
INTRODUCTION TO ALGEBRAIC TOPOLOGY

GEOFFREY POWELL

1. GENERAL TOPOLOGY

1.1. Topological spaces.

Notation 1.1. For X a set, P(X) denotes the power set of X (the set of subsets of
X).

Definition 1.2.

(1) A topological space (X,U ) is a set X equipped with a topology U ⊂P(X)
such that ∅, X ∈ U and U is closed under finite intersections and arbitrary
unions.

(2) A subset A ⊂ X is open for the topology U if and only if it belongs to U
and is closed if the complement X\A is open.

(3) A neighbourhood of a point x ∈ X is a subset B ⊂ X containing x such that
∃U ∈ U such that x ∈ U ⊂ B.

(4) A subset B ⊂ U is a basis for the topology U if every element of U can be
expressed as the union of elements of B.

(5) A subset S ⊂ U is a sub-basis for the topology U if the set of finite inter-
sections of elements of S is a basis for U .

If the topology U is clear from the context, a topological space (X,U ) may be
denoted simply by X .

Remark 1.3. A given set X can have many different topologies; for example the
coarse topology on X is Ucoarse := {∅, X} and the discrete topology is Udiscrete :=
P(X). In the coarse topology, the only open sets are ∅ and X whereas, in the
discrete topology, every subset is both open and closed.

More generally, a topology V on X is finer than U (or U is coarser than V )
if U ⊂ V ; this defines a partial order on the set of topologies on X . The coarse
topology is the minimal element and the discrete topology the maximal element
for this partial order.

Recall that a metric on a set X is a real-valued function d : X×X → R such that,
for all x, y, z ∈ X :

(1) d(x, y) ≥ 0 with equality iff x = y;
(2) d(x, y) = d(y, x);
(3) d(x, z) ≤ d(x, y) + d(y, z) (the triangle inequality).

A metric space is a pair (X, d) with d a metric on X . For 0 < ε ∈ R and x ∈ X the
open ball of radius ε centred at x is

Bε(x) := {y ∈ X |d(x, y) < ε}.

Definition 1.4. For (X, d) a metric space, the underlying topological space (X,Ud) is
the topology with basis:

{Bε(x)|x ∈ X, 0 < ε ∈ R}.
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Equivalently, a subset U ⊂ X is open (belongs to Ud) if and only if, ∀u ∈ U, ∃ε > 0
such that Bε(u) ⊂ U .

Example 1.5. Metric spaces give a source of examples of topological spaces; for
example, for n ∈ N, Rn equipped with the usual Euclidean metric is a metric space;
this defines the ‘usual’ topology on Rn.

In general a subset A ⊂ X of a topological space (X,U ) is neither open nor
closed.

Definition 1.6. For A ⊂ X a subset of a topological space (X,U ), the

(1) interior A◦ ⊂ A is the largest open subset contained in A, so that A◦ :=⋃
U⊂A,U∈U

U ;

(2) closure A ⊃ A is the smallest closed subset containing A, so that A :=⋂
A⊂Z,X\Z∈U

Z ;✓14/09/13

(3) frontier ∂A := A\A◦.

Remark 1.7.

(1) If A ⊂ X is closed, then the frontier ∂A is the usual notion of boundary of
A.

(2) The interior (respectively closure) of A can be very different from A; for
example, for the coarse topology (X,Ucoarse), if A is not open, then A◦ = ∅
and A = X , so that ∂A = X .

Definition 1.8. A subset A ⊂ X is dense if A = X .

The notion of covering of a topological space is fundamental.

Definition 1.9. A covering of a topological spaceX is a family of subsets {Ai|i ∈ I }
such that

⋃
i∈I

Ai = X . The covering is open (or an open cover) if each subset
Ai ⊂ X is open.

A subcovering of {Ai|i ∈ I } is a covering {Bj|j ∈ J } such that J ⊂ I and,
∀j ∈J , Bj = Aj .

Remark 1.10. Intuitively, a topological space X is constructed by gluing together
spaces of an open cover.

1.2. Continuous maps.

Definition 1.11. For topological spaces (X,U ), (Y,V ), a map f : X → Y is contin-
uous (or f is a continuous map) if ∀V ∈ V open in Y , the preimage f−1(V ) ∈ U is
open in X .

Exercise 1.12. ForX,Y metric spaces equipped with the underlying topology, show
that f : X → Y is continuous if and only if ∀x ∈ X, ∀0 < ε ∈ R, ∃0 < δ ∈ R such
that f(Bδ(x)) ⊂ Bε(f(x)). (This is the usual ε− δ definition of continuity.)

Proposition 1.13. For topological spaces (X,U ), (Y,V ), (Z,W ),

(1) the identity map IdX is continuous;
(2) the composite g ◦ f of continuous maps f : X → Y , g : Y → Z is a continuous

map g ◦ f : X → Z ;
(3) if (Y,V ) is the coarse topology, then every set map f : X → Y is continuous;
(4) if (X,U ) is the discrete topology, then every set map f : X → Y is continuous.

Proof. Exercise. �

Exercise 1.14. When is the identity map (X,U )→ (X,V ) continuous?

Remark 1.15. Topological spaces and continuous maps form a category Top, with

⊲ objects: topological spaces (these form a class rather than a set);
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⊲ morphisms: continuous maps, equipped with composition of continuous
maps. Explicitly HomTop(X,Y ) is the set of continuous maps from X to Y
and composition is a set map

◦ : HomTop(Y, Z)×HomTop(X,Y )→ HomTop(X,Z).

These satisfy the Axioms of a category: the existence and properties of identity
morphisms IdX ∈ HomTop(X,X) and associativity of composition of morphisms.

Example 1.16. Further examples of categories which are important here are:

(1) the category Set of sets and all maps;
(2) the category Group of groups and group homomorphisms;
(3) the category Ab of abelian (or commutative) groups and group homomor-

phisms.

As in any category, there is a natural notion of isomorphism of topological spaces:

Definition 1.17. For (X,U ), (Y,V ) topological spaces,

(1) a continuous map f : X → Y is a homeomorphism if there exists a continu-
ous map g : Y → X such that g ◦ f = IdX and f ◦ g = IdY . (If g exists, then
g is unique, namely the inverse of f ; moreover g is a homeomorphism.)

(2) Two spaces X,Y are homeomorphic if there exists a homeomorphism f :
X → Y .

Remark 1.18. Homeomorphic spaces are considered as being equivalent. A topolog-
ical space X usually admits many interesting self-homeomorphisms.

Definition 1.19. A continuous map f : X → Y is open (respectively closed) if f(A)
is open (resp. closed) for every open (resp. closed) subset A ⊂ X .

Remark 1.20. Let f : X → Y be a continuous map which is a bijection of sets.

(1) In general f is not a homeomorphism. (Give an example.)
(2) The map f is open if and only if it is closed. (Prove this.)
(3) The map f is a homeomorphism if and only if it is open (and closed).

(Prove this.)

1.3. The subspace topology.

Definition 1.21. For (X,U ) a topological space andA ⊂ X , the subspace topology
(A,UA) is given by UA := {A ∩ U |U ∈ U }. Thus a subset V ⊂ A is open if and
only if there exists U ∈ U such that A ∩ U = V .

Exercise 1.22. For A,X as above, show that

(1) the inclusion i : A →֒ X is continuous for the subspace topology (A,UA);
(2) the subspace topology is the coarsest topology on A for which i : A →֒ X is

continuous;
(3) a map g : W → A is continuous if and only if the composite i ◦ g :W → X

is continuous.

The subspace topology provides many more examples of topological spaces.

Example 1.23.

(1) The usual topology on the interval I := [0, 1] ⊂ R is the subspace topology.
(2) The set of rational numbers Q ⊂ R can be equipped with the subspace

topology (show that this is not homeomorphic to the discrete topology).
(3) The sphere Sn is the subspace Sn ⊂ Rn+1 of points of norm one.

✓14/09/13

Remark 1.24. For f : X → Y a map between topological spaces, the image f(X) ⊂
Y of f is a subset of Y , which can be equipped with the subspace topology. Then
the map f is continuous if and only if the induced map f : X ։ f(X) is continu-
ous.
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1.4. New spaces from old.

Definition 1.25. For topological spaces (X,U ), (Y,V ), the disjoint union X ∐ Y is
the topological space with underlying set the disjoint union and with basis for the
topology given by U ∐ V (interpreted via P(X),P(Y ) ⊂P(X ∐ Y )).

This is equipped with continuous inclusions

X � � iX // X ∐ Y Y.? _
iYoo

The space X ∐Y has a universal property (in the terminology of categories, it is
a coproduct):

Proposition 1.26. For fX : X → Z and fY : Y → Z be continuous maps, there is a
unique continuous map f : X ∐ Y → Z such that fX = f ◦ iX and fY = f ◦ iY .

Proof. Exercise. �

Definition 1.27. For topological spaces (X,U ), (Y,V ), the product X × Y is the
topological space with underlying set the productX×Y and with topology defined
by the basis {U × V |U ∈ U , V ∈ V }.

The projections

X X × Y
pXoooo pY // // Y

are continuous surjections.

The product spaceX×Y also has a universal property (it is a categorical product):

Proposition 1.28. For gX : Z → X and gY : Z → Y continuous maps, there is a unique
continuous map g : Z → X × Y such that pX ◦ g = gX and pY ◦ g = gY .

Proof. It suffices to show that the set map defined by g(z) = (gX(z), gY (z)) is con-
tinuous. (Exercise.) �

Exercise 1.29. For X,Y topological spaces, show that the projections pX : X ×Y →
X and pY : X × Y → Y are open maps.

Proposition 1.30. For continuous maps f : X1 → X2 and g : Y1 → Y2, the maps

f × IdY : X1 × Y → X2 × Y

IdX × g : X × Y1 → X × Y2

are continuous.

Proof. Exercise. �

Example 1.31. Let n ∈ N be a natural number.

(1) The product topology on Rn ∼= (R)×n is equivalent to the topology associ-
ated to the Euclidean metric on Rn. (Prove this.)

(2) The n-dimensional solid cube is the product space I×n; this is equivalent
to the subspace topology associated to the inclusion I×n ⊂ R×n = Rn.

(3) The torus T is defined as a topological space as T := S1 × S1.
(4) The cylinder on a topological space X is, by definition the space X × I . It is

equipped with the inclusions i0, i1 : X ⇒ X × I induced by the inclusions
of subspaces {0}, {1} ⊂ I .

Definition 1.32. Let X
p
→ B

q
← Y be continuous maps of topological spaces. The

fibre product X ×B Y is the subspace of the product space X × Y formed by the
subspace of elements (x, y) ∈ X × Y such that p(x) = q(y) in B.

Remark 1.33. If ∗ is the singleton topological space (which has a unique topology),

there are unique continuous mapsX
p
→ ∗

q
← Y andX×∗Y ∼= X×Y is the product

space.
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Exercise 1.34. Formulate a universal property for the fibre product.

The product of topological spaces allows the introduction of the notion of a
topological group.

Definition 1.35. A topological group is a group G equipped with a topology such
that the structure maps:

µ : G×G→ G

χ : G→ G

are continuous maps, where µ is the multiplication µ(g, h) = gh and χ the inverse
χ(g) = g−1.

A homomorphism ϕ : G → H between topological groups is a group homo-
morphism which is continuous as a map of topological spaces.

Remark 1.36. If G is a group, then (G,Udiscrete) is a topological group.

Example 1.37. The circle S1 is a subspace of C∗ := C\{0} ⊂ C. The multiplication
of C provides S1 with the structure of a topological group.

Definition 1.38. For G a topological group, a (left) G-space is a topological space
X equipped with a (left) G-action such that the structure map ν : G × X → X is
continuous. (Recall that the axioms of a G-action require that ν is associative (ie
ν(g, ν(h, x)) = ν(µ(g, h), x)) and the identity element e ∈ G acts trivially (ν(e, x) =
x).

A morphism of left G-spaces is a continuous map f : X → Y which is compati-
ble with the respective G-actions.

Example 1.39. The discrete group Z/2 = {1,−1} acts on the sphere Sn ⊂ Rn+1 by
the antipodal action (−1)x = −x.

Exercise 1.40. For X a G-space and g ∈ G, show that the map ν(g,−) : X → X is a
homeomorphism.

1.5. The quotient topology. Recall that, to give a surjective map of sets p : X ։ Y
is equivalent to defining an equivalence relation R on X together with a bijection
X/ ∼R∼= Y . Explicitly, the relation associated to p is given by x ∼ y if and only if
p(x) = p(y). The fibres p−1(y) of p are precisely the equivalence classes of R.

Definition 1.41. For (X,U ) a topological space and p : X ։ Y a surjective map
of sets, the quotient topology (Y,Up) on Y is the finest topology on Y for which p is
a continuous map. Explicitly: V ⊂ Y is open in Y if and only if p−1(V ) ∈ U .

(Terminology: a continuous surjection p : X → Y is a quotient map if Y has the
quotient topology.)

Proposition 1.42. For X,Z topological spaces and p : X ։ Y a surjective map of sets,
with Y equipped with the quotient topology, a map g : Y → Z is continuous if and only if
the composite g ◦ p : X → Z is continuous.

Proof. Exercise. �

Exercise 1.43. Let p : X ։ Y and q : Y ։ Z be continuous surjections such that p
is a quotient map. Show that q is a quotient map if and only if q ◦ p is a quotient
map.

Example 1.44. Consider the antipodal action of Z/2 = {1,−1} on the sphere Sn.
Real projective space of dimension n is the quotient space

RPn := Sn/ ∼

where the equivalence relation collapses orbits: x ∼ −x.
(Observation: Sn is a smooth manifold; the action of Z/2 is free, hence the

smooth structure passes to RPn.)
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Remark 1.45. More generally, if X is a left G-space, then the space X/G (the space
of G-orbits) is the quotient of X by the relation x ∼ ν(g, x) ∀g ∈ G, x ∈ X .

Example 1.46. The Möbius band M is the quotient

M := I × I/ ∼

where (s, 0) ∼ (1 − s, 1) ∀s ∈ I , which can be embedded in R3 as a band with a
twist.

The projection onto the second factor p2 : I × I → I induces a projection M ։

S1, which locally is a projection from a product.

Example 1.47. The Klein bottle K is the quotient

K := (S1 × I)/ ∼

where the relation identifies the ends of the cylinder by (0, x) ∼ (1,−x), using the
antipodal action on S1.

The projection map S1 × I ։ I induces a projection K ։ S1, which locally is a
projection from a product.

Remark 1.48. The projections M ։ S1 and K → S1 are examples of fibre bundles.

The quotient topology allows the definition of the cone and the suspension of a
space.

Definition 1.49. For X a topological space,

(1) the (unreduced) cone on X is the quotient space

CX := (X × I)/ ∼

where ∼ is the equivalence relation (x, 1) ∼ (x′, 1), ∀x, x′ ∈ X , equipped
with the continuous map i : X →֒ CX induced by i0 : X → X × I ;

(2) the (unreduced) suspension of X is the quotient space

Σ̃X := (X × I)/ ∼′,

where ∼′ is the equivalence relation (x, ε) ∼′ (x′, ε), ∀x, x′ ∈ X , ε ∈ {0, 1}.

Remark 1.50. By construction, there are continuous maps X →֒ CX ։ Σ̃X and the

composite sends X to a point. (More precisely, X ⊂ CX is the fibre of CX ։ Σ̃X
over this point.)

Exercise 1.51. For f : X → Y a continuous map, show that

(1) the continuous map f × I : X × I → Y × I induces a continuous map
Cf : CX → CY which fits into the commutative diagram

X × I

����

f×I // Y × I

����
CX

Cf
// CY ;

(2) C(IdX) = IdCX ;
(3) if g : Y → Z is continuous, thenC(g◦f) = C(g)◦C(f) as a mapCX → CZ .

(These properties correspond to the fact that the cone is a functor from Top to Top;
this is denoted by C : Top→ Top.)

Establish the analogous properties for Σ̃ : Top→ Top.

The quotient topology provides ways of constructing new topological spaces
from old; in particular it is used for gluing topological spaces.
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Definition 1.52. For continuous maps of topological spaces X
i
← A

j
→ Y , the

topological space X
⋃
A Y is the quotient X ∐ Y/ ∼ by the relation i(a) ∼ j(a)

(understood via the inclusions iX , iY ).

Remark 1.53. When A = ∅, X ∪∅ Y ∼= X ∐ Y .

Exercise 1.54. Formulate a universal property of X ∪A Y .

2. BASIC PROPERTIES OF TOPOLOGICAL SPACES

2.1. Connectivity.

Definition 2.1. A topological space X is connected if the only subsets of X which
are both open and closed are ∅, X . Equivalently, if X = U ∪ V , with U, V open and
non-empty, then U ∩ V 6= ∅.

Example 2.2. The space R is connected (prove this!). However, the subspace Q ⊂ R

is not connected.

Proposition 2.3.

(1) The continuous image of a connected space is connected.
(2) If X and Y are homeomorphic, then X is connected if and only if Y is connected.

Proposition 2.4. Let Z be a connected subset of a topological space X ; then the closure Z
is connected.

Proof. Let A be a closed and open subset of Z, then A ∩ Z is open and closed in Z ;

since Z is connected, A ∩ Z is either Z or ∅. Since Z is dense in Z, A ∩ Z 6= ∅, so
A∩Z = Z , or equivalently Z ⊂ A; it follows that Z = A, since A is closed in Z . �

Theorem 2.5. A topological space X can be written as a disjoint union

X = ∐i∈π(X)Xi

of connected components, where each Xi is a maximal connected subspace of X , in partic-
ular is closed in X ; π(X) is the set of connected components of X .

Example 2.6. For Q ⊂ R, equipped with the subspace topology, the connected
components are precisely the points of Q: the space Q is totally disconnected. More-
over, the set π(X) is in bijection with Q and hence inherits a topology.

This example shows that the connected components of a space are not in general
open.

Remark 2.7. The set π(X) of connected components of a topological space is a
homeomorphism invariant of a space. For example, X is connected if and only
if |π(X)| = 1.

Proposition 2.8. For connected topological spacesX,Y , the productX×Y is connected.

Proof. Exercise. �

2.2. Separation. The notion of separation highlights one of the standard properties
of metric spaces.

Definition 2.9. A topological space X is Hausdorff (or separated or T2) if, ∀x 6= y ∈
X , ∃ open sets x ∈ U , y ∈ V such that U ∩ V = ∅.

Example 2.10.

(1) The coarse topology on a set X is separated if and only if |X | ≤ 1.
(2) The set of real numbers R with the finite complement topology (a non-empty

subset U is open if and only if R\U is a finite set) is not separated.

Exercise 2.11. For X,Y homeomorphic topological spaces, show that X is Haus-
dorff if and only if Y is Hausdorff.
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Proposition 2.12. A topological space X is Hausdorff if and only if the diagonal subset
∆ ⊂ X ×X (of elements of the form (x, x)) is closed.

Proof. Exercise. �

Proposition 2.13. For X,Y non-empty topological spaces, the product X × Y is Haus-
dorff if and only if X and Y are both Hausdorff.

Proof. Exercise. �

Exercise 2.14. Show that the subspace A ⊂ X of a Hausdorff topological space X
is Hausdorff.

Passage to a quotient space does not in general preserve separation.

Example 2.15. Let R⊖ denote the quotient of R ∐ R which identifies the two sub-
spaces R\{0}; thus the underlying set of R⊖ identifies with R∐{0}; this is the space
of real numbers with two origins 01, 02. The space R⊖ is not Hausdorff, since open
neighbourhoods of the distinct points 01, 02 always intersect.

2.3. Compact spaces.

Definition 2.16. A topological space X is compact if every open cover admits a
finite subcover

Remark 2.17.
�

In the French literature, this property is called quasi-compact; the
space is compact if it is also separated.

Example 2.18. The interval I = [0, 1] is compact (this is the Heine-Borel theorem),
whereas R is not compact. Similarly, the open interval (0, 1) ⊂ I is not compact;
this shows that a subspace of a compact space need not be compact.

Proposition 2.19. For X,Y homeomorphic topological spaces, X is compact if and only
if Y is compact.

Proof. Exercise. �

Proposition 2.20.

(1) A closed subset of a compact space is compact.
(2) The continuous image of a compact space is compact.

Proof. Exercise. �

In presence of a separation hypothesis, the first property has a converse:

Proposition 2.21. A compact subspace of a Hausdorff topological space is closed.

Proof. Exercise. �

Proposition 2.22. Let p : X ։ Y be a continuous map which is surjective. If X is
compact and Y is separated then Y has the quotient topology.

In particular, if p is a bijection of sets, then p is a homeomorphism.

Proof. It suffices to show that a subset A ⊂ Y such that f−1(A) is closed, is closed
in Y .

Proposition 2.20 implies that the closed subspace f−1(A) is compact in X , since
X is compact; moreover, by Proposition 2.20, the image f(f−1(A)) = A is com-
pact. Since Y is Hausdorff, the compact space A is closed by Proposition 2.21, as
required. �

Example 2.23.
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(1) The surjection I = [0, 1] ։ S1 ⊂ C defined by t 7→ e2πit is continuous and
I is compact and S1 is separated, hence

S1 ∼= I/0 ∼ 1.

(2) The analogous argument shows that the torus S1×S1 is homeomorphic to
the quotient space of I × I which identifies (0, s) ∼ (1, s) and (t, 0) ∼ (t, 1).

(3) Real projective space RPn is homeomorphic to the quotient of Rn+1\{0}
by the group action of R\{0} given by

ν(λ, (x0, . . . , xn)) = (λx0, . . . , λxn).

The orbit of (x0, . . . , xn) is usually denoted by [x0 : . . . : xn].

2.4. Locally compact spaces.

Definition 2.24. A topological spaceX is locally compact if each point has a compact
neighbourhood.

Exercise 2.25. Show that

(1) a compact space is locally compact;
(2) a closed subset of a locally compact space is locally compact.

2.5. Paths. A point x ∈ X of a topological space is equivalent to a (continuous)

map ∗
x
→ X ; we consider deforming points along paths.

Definition 2.26.

(1) A path γ in a topological space X is a continuous map I = [0, 1]
γ
→ X ; this

is also referred to as a path from γ(0) to γ(1). ✓14/09/13

(2) The inverse path γ−1 : I → X is the path γ−1(t) = γ(1− t).
(3) If λ : I → X is a path with λ(0) = γ(1), the composite path γ · λ : I → X is

given by

γ · λ(t) =

{
γ(2t) 0 ≤ 2t ≤ 1
λ(2t− 1) 1 ≤ 2t ≤ 2.

Exercise 2.27. Verify that γ−1 and γ · λ are paths.

Proposition 2.28. For γ : I → X a path in X and f : X → Y a continuous map, the
composite map f ◦ γ : I → Y is a path in Y from f(γ(0)) to f(γ(1)).

Proof. Exercise. �

Definition 2.29. Let X be a topological space,

(1) X is path connected if, ∀x, y ∈ X , ∃γ a path from x to y.
(2) X is locally path connected if, ∀x ∈ X and for every neighbourhood x ∈ A ⊂

X , there exists an path connected open subspace x ∈ V ⊂ A. ✓14/09/13

Remark 2.30.
�

A path connected space is not necessarily locally path connected.
(Give an example.)

Proposition 2.31. For X a topological space,

(1) if X is path connected, then X is connected;
(2) if X is locally path connected and connected, then X is path connected. ✓14/09/13

Proof. Exercise. �

Exercise 2.32. Give an example of a space which is connected but not path con-
nected.

