1);
there exists a direct sum decomposition K [t,dt] = K & Kt ® Kdt & N. We may write:

H,(z) = h(z) + (I(z) — h(z))t + an(2)dt + by (z, 1),
with a,(z) € J and b, (z,t) € J® N. Since dH,,(x) = H,(dx) we have for every x € R(n):
(—1)7(I(z) — h(z)) + d(an(x)) = an(dz), d(by(z,t)) = by, (dx, ). (1)
Let i € I(n+ 1) — I(n), we seck for an41(x;) € J and by (xi,t) € J® N such that, setting
Hyir () = h(m:) + (i) — h(2:)t + angr (25)dt + bpyr (20, 1),

we want to have
0= dHnJrl(xi) — Hn(dacl)
Since both J and J ® N are acyclic, such a choice of a,1(x;) and byy1(x;,t) is possible if

and only if (—1)% (I(z;) — h(x:)) + an(da;) and by (dz;, t) are closed.
According to Equation 1 we have

d((~1)™ () = h(a) + an(de:)) = (~1)™ (U(d) — h(day)) + d(an(de))

O

Definition 4.6. A K-semifree resolution (also called resolvent) of a K-dg-algebra A is a
surjective quasiisomorphism R — A with R semifree K-dg-algebra.

By 4.5 if a semifree resolution exists then it is unique up to homotopy.
Theorem 4.7. Every K-dg-algebra admits a K -semifree resolution.

Proof. Let A be a K-dg-algebra, we show that there exists a sequence of K-dg-algebras
K =R(0) C R(1) C...C R(n) C ... and morphisms f,,: R(n) — A such that:

1. R(n+1) = R(n)[{z:}], dz; € R(n).
2. far1 extends fi.

3. fi: Z(R(1)) — Z(A), fa: R(2) — A are surjective.

4. f7Y(B(A)) N Z(R(n)) € B(R(n+ 1)) N R(n), for every n > 0.

It is then clear that R = UR(n) and f = lim f, give a semifree resolution. Z(A) is a
graded algebra and therefore there exists a polynomial graded algebra R(1) = K[{z;}] and a
surjective morphism f;: R(1) — Z(A); we set the trivial differential d = 0 on R(1). Let v; be
a set of homogeneous generators of the ideal f;*(B(A)), if fi(v;) = da; it is not restrictive
to assume that the a;’s generate A. We then define R(2) = R(1)[{z:}], f2(x;) = a; and
dz; = v;. Assume now by induction that we have defined f,: R(n) — A and let {v;} be a
set of generators of f,;1(B(A))NZ(R(n)), considered as an ideal of Z(R(n)); If f,(v;) = da;
we define R(n+ 1) = R(n)[{z;}], dz; = v; and f,y1(z;) = a;. O
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Remark 4.8. It follows from the above proof that if K; = A; =0 for every i > 0 then there
exists a semifree resolution R — A with R; = 0 for every i > 0.

Exercise 4.9. If, in the proof of Theorem 4.7 we choose at every step {v;} = f,, 1(B(A)) N
Z(R(n)) we get a semifree resolution called canonical. Show that every morphism of dg-
algebras has a natural lift to their canonical resolutions. A

Given two semifree resolutions R — A, S — A we can consider a semifree resolution
P — R x4 S of the fibred product and we get a commutative diagram of semifree resolutions

P——R

O\

R— A

Definition 4.10. An A-dg-module F is called semifree if F' = ®;c;Am;, Ty; € Z and there
exists a filtration § = I[(0) C I(1) C ... C I(n) C ... such that

i€ I(TL + 1) = dm; € F(n) = @iE[(n)Ami.

A semifree resolution of an A-dg-module M is a surjective quasiisomorphism F — M with
F semifree.

The proof of the following two results is essentially the same of 4.5 and 4.7:
Proposition 4.11. FEvery semifree module is projective.
Theorem 4.12. Every A-dg-module admits a semifree resolution.

Exercise 4.13. An A-dg-module M is called flat if for every quasiisomorphism f: N — P
the morphism f ® Id: N @ M — P ® M is a quasiisomorphism. Prove that every semifree
module is flat. A

Example 4.14. If R = K[{x;}] is a K-semifree algebra then Qr /x = ©RIz; is a semifree
R-dg-module.

