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Abstract

This note proves the Steinberg relation in A1-homotopy theory (first
proved by Hu and Kriz) by using Zariski excision together with an explicit
A1-homotopy.

1 Introduction

Let H•(k) denote the pointed A1-local homotopy category with respect to
the Zariski topology on the category Sm/k of smooth schemes over a field k
[MV]. There is a canonical simplicial structure upon H•(k), hence the simpli-
cial spheres Sn, for natural numbers n, define objects of the homotopy category.
The multiplicative group Gm ∈ Sm/k is pointed canonically by 1 and plays the
rôle of a geometric circle. A rational point α : Spec(k) → Gm induces a ho-
motopy class in [S0, Gm]H•(k); if α, β are two rational points of Gm, then the
smash product defines the symbol {α, β} ∈ [S0, Gm ∧Gm]H•(k).

The purpose of this note is to give an alternative proof of the Steinberg rela-
tion in A1-homotopy theory, which was first established by Hu and Kriz [HuK].
The functor simplicial suspension, which corresponds to the smash product with
S1, is denoted by Σ in the following statement.

Theorem 1 Let α be a rational point of Gm\{1}, then the suspension Σ{α, 1−
α} ∈ [S1,Σ(Gm ∧Gm)]H•(k) is trivial.

The proof relies upon Zariski excision for sheaves, together with the usage
of a strict A1-homotopy. The dependency on the simplicial homotopy structure
is subsumed in using sheaves of the form An/X, where X ↪→ An is an inclusion
of smooth schemes, as a model for the unreduced suspension of X.

Remark 1.0.1 The approach here is motivated by the observation that the
object A1\{0, 1} is equivalent in the pointed homotopy category H•(k) to the
wedge of two copies of Gm after a single simplicial suspension. The result then
follows by consideration of the corresponding inclusion of Gm∨Gm in Gm×Gm

(still after simplicial suspension).
If the field k admits a complex embedding, then there is a complex realization

functor to the homotopy category of spaces. After complex realization, the
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suspension is no longer necessary, since the morphisms reduce to those appearing
in the cofibration sequence S1 ∨ S1 → S1 × S1 → S1 ∧ S1.

Notation 1.0.2 Throughout the paper ‘sheaf’ indicates sheaf of sets with re-
spect to the Zariski topology on the category of smooth schemes Sm/k. The
‘simplicial homotopy category’ refers to the Joyal-Jardine model structure on
the category of simplicial sheaves, with respect to the Zariski topology, and the
A1-local model structure is the A1-localization of the Joyal-Jardine structure
with respect to the Zariski topology, as constructed in [MV].

2 Zariski excision

Let X = U ∪ V be a Zariski open covering of X ∈ Sm/k, then there is a
cocartesian diagram in the category of sheaves:

U ∩ V //

��

U

��
V // X.

All morphisms in the diagram are monomorphisms, hence cofibrations. Thus,
the diagram is homotopy cartesian in the simplicial model structure (where each
object is equipped with constant simplicial structure). This square is the geo-
metric origin of Mayer-Vietoris sequences in representable cohomology theories.

The category of sheaves of simplicial sets has a terminal object, namely
the constant sheaf, ?, taking value the singleton set, with constant simplicial
structure. Suppose that A ↪→ X is a cofibration (ie monomorphism) of simplicial
sheaves, then the cofibre is defined to be the pushout

A //

��

X

��
? // X/A

in the category of simplicial sheaves. Observe that the simplicial sheaf X/A is
pointed canonically.

Remark 2.0.3 The above square is homotopy cocartesian with respect to the
simplicial model structure, since A ↪→ X was supposed to be a cofibration.
Without this hypothesis, the cofibre functor must be derived functor to obtain
a functor on the homotopy category.

The following Zariski excision result is standard, by regarding the cofibres
of the cocartesian square:

Lemma 2.0.4 Let U, V be a Zariski covering of X ∈ Sm/k, then there is an
isomorphism of pointed sheaves V/(U ∩ V )

∼=→ X/U.
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Proposition 2.0.5 Let U, V be a Zariski open covering of X ∈ Sm/k, then
there is an isomorphism of pointed Zariski sheaves

(X/U) ∨ (X/V )
∼=→ X/(U ∩ V ).

Proof: There is a cocartesian square of pointed Zariski sheaves

? //

��

U/(U ∩ V )

��
V/(U ∩ V ) // X/(U ∩ V ).