The relation on points of X given by x ∼ y if and only if ∃ a path from x to y
is an equivalence relation (exercise), hence a topological space decomposes as the
disjoint union of path-connected components.
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Definition 2.33. For X a topological space, π0(X) denotes the set of path-connected
components of X .

Proposition 2.34. A continuous map f : X → Y induces a map of sets π0(f) : π0(X)→
π0(Y ); the association f 7→ π0(f) has the following properties:

(1) π0(IdX) = Idπ0(X);

(2) if X
f
→ Y

g
→ Z are composable continuous maps, then π0(g ◦f) = π0(g)◦π0(f).

Proof. Exercise. �

Remark 2.35. This is an example of a functor from the category Top of topological
spaces to the category Set of sets.

2.6. Mapping spaces. The set of paths in a topological spaceX has a natural topol-
ogy, which is a particular case of the following:

Definition 2.36. For topological spaces X,Y , let Map(X,Y ) (sometimes written
Y X ) denote the set of continuous maps from X to Y equipped with the compact-
open topology, which is defined by the sub-basis of subsets 〈K,U〉 for K ⊂ X com-
pact and U ⊂ Y open, where

〈K,U〉 := {f : X → Y |f(K) ⊂ U}.

The path space of X is the space Map(I,X) (or XI).

Proposition 2.37. Restriction to the endpoints 0, 1 ∈ I induces continuous surjections:

XI
p0 //
p1

// X.

Proof. Exercise. �
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3. HOMOTOPY

3.1. Motivation. The category of topological spaces and continuous maps is very
rigid. This is illustrated by considering the paths of a topological space X .

Suppose that λ, µ, ν are three paths I → X which are composable (λ(1) = µ(0)
and µ(1) = ν(0)). Then there there are two a priori different composite paths from
λ(0) to ν(1)

(λ · µ) · ν, λ · (µ · ν) : I → X ;

namely, the composition of paths is not associative. (Exercise: give a simple example
where these paths are different.)

The problem arises from the fact that the composites are defined using two dif-
ferent homeomorphisms

I1 ∪11∼02 I2 ∪12∼03 I3
∼= I,

where I1, I2, I3 are copies of the interval. (Explicitly, the two composites rely on
the decompositions [0, 1] = [0, 14 ] ∪ [ 14 ,

1
2 ] ∪ [ 12 , 1] and [0, 1] = [0, 12 ] ∪ [ 12 ,

3
4 ] ∪ [ 34 , 1],

together with the linear homeomorphisms between the sub-intervals and [0, 1].)
Similarly, the composite λ · λ−1 is a path from λ(0) to λ(0) which retraces its

steps. One would like to consider this as being ‘equivalent’ to the constant path
cλ(0) : I → X , (defined by cλ(0)(t) = λ(0)); however, these are not equal as paths,
unless λ is itself a constant path.

To get around these problems, one reparametrizes paths; this uses the notion of
continuous deformation or homotopy.

3.2. Homotopy. The notion of homotopy formalizes the idea of continuous defor-
mation corresponding to a continuous family of continuous maps ft, indexed by
t ∈ R.

Definition 3.1. Let f, g : X ⇒ Y be two continuous maps.

(1) A homotopy from f to g is a continuous map H : X × I → Y which makes
the following diagram commute

X
i0 //

f ##❋
❋❋

❋❋
❋❋

❋❋
X × I

H

��

X
i1oo

g
{{①①
①①
①①
①①
①

Y.

(2) The maps f , g are homotopic if there exists a homotopy from f to g; this will
be denoted by f ∼ g.

Example 3.2. If X = {∗}, then continuous maps f, g : X ⇒ Y correspond to
points f(∗), g(∗) of Y . A homotopy from f to g is a path from f(∗) to g(∗). In
the general case, for each point x ∈ X , the restriction H(x,−) : I → Y is a path
from f(x) to g(x) in Y ; the definition of homotopy requires that the set of paths
{H(x,−)|x ∈ X} forms a continuous family.

Remark 3.3. The homotopy H from f to g is not unique; for example, if α : I → I is
any continuous map such that α|∂I is the identity (ie the endpoints of the interval
are fixed), then Hα := H ◦ (IdX × α) is a homotopy from f to g. The map α
reparametrizes the homotopy.

When considering homotopies between paths in X from x1 to x2, one wants
to consider continuous families of paths from x1 to x2. This imposes a restriction
on the homotopy in terms of the values on the endpoints ∂I = {0, 1} ⊂ I . This
corresponds to the general notion of homotopy relative to a subset A ⊂ X .

Definition 3.4. For A ⊂ X and maps f, g : X ⇒ Y such that f |A = g|A : A⇒ Y ,
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(1) a homotopy relative to A from f to g is a homotopy H : X × I → Y from f to
g such that H(a, t) = f(a) = g(a) ∀a ∈ A, t ∈ I ;

(2) f and g are homotopic rel A if there exists a relative homotopy (rel A) from
f to g (this is denoted f ∼ g rel A or f ∼rel A g).

Example 3.5. For γ0, γ1 : I ⇒ Y two paths in Y such that γ0(0) = γ1(0) and
γ0(1) = γ1(1), a homotopy rel ∂I from γ0 to γ1 is a continuous family of paths
{γt|t ∈ I} from γ0(0) to γ0(1).

Remark 3.6. The notion of relative homotopy rel ∅ coincides with the absolute ver-
sion given in Definition 3.1.

3.3. First properties of homotopy. The notion of homotopy leads to a weaker no-
tion of equivalence between topological spaces than homeomorphism: spaces can
be deformed continuously. For surfaces, this is often referred to as rubber sheet geom-
etry.

Notation 3.7. For topological spaces X,Y , A ⊂ X a subspace and ψ : A → Y a
continuous map, let

HomTop(X,Y )ψ ⊂ HomTop(X,Y )

denote the set of continuous maps f : X → Y such that f |A = ψ : A→ Y .

Proposition 3.8. In the situation of Notation 3.7, the relation ∼rel A is an equivalence
relation on HomTop(X,Y )ψ .

Proof.

⊲ reflexivity: for f ∈ HomTop(X,Y )ψ , it suffices to take the homotopyH(x, t) =
f(x) (this is a constant family);

⊲ symmetry: if H is a relative homotopy from f to g, then H ′ defined by
H ′(x, t) := H(x, 1 − t) is a relative homotopy from g to f ;

⊲ transitivity: this corresponds to gluing homotopies, which generalizes the
composition of paths; if H1 is a homotopy rel A from f to g and H2 is a
homotopy rel A from g to h, then H : X × I → Y defined by

H(x, t) :=

{
H1(x, 2t) 0 ≤ t ≤ 1

2
H2(x, 2t− 1) 1

2 ≤ t ≤ 1

is a homotopy rel A from f to h.

�

Remark 3.9. It can be useful to represent a homotopy H from f to g by a diagram

X

f

##

g

==Y.H
��

Then, the transitivity homotopy H corresponds to the vertical composition of H1

and H2 in the following diagram:

X

f

��
g //

h

AAY.
H1
��

H2
��

Use of such diagrams is formalized by the theory of 2-categories; this theory will
not be used here!

Homotopy behaves well with respect to composing maps:
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Proposition 3.10. For continuous maps α : U → X , f, g : X ⇒ Y and ω : Y → Z , if
f ∼ g are homotopic then

(ω ◦ f ◦ α) ∼ (ω ◦ g ◦ α).

Proof. Let H be a homotopy from f to g; the required homotopy is represented by
the following diagram

U
α // X

f

""

g

==Y
ω // Z.H

��

(Exercise: write down this homotopy explicitly.) �

Exercise 3.11.

(1) Suppose that B ⊂ U such that α(B) ⊂ A; formulate and prove a version of
Proposition 3.10 for relative homotopy.

(2) For continuous maps f, g : X ⇒ Y and ω, ζ : Y ⇒ Z such that f ∼ g and
ω ∼ ζ, show that the composites ω ◦ f, ζ ◦ g : X ⇒ Z are homotopic.

More precisely, given homotopies represented by the diagram

X

f

��

g
// Y

ω //

ζ

GGZ,
H
��

K
��

give an explicit homotopy from ω ◦ f to ζ ◦ g by using transitivity from
Proposition 3.8 and Proposition 3.10. (The form of the diagram should
suggest how to do this.)

Since the homotopy relation ∼ is an equivalence relation (by Proposition 3.8),
one can pass to homotopy classes.

Notation 3.12. For topological spaces X,Y , write

[X,Y ] := HomTop(X,Y )/ ∼

for the set of homotopy classes of continuous maps from X to Y . The homotopy
class of a continuous map f : X → Y will be denoted [f ].

Proposition 3.13. For topological spaces X,Y, Z , the composition of continuous maps
induces a composition law:

[Y, Z]× [X,Y ] // [X,Z]

[g], [f ]
✤ // [g ◦ f ].

The class [IdX ] ∈ [X,X ] acts as the identity for this composition and composition is
associative.

Proof. Exercise (use Proposition 3.10 and Exercise 3.11). �

Remark 3.14. Proposition 3.13 gives a category with objects topological spaces and
morphisms homotopy classes of continuous maps. (Exercise: check the axioms of
a category - see Section A.1.)

�
This is not the homotopy category of topological spaces which is usually studied

in algebraic topology. This is given by restricting to a well-behaved class of topo-
logical spaces (CW-complexes); most spaces arising naturally in geometry can be
given the structure of a CW-complex, so this is not a serious restriction.
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3.4. Homotopy equivalence. The notion of homotopy leads naturally to that of
homotopy equivalence:

Definition 3.15.

(1) A continuous map f : X → Y is a homotopy equivalence if there exists a
homotopy inverse g : Y → X (namely a continuous map such that g◦f ∼ IdX
and f ◦ g ∼ IdY ).

(2) Topological spaces X,Y are homotopy equivalent (or have the same homotopy
type) if there exists a homotopy equivalence f : X → Y ; write X ≃ Y in
this case.

Remark 3.16.

(1) The simplest topological space is ∅; however there is no map of sets X → ∅
unless X = ∅, in which case the only map is Id∅ (which is continuous!).
Thus the only topological space homotopy equivalent to ∅ is ∅ itself.

(The space ∅ is in fact the initial object of the category of topological
spaces, Top, in the language of category theory. Namely, there is a unique
continuous map ∅ → X to any topological space X .)

(2) The singleton set ∗ has a unique topology (the discrete and coarse topolo-
gies coincide) and also plays a special rôle amongst topological spaces: for
any topological space, there is a unique (continuous) map X → ∗. This
means that ∗ is the final object of Top.

A point x ∈ X corresponds to a continuous map x : ∗ → X which is the
inclusion of the subspace {x}; the unique map X → ∗ provides a retraction
of this inclusion.

It is natural to consider the topological spaces which are homotopically equiva-
lent to ∗.

Definition 3.17.

(1) A topological space X is contractible if X ≃ ∗.
(2) A continuous map f : X → Y is homotopically trivial if it is homotopic to a

constant map.

Exercise 3.18. Show that a space X is contractible if and only if the identity map
IdX is homotopic to a constant map.

Example 3.19. The following spaces are contractible:

(1) the interval I ;
(2) Euclidean space Rn, n ∈ N;
(3) the closed ball en ⊂ Rn.

For example, the continuous map H : I× I → I , (s, t) 7→ st shows that the identity
map IdI is homotopic to the constant map on I with value 0 ∈ [0, 1].

Proposition 3.20. Let X,Y be topological spaces.

(1) If X,Y are homeomorphic then X ≃ Y have the same homotopy type.
(2) The relation ≃ is an equivalence relation.

Proof. Exercise. �

Example 3.21. The spaces R2\{0} and S1 have the same homotopy type. The
inclusion i : S1 →֒ R2 admits a retract r : R2\{0} → S1 which sends a point
(ρ cos θ, ρ sin θ) 7→ (cos θ, sin θ), where ρ > 0; the composite i◦ r : R2\{0} → R2\{0}
is homotopic to the identity map (exercise!).

However, these spaces are not homeomorphic. One way of showing this is to
observe that, for any point ∗ ∈ S1, the complement S1\{∗} is homeomorphic to
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(0, 1), which is contractible. The space R2\{0, ∗} is homotopy equivalent to a fig-
ure eight embedded in R2; we shall be able to show shortly that this space is not
contractible, hence neither is R2\{0, ∗}.

Remark 3.22. The example shows that the relation ≃ is coarser than the relation
∼=; one of the aims of algebraic topology is to understand topological spaces up to
homotopy equivalence.

3.5. The cone and homotopically trivial maps. Recall that the cone CX with base
a topological spaceX is the quotient X×I/X×{1} and that the inclusion i0 : X →
X × I induces the inclusion i : X → CX of the base of the cone, which fits into the
commutative diagram

X × I

����
X

i0

;;①①①①①①①①①

i
// CX.

The homotopical importance of the cone CX on a space X is shown by the fol-
lowing result:

Proposition 3.23.

(1) The cone CX on a topological space X is contractible.
(2) A continuous map f : X → Y is homotopically trivial if and only if it extends to

a continuous map f̃ : CX → Y making the following diagram commute:

X
i //

f

��

CX

f̃}}③③
③③
③③
③③

Y.

Proof. For the first point, define a continuous map H̃ : (X × I) × I → X × I by

((x, s), t) 7→ (x, s(1 − t) + t). The map H̃ is a homotopy between IdX×I and the
projection to the top of the cylinder, (x, s) 7→ (x, 1).

By construction, H̃((x, 1), t) = (x, 1), hence H̃ induces a continuous map

H : CX × I → CX

(this uses the defining property of the quotient map X× I ։ CX). Moreover,H is
a homotopy between IdCX and the constant map sending CX to the point of the

cone, by construction of H̃ . This proves that CX is contractible.
For the second point, consider the commutative diagram

X × I

����
X

i0

;;①①①①①①①①①

i
//

f

��

CX

f̃{{
Y.

If f̃ exists, then the composite X × I ։ CX
f̃
→ Y defines a homotopy between f

and a constant map.
Conversely, letK : X×I → Y be a homotopy between the map f and a constant

map with value y ∈ Y . The map f̃ : CX → Y defined by f̃([x, t]) = K(x, t) is a
continuous map (well-defined since K(x, 1) = y ∀x ∈ X). �
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3.6. Deformation retracts. A deformation retract is a special form of homotopy
equivalence.

Definition 3.24. Let A be a subspace of X equipped with the inclusion i : A →֒ X .

(1) A is a retract ofX if there exists a retraction r : X → A, namely a continuous
map such that r ◦ i = IdA;

(2) A is a deformation retract of X if there exists a retraction r such that i ◦ r ∼
IdX ;

(3) A is a strong deformation retract of X if there exists a retraction r such that
i ◦ r ∼rel A IdX .

Proposition 3.25. If A ⊂ X is a deformation retract with respect to the inclusion i and
the retraction r, then i, r are homotopy equivalences, in particular A and X have the same
homotopy type.

Proof. Exercise. �

Example 3.26. For any n ∈ N, Sn →֒ Rn+1\{0}, Sn is a strong deformation retract
of Rn+1\{0}.

Example 3.27. Consider the Möbius band M (recall that this is defined as the quo-
tient of I × I by the relation (s, 0) ∼ (1− s, 1)). There are two natural embeddings
of the circle S1 in M :

(1) The zero section (the terminology comes from the theory of vector bundles
and is not important for this example) which is induced by the continuous
map I → I × I , t 7→ (12 , t).

(2) The boundary ∂M ∼= S1.

The projection M ։ S1 induced by I × I → I , (s, t) 7→ t is a retract of the zero
section, which is a strong deformation retract of M . However, the inclusion S1 ∼=
∂M →֒M does not even admit a retract! We will shortly see how to prove this.

Example 3.28. Let X denote the subspace {0} ∪ { 1n |0 < n ∈ N} ⊂ R. (Note that
the topology on X is not the discrete topology.) By Proposition 3.23, the space CX
is contractible.

Consider 0 ∈ X ⊂ CX ; {0} ⊂ CX is a deformation retract of CX but is not a
strong deformation retract of CX (equivalently, IdCX is not homotopic rel {0} to
the constant map at {0}). (Exercise: prove this assertion.) The problem arises from
the fact that, for any open neighbourhood of 0 in X , the inclusion {0} ⊂ U is not a
homeomorphism and is not even a homotopy equivalence.

Form the space Y := CX ∪{0} CX by identifying the two respective points
0 ∈ CX . Although each cone is contractible, the space Y is not. One cannot simply
first collapse one cone and then the other.

Proposition 3.29. The subspace Map(I, I)∂I ⊂ Map(I, I) of continuous maps which
restrict to the identity on ∂I is contractible and the subspace {IdI} ⊂ Map(I, I)∂I is a
strong deformation retract.

Proof. Define a homotopy H : Map(I, I)∂I × I → Map(I, I)∂I by

H(ϕ, t) = {s 7→ st+ (1− t)ϕ(s)}.

Thus H(ϕ, 0) = ϕ and H(ϕ, 1) = IdI is a homotopy between the identity map on
Map(I, I)∂I and the constant map with value IdI ; moreover H(IdI , t) = IdI ∀t ∈ I .
This homotopy exhibits {IdI} as a strong deformation retract of Map(I, I)∂I . �

Remark 3.30. The space Map(I, I)∂I acts as the space of reparametrizations of homo-
topies, via the evaluation map:

eval : I ×Map(I, I) → I

(s, ϕ) 7→ ϕ(s).
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Namely, if H : X × I → Y is a homotopy, then the evaluation map induces the
composite:

X × I ×Map(I, I)∂I
IdX×eval
−→ X × I

H
→ Y.

Fixing a reparametrization ϕ ∈ Map(I, I)∂I , this gives the homotopy Hϕ as in
Remark 3.3.

3.7. Paths again. With the notion of relative homotopy in hand, we can resolve
the problems of Section 3.1:

Notation 3.31. For X a topological space and x ∈ X , let cx : I → X denote the
constant path t 7→ x.

Proposition 3.32. For X a topological space and composable paths λ, µ, ν : I → X :

(1) the composite paths (λ · µ) · ν, λ · (µ · ν) : I → X are homotopic rel ∂I ;
(2) the composite path λ ·λ−1 : I → X is homotopic rel ∂I to the constant path cλ(0).

Proof. The results are proved by reparametrization. For example, consider the sec-
ond point.

The continuous map H : I × I → X defined by

H(s, t) =

{
λ(2st) 0 ≤ s ≤ 1

2
λ(2(1 − s)t) 1

2 ≤ s ≤ 1

is a homotopy rel ∂I between the constant map cλ(0) and λ · λ−1.
(Exercise: prove the associativity property.) �

This leads to an important invariant of a topological space, the fundamental groupoid:

Definition 3.33. For X a topological space, the fundamental groupoid Π(X) of X is
the small category:

⊲ Ob Π(X) = X (the objects are the points of X);
⊲ HomΠ(X)(x, y) = {[γ]|γ : I → X, γ(0) = x, γ(1) = y} is the set of homotopy

classes rel ∂I of continuous paths from x to y;

with identity maps [cx] ∈ HomΠ(X)(x, x) and composition induced by composition
of paths [µ] ◦ [λ] = [λ · µ].

The inverse of [λ] is [λ−1].

Exercise 3.34. Prove that Π(X) is a groupoid.

Remark 3.35. For each topological space X , we obtain the fundamental groupoid
Π(X); this contains important information on the topological space X (as we shall
see). Moreover, if f : X → Y is a continuous map, the fundamental groupoids are
related by a morphism

Π(X)
Π(f)
→ Π(Y ).

This is an example of a functor from Top to groupoids. (See Section A.2 for the notion
of a functor.)

Exercise 3.36. Show that one can recover the set of path connected components
π0(X) of a topological space X from its fundamental groupoid Π(X).
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4. THE FUNDAMENTAL GROUP

4.1. Path connected components revisited. Recall that [X,Y ] denotes the set of
homotopy classes of continuous maps from X to Y ; a homotopy class is denoted [f ],
where f : X → Y is a continuous map, so that [f ] = [g] if and only if f is homotopic
to g.

Proposition 4.1. For X a topological space, π0 defines a functor π0 : Top→ Set. More-
over, there is a natural bijection of sets:

π0(X) ∼= [∗, X ].

Proof. ForX a topological space, we first establish the bijection of sets, by showing
that the respective definitions are equivalent.

A continuous map ∗ → X is equivalent to a point x of X . For two points x, y ∈
X , a homotopy from x to y is a continuous map H : I ∼= ∗ × I → X such that
H(0) = x and H(1) = y; this is a continuous path from x to y. Hence x and y
(considered as maps to X) are homotopic if and only if x ∼ y are connected by a
path.

If f : X → Y is a continuous map, the induced map of sets π0(f) : π0(X) →
π0(Y ) is defined by

π0(f)[x] := [f(x)].

This is equivalent to the composition

[X,Y ] ◦ [∗, X ]→ [∗, Y ]

defined on homotopy classes (see Proposition 3.13).
In any category C , for A an object of C , the association B 7→ HomC (A,B) de-

fines a representable functor with values in the category of sets:

HomC (A,−) : C → Set.

(Exercise: prove this assertion.) If follows immediately that π0(X) is a functor, by
taking for C the category introduced in Proposition 3.13). �

Remark 4.2. The naturality in the statement of Proposition 4.1 corresponds to a nat-
ural equivalence in category theory (see Section A.3).

4.2. Groupoids and the fundamental groupoid revisited. A small groupoid is a
small category G (so that the objects form a set) in which every morphism is invert-
ible. Namely

⊲ there is an associative composition law ◦;
⊲ every object admits an identity morphism for this composition law;

⊲ every morphism admits an inverse f 7→ f−1, HomG (A,B)
(−)−1

→ HomG (B,A).

A morphism of groupoids ϕ : G1 → G2 is a functor from G1 to G2. This is
equivalent to

⊲ a map of sets ϕ : Ob (G1)→ Ob (G2);
⊲ for all pairs of objects A,B of G1, a set map

ϕA,B : HomG1(A,B)→ HomG2(ϕ(A), ϕ(B))

which is compatible with composition and sends identity maps to identity
maps.

Remark 4.3. The behaviour of a morphism of groupoids on inverses follows auto-
matically (ϕ(f−1) = ϕ(f)−1), so this is not required in the definition.

Definition 4.4. Let Groupoid denote the category of small groupoids, with

⊲ objects: small groupoids
⊲ morphisms: morphisms of groupoids.
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This is a full subcategory of the category CAT of small categories (see Definition
A.3).

Example 4.5. A discrete group G is equivalent to a groupoid G with a single object
∗, by taking HomG(∗, ∗) = G, with composition induced by group multiplication
and inverse by group inverse. If G1, G2 are discrete groups, a morphism of the
associated groupoids G1 → G2 is equivalent to a group morphism G1 → G2.

Conversely, for any small groupoid G and objectA of G , HomG (A,A) is a group.

Exercise 4.6. Show that the association G 7→ G defines a fully faithful embedding
(see Definition A.9) of the category of groups in the category of small groupoids

Group →֒ Groupoid.

Definition 4.7. For G a small groupoid, define

(1) the equivalence relation ∼ on Ob G by A ∼ B if and only if HomG (A,B) 6=
∅;

(2) π0(G ) := Ob G / ∼, the set of connected components of G ;
(3) G is connected if |π0(G )| = 1.

Proposition 4.8. The connected component defines a functor

π0(−) : Groupoid→ Set.

Proof. Exercise. �

Exercise 4.9. For G a small groupoid and objects A,B ∈ Ob G such that A ∼ B,
show that the groups HomG (A,A) and HomG (B,B) are isomorphic.