5 The cotangent complex

Proposition 5.1. Assume it is given a commutative diagram of K-dg-algebras

R—>§<2—R

NV

A

If there exists a homotopy between f and g, constant on A, then the induced morphisms of
A-dg-modules

[,9: Qr/xk ®r A — Qg/x ®s A

are homotopic.
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Proof. Let J C S be the kernel of S — A and let H: R — S ®;>0 (J'T! & Jt/dt) be a
homotopy between f and g; the first terms of H are

H(z) = f(z) + t(g(z) — f(x)) +dtq(z) + ... .

dz) we get g(z) — f(z) = q(dz) + dg(z) and from H(zy) = H(z)H(y)
Vf(y) + (=1)*f(x)q(y). Since f(z) — g(x),q(x) € J for every x, the map

From dH(z) = H(
follows q(zy) = q(x

q: Qp/xk @R A = Qg ®s A, q(dx-r®a) =46(q(z))f(r) @a,

is a well defined element of Hom;ll(QR/K@RA Qs /K ®sA). By definition f,g: Qp/x ®rA —
Qg/k ®@s A are defined by

fOz-r@a)=46(f(2)f(r)@a, ¢(0zr®a)=10dg(x))g(r)®a=0dg(x))f(r)a

A straightforward verification shows that dg = f — g. O

Definition 5.2. Let R — A be a K-semifree resolution, the A-dg-module L g/ = Qr/xk@rA
is called the relative cotangent complex of A over K. By 5.1 the homotopy class of L g, is
independent from the choice of the resolution. For every A-dg-module M the vector spaces

T'(A/K,M) = H'(Hom’ (La,x, M)) = Ext)y(La/x, M),

Ti(A/K,M) = H;(La/x ® M)) = Tor; (La,x, M),

are called respectively the cotangent and tangent cohomolgy of the morphism K — A with
coefficient on M.

Lemma 5.3. Let p: R — S be a surjective quasiisomorphism of semifree dg-algebras: con-
sider on S the structure of R-dg-module induced by p. Then:

1. p.: Der*(R,R) — Der*(R,S), f — pf, is a surjective quasiisomorphism.

2. p*: Der*(S,S) — Der*(R,S), f — fp, is an injective quasiisomorphism.
Proof. A derivation on a semifree dg-algebra is uniquely determined by the values at its
generators, in particular p, is surjective and p* is injective. Since 0y is semifree, by 3.5
the morphism p,: Hom%(Qg, R) — Homp(Qg, S) is a quasiisomorphism. By base change

Der*(R,S) = Homg(Qr ®r S, S) and, since p: Qr ®r S — Qg is a homotopy equivalence,
also p* is a quasiisomorphism. O

Every morphism f: A — B of dg-algebras induces a morphism of B modules L4 ® 4 B —
L unique up to homotopy. In fact if R — A and P — B are semifree resolution, then there
exists a lifting of f, R — P, unique up to homotopy constant on B. The morphism Qr — Qp
induce a morphism Qr g B=1L4 ®4 B — Qp ®p B = Lpg. If B is a localization of A we
have the following

Theorem 5.4. Let A be a dg-algebra, S C Zo(A) a multiplicative part: then the morphism
Li®a S7TA — Lg-14

is a quasiisomorphism of ST'A modules.
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Proof. (sketch) Denote by f: R — A, g: P — S™'A two semifree resolutions and by
H={xe Zy(R)| f(z) € S}, K ={xz € Zy(P) | g(x) is invertible }.

The natural morphisms H 'R — S™!A, K~'P — S~!A are both surjective quasiisomor-
phisms. By the lifting property of semifree algebras we have a chain of morphisms

R-p L g 'R K1p
with « the localization of a. Since fa and v/ are homotopic to the natural inclusions R —

H 'R, P — K~'P, the composition of morphisms

Qr ®gr S_lAi)QP QRp S_lALQH—lR Q-1 ST1A = Or ®r S_lA,

Qp@p STTA0 g @y STIAT SO 1 p @ ap STIA= Qp@p STIA

are homotopic to the identity and hence quasiisomorphisms. O

Example 5.5. Hypersurface singularities.