Hence there is a natural isomorphism of pointed Zariski sheaves: U/(U ∩ V ) ∨
V/(U ∩V ) '→ X/(U ∩V ). The result follows by applying Zariski excision again.
�

Remark 2.0.6 The significance of the above approach is that it yields an ex-
plicit morphism of sheaves: (X/U) ∨ (X/V )→ X/(U ∩ V ).

When working with respect to the Nisnevich topology and with the A1-local
model structure, the existence of an A1-weak equivalence between the two sides
above is a direct consequence of the purity theorem of [MV], in the case of pure
codimension.

3 Unreduced suspension of subschemes of affine
space

Notation 3.0.7 Let 1→ C̃s denote a natural transformation of functors from
simplicial sets to simplicial sets, where for each X ∈ ∆opSet , X → C̃sX is a
cofibration (ie monomorphism) and C̃sX is weakly equivalent to the terminal
object. (For example, use the fibrant resolution functor which is provided by
the model structure). Let Σ̃sX denote the cofibre C̃s(X)/X. The object C̃sX
shall be referred to as the unreduced cone on X and the object Σ̃sX as the
unreduced suspension of X.

The functors C̃s, Σ̃s extend canonically to the category of simplicial sheaves.

Proposition 3.0.8 Let X ↪→ An be an immersion in Sm/k, which is regarded
as a cofibration in the simplicial model structure. There is an A1-weak equiva-
lence:

φX : An/X 'A1 Σ̃sX

with respect to the A1-local model structure.
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Proof: For later consideration of morphisms, it is necessary to make the
construction functorial, using the functorality of C̃s, Σ̃s. There is a strictly
commutative diagram

X // C̃sX

��

// Σ̃sX

��
X // C̃sAn // C̃s(An)/X

X // An

OO

// An/X

OO

in which the rows are cofibre sequences, using the fact that the left hand mor-
phism in each row is a cofibration, by hypothesis.

The middle column consists of A1-weak equivalences, hence the gluing lemma
implies that the morphisms induced on the cofibre are A1-weak equivalences. �

Proposition 3.0.9 Let f : X → Y be a morphism in Sm/k which fits into a
commutative diagram

X
iX //

f

��

Am

F

��
Y

iY

// An

of morphisms in Sm/k. Then the induced morphism on cofibres Am/X → An/Y
identifies, via the A1-weak equivalences φX , φY , with the unreduced suspension
of f , Σ̃sf : Σ̃sX → Σ̃sY .

Proof: Construct the strictly commutative diagram of morphisms of sheaves:

Am/X //

��

C̃s(Am)/X

��

C̃s(X)/Xoo

��
An/Y // C̃s(An)/Y C̃s(Y )/Yoo

The proposition implies that the horizontal morphisms are A1-weak equiva-
lences, hence the result follows. �

3.1 Unreduced suspension and smash product

Consider the smash product of pointed representable sheaves. Let ∗X ↪→ X,
∗Y ↪→ Y be smooth schemes pointed by rational points; the smash product
X∧Y is the cofibre in the pointed homotopy category of the morphism X∨Y ↪→
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X×Y in the category of pointed (simplicial) sheaves. In the case that X, Y are
immersed in affine spaces, at the level of the unreduced suspension, there is a
geometric model.

Let X, Y be pointed smooth schemes as above and suppose that there exists

immersions X
iX
↪→ Am and Y

iY
↪→ An. The closed points of X, Y induce closed

points of Am, An respectively. Moreover, there is an immersion X×Y → Am+n

induced by the product. There are induced morphisms of pointed sheaves:

jX : Am/X → Am+n/(X × Y )
jY : An/Y → Am+n/(X × Y )

which are induced by the rational points.

Proposition 3.1.1 Let X, Y be pointed smooth schemes which satisfy the above
hypotheses, then there is a homotopy cofibre sequence

(Am/X) ∨ (An/Y )
jX∨jY→ Am+n/(X × Y )→ Σ̃s(X ∧ Y )

in the pointed A1-local homotopy category.

Proof: There is a cofibration sequence X ∨ Y → X × Y → X ∧ Y in the cat-
egory of pointed sheaves. The unreduced suspension functor Σ̃s converts this
to a (homotopy) cofibration sequence. The result follows by Proposition 3.0.9. �

Example 3.1.2 This result may be applied in the case of Gm pointed by the
identity. The morphism jGm

: A1/Gm → A2/(Gm × Gm) is induced by the
rational point {1} ∈ Gm ⊂ A1. Thus, there is an explicit homotopy cofibre
sequence:

(A1/Gm) ∨ (A1/Gm)→ A2/(Gm ×Gm)→ Σ̃s(Gm ∧Gm).