Recall the definition of the fundamental groupoid of a space X :

Definition 4.10. For X a topological space, the fundamental groupoid Π(X) has

⊲ Ob Π(X) = X , the set of points of X ;
⊲ HomΠ(X)(x, y) := {α : I → X |α(0) = x, α(1) = y}/ ∼ rel ∂I , the set of

homotopy classes rel ∂I of continuous paths from x to y;
⊲ composition induced by composition of paths: [β] ◦ [α] := [α · β];
⊲ inverse given by [α]−1 := [α−1].

Remark 4.11. If a path in X from x to y is thought of as a homotopy between x, y :
∗⇒ X , the composite of paths α (from x to y) and β (from y to z) should be thought
of as a composite of homotopies:

x

α

��
y

β

��
z

using the diagrammatic representation of Remark 3.9.
A homotopy rel ∂I between paths α1 to α2 in X is a map H : I × I → X where

the first coordinate corresponds to progression along the path and the second pro-
gression along the homotopy (H is a homotopy between homotopies).

This should now be represented by

x

α1

�#
α2

{�
y.

H❴ *4

There are two possible compositions:
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⊲ vertical composition corresponds to composition of paths;
⊲ horizontal composition corresponds to composition of homotopies rel ∂I .

Proposition 4.12. The fundamental groupoid defines a functor:

Π(−) : Top→ Groupoid.

Proof. We require to show that a continuous map f : X → Y induces a morphism
of groupoids Π(f) such that

⊲ ∀X , Π(IdX) is the identity morphism of Π(X);

⊲ for composable continuous maps X
f
→ Y

g
→ Z ,

Π(g ◦ f) = Π(g) ◦Π(f).

On the objects of X (that is the points x ∈ X), Π(f) is the underlying map of sets
f : X → Y . On a morphism [α], represented by a continuous path α : I → X ,
Π(f)[α] = [f ◦ α]. This defines a morphism of groupoids.

The morphism of groupoids Π(IdX) : Π(X) → Π(X) is clearly the identity and
behaviour on composites is easy to check. �

There are two notions of connected component associated to a topological space
X : the set of path-connected components π0(X) and the set of components of the
fundamental groupoid Π(X). These coincide:

Proposition 4.13. The functors

π0(−) : Top → Set

π0 ◦Π(−) : Top → Set

are naturally isomorphic.

Proof. Exercise. (See Section A.3 for the notion of natural equivalence.) �

Remark 4.14. Proposition 4.12 introduces the morphism of groupoids Π(f) associ-
ated to a continuous map f : X → Y . What happens for two maps f, g : X ⇒ Y
which are homotopic via H : X × I → Y ?

Consider a path α from x to y inX then there is a diagram of composable paths:

f(x)
f(α) +3

H(x,−)

��

f(y)

g(x)
g(α)

+3 g(y),

H(y,−)−1

KS

H

✤
�

where the square represents two paths from f(x) to f(y) in Y . The path corre-
sponding to the bottom of the square is obtained from g(α) by composing with
the path H(x,−) from f(x) to g(x) and the inverse of the path H(y,−) from f(y)
to g(y). The homotopy H induces a homotopy rel ∂I between these two paths
(exercise).

For points x, y ∈ X , define the map of sets

Hx,y : HomΠ(Y )(g(x), g(y))→ HomΠ(Y )(f(x), f(y))

by [β] 7→ [H(y,−)]−1 ◦ [β] ◦ [H(x,−)], generalizing the construction used above.
This provides the compatibility between Π(g) and Π(f) which is given by the com-
mutative diagram

HomΠ(X)(x, y)

Π(g)

uu❦❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦
Π(f)

))❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙

HomΠ(Y )(g(x), g(y)) Hx,y

∼= // HomΠ(Y )(f(x), f(y)).
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(Exercise: verify that Hx,y is a bijection.)
This could be made more conceptual by introducing the general notion of homo-

topy between morphisms of groupoids.

4.3. The fundamental group. If the topological space X is path connected, most
of the information encoded in the fundamental groupoid Π(X) can be recovered
by fixing a point x ∈ X and considering:

HomΠ(X)(x, x)

which is a group (see Example 4.5). Thus, we consider loops in X , which start and
end at x (loops based at x).

Definition 4.15. For X a topological space and x ∈ X , the fundamental group
π1(X, x) is the group with

⊲ elements {[α]|α(0) = α(1) = x}, the set of homotopy classes rel ∂I of con-
tinuous paths starting and ending at x;

⊲ group multiplication [α][β] = [α · β];
⊲ inverse [α]−1 = [α−1].

Remark 4.16.
�

The group multiplication is defined by the composition of paths.
This must not be confused with the group structure ◦ on HomΠ(X)(x, x) which is
given by [α] ◦ [β] = [β · α]; this is the opposite group structure.

Exercise 4.17. Show that the fundamental group π1(X, x) depends only upon the
path-connected component of X containing x.

The fundamental group is defined in terms of pointed topological spaces.

Definition 4.18.

(1) A pointed topological space is a pair (X, x) where X is a topological space
equipped with a basepoint x ∈ X .

(2) The category of pointed topological spaces, Top•, has:
⊲ objects: pointed topological spaces (X, x)
⊲ morphisms: HomTop

•
((X, x), (Y, y)) is the set of continuous maps f :

X → Y such that f(x) = y.
(3) For (X, x) and (Y, y) pointed topological spaces, let

[(X, x), (Y, y)]Top
•

denote the set of homotopy classes rel x of morphisms (X, x)→ (Y, y).

Example 4.19. The circle S1 is homeomorphic to the quotient space [0, 1]/0 ∼ 1,
which has a natural choice of basepoint, given by the image of 0. Write this pointed
space as (S1, ∗).

Proposition 4.20. The fundamental group defines a functor:

π1(−) : Top• → Group.

Proof. (This can be deduced from Proposition 4.12.) If f : (X, x) → (Y, y) is a
morphism of pointed spaces (so that f(x) = y), the morphism of groups

π1(f) : π1(X, x)→ π1(Y, y)

is given by π1(f)[α] = [f ◦ α].
It is straightforward to check that π1(f) is a morphism of groups and that this

defines a functor (exercise!). �

Exercise 4.21. Show that

(1) a loop based at x ∈ X is equivalent to a morphism in Top•:

(S1, ∗)→ (X, x);
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(2) there is a natural isomorphism (of sets)

π1(X, x) ∼= [(S1, ∗), (X, x)]Top
•
.

(3) How can one recover the group structure?

The dependency on the choice of basepoint (within a path-connected compo-
nent) is explained by the following.

Proposition 4.22. For X a topological space and [γ] ∈ HomΠ(X)(x, y), there is an iso-
morphism of groups

Φ[γ] : π1(X, y)→ π1(X, x)

defined for α a loop based at y by Φ[γ][α] = [γ · α · γ−1].

Proof. Exercise (hint: draw a picture - compare also Exercise 4.9). �

Proposition 4.23. For H : X × I → Y a homotopy from f to g, where f, g : X ⇒ Y are
continuous map, and x ∈ X a basepoint, the associated path H(x,−) : I → Y induces a
group isomorphism Φ[H(x,−)] which fits into the commutative diagram:

π1(X, x)

π1(f)

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆

π1(g)

xxqqq
qq
qq
qq
q

π1(Y, g(x))
Φ[H(x,−)]

∼= // π1(Y, f(x)).

Proof. Exercise. (This corresponds to the discussion in Remark 4.14 for the fun-
damental groupoid; the proof is a good exercise in understanding based homo-
topies.) �

Corollary 4.24. For f : X → Y a homotopy equivalence, the induced map

π1(f) : π1(X, x)
∼=
→ π1(Y, f(x))

is an isomorphism of groups.
In particular, if X is contractible, then π1(X, x) ∼= {e}, the trivial group.

Proof. Exercise. �

Remark 4.25. This shows that the fundamental group π1(X, x) is a pointed homotopy
invariant of (X, x).

Remark 4.26.
�

There are many interesting path-connected spaces X such that
π1(X, x) = {e} but which are not contractible. For example, X = S2.

4.4. Interlude on groups. In order to motivate the constructions used in the fol-
lowing section, we recall the construction of the free product G ⋆ H of groups G, H
and, more generally, the pushoutG⋆K H associated to the diagram of solid arrows:

K
i //

j

��

G

��
H // G ⋆K H.

(1)

Definition 4.27. Let F : Set → Group denote the free group functor, which asso-
ciates to a set S the group freely generated by the elements of S.

Exercise 4.28. For S a set,

(1) give an explicit description of the free group F (S), in particular, show that
there is a natural inclusion of sets S →֒ F (S) (which will be denoted here
by s 7→ [s]);
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(2) show that F (S) satisfies the following universal property: ∀G ∈ Ob Group,
there is a natural bijection

HomGroup(F (S), G) ∼= HomSet(S,G),

where, on the right hand side, G is considered as a set;
(3) describe the natural morphism of groups F (G)→ G corresponding to the

identity map (of sets!) of G.
✓01/10/13

Remark 4.29. To give a group G by a presentation by generators and relations is
equivalent to giving a set S of generators, which induces a surjective group mor-
phism

F (S) ։ G

and a set of relations, R ⊂ F (S), which generate a normal subgroup N ✁ F (S)
such that G ∼= F (S)/N.

Another way of representing this is by the presentation

F (R)→ F (S) ։ G.

Note that the image of F (R) in F (S) is not in general a normal subgroup.
✓03/10/13

Example 4.30. Every group G has a canonical presentation, taking G as the set of
generators and the set of relations {[g1][g2][g1g2]−1|(g1, g2) ∈ G×G}. This involves
no arbitrary choices, hence a morphism of groups ϕ : G→ H induces a commuta-
tive diagram:

F (G ×G)

F(ϕ×ϕ)

��

// F (G)

F(ϕ)

��

// // G

ϕ

��
F (H ×H) // F (H) // // H.

This explains the adjective canonical.

Definition 4.31. For groups G, H , the free product of G and H is the group

G ⋆ H := F (G ∐H)/N

where N is the normal subgroup N ✁ F (G ∐H) generated by the following rela-
tions ✓03/10/13

(1) [g1][g2][g1g2]
−1;

(2) [h1][h2][h1h2]
−1,

∀g1, g2 ∈ G and h1, h2 ∈ H .

Exercise 4.32. Using the notation of the definition, check that the relations imply
that [eG] = e = [eH ], where eG, eH and e are the respective identities ofG,H,F (G∐
H). Show that [g−1] = [g]−1 and [h−1] = [h]−1 ∀g ∈ G, h ∈ H .

Exercise 4.33. For groups G,H , show that the set maps G → F (G) ⊂ F (G ∐ H)
and H → F (H) ⊂ F (G ∪H) induce group morphisms:

G→ G ⋆ H ← H.

Show that group morphisms ϕ : G→ Q, ψ : H → Q induce a unique morphism of
groups: G ⋆ H → Q.

Definition 4.34. For group morphisms H
j
← K

i
→ G, let G ⋆K H denote the quo-

tient of G ⋆ H by the normal subgroup generated by ✓03/10/13

[i(κ)][j(κ)]−1 ∀κ ∈ K.

Remark 4.35. Taking K = {e} (which is the initial object of the category of groups -
and also the final object), G ⋆{e} H = G ⋆ H .
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Exercise 4.36. Establish the universal property of G⋆K H : given morphisms ϕ : G→
Q, ψ : H → Q of groups which make the outer square commute,

K
i //

j

��

G

�� ϕ

��

H //

ψ //

G ⋆K H

##
Q

there is a unique morphism of groups G⋆K H → Q (indicated by the dotted arrow)
which makes the diagram commute.

✓01/10/13

Exercise 4.37. For G a group, show that there exist sets R,S and a group homomor-
phism F (R)→ F (S) such that

G ∼= F (S) ⋆F(R) {e}.

4.5. The Seifert-van Kampen theorem for the fundamental groupoid. We re-
quire techniques for calculating the fundamental group π1(X, x); for instance, sup-
pose that X = U

⋃
V , where U and V are open subsets of X , how can we calculate

π1(X, x) for x ∈ U∩V , from information given byU and V ? It turns out to be more
natural to consider the fundamental groupoid Π(X). The key technical ingredient
is that I and I × I are compact metric spaces; this allows Lebesgue’s theorem to be
applied:

Proposition 4.38. For M a compact metric space and U = {Ui|i ∈ I } an open cover of
M , there exists a Lebesgue number 0 < ε ∈ R such that, ∀m ∈M ∃im ∈ I such that

Bε(m) ⊂ Uim .

Proof. Exercise. �

Proposition 4.38 is applied to the spaces I , I × I to decompose paths and homo-
topies between paths.

Corollary 4.39. Let V = {Vj |j ∈ J } be an open cover of a topological space X and
α : I → X , H : I × I → X be continuous maps, then ∃N ∈ N such that

(1) ∀0 ≤ a < N , ∃ja ∈J such that α([ aN ,
a+1
N ]) ⊂ Vja ;

(2) ∀0 ≤ a, b < N , ∃ja,b ∈J such that H([ aN ,
a+1
N ]× [ bN ,

b+1
N ]) ⊂ Vja,b

.

Proof. Let εI be the Lebesgue number provided by Proposition 4.38 for the open
cover {f−1(Uj)} of I and εI×I the Lebesgue number for the open cover {H−1(Uj)}
of I × I . Set ε := min{εI , εI×I}, then taking 0 < N ∈ N such that 1

N < ε
2 , the result

follows. �

For simplicity, we now limit discussion to an open coverX = U
⋃
V . The inclu-

sions of subspaces

U ∩ V � � iU //
� _

iV
��

U� _

jU
��

V � �

jV
// X
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induce a commutative diagram of morphisms of groupoids:

Π(U ∩ V )
Π(iU ) //

Π(iV )

��

Π(U)

Π(jU )

��
Π(V )

Π(jV )
// Π(X).

Remark 4.40.
�

Although the underlying maps on objects are the inclusions, the
morphisms of groupoids are not in general injective on the morphisms. (Two paths
can become homotopic rel ∂I in a larger space.)

The Seifert-van Kampen theorem shows that Π(X) is obtained by gluing the
groupoids Π(U) and Π(V ) together, building in compatibility via Π(iU ) and Π(iV ).
The starting point is the following observation:

Lemma 4.41. Let α : I → X be a path in X , then there exists a decomposition

[α] = [αN ] ◦ . . . ◦ [α1]

in Π(X) such that, ∀t, 1 ≤ t ≤ N , one of the following holds:

(1) [αt] = Π(jU )[α
U
t ] or

(2) [αt] = Π(jV )[α
V
t ],

for some αUt : I → U or αVt : I → V .

Proof. An immediate consequence of Corollary 4.39. �

Definition 4.42. For an open cover X = U ∪ V , let ΠU,V (X) denote the groupoid
with

⊲ objects: Ob ΠU,V (X) = X ;
⊲ morphisms: composable sequences generated by {[αU ] ∈ MorΠ(U)} and
{[αV ] ∈ MorΠ(V )} subject to the following relations:
(1) [αU2 ] ◦ [α

U
1 ] = [αU1 · α

U
2 ]

(2) [αV2 ] ◦ [α
V
1 ] = [αV1 · α

V
2 ]

(3) [iU (α
U∩V )] = [iV (α

U∩V )]
for paths αUs : I → U , αVs : I → V and αU∩V : I → U ∩ V .

Exercise 4.43. Check that ΠU,V (X) is a groupoid and that the inclusions U, V ⊂ X
induce a morphism of groupoids:

ΠU,V (X)→ Π(X)

which is the identity map on objects and which fits into the commutative diagram:

Π(U ∩ V )
Π(iU ) //

Π(iV )

��

Π(U)

�� Π(jU )

��

Π(V ) //

Π(jV ) //

ΠU,V (X)

%%❏
❏❏

❏❏
❏❏

❏❏

Π(X)

Theorem 4.44. For U, V an open cover of X ,

ΠU,V (X)→ Π(X)

is an isomorphism of groupoids.
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Proof. On the level of objects, the morphism is the identity and Lemma 4.41 shows
that it is surjective on morphisms: to a path α : I → X , one associates the morphism
of ΠU,V (X):

[[α]] := [αZN

N ] ◦ . . . ◦ [αZ1
1 ]

where Zt ∈ {U, V }, as in the decomposition of Lemma 4.41; by construction, this
maps to [α]. The compatibility with composition in U and V built into the defini-
tion of ΠU,V (X) shows that the element [[α]] does not depend on N .

For injectivity on morphisms, suppose that [α] = [β] in Π(X), we require to
show that [[α]] = [[β]] in ΠU,V (X). Hence fix a homotopy rel ∂I from α to β and
choose N ∈ N as in Corollary 4.39; in particular this value of N can be used to
construct [[α]] and [[β]]. Thus I × I is subdivided into N2 squares such that H
maps each small square either to U or to V ; restricting to a small square,H induces
a homotopy between the composites corresponding to the edges.

The heart of the argument is to analyse what happens when adjacent squares
map to different opens; this means that, on their intersection, they map to U ∩ V .
For example, consider the following situation:

•
βU

// •
βV

// •

•

γU

OO

αU

// •

γ

OO

αV

//

HU
❄❄❄
❄❄❄

[c❄❄❄❄❄❄

•,

HV
❅❅❅
❅❅❅

[c❅❅❅❅❅❅
γV

OO

representing a diagram of composable paths and homotopies, where the super-
script V in αV indicates a path I → V , for example; γ is a path I → U ∩ V , hence
can be considered as a path to both U and V .

The right hand square gives the identity in ΠU,V (X):

[γV ] ◦ [αV ] = [αV · γV ] = [(iV γ) · β
V ] = [βV ] ◦ [iV (γ)]

and the left hand square :

[iU (γ)] ◦ [α
U ] = [αU · (iUγ)] = [γU · βU ] = [βU ] ◦ [γU ].

Using the identity [iU (γ)] = [iV (γ)], it follows that

[γV ] ◦ [αV ] ◦ [αU ] = [βV ] ◦ [iV (γ)] ◦ [α
U ] = [βV ] ◦ [iU (γ)] ◦ [α

U ] = [βV ] ◦ [βU ] ◦ [γU ].

Thus, in ΠU,V (X), the composite around the top of the rectangle is equal to the
composite around the bottom.

The argument can be carried out for any choices of U, V in the above diagram.
A straightforward recursive argument then shows that [[α]] = [[β]] as required. �

Remark 4.45. Working with the fundamental groupoid Π(X) has the technical ad-
vantage that it is not necessary to impose any extra hypotheses on U, V and U ∩
V . The price to pay is the introduction (given here in an ad hoc manner) of the
groupoid ΠU,V (X).

As an immediate application, we get our first non-trivial calculation:

Theorem 4.46. There is an isomorphism of groups

π1(S
1, ∗) ∼= Z.

Proof. Fix 0 < ε < 1 (to improve intuition, take ε very close to 0). Take the
open cover of S1 ⊂ R2 by U := S1 ∩ R2

y>−ε and V := S1 ∩ R2
y<ε, so that U, V

are contractible (homeomorphic to open intervals) and U ∩ V is homeomorphic
to a disjoint union of two (small!) open intervals. Consider the calculation of
HomΠ(S1)(∗, ∗) using the Seifert-van Kampen theorem, where ∗ = (0, 1) ∈ S1.

Choose distinguished paths γU : I → U and γV : I → V so that HomΠ(U)(∗,−∗) =
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{[γU ]} and HomΠ(V )(∗,−∗) = {[γV ]} (exercise: why is this possible?). This gives

the loops [γU · (γV )−1] and [γV · (γU )−1] which are mutually inverse.
Using the relations in the definition of ΠU,V (S1), because U ∩ V is the dis-

joint union of two contractible spaces, it is straightforward to see that, for [α] ∈
HomΠ(S1)(∗, ∗), there is a unique integer n such that

[α] =
(
[γV ]−1 ◦ [γU ]

)◦n

(exercise: prove this assertion!). The result follows. �

Remark 4.47.
�

It is not possible to prove this result using the fundamental group
version of the Seifert-van Kampen theorem, (see Theorem 4.49 below). Why?

Corollary 4.48. The circle S1 is not contractible.

4.6. The Seifert-van Kampen theorem for the fundamental group. ConsiderU, V
an open cover ofX and choose a basepoint ∗ ∈ U ∩V (which also gives a basepoint
for U , V and X). The inclusions induce a commutative diagram of morphisms
between fundamental groups:

π1(U ∩ V, ∗) //

��

π1(U, ∗)

��
π1(V, ∗) // π1(X, ∗).

This induces a unique group morphism (by Exercise 4.36):

π1(U, ∗) ⋆π1(U∩V,∗) π1(V, ∗)→ π1(X, ∗).

Theorem 4.49. For U, V an open cover ofX and basepoint ∗ ∈ U ∩V , if U ∩V , U , V are
all path-connected, then the group morphism π1(U, ∗) ⋆π1(U∩V,∗) π1(V, ∗) → π1(X, ∗) is
an isomorphism.

Proof. This result is a consequence of the result for the fundamental groupoid, Theo-
rem 4.44, which did not require the path-connected hypothesis. It can be proved by
adapting the proof of Theorem 4.44 to use loops. (Exercise: prove this result!) �

Exercise 4.50. Calculate π1(S
1 ∨ S1, ∗), where S1 ∨ S1 is the wedge of two copies of

(S1, ∗), obtained by identifying the basepoints.
As a consequence, calculate π1(R

2\{0, ∗}), •), for any basepoint •.

Remark 4.51. Theorem 4.49 admits the conceptual interpretation that π1(−,−) pre-
serves pushouts. Namely, the open cover U, V allows X to be recovered by gluing
along U ∩ V , which can be interpreted as saying that X is the pushout in pointed
topological spaces of the diagram V ← U ∩ V → U .

Similarly, the group π1(U, ∗) ⋆π1(U∩V,∗) π1(V, ∗) is the pushout of the diagram
π1(V, ∗) ← π1(U ∩ V, ∗) → π1(U, ∗) (this is the universal property established in
Exercise 4.36).

�
Note that the path-connected hypothesis has to be imposed on the spaces

U, V, U ∩ V .

Example 4.52. The conclusion of Theorem 4.49 is false for the open cover of the
circle S1 used in Theorem 4.46. (Exercise: check this.) The theorem is not violated,
however, since U ∩ V is not path connected.
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4.7. First applications of the Seifert-van Kampen theorem.

Definition 4.53. A topological space X is simply connected if it is path connected
and, for any choice of basepoint, π1(X, x) = {e}.

Proposition 4.54. For 2 ≤ n ∈ Z, the sphere Sn is simply connected.

Proof. The sphere Sn is path connected if n > 0; choose an open cover U+, U− of
Sn by the northern and southern hemispheres, so that U+ ∩ U− is homeomorphic
to Sn−1 × (−ε, ε). Since n ≥ 2, these spaces are all path connected.

Choosing a basepoint ∗ ∈ U+ ∩ U−. The spaces U+, U− are contractible, hence
the Seifert-van Kampen theorem implies that

π1(S
n, ∗) ∼= {e} ⋆π1(Sn−1,∗) {e} ∼= {e}.

�

In the category of pointed topological spaces, Top•, one replaces disjoint union
∐ by the wedge product.

Definition 4.55. For (X, x), (Y, y) pointed topological spaces, the wedge X ∨ Y is
the quotient

X ∨ Y :=
(
X ∐ Y

)
/x ∼ y

which glues the basepoints together, pointed by the image of x and y.

Remark 4.56.
�

To ensure that basepoints behave well in homotopy theory, one re-
quires a hypothesis which ensures that there is a nice neighbourhood of the base-
point.