Let X =V (f) Cc A", feK][x1,... ,z,], be an affine hypersurface and denote by A = K[X] =
Kz1,...,2,]/(f) its structure ring. A DG-resolvent of A is given by R = Kx1,... ,Zn, ],
where y has degree —1 and the differential is given by s(y) = f. The R-module Qp is
semifreely generated by dx1, ... ,dz,,dy, with the differential

s(dy) = d(s()) = df = Y

T
The cotangent complex L4 is therefore
0— Ady—>- @ Adx;—0.
i=1
In particular T*(A/K, A) = Ext’(L 4, A) = 0 for every i # 0, 1. The cokernel of s is isomorphic
to Q4 and then T9(A/K, A) = Ext®(ILa, A) = Derg (A, A). If f is reduced then s is injective,
L4 is quasiisomorphic to Q4 and then T'(A/K, A) = Ext!(Q4, A).

Exercise 5.6. In the set-up of Example 5, prove that the A-module T'(A/K, A) is finitely
generated and supported in the singular locus of X. A

6 The controlling differential graded Lie algebra

Let p: R — S be a surjective quasiisomorphism of semifree algebras and let I = ker p. By the
lifting property of S there exists a morphism of dg-algebras e: S — R such that pe = Idg.
Define

L,={feDer"(R,R)| f(I) C I}.
It is immediate to verify that L, is a dg-Lie subalgebra of Der”(R, R). We may define a map
0p: L, — Der*(S,5), 0,(f) =po foe.
Since pf(I) = 0 for every f € L,, the definition of 6, is independent from the choice of e.
Lemma 6.1. 0, is a morphism of DGLA.
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Proof. For every f,g € L,, s € S, we have:

d(0,f)(s) = dpfe(s) — (~1) pfe(ds) = pdfe(s) — (~1) pfd(e(s)) = O,(df)(s).
Since pfep = pf and pgep = pg

[0, 1,6p9] = pfepge — (—1) Ipgepfe = p(fg — (1) 9gf)e = 6,([f, 9))-

Theorem 6.2. The following is a cartesian diagram of quasiisomorphisms of DGLA

L C—%>Der*(R, R),

p

%ep |

Der*(S,S) —— Der*(R, S)

p
where 1, is the inclusion.

We recall that cartesian means that it is commutative and that L, is isomorphic to the
fibred product of p, and p*.

Proof. Since pfep = pf for every f € L, we have p*0,(f) = pfep = pf = p.f and the
diagram is commutative. Let

K ={(f,g) € Der*(R, R) x Der*(S,S) |pf = gp}

be the fibred product; the map L, — K, f — (f,0,(f)), is clearly injective. Conversely
take (f,g9) € K and x € I, since pf(x) = gp(xz) = 0 we have f(I) C I, f € L,. Since p is
surjective g is uniquely determined by f and then g = 6,(f). This proves that the diagram
is cartesian. By 5.3 p. (resp.: p*) is a surjective (resp.: injective) quasiisomorphism, by a
standard argument in homological algebra also 6, (resp.: 2,,) is a surjective (resp.: injective)
quasiisomorphism. O

Corollary 6.3. Let P — A, Q — A be semifree resolutions of a dg-algebra. Then Der* (P, P)
and Der*(Q, Q) are quasiisomorphic DGLA.

Proof. There exists a third semifree resolution R — A and surjective quasiisomorphisms
p: R— P, q: R — Q. Then there exists a sequence of quasiisomorphisms of DGLA

Ly Lq
Der* (P, P) Der*(R, R) Der*(Q, Q).

Remark 6.4. If R — A is a semifree resolution then

H'(Der*(R, R)) = H'(Homp(Qg, R)) = H (Homp(Qr, A)) =
= Hi(HomA(QR ®rAA)) = EXti(LA,A).
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Unfortunately, contrarily to what happens to the cotangent complex, the application
R — Der*(R, R) is quite far from being a functor: it only earns some functorial properties
when composed with a suitable functor DGLA — D.