4 Geometry and the Steinberg relation

4.1 Geometric construction

Let h : A1 ↪→ A2 be the closed immersion which is given by x 7→ (x, 1 − x).
The open immersion Gm ×Gm ↪→ A2, given by the product of the immersions
Gm ↪→ A1, induces a cartesian diagram:

A1\{0, 1} //

��

Gm ×Gm

��
A1

h
// A2

in which the horizontal morphisms are closed immersions and the vertical mor-
phisms are open immersions. The morphism h is the restriction to t = 1 of the
morphism H : A1 × A1 → A2 given by (t, x) 7→ (x, 1− tx).
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There is a cartesian diagram of smooth schemes

A2\(Z1 q Z2) //

��

Gm ×Gm

��
A1 × A1

H
// A2

where Z1
∼= A1 is the closed subscheme {x = 0} and Z2

∼= Gm is the closed
subsheme {1− tx = 0}.

Remark 4.1.1 The morphism A2\(Z1qZ2)→ Gm×Gm is an isomorphism of
schemes. The key point here is that the closed subschemes Z1, Z2 only intersect
‘at infinity’.

By construction, the morphism A2 → A2/(Gm × Gm) gives rise to a mor-
phism A2\Z2/(A2\(Z1 q Z2)) → A2/(Gm × Gm) of Zariski sheaves. Zariski
excision with respect to the open covering of A2 by A2\Z1 and A2\Z2 induces
a morphism of Zariski sheaves:

A2/(A2\Z1)→ A2/(Gm ×Gm).

Lemma 4.1.2 There is an isomorphism of Zariski sheaves:

A2/(A2\Z1) ∼= A1
+ ∧ A1/A1\{0}.

The restrictions induced by the rational points {0, 1} of A1 induce morphisms

A1/A1\{0}
H1 //

H0

// A2/(Gm ×Gm).

The morphism H1 is the extension via Zariski excision of the morphism:

A1\{1}/(A1\{0, 1})→ A2/(Gm ×Gm)

which is induced by h and H0 is the morphism which is induced by A1 → A2,
x 7→ (x, 1).

Proposition 4.1.3 The morphism H defines an A1-homotopy between the ex-
tension H0 of h and the morphism H1.

Proof: This is immediate from Lemma 4.1.2 together with the identification
of H1,H0. �

Remark 4.1.4 The above argument is based on excision of the point {1}. A
symmetric argument (by change of variables) applies to the consideration of the
analogous morphism

A1/(A1\{1})→ A2/(Gm ×Gm).
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4.2 The Steinberg relation

A rational point Spec(k)→ Gm induces a homotopy class in [S0, Gm]H•(k). Let
α be a rational point of Gm\{1}, then there is a composite morphism:

Spec(k) α→ A1\{0, 1} h→ Gm ×Gm → Gm ∧Gm

in the category of simplicial sheaves. This construction yields the symbol {α, 1−
α} ∈ [S0, Gm ∧Gm]H•(k).

Theorem 4.2.1 The suspension Σ{α, 1 − α} ∈ [Σ̃sS
0, Σ̃s(Gm ∧ Gm)]H•(k) is

trivial in the pointed A1-local homotopy category.

This result is a consequence of the following.

Theorem 4.2.2 Let δ : A1\{0, 1} → Gm∧Gm denote the composite A1\{0, 1} →
Gm × Gm → Gm ∧ Gm. Then the unreduced suspension Σ̃sδ is trivial in the
pointed A1-local homotopy category.

The Zariski excision argument of Proposition 2.0.5 yields the following:

Proposition 4.2.3 There is an isomorphism in the category of pointed Zariski
sheaves:

A1/(A1\{0}) ∨ A1/(A1\{1})→ A1/(A1\{0, 1})

where the morphisms A1/(A1\{0}) → A1/(A1\{0, 1}) ← A1/(A1\{1}) are in-
duced by Zariski excision from the natural inclusions A1\{1} ↪→ A1 ←↩ A1\{0}.

Hence, to prove Theorem 4.2.2, it is sufficient to show that the morphisms
on each wedge factor

A1/(A1\{0})→ A1/(A1\{0, 1})→ Σ̃s(Gm ∧Gm)
A1/(A1\{1})→ A1/(A1\{0, 1})→ Σ̃s(Gm ∧Gm)

are trivial in the pointed A1-homotopy category.
This follows from the A1-homotopy argument of Proposition 4.1.3, together

with the homotopy cofibre sequence which is provided by Proposition 3.1.1, as
applied in Example 3.1.2.
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