The following condition is introduced in [FT10]; it is slightly weaker than the
condition well pointed which is frequently used.

Definition 4.57. A pointed topological space (X, x) is correctly pointed if there is
an open neighbourhood x ∈ V such that V ≃ x rel {x} (x is a strong deformation
retract of V - see Section 3.6).

Proposition 4.58. For (X, x), (Y, y) path-connected, correctly-pointed topological spaces,

π1(X ∨ Y, ∗) ∼= π1(X, x) ⋆ π1(Y, y).

Proof. Let x ∈ Vx ⊂ X and y ∈ Vy ⊂ Y be open neighbourhoods which are strong
deformation retracts of the basepoint. Then UY := Vx ∨ Y and UX := X ∨ Vy give
an open cover of X ∨ Y with UY ≃ Y , UX ≃ X and UY ∩ UX = Vx ∨ Vy ≃ ∗. The
conclusion follows from Theorem 4.49. �

Example 4.59. For n ∈ N, π1(
∨
n S

1, ∗) ∼= Z⋆n is the free group on n generators.

Exercise 4.60. Give an example of a wedgeX∨Y for which the conclusion of Propo-
sition 4.58 is false.

4.8. Attaching cells. A fundamental way of building topological spaces is by glu-
ing on cells. Here a cell of dimension n is en ⊂ Rn, the closed Euclidean ball,
which has boundary ∂en = Sn−1. The cell is glued to a topological space along its
boundary.

Notation 4.61. For f : Sn → X a continuous map, let Cf denote the quotient space

Cf :=
(
X ∐ en+1

)
/s ∼ f(s) ∈ X, ∀s ∈ ∂en+1.

This is equipped with the natural inclusion X →֒ Cf .

Remark 4.62. The notation reflects the fact that this is a special case of the construc-
tion of the mapping cone of a continuous map (note that en+1 is homeomorphic to
the cone CSn).
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Example 4.63. The projective plane RP 2 is homeomorphic to the mapping cone

C[2] of the continuous map S1 [2]
→ S1, z 7→ z2 (considering S1 ⊂ C).

Proposition 4.64. For f : Sn → X a continuous map (with n ≥ 1) and Cf the mapping
cone of f , pointed by x = f(∗) ∈ X ⊂ Cf , for ∗ ∈ Sn:

(1) if n = 1, the inclusion X →֒ Cf induces an isomorphism

π1(Cf , x) ∼= π1(X, x)/[f ]

where [f ] ✁ π1(X, x) is the normal subgroup generated by the image of π1(f) :
π1(S

1, ∗) ∼= Z→ π1(X, x);
(2) if n > 1, π1(X, x) ∼= π1(Cf , x).

Proof. We may assume thatX is path connected, since the image of f lies in a single
path component of X .

By construction, Cf is a quotient of X ∐ en+1. Take an open cover U∂ , U of en+1

such that Sn ⊂ U∂ is homeomorphic to Sn × [0, 1), U ∼= (en+1)◦ and U∂ ∩ U ∼=
Sn× (0, 1). Write V for the image of X∐U∂ in Cf and U for the image of U . Hence,
by construction, U, V, U ∩ V are path connected and U is contractible, U ∩ V ≃ Sn

and V ≃ X (exercise: check this!).
Applying the Seifert-van Kampen theorem gives

π1(Cf , x) ∼= π1(X, x) ⋆π1(Sn,∗) {e}.

For n ≥ 2, π1(S
n, ∗) ∼= {e} and the result is clear. In the case n = 1, the right hand

side is, by construction, isomorphic to the stated quotient. �

Exercise 4.65. What happens when n = 0?

Example 4.66. Recall from Example 4.63 that RP 2 is homeomorphic to the map-

ping cone C[2] of S1 [2]
→ S1. Hence

π1(RP
2, ∗) ∼= Z/2.

(RP 2 is path connected, hence the choice of basepoint is unimportant.)
Moreover, considering the wedge product:

π1(RP
2 ∨ RP 2, ∗) ∼= Z/2 ⋆ Z/2.

✓10/10/13

4.9. Products. The product of two topological spaces is a categorical product: to
give a continuous map to the product is equivalent to specifying the components.
This means that the calculation of the fundamental group of a product is straight-
forward.

Proposition 4.67. For (X, x), (Y, y) pointed topological spaces, the projections X
pX
←

X × Y
pY
→ Y induce an isomorphism of groups

π1(X × Y, (x, y))
∼=
→ π1(X, x)× π1(Y, y).

Proof. The projections are pointed maps, hence induce morphisms of groups

π1(X, x)
π1(pX )
← π1(X × Y, (x, y))

π1(pY )
→ π1(Y, y),

which induce the given morphism of groups.
Consider the based circle (S1, ∗) a loop based at (x, y) in X × Y is a continuous

pointed map α : (S1, ∗) → (X × Y, (x, y)). This is equivalent to giving the two
component maps, which are loops pX ◦ α : (S1, ∗)→ (X, x) and pY ◦ α : (S1, ∗)→
(Y, y).

Similarly, a based homotopy H : S1 × I → X × Y between two loops based at
(x, y) is equivalent to giving the component based homotopies HX : S1 × I → X
and HY : S1 × I → X .

It follows that the map [α] 7→ ([pX ◦ α], [pY ◦ α] is a bijection, as required. �
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Example 4.68. The fundamental group of the torus S1 × S1 is

π1(S
1 × S1, (∗, ∗)) ∼= π1(S

1, ∗)× π1(S
1, ∗)

∼= Z× Z,

the free abelian group on two generators.

Remark 4.69. There is an alternative method for calculating π1(S
1 × S1, (∗, ∗)) by

using Proposition 4.64. The torus is a quotient I × I ։ S1 × S1 of the square.
Under this map, the boundary ∂(I × I) is sent to S1 ∨ S1 and filling in the square
is equivalent to adding a two-cell, which is glued along an attaching mapping

f : ∂e2 ∼= S1 → S1 ∨ S1.

The map f has class [f ] ∈ π1(S
1 ∨ S1, ∗) ∼= 〈α〉 ⋆ 〈β〉; this class identifies as

αβα−1β−1, the commutator on the generators of the free group (prove this!).✓24/10/13

Proposition 4.64 gives

π1(S
1 × S1, (∗, ∗)) ∼= 〈α〉 ⋆ 〈β〉/(αβα−1β−1)

which is isomorphic to the free abelian group on α, β.

Exercise 4.70. Calculate the fundamental group of the Klein bottle K (see Example
1.47). Deduce that the torus S1 × S1 and K do not have the same homotopy type.

4.10. Groups as fundamental groups.

Theorem 4.71. For G a discrete group, there exists a pointed topological space (XG, x)
such that

π1(XG, x) ∼= G.

Moreover, this construction is functorial: G 7→ XG is a functor

Group→ Top•.

Proof. If G admits a finite presentation (finitely many generators and relations), the
existence of such a XG follows easily from Proposition 4.64. (Exercise!)

However, the construction can be made functorial by using the canonical presen-
tation

F (G ×G)→ F (G) ։ G

of Example 4.30. Namely, XG is built from the (in general infinite) wedge
∨
g∈G S

1

by attaching, for each pair (g1, g2) ∈ G×G a two cell along the loop S1 →
∨
g∈G S

1

which is given by the path
αg1 · αg2 · α

−1
g1g2 ,

where αg : S1 →
∨
g∈G S

1 is the inclusion of the circle indexed by g, which can

be interpreted as a loop. It is clear that this construction is functorial (no arbitrary
choices have been made).

The proof of Proposition 4.64 generalizes to this setting, which shows that the
space XG has the required fundamental group. (Exercise: fill in the details.) �

Example 4.72. Carrying out this construction for the group Z/2, one has

Z/2 = {0, 1}

Z/2× Z/2 = {(0, 0), (0, 1), (1, 0), (1, 1)}

so that XZ/2 is built from S1 ∨ S1 by attaching four 2-cells.

This space is homotopy equivalent to RP 2; the cells and relations associated to
0 ∈ Z/2 are redundant.

Remark 4.73. Theorem 4.71 shows that algebraic topology contains group theory!
✓11/12/13

Remark 4.74. There is a better construction, which is given by the classifying space
of a group. This is a special case of the construction of the classifying space BC of a
small category C . See Example 6.42 and Remark 6.47.
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✓10/10/134.11. Addendum: mapping cylinders and mapping cones. The mapping cone is
a very important construction in homotopy theory; it was introduced in Section
4.8 in the special case of attaching cells. To introduce the general construction, we
first consider the mapping cylinder.

Recall that the cylinder on a topological spaceX is the spaceX×I ; the inclusion
X →֒ X × I , x 7→ (x, 0) gives the subspace X0 ⊂ X × I , which is a strong deforma-

tion retract of X × I (see Definition 3.24), with retract the projection X × I
pX
→ X .

In particular, X and X × I have the same homotopy type. The same construction
works replacing I with the open subspaces [0, 23 ), for example.

Definition 4.75. For f : X → Y a continuous map, the mapping cylinder Mf is the
quotient space of (X × I) ∐ Y

Mf := (X × I) ∪(x,1)∼f(x) Y

which corresponds to gluing the end of the cylinder X×{1} to Y using the map f .
The inclusion Y →֒ Mf and the retraction Mf → Y induced by the projection

X×I → X exhibits Y as a deformation retract of Mf and the inclusion X0 ⊂ X×I

provides an inclusion X
i
→֒Mf .

Lemma 4.76. For f : X → Y , the following diagram commutes:

X // i //

f   ❇
❇❇

❇❇
❇❇

❇ Mf

≃

��
Y.

Proof. Exercise. �

Remark 4.77. The mapping cylinder Mf has a standard open cover:

U := X × [0,
2

3
)

V :=
(
X × (

1

3
, 1]

)
∪f Y

so thatX is a deformation retract of U and V ≃ Y . The intersection U∩V identifies
with the subspace X × (13 ,

2
3 ) of the cylinder, and has the homotopy type of X .

The factorization of f given by Lemma 4.76 replaces f by the inclusionX →֒Mf

followed by the homotopy equivalence Mf
≃
→ Y . The open neighbourhood U of

X means that the inclusion has good homotopical properties.

Definition 4.78. For f : X → Y a continuous map, the mapping cone Cf is the
quotient

Cf :=Mf/(x, 0) ∼ (x′, 0)

which collapses the subspace X × {0} of the attached cylinder to a point. This is
homeomorphic to the space obtained by attaching the coneCX to Y using the map
f to glue the base.

Remark 4.79. The open cover Mf = U ∪ V induces an open cover U, V by passage
to the quotient. Here V is homeomorphic to V and U ∩ V ∼= X × (13 ,

2
3 ) has the

homotopy type of X . However, the space U is contractible (it is a cone).

Remark 4.80.
�

There is a quotient map

Cf ∼= CX ∪f Y ։ Y/Imagef

given by collapsing the cone CX to a point.
In general there spaces are not homotopy equivalent.
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Example 4.81.

(1) Consider f : X = {∗1, ∗2} → {∗} = Y . The space Y/Imagef is simply {∗},
whereas the cone Cf is homeomorphic to S1. These spaces do not have the
same homotopy type.

(2) Consider f, g : ∂I ⇒ I , where f is the constant map at 0 and g is the inclu-
sion of the boundary. Since I is contractible, f, g are homotopic. However:

I/Imagef ∼= I

I/Imageg ∼= S1,

in particular, these two spaces do not have the same homotopy type. Hence
the quotient by the image of a map does not behave well in homotopy
theory.

Remark 4.82. The construction of the mapping cone is homotopy invariant: if f ≃ g,
then Cf ≃ Cg .
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5. COVERING SPACES

5.1. Slice categories.

Definition 5.1. For C a category and X ∈ Ob C , let C ↓ X denote the category of
objects over X :

⊲ objects: morphisms with range X in C : E
f
→ X ;

⊲ a morphism from E
f
→ X to E′ f ′

→ X is a morphism g : E → E′ which
makes the following diagram commute:

E
g //

f   ❆
❆❆

❆❆
❆❆

❆ E′

f ′

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

X.

Exercise 5.2. For C , X as above,

(1) check that C ↓ X is a category; if C is small, show that C ↓ X is small;
(2) show that a morphism β : X → Y induces a functor C ↓ β : C ↓ X → C ↓

Y ;
(3) deduce that, if C is small, C ↓ − defines a functor C → CAT to the category

of small categories.

Example 5.3. The case of interest here is where C = Top is the category of topo-
logical spaces and continuous maps; the category Top ↓ B is the category of topo-
logical spaces over B.

Definition 5.4. For B a topological space and E1
f1
→ B, E2

f2
→ B

(1) the coproduct (E1
f1
→ B) ∐ (E2

f2
→ B) in Top ↓ B is the topological space

E1 ∐ E2 equipped with the continuous map E1 ∐ E2
f2∐f2
→ B; ✓07/11/13

(2) the fibre product in Top ↓ B is the topological space E1 ×B E2 (the subspace
{(e1, e2) ∈ E1 × E2|f1(e1) = f2(e2)}), equipped with the continuous map
E1 ×B E2 → B induced by (e1, e2) 7→ f1(e1) = f2(e2).

Proposition 5.5. For A → B a continuous map, the fibre product − ×B A induces the
base change functor

Top ↓ B → Top ↓ A

(E → B) 7→ (E ×B A
pA
→ A)

where pA is induced by the projection E ×A→ A.

Proof. Exercise. �

Remark 5.6. Base change or pull back is a fundamental construction; frequently we

are interested in studying objects E
f
→ B where f has specified properties which

are preserved under pullback.

5.2. Local homeomorphisms, locally trivial maps and covering maps. Covering
spaces arise naturally in algebraic topology. The first non-trivial examples occur in
considering the circle; here S1 is considered as the subspace of C {z| |z| = 1}.

Example 5.7. Consider the following continuous maps

(1) p : R→ S1, t 7→ e2πt;
(2) [n] : S1 → S1, for 0 6= n ∈ Z, given by z 7→ zn.

Both p and [n] are surjective (this is why n = 0 is excluded); for instance, the inverse
image p−1(1) is Z ⊂ R, whereas the inverse image [n]−1(1) is the multiplicative
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subgroup of nth roots of unity ∈ C, which is isomorphic to Z/n. More is true:
there is nothing special about the choice of the point 1 ∈ S1 above.

Moreover, as remarked above, p(0) = 1; restricting the map p to the open inter-
val (− 1

2 ,
1
2 ), p defines a homeomorphism

R ⊃ (−
1

2
,
1

2
)
p,∼=
−→ S1\{−1} ⊂ S1

from an open neighbourhood of 0 ∈ R to an open neighbourhood of 1 ∈ S1. Better
still everything can be shifted by an integer k. (Exercise: exhibit a similar property
of [n] : S1 → S1.)

The property indicated above is that of a local homeomorphism:

Definition 5.8. A continuous map f : X → Y is a local homeomorphism if, for every
point x ∈ X , there exists an open neighbourhood x ∈ Ux ⊂ X such that f(Ux) is

open in Y and f |Ux
: Ux

∼=
→ f(Ux) is a homeomorphism.

Example 5.9.

(1) Every homeomorphism is a local homeomorphism.
(2) The maps p, [n] : S1 → S1 (n 6= 0) are local homeomorphisms.
(3) The inclusion (0, 1) →֒ R is a local homeomorphism. In particular, an open

homeomorphism is not necessarily surjective.
(4) Recall (Example 2.15) that R⊖ is the real line with the origin doubled. Iden-

tifying the two origins gives a continuous surjection

q : R⊖
։ R.

This is a quotient map, which is a local homeomorphism. The inverse im-
age q−1(t), for t ∈ R is a single point everywhere, except at t = 0.

Lemma 5.10. A local homeomorphism f : X → Y is an open map (for every open subset
U ⊂ X , f(U) is open in Y ).

Proof. Exercise. �

Exercise 5.11. Give an example of an open map which is not a local homeomor-
phism.

Proposition 5.12. For X
f
→ Y

g
→ Z continuous maps,

(1) if f, g are both local homeomorphisms, then so is g ◦ f ;
(2) if g and g ◦ f are both local homeomorphisms, then so is f .

Proof. Suppose that f, g are local homeomorphisms, thus there exist open neigh-
bourhoods x ∈ Ux ⊂ X and f(x) ∈ Vf(x) ⊂ Y which satisfy the conditions of Def-
inition 5.8 for f and g respectively. Then f(Ux) ∩ Vf(x) ⊂ Y is open and contains

f(x); the subset Wx := f−1
(
f(Ux) ∩ Vf(x)

)
∩ Ux ⊂ X is an open neighbourhood

of x. By construction, g ◦ f(Wx) is an open subset of g(Vf(x)), hence is open in Z ;
moreover, (g ◦ f)|Wx

is a homeomorphism onto g ◦ f(Wx). This proves the first
point.

For the second point, since g ◦ f is a local homeomorphism by hypothesis, ∀x ∈
X there exists an open neighbourhood x ∈ U ′

x such that g ◦ f(U ′
x) is open in Z

and the restriction of g ◦ f to U ′
x is a homeomorphism. Similarly, there is an open

neighbourhood f(x) ∈ Vf(x) as above. Consider the open subspace Ag◦f(x) :=
g ◦ f(U ′

x) ∩ g(Vf(x)) ⊂ Z , which contains g ◦ f(x). The inverse image of Ag◦f(x)
under the homeomorphism g ◦ f |U ′

x
is the required open neighbourhood of x for

the continuous map f . �

Exercise 5.13. Give examples of continuous maps X
f
→ Y

g
→ Z such that
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(1) g ◦ f is a local homeomorphism (such as the identity map!) but f (hence g
also) is not a local homeomorphism;

(2) f, g◦f are local homeomorphisms but g is not. (Hint: f can be the inclusion
of an open subset.)

The local homeomorphisms of Example 5.7 have a further property: they are
locally trivial. The following is the general definition of local triviality.

Definition 5.14. A continuous map p : E → B is

(1) trivial (or a projection) if there exists a space F and a homeomorphism E
∼=
→

F ×B which makes the following diagram commute:

E

��

∼= // F ×B

prB{{①①
①①
①①
①①
①

B,

where prB is the projection onto B;
(2) locally trivial if there exists an open cover (a trivializing cover) U := {Ui|i ∈

I } such that the restriction p−1(Ui)→ Ui is trivial ∀i ∈ I .

Exercise 5.15. When is a locally trivial continuous map a local homeomorphism?

Remark 5.16.
�

Frequently when studying locally trivial maps, one imposes a con-
dition on how the spaces p−1(Ui) can be glued together to form E. This is consid-
ered in the general theory of fibre bundles.

Definition 5.17. A continuous map p : E → B is

(1) a covering (of B) if it is locally trivial and, ∀b ∈ B, the fibre p−1(b) is a
non-empty discrete topological subspace of E;

(2) a finite covering (of B) if, in addition, each |p−1(b)| < ∞ ∀b ∈ B. If the
cardinality |p−1(b)| = n is constant, p is a covering with n-sheets (or leaves).

Remark 5.18. The non-empty hypothesis ensures that a covering map is surjective.

Example 5.19.

(1) If B is a topological space and K a set (considered as a topological space
with the discrete topology), the projection prB : K × B → B is a covering
map.

(2) The map p : R → S1, t 7→ e2πt is a covering map with fibre p−1(z) ∼= Z,
∀z ∈ S1.

(3) The map [n] : S1 → S1, z 7→ zn (n 6= 0) is a finite covering with n sheets.

Proposition 5.20. If p : E → B is a covering, then p is a local homeomorphism.

Proof. Exercise. �

Exercise 5.21. Show that

(1) the inclusion of an open subspace U ⊂ X (which is a local homeomor-
phism) is a covering if and only if U = X ;

(2) the quotient map R⊖ ։ R is not a covering.

Proposition 5.22. For p : E → B a covering map, the map

B → N, b 7→ |p−1(b)|

is continuous, where N is given the discrete topology. In particular, the cardinality of fibres
is constant on each connected component of B.
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Proof. By hypothesis, ∀b ∈ B there is an open neighbourhood b ∈ U ⊂ B such
that p−1(U) ∼= K × U , for some set K and the restriction p|p−1(U) identifies the
projection. In particular, the cardinality of the fibres is constant on U . �

Proposition 5.23. For p1 : E1 → B, p2 : E2 → B two covering maps,

(1) the map p1 ∐ p2 : E1 ∐ E2 → B is a covering, which is finite if and only if both
p1 and p2 are finite;

(2) the fibre product E1 ×B E2, equipped with the induced map p : E1 ×B E2 → B,
(e1, e2) 7→ p1(e1) is a covering, which is finite if and only if both p1 and p2 are
finite.

Proof. Exercise. �

5.3. Morphisms.

Definition 5.24. For p1 : E1 → B, p2 : E2 → B covering spaces, a morphism of
covering spaces (E1 → B) → (E2 → B) is a morphism in Top ↓ B, namely a
continuous map f : E1 → E2 which makes

E1
f //

p1   ❆
❆❆

❆❆
❆❆

E2

p2~~⑥⑥
⑥⑥
⑥⑥
⑥

B

commute.

Remark 5.25. Proposition 5.12 implies that the continuous map f : E1 → E2 of
Definition 5.24 is a local homeomorphism.

Proposition 5.26. Covering spaces overB and morphisms of covering spaces overB form
a category Cover(B).

Proof. Exercise. �

Remark 5.27. Proposition 5.26 implies that there is a natural notion of isomorphism
of covering spaces; this is simply a morphism of covering spaces corresponding to
a homeomorphism f : E1 → E2 (as in Definition 5.24).

✓23/10/13

Example 5.28. For B a connected topological space and sets K,L (discrete topo-
logical spaces), consider a morphism between the trivial coverings

B ×K

##●
●●

●●
●●

●●

f // B × L

{{✇✇
✇✇
✇✇
✇✇
✇

B.

By commutativity of the diagram, f is of the form (b, k) 7→ (b, g(b, k)) for a con-
tinuous map g : B × K → L. In particular, for fixed k ∈ K , g(−, k) : B → L
is continuous, hence is constant, since L is a discrete topological space and B is
connected, by hypothesis.

It follows that the morphism of coverings is equivalent to a set map f : K → L.

In particular f : B ×K → B × L is a covering map if and only if f is surjective.

Proposition 5.29. ForB a locally connected topological space and a morphism of covering
spaces

E1
f //

p1   ❆
❆❆

❆❆
❆❆

❆
E2

p2~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

B,
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(1) the image of f defines covering spaces Image(f) → B and E2\Image(f) → B
and the induced morphismE1 → Image(f) is a morphism of covering spaces over
B;

(2) there is an isomorphism of covering spaces E2
∼= Image(f) ∐ (E2\Image(f))

over B;
(3) the morphism E1 → Image(f) is a covering.

In particular, if f is surjective (for instance if E2 is connected), then f : E1 → E2 is a
covering.

Proof. The result is proved by reducing to the case where both p1 and p2 are trivial
coverings over a connected topological space; this case follows using the analysis
of Example 5.28.

For the general case, for any b ∈ B, there exists a connected open neighbour-
hood b ∈ U ⊂ B such that p1, p2 are trivial when restricted to U , since B is locally
connected, by hypothesis. �

Proposition 5.30. Let p : E → B be a covering. Then the associated covering p[2] :
E ×B E → B is isomorphic to

(
E → B

)
∐
(
E′ → B

)

where E′ ⊂ E ×B E is the subspace of points (e1, e2) such that e1 6= e2 and E → B the
diagonal subspace Ediag ⊂ E ×B E of points (e, e).