Let D be a category and F: DGLA — D be a functor which sends quasiisomor-
phisms into isomorphisms of D!. By 6.3, if P — A, Q — A are semifree resolutions then
F(Der* (P, P)) ~ F(Der*(Q,Q)); now we prove that the recipe of the proof of 6.3 gives a
NATURAL isomorphism independent from the choice of P, p, q. For notational simplicity de-
note F(P) = F(Der* (P, P)) and for every surjective quasiisomorphism p: R — P of semifree
dg-algebras, F(p) = F(0,)F (1,) " : F(R) — F(P).

Lemma 6.5. Let p: R — P, q: P — @ be surjective quasiisomorphisms of semifree dg-
algebras, then F(qp) = F(q)F(p).

Proof. Let I = kerp, J = kerq, H = kerqp = p~(J), e: P — R, s: Q — P sections.
Note that e(J) C H. Let L = Lq Xper+(p,p) Lp, if (f,g) € L and € H then pg(z) =
pg(ep(z)) = f(x) € J and then g(x) € H, g € Lgp; denoting a: L — Ly, af,g) = g, we
have a commutative diagram of quasiisomorphisms of DGLA

and then

:]'—(eq)}—(lq)ilf(ap)f(zp)il = F(q)F(p)-

O

Let P be a semifree dg-algebra @ = P[{z;,dz;}] = P ®x K[{z;,dz;}], i: P — Q the
natural inclusion and 7: @ — P the projection m(x;) = m(dx;) = 0: note that i,m are
quasiisomorphisms. Since P, (Q are semifree we can define a morphism of DGLA

i: Der™(P, P) — Der*(Q, Q),
(if) (i) = (if)(dz;) =0,
(if)(p) =i(f(p)), p € P.

Since m.i = 7*: Der*(P, P) — Der*(Q, P), according to 5.3 4 is an injective quasiisomor-
phism.

Lemma 6.6. Let P,Q as above, let q: Q — R a surjective quasiisomorphism of semifree
algebras. If p = qi: P — R is surjective then F(p) = F(q)F(i).

1The examples that we have in mind are the associated deformation functor and the homotopy class of
the corresponding Loo-algebra
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Proof. Let L = Der™(P, P) Xper-(Q,@) Lq be the fibred product of i and 1,; if (f,g) € L
then g = if and for every = € kerp, i(f(z)) = g(i(x)) € kerg Ni(P) = i(ker p). Denoting
a: L — L,, of,g) = f, we have a commutative diagram of quasiisomorphisms

Der(Q, Q)

/Dsr\/\
\

Der*(

and then F(q)F (i) = F(0,)F (1q) 1 F (i) = F(0,)F (2,) " . O

Lemma 6.7. Let pg,p1: P — R be surjective quasiisomorphisms of semifree algebras. If pg
is homotopic to py then F(po) = F(p1).

Proof. We prove first the case P = R[t,dt] and p; = e;, i = 0, 1, the evaluation maps. Denote
by

L ={f €Der"(P,P)| f(R) C R, f(t) = f(dt) = 0}.
Then L C L, for every a = 0,1, 6._: L — Der*(P, P) is an isomorphism not depending from

aand L C L., C Der*(R, R) are quasiisomorphic DGLA. This proves that F(eg) = F(e1).
In the general case we can find commutative diagrams, o = 0,1,

Pl{x;,dz;}] —>Rt dt]

[

_

with ¢ surjective quasiisomorphism. We then have F(pg) = F(qo)F (i)~ = F(eg)F(q)F(i)~t =
Flen)F(@)F (i)~ = Fq) F (i)' = F(pa)- 0

We are now able to prove the following

Theorem 6.8. Let

—_—

_—

Q<

P
A
be a commutative diagram of surjective quasiisomorphisms of dg-algebras with P, Q, R semifree.
Then ¥ = F(p)F(q)~1: F(Q) — F(P) does not depend from R,p,q.

Proof. Consider two diagrams as above

R0—>

%l
Q

R1—>

P P
l th l
— A, Q—— A.
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There exists a commutative diagram of surjective quasiisomorphisms of semifree algebras

TL>R1

Ry —-—= Q.

By Lemma 6.5 F(qo)F(to) = F(q1)F(t1). According to 4.5 the morphisms poto, p1t1: T —
P are homotopic and then F(po)F(to) = F(p1)F(t1). This implies that F(pg)F(qo) "t =
Fp1)F(ar) O
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