Proof. As sets it is clear that E×BE = E′∐Ediag; by considering local behaviour it
follows that this is a homeomorphism of topological spaces and that the projections
are coverings. �

Remark 5.31. If B is locally connected, one can deduce the result from Proposition
5.29, since the diagonal map induces a morphism of covering spaces:

E

  ❆
❆❆

❆❆
❆❆

❆
� � // E ×B E

zz✈✈
✈✈
✈✈
✈✈
✈

B.

5.4. Lifting maps.

Definition 5.32. For p : E → B a covering and g : X → B a continuous map, a
lifting of g is a continuous map g̃ : X → E which defines a morphism of Top/B, so
that the following diagram commutes:

E

p

��
X

g̃
>>

g
// B.

Example 5.33. Liftings do not always exist; for example:

R

��
S1

Id
//

∄

==

S1.

This can be proved using the fundamental group: the space R is contractible, hence
has π1(R, ∗) = {e}, whereas π1(S

1, ∗) ∼= Z. The group Z is not a retract of the trivial
group {e}.

Under a connectivity hypothesis, liftings (when they exist) are unique:
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Proposition 5.34. For p : E → B a covering and g : X → B a continuous map, where
X is connected, two liftings g̃1, g̃2 : X ⇒ E of g coincide if and only if ∃x ∈ X such that
g̃1(x) = g̃2(x).

Proof. The liftings g̃1, g̃2 induce a continuous map G : X → E ×B E, by x 7→
(g̃1(x), g̃2(x)) which fits into a commutative diagram

E ×B E

p[2]

��

∼= // Ediag ∐ E′

xxqqq
qq
qq
qq
qq

X

G

;;✇✇✇✇✇✇✇✇✇
g

// B,

where the isomorphism of coverings is provided by Proposition 5.30.
The hypothesis that X is connected implies that, under the isomorphism, G

maps either to Ediag or to E′. In the first case g̃1 = g̃2 and in the second, ∀x ∈ X ,
g̃1(x) 6= g̃2(x). �

Example 5.35. Recall that a covering map is a local homeomorphism. Unicity of
liftings does not hold in general for local homeomorphisms: for instance, consider
the quotient map

q : R⊖ → R

which identifies the ’two origins’ (see Example 2.15 for R⊖). As observed in Exam-
ple 5.9, this is a local homeomorphism. However, there are two sections of q (that
is lifts of the identity IdR), corresponding to which of the ’two origins’ is chosen.
These coincide for all 0 6= t ∈ R.

The behaviour of the morphism of fundamental groupoids Π(p) : Π(E)→ Π(B)
associated to a covering p determines the covering under suitable hypotheses. The
key ingredient is the lifting of paths and homotopies.

Theorem 5.36. For p : E → B a covering and α, β : I ⇒ B two paths such α ∼rel ∂I β
via a homotopyH : I × I → B,

(1) for any e ∈ p−1(α(0)), there exist unique lifts α̃e, β̃e : I → E of α, β respectively

such that α̃e(0) = e = β̃e(0);

(2) there exists a unique lift H̃ : I × I → B of H which is a homotopy rel ∂I between

α̃ and β̃; in particular, α̃(1) = β̃(1).

Proof. Consider the path α : I → B (the argument for β is identical) and take an
open cover U := {Ui|i ∈ I }which trivializes the covering, so that p−1(Ui) ∼= Ui×
Ki, for some discrete topological space Ki. By Lebesgue’s theorem, Proposition
4.38, ∃0 < N ∈ N such that ∀0 ≤ s < N , ∃is ∈ I such that α([ sN ,

s
N ] ⊂ Uis .

The lifting α̃ is constructed inductively on s for each sub-interval of the form
[0, sN ]. To start the process, one takes α̃(0) = x. Suppose α̃ constructed on [0, sN ]

and consider the extension to [0, s+1
N ] = [0, sN ] ∪ [ sN ,

s+1
N ]. By hypothesis of the

trivializing cover, p−1(Uis) is a trivial covering, hence there exists a unique lifting
of α|[ s

N
, s+1

N
] to p−1(Uis) ⊂ E with value at s

N equal to α̃( sN ). By construction this

gives an extension to a continuous map α̃ defined on [0, s+1
N ].

Consider the homotopy H : I × I → B; the lifting to H̃ uses a generalization
of the previous argument. Lebesgue’s theorem provides a decomposition of I × I
into squares of edge 1

N each of which maps to just one open of U . As before, one
constructs a lifting by adding the little squares; the unicity result of Proposition
5.34 implies that the individual lifts can be glued along the edges to define the

continuous map H̃ .

It remains to show that H̃ is a homotopy rel ∂I between α̃ and β̃. By construction

H̃ |{0}×I and H̃ |{1}×I are lifts of the respective constant maps at α(0) and α(1).
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By unicity of liftings (Proposition 5.34), these liftings are respectively the constant

maps at α̃(0) = x and at ˜α(1).

Similarly, by uniqueness of liftings, H̃ |I×{0} = α̃ and H̃|I×{1} = β̃. It follows,

since H̃ |{1}×I is constant at α̃(1), that α̃(1) = β̃(1) and H̃ is a relative homotopy, as
required. �

Corollary 5.37. For p : E → B a covering,

(1) the groupoid morphism Π(p) : Π(E) → Π(B) is faithful (∀e1, e2 ∈ E, the map
HomΠ(E)(e1, e2)→ HomΠ(B)(p(e1), p(e2)) is injective);

(2) ∀e ∈ E, the group morphism π1(p) : π1(E, e)→ π1(B, p(e)) is injective.

Proof. Consider two morphisms [α̃], [β̃] ∈ HomΠ(E)(e1, e2), represented by paths

α̃, β̃ : I ⇒ E. If Π(p)[α̃] = Π(p)[β̃], then α := p(α̃) and β := p(β̃) are homotopic

rel ∂I . By construction, α̃ and β̃ are lifts of α and β respectively, with the same
starting point, e1. By the lifting of homotopies, Theorem 5.36, it follows that α̃ and

β̃ are homotopic rel ∂I .
The second statement follows from the first. �

Theorem 5.38. For a covering p : E → B and g : X → B a continuous map, where X
is connected and locally path connected, there exists a lifting

E

p

��
X

x 7→e

g̃

>>

g
// B

(where p(e) = g(x)) if and only if g∗(π1(X, x)) ⊂ Image{π1(E, e)
p∗
→ π1(B, g(x))}.

Proof. The condition on π1 is clearly necessary.
For the converse, the construction is carried out in two steps: first a map g̃ is

constructed using path lifting and then the local path connectivity is used to show
that it is continuous. The hypotheses imply that X is path connected.

Fix x ∈ X and e ∈ E such that p(e) = g(x); for a point y ∈ X , define g̃(y) :=

g̃(α)e(1), where α is any path from x to y inX . By Theorem 5.36, g̃(y) only depends
on [α] ∈ HomΠ(X)(x, y).

Consider the hypothesis on π1; by lifting of homotopies (Theorem 5.36), this
implies that any composite pointed map (S1, ∗) → (X, x) → (B, g(x)) lifts to a
map (S1, ∗) → (E, ∗). In particular, if α, β are two paths from x to y in X , the
composite path β−1 ◦ α defines a loop (S1, ∗) → (X, x) which lifts to a loop as

above. By construction this provides lifts g̃(α) and g̃(β) which compose to form a
loop - hence have the same endpoints, as required.

It remains to prove that g̃ is continuous. The spaceE has a basis of open subsets
given by pairs (U, k) where U ⊂ B is open such that p−1(U) ∼= U × K is a trivial
covering and k ∈ K . It suffices to show that g̃−1(U, k) is open in X .

Consider y ∈ g̃−1(U, k) ⊂ X ; since X is locally path connected, there exists a
path connected open subset y ∈ V ⊂ X such that g(V ) ⊂ U . By unicity of path
lifting and the fact that p−1(U) is a trivial cover, it follows that g̃ maps V to (U, k).
This completes the proof. �

Recall from Definition 4.18 the category Top• of pointed (or based) topological
spaces and the notation for the set of based homotopy classes [(X, x), (Y, y)]Top

•
of

based maps from X to Y .

Definition 5.39. For (X, x) a pointed topological space and 0 < n ∈ N, the nth
homotopy group is

πn(X, x) := [(Sn, ∗), (X, x)]Top
•
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where the addition of morphisms is induced by the pinch map Sn → Sn∨Sn which
collapses the equator to a point. (Exercise: prove that πn(X, x) is a group and that,
for n = 1, this recovers the fundamental group.)

Remark 5.40.

(1) The nth homotopy group defines a functor

πn(−) : Top• → Group.

(Exercise: check this.)
(2) For n ≥ 2, πn(X, x) is an abelian group. (Slightly harder exercise: why?)

Corollary 5.41. For p : E → B a covering, basepoints b ∈ B, e ∈ p−1(b) and 2 ≤ n ∈ N,
the covering map p induces an isomorphism:

πn(p) : πn(E, e)
∼=
→ πn(B, b).

Proof. For n ≥ 1, Sn is connected and locally path connected and, for n ≥ 2, Propo-
sition 4.54 shows that π1(S

n, ∗) = 0. Hence Theorem 5.38 implies that any based
continuous map (Sn, ∗)→ (B, b) lifts to a continuous map (Sn, ∗)→ (E, e), which
shows surjectivity of πn(p). To show injectivity, one uses the lifting of homotopies,
as in Theorem 5.36. (Exercise: provide the details.) �

Remark 5.42. One way of understanding this result is by the much more general the-
ory of fibrations, which is based on the lifting property of homotopies. In particular,
a covering p : E → B is a fibration, with fibre F := p−1(b) (in the case of coverings,
F is a discrete space). In general, a fibration F → E → B gives a relationship
between the homotopy groups πn(F ), πn(E) and πn(B).
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5.5. Morphisms between coverings and the universal cover. The general lifting
result, Theorem 5.38, has an immediate application to the study of the category of
coverings Cover(B) over B.

Proposition 5.43. For B a connected and locally path connected topological space and
two coverings p1 : E1 → B, p2 : E2 → B, where E1 is connected, and points b ∈ B,

e1 ∈ p
−1
1 (b), e2 ∈ p

−1
2 (b), there exists a morphism of coverings

E1
e1 7→e2 //

p1   ❆
❆❆

❆❆
❆❆

E2

p2~~⑥⑥
⑥⑥
⑥⑥
⑥

B

if and only if (p1)∗π1(E1, e1) ⊂ (p2)∗π1(E2, e2) ⊂ π1(B, b).

Proof. An immediate consequence of Theorem 5.38. �

Recall from Definition 4.53 that a space X is simply connected if |π0(X)| = 1
and π1(X, x) = {e}, for any choice of basepoint.

Corollary 5.44. For B a connected and locally path connected topological space and two
coverings p1 : E1 → B, p2 : E2 → B and points b ∈ B, e1 ∈ p

−1
1 (b), e2 ∈ p

−1
2 (b),

(1) if E1 is simply-connected, there is a unique morphism of coverings E1 → E2

which sends e1 to e2;
(2) if E2 is simply-connected and E1 is connected but π1(E1, e1) 6= {e} there is no

morphism of coverings from E1 to E2;
(3) if E1, E2 are both simply-connected, then any morphism of coverings from E1 to

E2 is an isomorphism.

Proof. The first two statements are straightforward applications of Proposition 5.43.
The first statement and unicity of lifts implies the final statement. �

This shows the interest of the following definition:
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Definition 5.45. A universal cover of a topological space B is a covering p : E → B
such that E is simply-connected.

Remark 5.46.

(1)
�

A universal cover need not exist.
(2) If B is connected and locally path connected, Corollary 5.44 implies that (if

it exists) a universal cover is unique up to isomorphism (
�

but not unique
isomorphism, in general). Thus one can talk about the universal cover,
without ambiguity; this is frequently denoted

p̃ : B̃ → B.

(3) If B admits a universal cover, B is path connected.

Example 5.47.

(1) The universal cover of the circle is the covering R→ S1.
(2) The universal cover of the torus S1 × S1 is R2 → S1 × S1, given by the

product of two copies of the universal covering of S1.

(3) The universal covering of RP 2 is the quotient map S2 → RP 2, associated
to the antipodal action (see Example 1.44.)

To prove the existence of a universal cover, the following condition is introduced.

Definition 5.48. A topological space B is semi-locally simply-connected if, ∀b ∈ B,
∃b ∈ U ⊂ B an open neighbourhood such that the inclusion U →֒ B induces the
trivial group homomorphism

π1(U, b)
{e}
→ π1(B, b).

(Every loop in U based at b is based homotopic in B to the constant loop.)

This condition is necessary for the existence of a universal cover. Here it is not
necessary to assume that B is locally path connected (but see the discussion in
Remark 5.46).

Proposition 5.49. For B a topological space, if a universal cover p̃ : B̃ → B exists, then
B is semi-locally simply-connected.

Proof. For b ∈ B, there exists an open neighbourhood b ∈ U ⊂ B such that p̃−1(U)
is a trivial covering. This satisfies the required hypothesis, since a loop α in U

based at b lifts to a loop α̃ in p̃−1(U) ⊂ B̃, since the open U trivializes the covering.

By hypothesis, the space B̃ is simply-connected, hence the loop α̃ is based homo-

topic to a constant loop in B̃ (not necessarily in p̃−1(U)), by a homotopy H . The
based homotopy p̃ ◦H shows that α is homotopic to the constant loop at b in B, as
required. �

Remarkably, this condition is also sufficient when B is connected and locally
path connected. The key point is the following Lemma.

Lemma 5.50. For B a topological space and U a neighbourhood of b in B such that

π1(U, b)
{e}
→ π1(B, b) is the trivial morphism, the image of [γ] ∈ HomΠ(U)(u, b) in

HomΠ(B)(u, b) depends only upon u ∈ U .

Proof. Suppose that γ1, γ2 are two paths in U from u to b; then the composite path
γ2 ◦γ

−1
1 is a loop in U based at b. By the hypothesis, this becomes based homotopi-

cally trivial in B; thus, in the fundamental groupoid Π(B):

[γ2] ◦ [γ1]
−1 = Idb.

This implies that [γ1] = [γ2] in Π(B), as required. �
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Theorem 5.51. For B a topological space which is connected and locally path connected,
B admits a universal cover if and only if B is semi-locally simply-connected.

Proof. (Sketch.) The condition is necessary, by Proposition 5.49. Hence it suffices
to show existence, under the hypotheses.

Fix a basepoint ∗ ∈ B and define the underlying set of B̃ to be

B̃ := ∐b∈BHomΠ(B)(b, ∗)

equipped with the projection p̃ : B̃ → B which sends [γ] 7→ γ(0). Thus, the fibre at
b ∈ B is the set HomΠ(B)(b, ∗).

It remains to

(1) define the topology on B̃, using the fact that each b ∈ B admits a path-
connected open neighbourhood b ∈ U such that π1(U, b) → π1(B, b) is the
trivial morphism (using Lemma 5.50);

(2) show that p̃ is continuous;
(3) show that p̃ is a covering;

(4) show that B̃ is path connected and deduce that B̃ is a universal cover.

�

5.6. Coverings from group actions. In general, if a group G acts continuously on
a topological space X , the quotient map

X ։ G\X

(which sends a point x to its G-orbit) is not a covering map.

Example 5.52. The action of Z/2 on R by t 7→ −t defines a quotient map

R ։ [0,∞) ⊂ R

which is not a covering.

Definition 5.53. A left action of the (discrete) group G on a topological space X is
totally discontinuous if, ∀x ∈ X , ∃x ∈ Ux an open neighbourhood such that gUx ∩
Ux 6= ∅ if and only if g = e.

Remark 5.54. A totally discontinuous action G×X → X is necessarily free.

Proposition 5.55. For a totally discontinuous action G×X → X of a discrete group on
the topological space X , the quotient map

X ։ G\X

is a covering, with fibre G.
Moreover, the left action of the group G on X is by automorphisms of the covering.

Proof. For a trivializing cover, take {Ux|x ∈ X}, where Ux is as in Definition 5.53.
It is clear that the homeomorphism g : X → X , for g ∈ G, defined by the left

action of G, induces an automorphism of the covering. �

Example 5.56. The antipodal action of Z/2 on the sphere Sn is totally discontinu-
ous. The associated covering (Example 1.44) is

Sn ։ RPn.

For n > 1, by Proposition 4.54 the sphere Sn is simply-connected and locally path
connected, so this is the universal cover.

Proposition 5.57. For p̃ : B̃ → B the universal cover of a connected and locally path con-
nected space B and b ∈ B, the group π1(B, b) acts naturally on the left by automorphisms
of the covering p̃ and the group action is totally discontinuous. The universal covering is
isomorphic to the quotient covering

B̃ ։ π1(B, b)\B̃.
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Proof. (Indication.) The result can be proved from the construction of the universal
cover indicated in the proof of Theorem 5.51. �

5.7. Monodromy and classification. The lifting of paths gives rise to the mon-
odromy action of the fundamental group on the fibre of a covering. Recall that, for
G a group, a right G-set is a set X equipped with an action:

X ×G → X

(x, g) 7→ xg

which is associative ((xg)h = x(gh)) and unital (xe = x).

Notation 5.58. For G a group, write SetG for the category of right G-sets and G-

equivariant morphisms and SetG for the full subcategory of non-empty right G-
sets.

Theorem 5.59. For p : E → B a covering and b ∈ B, there exists a natural right action
of π1(B, b) on the fibre p−1(b). This corresponds to a functor:

Cover(B) → Setπ1(B,b)

p 7→ p−1(b).

Moreover,

(1) the stabilizer in π1(B, b) of a point e ∈ p−1(b) is the subgroup p∗(π1(E, e)) ⊂
π1(B, b);

(2) E is path connected if and only if the π1(B, b) action is transitive.

Proof. Recall that, by definition of a covering, the fibre p−1(b) is non-empty.
Consider e ∈ p−1(b) and a loop α based at b which defines an element [α] ∈

π1(B, b). Define:

e[α] := α̃e(1),

where α̃e is the lift of α with αe(0) = e. By Theorem 5.36, e[α] depends only upon
the class [α].

It is straightforward to check that this defines a right action of π1(B, b) on the
fibre p−1(b) (this is where the convention used in defining the group structure
of π1(B, b) intervenes). Moreover, the action is natural with respect to covering
spaces.

An element [α] stabilizes e (that is e[α] = e) if and only if the lift satisfies α̃e(1) =
e, so that α̃e is a loop based at e ∈ E. Thus [α] is in the image of the monomorphism
p∗ : π1(E, e) →֒ π1(B, b).

If E is path connected, for any two points e1, e2 ∈ p−1(b) of the fibre, there is a
path γ from e1 to e2 in E. The projection p(γ) is a loop in B based at b, which has
lift γ̃e1 = γ. It follows that e1[p(γ)] = e2, thus the action is transitive.

It is straightforward to prove the converse: if the π1(B, b)-action is transitive,
then E is path connected. (Exercise.) �

When B is connected and locally path connected and admits a universal cover,
the above provides an equivalence of categories. This shows the power of the
fundamental group.

Theorem 5.60. For B a connected and locally path connected space which admits a uni-

versal cover p̃ : B̃ → B, the functor

Cover(B) → Setπ1(B,b)

p 7→ p−1(b).

is an equivalence of categories.
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Proof. (Indications.) For F a non-empty right π1(B, b)-set, define the topological
space

EF := F ×π1(B,b) B̃

using the left action of π1(B, b) on B̃ (see Proposition 5.57). This is the quotient of

the product space F × B̃ by the relation

(yg, x) = (y, gx)

∀y ∈ F, g ∈ π1(B, b), x ∈ B̃.
This construction is functorial in F , in particular the map F → ∗ of π1(B, b)-sets

induces
pF : EF → ∗×π1(B,b) B̃

∼= B,

by Proposition 5.57. The continuous map pF is a covering map, with fibre F (exer-
cise: prove this!).

Thus, the above defines a functor:

Setπ1(B,b) → Cover(B).

F 7→ pF : EF → B.

It is straightforward to show that the fibre p−1
F (b) identifies with F with the given

π1(B, b)-action. Hence, to complete the proof, it suffices to show that there is a
natural isomorphism of coverings

Ep−1(b)

∼=−→
(
p : E → B

)
,

for any covering p. This is constructed by using the lifting result, Proposition 5.43.
�

Remark 5.61.

(1) The universal cover corresponds to the free π1(B, b)-set π1(B, b).
(2) The space EF is path connected if and only if F is a transitive π1(B, b)-

set. The covering associated to a transitive π1(B, b) set H\π1(B, b) (for H a
subgroup of π1(B, b)) is:

H\B̃ → B

where H\B̃ is the quotient of B̃ by the action of H on B̃. In particular, the
universal covering map p̃ factorizes as covering maps:

B̃→H\B̃ → B.

It is essential to study examples in order to get a good understanding of cover-
ings.

Example 5.62. Theorem 5.60 applies to the wedge S1 ∨ S1 of two circles, which is
usually pointed by the common point.

π1(S
1 ∨ S1, ∗) ∼= Z ⋆ Z

is the free group on two generators. The category SetZ⋆Z is very rich.

Exercise 5.63.

(1) Describe the universal cover of S1 ∨ S1.
(2) Classify the two-sheeted covers of S1 ∨ S1 (up to isomorphism).
(3) Slightly harder: classify the three-sheeted covers of S1 ∨ S1.

Theorem 5.60 means that, to understand coverings, one must understand the
category of G-sets.

Exercise 5.64. LetH,K ≤ G be subgoups of the groupG and consider the transitive
right G-sets H\G and K\G.

(1) Show that
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(a) to give a map of G-sets f : H\G → K\G, it suffices to specify the
element f(He) (the image of the coset of the identity e ∈ G);

(b) there exists a map of G sets with f(He) = Kγ if and only if, ∀h ∈ H ,
γhγ−1 ∈ K (or H ≤ γ−1Kγ).

(2) When are the G-sets H\G and K\G isomorphic?
(3) Describe the group of automorphisms of H\G.

5.8. Naturality. The conclusion of Theorem 5.60 is natural in the base space B.

Lemma 5.65. A group morphism ϕ : G→ H induces a functor

ϕ∗ : SetH → SetG

by restriction along ϕ, such that ϕ∗X has underlying set X withH action given by xg :=
x(ϕ(g)).

Proof. Exercise. �

Proposition 5.66. For f : B → C a continuous map and basepoint b ∈ B, the following
diagram commutes (up to natural isomorphism)

Cover(C)

f∗

��

p7→p−1(f(b)) // Setπ1(C,f(b))

π1(f)
∗

��
Cover(B)

q 7→q−1(b)

// Setπ1(B,b),

where f∗ denotes the pullback of coverings along f .

Proof. Consider the behaviour on objects: for a covering p : E → C; the pullback
along f gives the commutative square of continuous maps

E ×C B

q:=f∗p

��

f // E

p

��
B

f
// C,

in which the vertical morphisms are coverings.

The fibre q−1(b) of q := f∗p over b identifies with p−1(c) via f , hence it remains
to consider the action of the fundamental groups. Consider a based loop α in B,
based at b and an element x of the fibre q−1(b). The lift α̃ of α such that α̃(0) = x

defines a lift f ◦ α̃ of f ◦ α starting at f(x).
By the definition of the Monodromy action and unicity of path lifts, this shows

that the π1(B, b) action on q−1(b) identifies with the restricted action π1(f)
∗
(
p−1(f(b))

)
.

To complete the proof, it remains to check that this identification is natural with re-
spect to morphisms of covering spaces (exercise). �

Corollary 5.67. Let B,C be connected and locally path connected spaces which admit
a universal cover. If f : B → C is a continuous map which induces an isomorphism

π1(f) : π1(B, b)
∼=
→ π1(C, f(b)) for b ∈ B, then

f∗ : Cover(C)→ Cover(B)

is an equivalence of categories.

Proof. The result is a straightforward consequence of Proposition 5.66. �

Remark 5.68. This result shows that, in order to understand covering spaces (for
nice spaces, such as CW-complexes) it is sufficient to consider spaces which can be
built from cells of dimension at most two. Exercise: why?
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5.9. Galois coverings.

Notation 5.69. For p : E → B a covering, let Aut(p) denote the group of auto-
morphisms (in Cover(B)) of p. (Elements are homeomorphisms E → E which
commute with p.)

Lemma 5.70. For p : E → B a covering and b ∈ B, the group Aut(p) acts (on the left)
on the fibre p−1(b).

Moreover, for any e ∈ p−1(b) the set map

Aut(p) →֒ p−1(b)

g 7→ g(e)

is injective.

Proof. The first statement is clear and the second follows by unicity of liftings
(Proposition 5.34). �

Definition 5.71. A covering p : E → B is Galois if E is path connected and the
action of the automorphism group Aut(p) on the fibres is transitive.

Example 5.72. ForX a path-connected topological space and a totally-discontinuous
action G×X → X , the associated covering (cf. Proposition 5.55)

X ։ G\X

is Galois.

The classification result, Theorem 5.60, means that the Galois condition can be
detected in terms of the associated π1(B, b)-set.

Theorem 5.73. For B a connected, locally path connected space which admits a universal

cover p̃ : B̃ → B, the covering pF : EF → B is Galois if and only if F is isomorphic to a
transitive right π1(B, b)-set of the form

N\π1(B, b),

where N ✁ π1(B, b) is a normal subgroup.

Proof. (Indications.) The result can either be proved directly as a consequence of
Proposition 5.43 or as a Corollary of Theorem 5.60. (Cf. Exercise 5.64.) �

Corollary 5.74. ForB a connected, locally path connected space which admits a universal
cover, if π1(B, b) is abelian then every covering of B is Galois.

Proof. Exercise. �

Example 5.75. The circle S1 is connected, locally path connected with universal
cover R → S1 and fundamental group Z (thus abelian!). Hence every covering of
S1 is Galois.

Using Theorem 5.60, one shows that the examples of Example 5.7 give the set of
isomorphism classes of coverings of S1. (Exercise.)

Exercise 5.76. What can be said about coverings of the torus, S1 × S1?

Exercise 5.77. Give an example of a covering which is not Galois.
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6. HOMOLOGY

We have seen that the fundamental group is a useful invariant of path-connected
spaces. However, simply connected spaces are invisible to the fundamental group
(by definition!); for example, π1 cannot see the difference between the spheres Sm

and Sn for m,n ≥ 2.
The higher homotopy groups πn(X, x) n ≥ 2, are much more powerful - but are

very difficult to calculate. For n ∈ N, the nth homology group Hn(X) of a space X is
an abelian group which provides useful invariants of the space. In particular

⊲ homology (n ∈ N) is a functor:

Hn : Top→ Ab

with values in abelian groups which satisfies the homotopy axiom: if f ∼
g are homotopic continuous maps from X to Y , then Hn(f) = Hn(g) :
Hn(X)→ Hn(Y );

⊲ the homology of a point is Hn(∗) = 0 except for H0(∗) = 0; moreover,
homology satisfies the dimension axiom:

Hn(S
t) ∼=





Z⊕ Z n = t = 0
Z n = 0 < t
Z n = t > 0;

in particular homology sees higher dimensional phenomena than the funda-
mental group;

⊲ homology is calculable: for example
(1) the homology of a disjoint union is the direct sum: Hn(X ∐ Y ) ∼=

Hn(X)⊕Hn(Y );
(2) if X admits a triangulation, Hn(X) can be calculated in terms of the

combinatorial data defining the triangulation.

Remark 6.1. The homology groups of spheres are much simpler that the higher ho-
motopy groups, πt(S

n) (which, for n ≥ 2, are unknown for t ≫ 0!). For example,
π3(S

2) ∼= Z, generated by the Hopf map η, which is represented by the Hopf fibra-
tion S3 ≃ C2\{0} → CP 1 ≃ S2, which sends 0 6= (z1, z2) ∈ C2 7→ [z1 : z2] ∈ CP 1.
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As a first example of the usefulness of homology, consider the following:

Definition 6.2. The degree of a continuous map f : Sn → Sn (0 < n ∈ N) is the
integer deg(f) which defines the morphism of abelian groups

Hn(f) : Hn(S
n) ∼= Z→ Z ∼= Hn(S

n).

(A morphism Z→ Z is uniquely determined by the image of a chosen generator.)

Remark 6.3. It is a fundamental result (the Hurewicz theorem) that the degree of f
determines the homotopy class of f .

To construct homology, we need some knowledge of homological algebra.

6.1. Exact sequences. In this section, A denotes the category of modules over a
fixed commutative ring R. For example, taking R = Z, this is the category of
abelian groups.

Remark 6.4. More generally, A can be taken to be any abelian category. (See [Wei94],
for example, for a definition.)

Recall the definition of the kernel and the image of a morphism f :M → N of A :

⊲ the kernel ker(f) := {m ∈M |f(m) = 0} ⊆M ;
⊲ the image image(f) := {n ∈ N |∃m ∈Ms.t.f(m) = n} ⊆ N.

The important properties of A are the following:

(1) A is an additive category:
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(a) 0 is both initial and final in A ;
(b) HomA (M,N) is an abelian group and composition is biadditive;
(c) HomA (X,M ⊕ N) ∼= HomA (X,M) ⊕ HomA (X,N) and HomA (M ⊕

N,X) ∼= HomA (M,X)⊕HomA (N,X) (in categorical languageM⊕N
is both the product and the coproduct of M and N ).

(d) The zero morphism from M to N is the trivial morphism M → 0→ N .
(2) For f :M → N a morphism of A ,

(a) there is a natural isomorphism

image(f) ∼=M/ ker(f)

where M/ ker(f) is the quotient by the sub-object ker(f) ⊆M ;
(b) any morphism g : N → Q such that the composite g ◦ f is zero factor-

izes canonically as

N // //

g

��

N/image(f)

∃!
yy

Q

(in categorical language, N ։ N/image(f) is the cokernel coker(f) of
f ). Moreover, the kernel of N → N/image(f) is image(f).

Remark 6.5.
�

The category Group does not satisfy all these properties.

(1) The free product (coproduct) of groups ⋆ does not coincide with the product
×.

(2) The relationship between the cokernel and the image is more delicate; this
is why the notion of normal subgroup is important. Consider an inclusion
of groups H →֒ G, then the cokernel is the quotient G/NGH , where NGH
is the normalizer of H in G (the smallest normal subgroup containing H).
The kernel of G ։ G/NGH is NGH , which coincides with H if and only if
H is normal.

The following definition is fundamental:

Definition 6.6. Let M
f
→ N

g
→ Q be morphisms of A .

(1) g, f form a sequence if g ◦ f = 0 (equivalently image(f) ⊆ ker(g));
(2) a sequence is exact (implicitly at N ) if image(f) = ker(g).

A set of morphisms {fn : Mn → Mn+1|n ∈ Z}, forms a sequence (respectively an
exact sequence) if and only if each

Mn−1
fn−1
→ Mn

fn
→Mn+1

is a sequence (resp. exact sequence).

Remark 6.7. A set of morphisms {fn : Mn → Mn+1|n ∈ I ⊂ Z} indexed by a
subset I ⊂ Z can always be completed to a set indexed by Z by replacing the
missing objects by 0 and the missing morphisms by zero. (Exercise: why?)

Definition 6.8. A short exact sequence in A is an exact sequence of the form:

0→M
f
→ N

g
→ Q→ 0.

Exercise 6.9. Check the following assertions.

(1) For A ⊂ B in A , there is a short exact sequence:

0→ A→ B → B/A→ 0.
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(2) For f :M → N a morphism of A , there are short exact sequences:

0→ ker(f)→M → image(f)→ 0

0→ image(f)→ N → coker(f)→ 0.

(3) For M,N ∈ Ob A , there is a short exact sequence

0→M →M ⊕N → N → 0.

(This is known as a split short exact sequence.)
(4) ∀0 6= n ∈ N, multiplication by n induces an exact sequence:

0→ Z
n
→ Z→ Z/n→ 0.

Exercise 6.10. For 0 → M
f
→ N

g
→ Q → 0 a short exact sequence in A , show that

there exists a section s : Q→ N (a morphism of A such that g ◦s = IdQ) if and only
if there exists an isomorphism making the following diagram commute:

0 // M // M ⊕Q

∼=

��

// Q // 0

0 // M
f

// N
g

// Q // 0,

where the top row is the split short exact sequence of the previous exercise.

6.2. Chain complexes and homology.

Definition 6.11.

(1) A complex (or chain complex) in A is a sequence {dn : Cn → Cn−1|n ∈ Z}
(equivalently dn ◦ dn−1 = 0 ∀n). This will be denoted by (C•, d) or simply
C when no confusion is likely.

(2) A morphism of chain complexes ϕ : C → D is a set of morphisms {ϕn : Cn →
Dn|n ∈ Z} such that ∀n ∈ Z the following diagram commutes:

Cn
dCn //

ϕn

��

Cn−1

ϕn−1

��
Dn

dDn

// Dn−1.

Remark 6.12. As in Remark 6.7, one can consider chain complexes indexed by N

(by extending by zero).

Proposition 6.13. Chain complexes in A form a category Ch(A ) which contains N-
graded chain complexes as a full subcategory Ch≥0(A ).

Proof. Exercise. �

Remark 6.14. More is true: the category Ch(A ) is abelian. (Optional exercise: make
sense of this statement and prove it!)

The homology of a complex measures its failure to be exact. The terminology below
is inspired by the geometric origin of chain complexes, for instance from simplicial
homology.

Definition 6.15. For (C•, d) a chain complex and n ∈ Z:

(1) the n-cycles Zn ⊆ Cn is the subobject Zn := ker(dn);
(2) the n-boundaries Bn ⊆ Zn is the subobject image(dn+1) : (which is con-

tained in ker(dn), since dn ◦ dn+1 = 0, by the hypothesis that Cn is a chain
complex);

(3) the nth homology is the quotient Hn(C•, d) := Zn/Bn.
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Exercise 6.16. For (C•, d) a chain complex, show that Cn+1 → Cn → Cn−1 is exact
if and only if Hn(C) = 0.

Proposition 6.17. For n ∈ Z, the nth homology defines a functor:

Hn(−) : Ch(A )→ A .

Proof. For ϕ : C → D a morphism of chain complexes, the morphism ϕn : Cn →
Dn restricts to morphisms forming a commutative diagram

Bn(C)
� � //

��

Zn(C)
� � //

��

Cn

ϕn

��
Bn(D) �

� // Zn(D) �
� // Dn

since the morphisms ϕn are compatible with the differentials. (Exercise: check
this).

The morphism Hn(ϕ) : Hn(C) → Hn(D) sends an element [z] represented by
an n-cycle z ∈ Zn(C) to [ϕn(z)] ∈ Hn(D). By the left hand commutative square,
this is independent of the choice of z.

Exercise: check that this defines a functor. �

Definition 6.18. A morphism of chain complexes ϕ : C → D is a quasi-isomorphism
(or homology equivalence) if Hn(ϕ) is an isomorphism ∀n ∈ Z.

Example 6.19. The chain complex of abelian groups with d0 : C0 = Z
Id
→ Z = C1

and all other terms zero has homology Hn(C) = 0 ∀n ∈ Z. The unique morphism
of chain complexes 0→ C is a quasi-isomorphism.

Remark 6.20. The derived category DA of A is obtained from Ch(A ) by inverting
the quasi-isomorphisms (the precise construction is slightly delicate). The category
DA is very important, since it all of the information of Ch(A ) which can be seen
by homology.

6.3. Chain homotopy. There is a notion of homotopy for morphisms between chain
complexes in A .

Definition 6.21. For f, g : C ⇒ D morphisms of chain complexes in A , a chain
homotopy from f to g is a set of morphisms {hn : Cn → Dn+1|n ∈ Z} such that
fn − gn = dDn+1 ◦ hn + hn−1 ◦ dCn

Cn
dCn //

fn

��
gn

��

hn

{{①①
①①
①①
①①
①

Cn+1

hn−1||①①
①①
①①
①①

Dn+1
dDn+1

// Dn.

Morphisms f, g are chain homotopic if there exists a chain homotopy from f to g,
denoted by f ∼ g (or f ∼h g), if the homotopy is given.

Proposition 6.22.

(1) The chain homotopy relation ∼ is an equivalence relation on morphism of chain
complexes ∈ HomCh(A )(C,D).

(2) For morphisms of chain complexes

B
u // C

f //
g

// D v
// E,

if f ∼h g then v ◦ f ◦ u ∼v◦h◦u v ◦ g ◦ u.
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Proof. The relation∼ is reflexive (take h = 0) and symmetric (replace h by−h). For
transitivity, if α ∼h β and β ∼k γ, then

αn − γn = (αn − βn) + (βn − γn)

= (dDn+1 ◦ hn + hn−1 ◦ d
C
n ) + (dDn+1 ◦ kn + kn−1 ◦ d

C
n )

= dDn+1 ◦ (hn + kn) + (hn−1 + kn−1) ◦ d
C
n

where the additivity of A is used. Hence {hn+kn|n ∈ Z} forms a chain homotopy
from α to γ.

The second statement is left as an exercise. (Use the fact that u, v are chain
maps.) �

This allows the usual notion of homotopy equivalence to be introduced:

Definition 6.23. Chain complexes C,D have the same chain homotopy type if there
exist morphisms ϕ : C → D and ψ : D → C of chain complexes such that ψ ◦ ϕ ∼
IdC and ϕ ◦ ψ ∼ IdD; denote the associated relation C ≃ D.

A chain complex C is homotopically trivial if C ≃ 0.

Exercise 6.24. Show that ≃ is an equivalence relation on the objects of Ch(A ).

Example 6.25. For 0 6= d ∈ N, consider the chain complexes C,D of Ab with Cn =
0 = Dn if n 6∈ {0, 1} and

C1 = Z
×d // C0 = Z

D1 = 0 // D0 = Z/d.

Show that

(1) The morphism Z ։ Z/d induces a morphism of chain complexes C → D
which induces an isomorphism in homology.

(2) There is no non-zero morphism of chain complexes D → C.

Deduce that C,D do not have the same chain homotopy type.

Part of the interest of chain homotopy is through the following:

Proposition 6.26. If f, g : C ⇒ D are chain homotopic, then Hn(f) = Hn(g) :
Hn(C) ⇒ Hn(D), ∀n ∈ Z.

Proof. Consider a homology class [z] ∈ Hn(C), represented by a cycle z ∈ Zn(C)
(so that dCn z = 0). By definition, Hn(f)[z] = [fn(z)] and Hn(g)[z] = [gn(z)]. Sup-
pose f ∼h g, so that fn − gn = dDn+1 ◦ hn + hn−1 ◦ dCn ; applied to z, since dCn z = 0,
this gives

fn(z)− gn(z) = dDn+1hn(z).

Thus, the cycles (of Dn) fn(z) and gn(z) differ by a boundary. Hence, their classes
in homology coincide. �

6.4. Simplicial objects. If one forgets the condition d2 = 0, a chain complex in A
can be viewed as a functor. Consider Z as a category Z, with objects {n|n ∈ Z} and

HomZ(a, b) =

{
∗ a ≤ b
∅ a > b.

(This construction is general: a partially ordered set can be considered as a category
in which |Hom(a, b)| ≤ 1 and Hom(a, b) 6= ∅ if and only if a ≤ b.)

Recall that the opposite category is obtained by ‘reversing’ the direction of the
arrows; thus the opposite category Zop has objects {n|n ∈ Z} and

HomZop(a, b) =

{
∗ a ≥ b
∅ a < b.
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A functor from Z
op to A is equivalent to a set of morphisms {dn : Cn →

Cn−1|n ∈ Z}. These functors form a category AZ, with objects the natural trans-

formations of functors. Concretely, a morphism from (C, dC) to (D, dD) is a set
of morphisms {fn : Cn → Dn|n ∈ Z} which make the squares commute as in
definition 6.11.

Remark 6.27. From this viewpoint, the category Ch(A ) of chain complexes is the
full subcategory of AZ of objects such that dn−1 ◦ dn = 0, ∀n.

The above used the following general notation.

Notation 6.28. For I a small category (the indexing category) and C any category,

(1) the category of functors from I to C is written C I ;
(2) the category of functors from I op to C is written CI .

The category I should be visualized as the category of diagrams of shape I in C .

Exercise 6.29. For I the category with three objects and non-identity morphisms
• ← • → •, give an explicit description of the objects and morphisms of the cate-

gories TopI and TopI .

Exercise 6.30. (Optional.) If A is an abelian category and I is a small indexing
category, show that A I and AI are abelian categories. (Note: since AI = A I

op

,
it suffices to treat one case.)

In the case I = Z, show that Ch(A ) is an abelian subcategory of A∆.

Remark 6.31. Chain complexes are not suitable for general categories C :

(1) a zero morphism is required (the category C must be pointed) for the con-
dition d2 = 0 to have a meaning;

(2) the notion of chain homotopy requires the addition and subtraction of mor-
phisms.

A more general approach is to use simplicial objects. These can again be defined as
functors; first we need to introduce the indexing category.

Definition 6.32.

(1) For n ∈ N let [n] be the category associated to the partially ordered set
({0, . . . , n},≤).

(2) The ordinal category ∆ is the full subcategory of CAT (the category of small
categories) with objects {[n]|n ∈ N}.

Explicitly, ∆ has objects {[n]|n ∈ N} and a morphism from [m] to [n] is a
non-decreasing map f : {0, . . .m} → {0, . . . , n} (i.e. i ≤ j⇒ f(i) ≤ f(j)).

The morphisms of ∆ can be expressed as composites of the following generators:

Definition 6.33. For 0 < n ∈ N,

(1) the coface maps εi : [n− 1]→ [n], 0 ≤ i ≤ n are given by:

εi(j) =

{
j j < i
j + 1 j ≥ i

(the order-preserving inclusion for which i is not in the image);
(2) the codegeneracy maps σi : [n]→ [n− 1], 0 ≤ i ≤ n− 1:

σi(j) =

{
j j ≤ i
j − 1 j > i

(the order-preserving surjection with two elements mapping to j).
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Example 6.34. Consider the morphisms between [0] and [1] in ∆; [0] corresponds
to the one-point set {0} and [1] to {0, 1}, Hence, the morphisms are generated by:

[0] ε0 //
ε1 // [1].

σ0zz

This diagram is analogous to the diagram of continuous maps:

pt. i0 //
i1 // I.

p||

Exercise 6.35.

(1) Show that any morphism [m] → [n] of ∆ factors uniquely as a composite
[m] ։ [i] →֒ [n] of a surjective order-preserving map followed by an injec-
tive order-preserving map.

(2) Identify the sets of injections [n− 1] →֒ [n] and of surjections [n] ։ [n− 1].
Deduce that any map can be written as a composite of morphisms of the
form εi and σj .

(3) Verify the cosimplicial identities:
(a) εjεi = εiεj−1, i < j (this is essential);
(b) σjσi = σiσj+1, i ≤ j;

(c) σjεi =





εiσj−1 i < j
id i = j, i = j + 1
εi−1σj i > j + 1.

(4) Deduce that the category ∆ is generated by the morphisms of the form εi
and σj , subject to the cosimplicial relations. (This is analogous to the presen-
tation of a group by generators and relations.)

The coface and codegeneracy maps can be represented by the diagram:

[0]
ε0 //
ε1 // [1]

ε0 //
ε1 //
ε2 //

σ0zz

[2]
ε0 //
ε1 //
ε2 //
ε3 //

σ1zz
σ0zz

[3] . . .

σ2zz
σ1zz
σ0zz

As in Example 6.34, this has a topological model.

Definition 6.36. For n ∈ N, let ∆top
n denote the n-dimensional topological simplex:

∆top
n := {(x0, . . . , xn) ∈ Rn+1|

∑
xi = 1, xi ≥ 0∀i} ⊂ Rn+1.

Thus ∆top
n is the convex hull of its set of vertices, {vi|0 ≤ i ≤ n}, where vi =

(0, . . . , 0, 1, 0, . . . , 0), with 1 in the (i + 1)st coordinate. (The vi form the standard
basis of Rn+1.)

Proposition 6.37. The topological simplexes form a functor ∆top
• : ∆→ Top, where the

map f : [m] → [n] induces the continuous map ∆top
m → ∆top

n which is the restriction of
the linear map Rm+1 → Rn+1 defined by vi 7→ vf(i).

Proof. This is an exercise in using the definitions; since ∆top
m is the convex hull of its

vertices to define a map to ∆top
n , it suffices to specify the image of the vertices. �

The topological simplexes give a first example of a cosimplicial object.

Definition 6.38. For C a category,

(1) the category of cosimplicial objects C∆ is the category with objects functors
from ∆ to C and morphisms natural transformations;

(2) the category of simplicial objects C∆ is the category with objects functors from
∆

op to C and morphisms natural transformations (these are contravariant
functors from ∆ to C ).

In particular, the category of simplicial sets is the category Set∆.
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Remark 6.39.

(1) A simplicial object X• of a category C is a sequence of objects {Xn|n ∈ N}
of C equipped (for 0 < n ∈ N) with
(a) face maps ∂i : Xn → Xn−1, 0 ≤ i ≤ n, induced by the εi;
(b) degeneracies si : Xn−1 → Xn, 0 ≤ i ≤ n− 1, induced by the σi,

which satisfy simplicial identities (dual to the cosimplicial identities).

X0

s0 $$

X1
∂0oo
∂1oo

s1 $$
s0 $$

X2
∂0oo
∂1oo
∂2oo

s2 %%
s1 %%
s0 %%

X3 . . .
∂0oo
∂1oo
∂2oo
∂3oo

(2) A morphism of simplicial objects f• : X• → Y• is a sequence of morphisms
{fn : Xn → Yn|n ∈ N} such that, for 0 < n ∈ N,
(a) ∂ifn = fn−1∂i : Xn → Yn−1;
(b) sjfn−1 = fnsj : Xn−1 → Yn.

Example 6.40. For n ∈ N, the object [n] of ∆ defines a simplicial set

∆n := Hom∆(−, [n]).

(Exercise: verify this assertion.)

Exercise 6.41. (Yoneda’s Lemma - for simplicial sets). For n ∈ N andX• a simplicial
set, prove that there is a natural isomorphism:

HomSet∆(∆n, X) ∼= Xn.

(Cf. Section A.4.)

Example 6.42. The ordinal category ∆ is, by definition, a full subcategory of CAT;
the inclusion defines a functor ∆ → CAT, so the categories [n] can be considered

as a cosimplicial category, or an object of CAT∆(!).
This observation leads to the definition of the nerve of a category. For C a small

category, the nerve NC is the simplicial set with:

(NC )n := HomCAT([n],C )

and with simplicial structure induced by the cosimplicial structure of ∆.
For example, (NC )0 is the set Ob C of objects of C and (NC )1 the set MorC of

morphisms of C . The simplicial structure maps are given by the identity morphism
map, and the source and target:

(NC )0

id ((

(NC )1.
soo
too

For n > 1, the set (NC )n is given by the set of composable sequences of n mor-
phisms in C .

An important example is when C is the category with one object associated to
a discrete group G. The nerve NG leads directly to the classifying space BG of the
group G; this is a path-connected space with π1(BG, ∗) ∼= G and πn(BG) = 0 for
n > 0.

Exercise 6.43.

(1) For C a small category, describe the face and degeneracy maps (in general)
for the nerve NC .

(2) Show that the nerve defines a functor N : CAT → Set∆ with values in
simplicial sets.
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6.5. Singular simplices. The idea of singular simplices generalizes the considera-

tion of paths of a topological space, allowing the interval I ∼= ∆top
1 to be replaced

by the higher topological simplices ∆top
n .

Definition 6.44. For X a topological space, let Sing•(X) denote the singular sim-
plicial set with

Singn(X) := HomTop(∆
top
n , X)

and with simplicial structure induced by the cosimplicial structure of ∆top
• .

Example 6.45. For X a topological space, Sing0(X) is the underlying set of points
of X and Sing1(X) the set of paths in X . The simplicial structure maps

Sing0(X)

c ))
Sing1(X)oooo

correspond to the endpoints of a path and the constant path.

Proposition 6.46. The singular simplicial set defines a functor

Sing• : Top→ Set∆.

Proof. Exercise. �

Remark 6.47. There is an associated functor, geometric realization (in the language of
category theory, it is the left adjoint to Sing)

| − | : Set∆ → Top.

The idea of the definition of this functor is very simple: one extends the association
∆n 7→ ∆top

n , using the fact that any simplicial set can be built out of ∆n. (The
explicit definition is not difficult; see for example [GJ99].)

The importance of the functors

| − | : Set∆ ⇄: Top : Sing•

is that they allow simplicial sets to be used as a combinatorial model for (nice) topo-
logical spaces. A model for the homotopy category of topological spaces can be given
using simplicial sets.

For example, the classifying space BG of a discrete group G (cf. Example 6.42 is,
by definition,

BG := |NG|,

so that this defines a functor B(−) : Group→ Top.

6.6. Simplicial chains. Simplicial abelian groups arise from simplicial sets by ap-
plying the following general result.

Proposition 6.48. A functor F : C → D induces functors

F∆ : C ∆ → D∆

F∆ : C∆ → D∆

between the respective categories of cosimplicial objects and of simplicial objects.

Proof. The result is proved by unravelling definitions. For example, if (X•, ∂•, s•)
is a simplicial object of C , then its image in D∆ is (F (X•), F (∂•), F (s•)). It is
straightforward to verify that this defines a functor (exercise!). �

Exercise 6.49. Prove the analogue of Proposition 6.48 for any indexing category I .
Namely, F : C → D induces functors

FI : C I → DI

FI : CI → DI .
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Example 6.50. The free abelian group functor Z[−] : Set→ Ab induces a functor

Z[−]∆ : Set∆ → Ab∆

from the category of simplicial sets to simplicial abelian groups. This functor is fun-
damental in studying homology.

Recall that A denotes the category of modules over a fixed commutative ring
(or, more generally, an abelian category).

Definition 6.51. For M• ∈ Ob A∆ a simplicial object in A , let C∗(M) denote the
associated chain complex withCn(M) =Mn and differential dn : Cn(M)→ Cn−1(M)
given by

dn :=
n∑

i=0

(−1)i∂i.

The fact that d2 = 0 is a consequence of the simplicial identity ∂i∂j = ∂j−1∂i for
i < j.

Exercise 6.52. Prove that d2 = 0 in C∗(M).

Proposition 6.53. The associated chain complex defines a functor C∗ : A∆ → Ch≥0(A )
from the category of simplicial objects in A to non-negatively graded chain complexes in
A .

Proof. It is straightforward to verify that the definition of C∗ is natural in M•. (Ex-
ercise.) �

Remark 6.54. The Dold-Kan theorem (see [Wei94], for example) states that the cat-
egories A∆ and Ch≥0(A ) are equivalent. The equivalence is proved using a refine-
ment of the functor C∗, the normalized chain complex functor. Thus, the passage
from A∆ to Ch≥0(A ) does not lose any information.

Example 6.55. The composite of the functor Z[−] : Set∆ → Ab∆ with C∗(−) :
Ab∆ → Ch≥0(A ) gives a functor

C∗(Z[−]) : Set∆ → Ch≥0(Ab).

The homology of a simplicial set, K•, is (by definition) the homology of C∗(Z[K•]).

Exercise 6.56. For G a discrete group, describe the chain complex C∗(Z[NG]).

Definition 6.57. The singular chains functor

CSing : Top→ Ch≥0(Ab)

is the composite functor X 7→ CSing
∗ (X) := C∗(Z[Sing•(X)]).

Exercise 6.58. For X a topological space, describe the

(1) 0-chains=0-cycles
(2) 0-boundaries
(3) 1-cycles
(4) 1-boundaries

of CSing
∗ (X).

Definition 6.59. The singular homology H∗(X) of a topological space X is the ho-

mology of the chain complex CSing
∗ (X).

Proposition 6.60. Singular homology defines functors (for n ∈ N):

Hn(−) : Top→ Ab.

Proof. Clear. �

Exercise 6.61. What are the relationships between
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(1) π0(X) and H0(X);
(2) π1(X, ∗) and H1(X) (if X is path connected)?

It remains to show that singular homology has good properties, so that it is calcu-
lable.

6.7. Algebraic interlude: the long exact sequence associated to a short exact se-
quence of complexes.

Definition 6.62. A short exact sequence of chain complexes in A is a sequence of mor-

phisms of chain complexes (A, dA)
f
→ (B, dB)

g
→ (C, dC) such that, ∀n ∈ Z,

0 // An
fn // Bn

gn // Cn // 0

is a short exact sequence in A .

Remark 6.63. The category Ch(A ) is abelian; the above definition coincides with
the usual notion of short exact sequence with respect to the abelian structure.

Theorem 6.64. A short exact sequence of chain complexes (A, dA)
f
→ (B, dB)

g
→ (C, dC)

induces a natural long exact sequence in homology:

. . .→ Hn(A)
Hn(f)
→ Hn(B)

Hn(g)
→ Hn(C)

δn→ Hn−1(A)→ . . . ;

the morphism δn is termed the connecting morphism.

Proof. The morphisms Hn(f) and Hn(g) are given by functoriality of homology.
Start by defining the connecting morphism (for this proof, suppose that A is the
category of modules over a commutative ring R, so we can work in terms of ele-
ments).

Consider a homology class [z] ∈ Hn(C), represented by a cycle z ∈ Zn(C); by
surjectivity of gn, there is an element z̃ ∈ Bn such that gn(z̃) = z. Since z is a cycle
and g is a morphism of chain complexes, gn−1(d

B
n z̃) = dCn gn(z̃) = dCn z = 0, hence

the element y := dBn (z̃) is in the image of fn−1 : An−1 → Bn−1, by exactness at
Bn−1. Moreover, dBn−1y = dBn−1d

B
n (z̃) = 0 implies that dAn−1y = 0 (since fn−2 is

injective). Hence, y ∈ Zn−1(A) is a cycle; moreover, it is straightforward to check
that the homology class [y] ∈ Hn−1(A) is independent of the choice of z and of
z̃ (exercise!). Set δn[z] := [y]; this defines a morphism in A ; this construction is
natural.

The composite ∂nHn(g) is trivial, since if [z] = Hn(g)[w] = [gn(w)], one can take
z̃ = w, which is a cycle, so that y = 0 (as in the above construction). Similarly, the
composite Hn−1(f)∂n is trivial, since the cycle y ∈ Hn−1(A) maps under fn−1 to
the boundary dBn (z̃). The composite Hn(g)Hn(f) is trivial, since gn ◦ fn = 0, thus
we have a sequence of homology groups; it remains to check exactness.

Exactness at Hn(C): consider a class [z] ∈ Hn(C) and suppose that δn[z] = 0 in
Hn−1(A); thus, in the above construction, the element y is a boundary y = dAn y,
for some y ∈ An. Consider z̃′ := z̃ − fn(y) ∈ Bn; clearly gn(z̃

′) = z and, since f
is a morphism of chain complexes, dBn (z̃

′) = 0. It follows that [z] = Hn(g)[z̃
′], as

required.

Exactness at Hn(A): consider an element [v] ∈ Hn(A) which lies in the kernel of
Hn(f), represented by a cycle v ∈ Zn(A). Hence fn(v) is a boundary in B, so there
exists α̃ ∈ Bn+1 such that dBn+1α̃ = fn(v). Moreover, the image α := gn+1(α̃) ∈
Cn+1 is a cycle, since dCn+1α = gnd

B
n+1α̃ = gnfn(v) = 0. It is straightforward to

check that [v] = δn+1[α].

Exactness at Hn(B): consider an element [w] ∈ Hn(B) which lies in the kernel
ofHn(g), represented by a cycle w ∈ Bn; this means that gn(w) ∈ Cn is a boundary,
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say gn(w) = dCn+1u. Surjectivity of gn+1 gives an element ũ ∈ Bn+1 with gn+1(ũ) =

u. The cycle w′ := w − dBn+1ũ represents the same homology class as w; moreover,
by construction gn(w

′) = 0 (since g is a morphism of chain complexes). Thus
w′ ∈ An (more precisely is in the image of fn), by exactness at Bn, and represents
a homology class [w′] ∈ Hn(A). By construction [w] = Hn(f)[w

′], as required. �

6.8. Relative homology. The definition of singular homology extends easily to
pairs of topological spaces, to define relative homology groups.

Definition 6.65. The category Top[2] of pairs of topological spaces has objects (X,A),
where X is a topological space and A a subspace, and morphisms f : (X,A) →
(Y,B) given by a continuous map f : X → Y such that f(A) ⊂ B.

Exercise 6.66.

(1) Check that Top[2] is a category.

(2) Show that X 7→ (X, ∅) defines a functor Top→ Top[2], which identifies Top

as a full subcategory of Top[2].

(3) Show that Top• is a full subcategory of Top[2].

If (X,A) is a pair of topological spaces, the inclusionA ⊂ X induces an inclusion
of singular simplicial sets Sing(A) →֒ Sing(X) and hence a monomorphism of
chain complexes:

CSing(A) →֒ CSing(X).

Passage to the quotient gives a chain complex.

Definition 6.67. For (X,A) a pair of topological spaces, let

(1) CSing(X,A) := CSing(X)/CSing(A) denote the relative singular chain com-
plex;

(2) Hn(X,A), the nth relative homology denote the nth homology group of
the complex CSing(X,A).

Lemma 6.68. For X a topological space, the chain complexes CSing(X) and CSing(X, ∅)
are naturally isomorphic, hence there is a natural identificationHn(X, ∅) ∼= Hn(X), ∀n ∈
N.

Proof. Clear, since Sing(∅) = ∅, the empty simplicial set, and Z[∅] = 0. �

Theorem 6.69. Relative homology defines functors ∀n ∈ N:

Hn(−,−) : Top
[2] → Ab

(X,A) 7→ Hn(X,A).

Moreover, associated to a pair of topological spaces (X,A), there is a natural long exact
sequence in homology:

. . .→ Hn(A)
Hn(i)
→ Hn(X)→ Hn(X,A)→ Hn−1(A)→ . . .

where i : A →֒ X denotes the inclusion of the subspace.

Proof. A morphism of pairs of topological spaces (X,A) → (Y,B) induces a com-
mutative diagram of chain complexes:

CSing(A) �
� //

��

CSing(X)

��
CSing(B)

� � // CSing(Y ).

This induces a morphism of the relative chain complexesCSing(X,A)→ CSing(Y,B)
and this construction is functorial. In homology this inducesHn(X,A)→ Hn(Y,B),
n ∈ N, which gives the functoriality of relative homology.
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The long exact sequence is simply that associated to the defining short exact
sequence of chain complexes:

0→ CSing(A)→ CSing(X)→ CSing(X,A)→ 0,

given by Theorem 6.64. �

Remark 6.70. The relative homology groups H∗(X,A) give a measure of the differ-
ence between the homology of X and of its subspace A.

6.9. Homotopy invariance of homology. The homotopy invariance of singular
homology is a consequence of the following result, by Proposition 6.26.

Theorem 6.71. For f, g : X ⇒ Y continuous maps which are homotopic via a homotopy
H : X × I → Y , the homotopy H induces (by a natural construction) a chain homotopy
between CSing(f), CSing(g) : CSing(X)→ CSing(Y ).

Proof. The construction of the chain homotopy follows by the method of the uni-
versal example. It is necessary to construct the sequence of morphisms

hn : CSing
n (X)→ CSing

n+1 (Y ).

A generator of CSing
n (X) = Z[Singn(X)] (as a free abelian group) is given by a

continuous map α : ∆top
n → X . This (as in Yoneda’s lemma - see Section A.4), is

the image under

CSing(α) : CSing
n (∆top

n )→ CSing
n (X)

of the generator given by the identity map 1∆top
n

. Moreover, the morphismCSing
∗ (α)

of chain complexes is determined by this element.

Now, suppose that hn : CSing
n (∆top

n ) → CSing
n+1 (∆

top
n × I) is constructed, corre-

sponding to the case X = ∆top
n , Y = ∆top

n × I and H the identity map. The image
of α ∈ CSing

n (X) is defined to be the image of the identity map under the composite

CSing
n (∆top

n )
hn→ CSing

n+1 (∆
top
n × I)

CSing(α×1I)
→ CSing

n+1 (X × I)
CSing

n+1(H)
→ CSing

n+1 (Y ).

(In fact this definition is imposed if the chain homotopy h depends naturally on H .)

Thus, the problem reduces to constructing hn : CSing
n (∆top

n ) → CSing
n+1 (∆

top
n × I)

with the requisite properties. This is equivalent to giving an element ofCSing
n+1 (∆

top
n ×

I) = Z[Singn+1(∆
top
n × I)]; the construction is based on the geometric decomposition

of the topological space ∆top
n × I as a union of n+ 1 topological simplices (home-

omorphic to ∆top
n+1) with pairwise disjoint interiors. (This should be seen as an

n+ 1-dimensional triangulation of ∆top
n × I .) The construction requires the order-

ing of vertices to be taken into account, together with the resulting orientations of
the simplices.

Writing the vertices of ∆top
n as v0, . . . , vn and the endpoints of I as 0, 1, the prod-

uct ∆top
n × I is the convex hull of the set of vertices Vn := {(vi, ε)|ε ∈ {0, 1}},

considered as a subspace of Rn+2. The set of vertices is equipped with the associ-
ated partial order (vi, ε) ≤ (vj , η) if and only if i ≤ j and ε ≤ η.

For 0 ≤ t ≤ n, define the continuous map σt : ∆
top
n+1 → ∆top

n × I by the linear
extension of

vi(n+ 1) 7→

{
(vi, 0) i ≤ t
(vi−1, 1) i > t.

This satisfies ∆top
n ×I =

⋃n
t=0 image(σt) and the interiors (image(σt))

◦ are pairwise
disjoint.

For example, for n = 0, ∆top
0 is a point, and there is a homeomorphism ∆top

1
∼=

∆top
0 × I , which corresponds to σ0.
The case n = 1 already illustrates the salient features (see Figure 1): the com-

mon face corresponds to the face included by ε1 applied to the two topological
2-simplices. However, the simplices have different orientations.
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FIGURE 1. Decomposition of ∆top
1 × I

(v0, 0) (v1, 0)

(v1, 1)(v0, 1)

In dimension 2 a similar phenomenon occurs (see Figure 2).

FIGURE 2. Decomposition of ∆top
2 × I

(v0, 0) (v1, 0)

(v1, 1)(v0, 1)

(v2, 1)

The morphism hn : CSing
n (∆top

n )→ CSing
n+1 (∆

top
n × I) is defined by the element

n∑

t=0

(−1)tσt ∈ Z[Singn(∆
top
n × I)].

The alternating sign ensures that, when applying the differential d, the only non-
trivial n-simplices which appear are those which correspond to the boundary (in
the geometric sense!) of ∆top

n × I .
Exercise: show that this gives the required chain homotopy. (This follows from

the fact that the decomposition of the boundary ∂(∆top
n ×I) into n-simplices which

is induced by the above decomposition, is compatible with that used for the defi-
nition of hn−1.) �

Remark 6.72. The geometric decomposition of ∆top
n × I above can be understood

entirely in terms of simplicial sets Set∆. Moreover, this gives the notion of simpli-
cial homotopy. A simplicial homotopy induces a chain homotopy on applying the
functor C∗(Z[−]); the great advantage of simplicial homotopy is that it makes sense
in any category.



INTRODUCTION TO ALGEBRAIC TOPOLOGY 61

6.10. Barycentric subdivision and little chains. The standard techniques for cal-
culating homology rely upon its local nature; this is a consequence of the procedure
of subdividing topological simplexes.

Definition 6.73. The barycentre of the topological simplex ∆top
n is the point:

n∑

i=0

1

n+ 1
vi.

By induction upon the dimension n of the topological simplices, this leads to the
barycentric subdivision of ∆top

n . (See Figure 3 for an illustration of the barycentric
subdivision of the topological 2-simplex.)

FIGURE 3. Barycentric decomposition of ∆top
2

0 1

2

(12)

(01)

(12)

(012)

Recall that the topological simplices form a cosimplicial object in Top. In par-
ticular, the inclusion of a k-dimensional face is determined by its set of vertices
(equivalently is defined by an order-preserving injection {0, . . . , k} →֒ {0, . . . , n}).
The faces of ∆top

n form a partially-ordered set under inclusion of faces.
In the barycentric decomposition of ∆top

n , the vertices are the barycentres of the
faces, hence are indexed by the faces. More generally, the topological k-simplices
appearing in the decomposition are chains of strict face inclusions of length k + 1.
This is equivalent to giving an ordering of the set of vertices of ∆top

n , i0, . . . , in, so
that the face inclusions are given by

vi0 ⊂ (vi0vi1) ⊂ (vi0vi1vi2) . . . ⊂ (vi0vi1 . . . vin).

This ordering of {0, . . . , n} corresponds to an element π ∈ Sn+1 of the symmetric
group on n+ 1 letters.

Thus the barycentric decomposition gives

∆top
n
∼=

⋃

π∈Sn+1

image(π)

where π defines the map π : ∆top
n → ∆top

n which sends the jth vertex to the
barycentre of the jth face in the chain of faces corresponding to π. By construc-
tion, the interiors image(π)◦ are pairwise disjoint.

Definition 6.74. For U := {Ui|i ∈ I } a family of subsets of a topological space X
such that X =

⋃
i∈I

Ui, define the subcomplex of U -little chains

CSing,U (X) ⊂ CSing(X)

to be the subcomplex generated by singular simplices ∆top
n → X (n ∈ N) which

factor across some Ui, i ∈ I .
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Theorem 6.75. For U := {Ui|i ∈ I } a family of subsets of a topological space X such
that X =

⋃
i∈I

U◦
i , the inclusion

CSing,U (X) →֒ CSing(X)

induces an isomorphism in homology.

The proof of the theorem is based upon the (natural) subdivision operator:

S : CSing
∗ (X)→ CSing

∗ (X).

In the following definition, the notation introduced in describing the barycentric
subdivision of ∆top

n is used.

Definition 6.76. For X a topological space, let S : CSing
∗ (X) → CSing

∗ (X) be the
chain map which sends a generator [f ] ∈ CSing

n (X) = Z[Singn(X)] given by a
singular simplex f : ∆top

n → X to

S([f ]) :=
∑

π∈Sn+1

(−1)sign(π)[f ◦ π].

Exercise 6.77. Show that

(1) S is a chain map;

(2) S defines a natural transformation CSing
∗ (−) → CSing

∗ (−) of functors from
Top to Ch≥0(Ab).

FIGURE 4. The barycentric cylinder decomposition ∆top
2 × I

Lemma 6.78. For X a topological space, the chain map S : CSing
∗ (X) → CSing

∗ (X) is
chain homotopic to the identity.

Proof. (Indications.) The proof is similar in spirit to that of Theorem 6.71: one uses
a subdivision of the space ∆top

n × I related to barycentric subdivision. These sub-
divisions are constructed recursively on n; supposing the subdivision constructed

for ∆top
n × I , this yields a subdivision of (∂∆top

n ×{0}∪∆
top
n+1)× I . The subdivision
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of ∆top
n+1 is given by forming the cone with respect to the barycentre of ∆top

n+1×{1}.
This is illustrated in Figure 4. �

Proof of Theorem 6.75. Without loss of generality, one may suppose that U is an
open cover of X . Recall that CSing,U (X) is a subcomplex of CSing(X); first show
that this induces a surjection in homology.

Consider an element Φ ofCSing
n (X); since ∆top

n is a compact metric space, Lebesgue’s
theorem 4.38 implies that there exists a natural number N such that the iterated
subdivision SN (Φ) lies in CSing,U

n (X) (exercise: prove this assertion). Moreover, if
Φ is a cycle, then so is SN (Φ), since SN is a chain map. Since SN is chain homotopic
to the identity map (by Lemma 6.78 and Proposition 6.22), [SN (Φ)] = [Φ], proving
surjectivity.

A similar argument establishes that a cycle of CSing,U (X) which is a boundary
in CSing(X) is also a boundary in CSing,U (X), noting that S restricts to a chain
map S : CSing,U (X)→ CSing,U (X) which is chain homotopic to the identity. This
completes the proof. �

6.11. First calculations.

Proposition 6.79. The singular chain complexCSing(∗) identifies as follows: CSing
n (∗) =

Z (∀n ∈ N) and dn+1 : CSing
n+1 (∗)→ CSing

n (∗) is zero if n ≡ 0 mod (2) and is the identity
morphism if n ≡ 1 mod (2).

In particular, the singular homology of a point is

Hn(∗) ∼=

{
Z n = 0
0 n > 0.

Proof. Since ∗ is the final object of the category of topological spaces, Singn(∗) is
a singleton set, ∀n ∈ N, hence CSing

n (∗) = Z. The differential dn+1 identifies as

multiplication by
∑n+1
i=0 (−1)

i; this is 0 if n is even and 1 for n odd. �

Exercise 6.80. Show that the projection X → ∗ from a contractible space to a point
induces an isomorphism in homology, hence determining Hn(X), by Proposition
6.79.

Proposition 6.81. For X , Y topological spaces, the inclusions X →֒ X∐Y ←֓ Y induce
a natural isomorphism of chain complexes

CSing(X ∐ Y ) ∼= CSing(X)⊕ CSing(Y )

and hence a natural isomorphism in homology, ∀n ∈ N

Hn(X ∐ Y ) ∼= Hn(X)⊕Hn(Y ).

Proof. Since ∆top
n is a connected topological space, it is clear that Singn(X ∐ Y ) ∼=

Singn(X) ∐ Singn(Y ) (in fact, this corresponds to an isomorphism of simplicial
sets Sing(X ∐ Y ) ∼= Sing(X) ∐ Sing(Y )). The free abelian group functor sends a
disjoint union of sets to a direct sum of abelian groups (for the cognoscenti: this is
actually a formal consequence of the fact that Z[−] is a left adjoint, which implies
that it preserves coproducts).

It is straightforward to check that one obtains a natural isomorphism CSing(X ∐
Y ) ∼= CSing(X)⊕ CSing(Y ) of chain complexes (exercise).

For the conclusion, it suffices to observe that the homology of a direct sum of
chain complexes is the direct sum of their homologies (exercise). �

Example 6.82. Propositions 6.79 and 6.81 allow the calculation of the homology of
S0:

Hn(S
0) ∼=

{
Z⊕ Z n = 0
0 n > 0.

For pointed topological spaces, it is convenient to use reduced homology groups.
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Definition 6.83. For (X, ∗) a pointed space, the reduced homology ofX is the relative
homology group:

H̃∗(X) := H∗(X, ∗).

Lemma 6.84. For (X, ∗) a pointed topological space, the reduced homology is isomorphic
to the quotient of the split inclusion H∗(∗) → H∗(X) induced by the inclusion of the

basepoint. In particular, for n > 0, there is a canonical isomorphism H̃n(X) ∼= Hn(X).

Proof. The projection X → ∗ provides a retract of the inclusion of the basepoint,
so H∗(∗) →֒ H∗(X) is a split inclusion. The reduced homology is identified by the
long exact sequence in homology for a pair of topological spaces. �

Exercise 6.85. For pointed spaces (X, ∗), (Y, ∗) calculate the reduced homology

groups H̃∗(X ∨ Y ) of the wedge of X and Y in terms of their reduced homology.

Theorem 6.86. For X a locally path-connected space, the continuous projection X →
π0(X) onto the set of path connected components induces an isomorphism

H0(X) ∼= Z[π0(X)].

Proof. The group of singular chains CSing
0 (X) identify as the free abelian group on

the underlying set of X and CSing
1 (X) as the free abelian group on the set of paths

of X . The differential d1 sends a generator [α] corresponding to a path α : I → X

to [α(1)]− [α(0)]. It follows easily that elements [x], [y] of CSing
0 (X) define the same

homology class if and only if they belong to the same path-connected component.
The result follows. �

Exercise 6.87. Prove that two topological spaces with the same homotopy typeX ≃
Y have isomorphic homology groups.

6.12. Mayer-Vietoris. The little chains theorem, Theorem 6.75, can be applied when
U is a (suitable) cover with just two subspaces.

Theorem 6.88. For U = {A,B} a cover of a topological spaceX such thatX = A◦∪B◦,
the inclusions

A ∩B
iA //

iB

��

A

jA

��
B

jB
// X,

induce a long exact sequence (the Mayer-Vietoris sequence) in homology:

. . .→ Hn(A ∩B)
iA−iB−→ Hn(A)⊕Hn(B)

jA+jB
−→ Hn(X)→ Hn−1(A ∩B)→ . . . .

Proof. The singular chain complexes CSing(A) and CSing(B) can be considered as
subcomplexes of CSing(X). The intersection of these subcomplexes is again a sub-
complex, which identifies withCSing(A∩B), since a singular chain α : ∆top

n → X ∈
Singn(A)∩Singn(B) necessarily maps toA∩B. The sum of the two subcomplexes
CSing(A) + CSing(B) identifies with CSing,U (X), by definition of the latter.

This implies that there is a short exact sequence of chain complexes:

0→ CSing(A ∩B)
CSing(iA)−CSing(iB)

−→ CSing(A)⊕ CSing(B)→ CSing,U (X)→ 0.

(To see this, consider the kernel of the mapCSing(A)⊕CSing(B)→ CSing,U (X).) By
construction, the composite of the surjection with the canonical inclusionCSing,U (X) →֒
CSing(X) identifies with the morphism

CSing(A) ⊕ CSing(B)
CSing(jA)+CSing(jB)

−→ CSing(X)

of chain complexes.
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Theorem 6.64 gives a long exact sequence in homology and the little chains the-
orem for U (which is where the hypothesis on the interiors is required) identifies
the homology of CSing,U (X) with H∗(X). The identification of the morphisms in
the long exact sequence is straightforward. �

The Mayer-Vietoris long exact sequence allows for the first non-trivial calcula-
tions.

Proposition 6.89. For 1 ≤ n ∈ N, the homology of the sphere Sn is

Ht(S
n) ∼=

{
Z t ∈ {0, n}
0 otherwise.

Proof. The result is proved by induction upon n, using the homology of S0 given
by Example 6.82 to calculate the homology of S1. For n ≥ 1, as in Proposition 4.54
(without the restriction n ≥ 2), take an open cover Sn = U+∪U− by Northern and
Southern hemispheres, so that U+, U− are contractible and U+ ∩ U− ≃ Sn−1.

For n = 1, the Mayer-Vietoris sequence for S1 immediately shows thatHt(S
1) =

0 for t > 1 (why?). Using the homotopy invariance of homology (Theorem 6.71)
and the fact that H1(S

0) = 0 = H1(U
+) = H1(U

−), the non-trivial part of the long
exact sequence is:

0→ H1(S
1)→ H0(S

0) ∼= Z⊕ Z→ H0(U
+)⊕H0(U

−) ∼= Z⊕ Z→ H0(S
1)→ 0.

The inclusion S0 →֒ U+ identifies as Z⊕ Z
id+id
→ Z, likewise for U−. It follows that

H1(S
1) ∼= Z, which embeds diagonally in H0(S

0) via the connecting morphism.
Similarly H0(S

1) ∼= Z (this fact can also be deduced from Theorem 6.86).
For n > 1, the argument is simpler still; for Hn, the relevant portion of the

Mayer-Vietoris sequence is

0→ Hn(S
n)→ Hn−1(S

n−1) ∼= Z→ 0,

providing the required isomorphism.
The identification of H0(S

n) is straightforward (or apply Theorem 6.86). �

6.13. Excision. Excision is a powerful tool for understanding relative homology
groups.

The proof of the excision theorem is best carried out using the five-lemma,
which is a fundamental result of homological algebra. In the following, A could
be any abelian category.

Proposition 6.90. For a commutative diagram in A

A0
f0 //

g0

��

A1
f1 //

g1

��

A2
f2 //

g2

��

A3
f3 //

g3

��

A4

g4

��
B0

h0

// B1
h1

// B2
h2

// B3
h3

// B4

in which the rows are exact, if the morphisms g0, g1, g3, g4 are isomorphisms, then so is g2.

Proof. It suffices to show that g2 is both injective and surjective.
First show injectivity: suppose that x ∈ A2 lies in the kernel of g2 then, since g3

is an isomorphism (in particular injective), x lies in the kernel of f2, hence ∃y ∈ A1

such that x = f1(y). By commutativity of the diagram, h1g1(y) = 0, so that g1(y)
lies in the kernel of h1, thus in the image of h0, say g1(y) = h0(z). Since g0 is an
isomorphism, there exists a unique z̃ ∈ A0 such that g0(z̃) = z; moreover, since g1 is
injective and g1f0(z̃) = h0g0(z̃) = g1(y), f0(z̃) = y. Thus x = f1(y) = f1f0(z̃) = 0,
as required.

The proof of surjectivity is dual: consider u ∈ B2, then h2(u) ∈ B3 lies in the
image of the isomorphism g3, say h2(u) = g3(v). Arguing as above, v lies in the
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kernel of f3, hence ∃w ∈ A2 such that f2(w) = v, so that h2g2(w) = h2(u). It
follows that h2(u − g2(w)) = 0, so that ∃α ∈ B1 with h1(α) = u − g2(w). Since g1
is an isomorphism, ∃!α̃ ∈ A1 such that g1(α̃) = α. Now g2f1(α̃) = u − g2(w) by
commutativity, giving that g2(f1(α̃) + w) = u, so g2 is surjective. �

Theorem 6.91. For (X,A) ∈ Ob Top[2] and U ⊂ X a subspace such that U ⊂ A◦, the
inclusion (X\U,A\U) induces an isomorphism on relative homology groups:

H∗(X\U,A\U)
∼=
→ H∗(X,A).

Proof. Set U := {A,X\U}; the hypothesis that U ⊂ A◦ implies thatA◦∪(X\U)◦ =
X , so that the little chains theorem can be applied. As in the proof of the Mayer-
Vietoris theorem, CSing,U (X) identifies as CSing(A) + CSing(X\U), in particular,
CSing(A) is a subcomplex ofCSing,U (X). Moreover, one hasCSing(A)∩CSing(X\U) =
CSing(A\U). It follows that there is an isomorphism of chain complexes

CSing,U (X)/CSing(A) ∼= CSing(X\U)/CSing(A\U) = CSing(X\U,A\U).

(Exercise: prove this!)
This gives rise to a morphism between short exact sequences of chain com-

plexes:

0 // CSing(A) // CSing,U (X)
� _

��

// CSing(X\U,A\U)
� _

��

// 0

0 // CSing(A) // CSing(X) // CSing(X,A) // 0

where the right hand vertical morphism is induced by (X\U,A\U)→ (X,A).
Applying homology, the rows induce long exact sequences and the vertical mor-

phisms induce a morphism between the long exact sequences (by the naturality of
the long exact sequence in Theorem 6.64). The inclusion CSing,U (X) →֒ CSing(X)
induces an isomorphism in homology, by small chains, Theorem 6.75, hence the
five-lemma implies that the right hand vertical morphism also induces an isomor-
phism in homology, as required. �

6.14. The long exact sequence associated to a morphism. Recall from Section 4.11
the mapping cylinder Mf and the mapping cone Cf of a continuous map f : X → Y .

The mapping cylinder provides a homotopically good factorization

X // //

f

''
Mf ≃

// Y

of f as a good inclusion (in the language of a homotopy theory, a cofibration) followed
by a homotopy equivalence.

The mapping cone Cf is the quotient of Mf obtained by collapsing the free end
X of the cylinder to a point. However, the mapping cylinder is also homeomorphic
to the identification space:

Cf ∼= CX ∪X Mf ,

where the base of the cone is glued to the end of the cylinder.
This gives rise to a commutative diagram of inclusions:

X // //
��

��

Mf��

��
CX // // Cf

and, in particular, a morphism of pairs:

(Mf , X)→ (Cf , CX).
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FIGURE 5. The mapping cylinder of f : X → Y

X

X × I

Y

FIGURE 6. The mapping cone Cf of f : X → Y

X

X × I

Y

CX

Theorem 6.92. For f : X → Y a continuous map, there is a natural isomorphism of
relative homology groups H∗(Mf , X) ∼= H∗(Cf , CX), hence the long exact in homology
of the pair (Mf , X) identifies with:

. . . Hn(X)
Hn(f)
−→ Hn(Y )→ H̃n(Cf )→ Hn−1(X)→ . . . .

Proof. The cone CX is contractible, hence a standard argument using the five-
lemma (Proposition 6.90) implies that the morphism of pairs (Cf , ∗) → (Cf , CX)
induces an isomorphism of relative homology groups. (Exercise: provide the de-
tails.)
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Hence, it suffices to establish the isomorphismH∗(Mf , X) ∼= H∗(Cf , CX), which
follows by excision (Theorem 6.91). Namely, taking the ‘half cone’ U := C 1

2
X ⊂

CX , excision provides an isomorphism H∗(Cf\U,CX\U) ∼= H∗(Cf , CX). By con-
struction, Cf\U ≃ Mf and CX\U ≃ X via the inclusions. Homotopy invariance
of homology shows that H∗(Cf\U,CX\U) ∼= H∗(Mf , X) as required. (Exercise:
prove this affirmation.) �

Example 6.93. For f : X = Sn → Y a continuous map consider the mapping
cone Cf , which is homeomorphic to the space Y ∪f en+1 obtained by gluing an
n+ 1-dimensional cell en+1 along its boundary ∂en+1 ∼= Sn via f .

The associated long exact sequence in homology is

. . .→ Ht(S
n)

Ht(f)
→ Ht(Y )→ H̃t(Y ∪f e

n+1)→ Ht−1(S
n)→ . . . .

If n > 0, then H0(S
n) → H0(Y ) is a split monomorphism, determined by the

basepoint component ofX to which f maps, so one gets an isomorphism H̃0(Y )
∼=
→

H̃0(Cf ).
The only other homology groups for which Ht(Y ) are Ht(Y ∪f en+1) are not

isomorphic occur in the exact sequence

0→ Hn+1(Y )→ Hn+1(Y ∪f e
n+1)→ Z

Hn(f)
→ Hn(Y )→ Hn(Y ∪f e

n+1)→ 0.

This implies thatHn(Y ∪f en+1) ∼= Hn(Y )/image(f). Moreover, ifHn(f) is injective
then Hn+1(Y ) ∼= Hn+1(Y ∪f en+1); otherwise ker(Hn(f)) is a non-trivial subgroup
of Z, hence is a free abelian group. In this case, one gets an isomorphism

Hn+1(Y ∪f e
n+1) ∼= Hn+1(Y )⊕ Z.

(Exercise: provide the details.)

Example 6.94. For 0 6= d ∈ Z, there is a based continuous map S1 d
→ S1 which

induces multiplication by d on π1(S
1, ∗) ∼= Z. (It is a basic exercise to show that

H1(f) : H1(S
1)→ H1(S

1) also corresponds to multiplication by d on H1(S
1) ∼= Z.

The mapping cone Cd has homology

H∗(Cd) ∼=





Z ∗ = 0
Z/d ∗ = 1
0 otherwise

This construction generalizes to higher dimensions, by replacing the circle by Sn

and using a degree d map.

Exercise 6.95. Show that for any graded abelian group A (concentrated in degrees
0 < n ∈ N) which is finitely-generated in each degree, there exists a topological
space XA such that the reduced homology realizes A:

H̃∗(XA) ∼= A.

(
�

XA is far from being unique!)

Example 6.96. The complex projective plane CP 2 has the homotopy type of the
mapping cone Cη of the Hopf map η : S3 → S2. For degree reasons (exercise:
make these explicit!), H∗(η) = 0, so is not detected by homology. It follows that

H∗(CP
2) ∼=

{
Z ∗ ∈ {0, 2, 4}
0 otherwise.

Hence CP 2 has the same homology groups as S2 ∨ S4, although these spaces do
not have the same homotopy type.

To see the difference, one requires to look at more structure. For example, one
of the following suffice:
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(1) pass to cohomology and use the cup product;
(2) use cohomology or homology operations.

6.15. Hurewicz. The homotopy and homology groups of a space are related by
the Hurewicz morphism.

Theorem 6.97. Let X be a path connected topological space. For 0 < n ∈ N, there is a
natural morphism (the Hurewicz morphism) of groups

πn(X, x)→ Hn(X)

which sends the homotopy class [f ] of a continuous (based) map f : Sn → X to the image
Hn(f)(1n) of a generator 1n ∈ Hn(S

n) ∼= Z.
For n = 1, this induces an isomorphism

π1(X, x)ab
∼=→ H1(X)

from the abelianization of π1(X, x) to H1(X).

If n > 1 and πt(X, x) = {e} for t < n, then πn(X, x)
∼=
→ Hn(X) is an isomorphism.

Proof. (Indications.) It is a basic exercise to show that the construction defines a
morphism of groups, using the definition of the group structure of πn(X, x).

For n = 1, since H1(X) is an abelian group, the morphism necessarily factors
across the abelianization

π1(X, x) ։ π1(X, x)ab.

(Recall that the abelianization of a groupG is the quotientG/[G,G] ofG by its com-
mutator subgroup.) The proof that π1(X, x)ab → H1(X) is surjective is straightfor-
ward; injectivity requires slightly more work.

The case n > 1 is beyond the scope of this course. �

Remark 6.98. The Hurewicz theorem above is one of the foundational results of alge-
braic topology. It can be proved using the Freudenthal suspension theorem, which
gives an understanding of the relationship between the homotopy groups of a
pointed space and of its suspension (in low dimensions). This is much more com-
plicated for homotopy groups than for homology (recall that, by Proposition 6.89,
the homology groups of the spheres are known; this is far from being the case for
homotopy groups).
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7. OMISSIONS

The previous chapters have only covered the basics. There are a number of no-
table omissions, some of which are indicated below.

7.1. Coefficients for homology. In this section, A denotes the category of mod-
ules over a fixed commutative ringR. (For applications to homology of topological
spaces with coefficients, R = Z).

Definition 7.1. For (C, d) a chain complex in Ch(A ) andM anR-module, the chain
complex (C, d) ⊗RM ∈ Ob Ch(A ) is given by

(C ⊗RM)n := Cn ⊗RM

dC⊗RM : Cn ⊗RM
dC⊗id
−→ Cn−1 ⊗RM.

This construction defines a functor −⊗RM : Ch(A )→ Ch(A ).

Remark 7.2.

(1) When R = Z, an R-module is simply an abelian group.
(2) The above is a special case of the construction of the tensor product of chain

complexes.

Example 7.3. For M an abelian group and X a topological space, the chain com-
plex CSing(X)⊗M has terms

(CSing(X)⊗M)n = Z[Singn(X)]⊗M ∼=
⊕

f∈Singn(X)

M.

Definition 7.4. For M an abelian group and X a topological space, the homology
with coefficients in M of X is

H∗(X ;M) := H∗(C
Sing(X)⊗M).

Homology with coefficients defines a functor H∗(−;M) : Top → AbN with values
in N-graded abelian groups.

Exercise 7.5. Check that homology with coefficients is functorial in the coefficients,
hence corresponds to a functor:

H∗(−;−) : Top× Ab→ AbN.

Remark 7.6. One of the advantages of using coefficients is that a judicious choice of
coefficients can simplify the calculation of homology whilst retaining the informa-
tion required. Moreover, sometimes additional structure is available when work-
ing with coefficients.

For example, if M is taken to be a field K, one has a Künneth formula for the
homology of a product of topological spaces:

H∗(X × Y ;K) ∼= H∗(X ;K)⊗K H∗(Y ;K),

where the right hand side is the tensor product of graded K-vector spaces. In par-
ticular, this implies that the diagonal map X → X × X induces a coproduct on
H∗(X ;K) which has the structure of a coalgebra.

7.2. Cohomology. Homology with coefficients was introduced by using the func-
tor −⊗RM on the category of R-modules. Cohomology corresponds to using the
contravariant functor HomR(−,M).

Remark 7.7.
�

If one applies HomR(−,M) to d : Cn → Cn−1, one obtains a mor-
phism of R-modules:

HomR(Cn−1,M)→ HomR(Cn,M)
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from a term indexed by n − 1 to one indexed by n; that is, the degree increases.
To stay within chain complexes as defined here, one uses the standard trick of
declaring HomR(Cn,M) to be indexed by −n.

This avoids the confusion inherent in talking about cochain complexes, since no
change of variance is involved, so that the co in cochain is a misnomer.

Definition 7.8. For (C, d) a chain complex in Ch(A ) andM anR-module, the chain
complex HomR(C,M) ∈ Ob Ch(A ) is given by

HomR(C,M)−n := HomR(Cn,M)

dHomR(C,M) : HomR(Cn−1,M)
Hom(dC ,id)
−→ HomR(Cn,M).

This construction defines a functor HomR(−,M) : Ch(A )op → Ch(A ).

Remark 7.9.
�

With the above definition, if (C, d) ∈ Ob Ch≥0(A ), then HomR(C,M)
has non-zero terms concentrated in degrees ≤ 0.

Definition 7.10. For M an abelian group and X a topological space, the nth singu-
lar cohomology of X with coefficients in M is defined by

Hn(X ;M) := H−n(HomZ(C
Sing(X),M)),

so that singular cohomology with coefficients in M defines a functor H∗(−;M) :

Topop → AbN with values in N-graded abelian groups.

A fundamental result is the existence of the cup product; this is induced by the
diagonal map but, unlike for the coproduct for homology, exists without having to
take coefficients in a field.

Theorem 7.11. For R a commutative ring and X a topological space, the diagonal map
X → X ×X induces the cup product (for p, q ∈ N):

Hp(X ;R)⊗Hq(X ;R)→ Hp+q(X ;R)

which gives H∗(X ;R) the structure of a graded commutative R-algebra.

Proof. The key point is the construction of the external cup product for topological
spaces X,Y :

Hp(X ;R)⊗Hq(Y ;R)→ Hp+q(X × Y ;R)

which involves comparing the chain complexCSing(X×Y ) withCSing(X)⊗CSing(Y )
(using the tensor product of chain complexes which has not been introduced here!).

The proof of these fundamental results is not particularly difficult, using the
material covered in this course. �



72 GEOFFREY POWELL

APPENDIX A. DEFINITIONS FROM CATEGORY THEORY

A.1. Categories.

Definition A.1. A category C is a class of objects ObC equipped with a set of mor-
phisms HomC (X,Y ) (sometimes written C (X,Y )) for each pair of objects X,Y ,
together with

⊲ an identity IdX ∈ HomC (X,X), ∀X ∈ Ob C ;
⊲ a composition law ◦ : HomC (Y, Z)×HomC (X,Y )→ HomC (X,Z), ∀X,Y, Z ∈
Ob C ,

which satisfy the following axioms:

⊲ identity axiom: ∀f ∈ HomC (X,Y ), IdY ◦ f = f = f ◦ IdX ;
⊲ associativity: h ◦ (g ◦ f) = (h ◦ g) ◦ f whenever the composites are defined.

The category C is small if Ob C is a set; in this case, the morphisms of C also form
a set, denoted MorC .

Example A.2. ForK a set, the discrete category associated toK has objects ObK =
K and HomK(X,Y ) = ∅ if X 6= Y ∈ K , whereas HomK(X,X) = {IdX} (the only
morphisms are the identity morphisms). This category is small.

Definition A.3. A subcategory D of C is a category D such that Ob D ⊂ Ob C
(sub-class) and, ∀X,Y ∈ Ob D , HomD(X,Y ) ⊂ HomC (X,Y ) so that the identity
elements and composition law are compatible.

A subcategory D of C is full if HomD(X,Y ) = HomC (X,Y ); a full subcategory
is therefore defined by its class of objects.

Definition A.4. For C a category, the opposite category C op is the category with
Ob C op = Ob C ,

HomC op(X,Y ) := HomC (Y,X)

and with composition law and identity elements induced from C . (This is the
category obtained from C by reversing the morphisms.)

Definition A.5. Let C be a category.

(1) A morphism f : X → Y admits an inverse (or is inversible) if ∃ g : Y → X
such f ◦ g = IdY and g ◦ f = IdX .

(2) The category C is a groupoid if every morphism admits an inverse.

Example A.6. A discrete group G can be condidered as a groupoid with Ob G =
{∗} and HomG(∗, ∗) = G.

A.2. Functors. A functor is a morphism between categories.

Definition A.7. For categories C ,D , a functorF : C → D assigns to eachX ∈ ObC
an object F (X) ∈ Ob D , together with a map of sets ∀X,Y ∈ Ob C :

HomC (X,Y ) → HomD(F (X), F (Y ))

f 7→ F (f)

such that

⊲ ∀X ∈ Ob C , F (IdX) = IdF (X);
⊲ F (g ◦ f) = F (g) ◦ F (f), for all composable morphisms f, g ∈ MorC .

A contravariant functor from C to D is a functor F : C op → D .

Exercise A.8.

(1) For C a category, describe the identity functor IdC : C → C .
(2) For functors F : C → D ,G : D → E , show that there is a composite functor

G ◦ F : C → E such that
⊲ G ◦ F (X) = G(F (X));
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⊲ G ◦ F (f) = G(F (f)).

Definition A.9. A functor F : C → D is

⊲ faithful if F : HomC (X,Y ) →֒ HomD(F (X), F (Y )) is an inclusion ∀X,Y ∈
Ob C ;

⊲ fully faithful if F : HomC (X,Y )
∼=
→ HomD(F (X), F (Y )) is a bijection ∀X,Y ∈

Ob C .

Example A.10. A subcategory D ⊂ C induces an inclusion functor D → C which is
faithful; it is fully faithful if and only if D is a full subcategory.

Proposition A.11. The class of small categories and functors form a category (denoted
CAT).

Proof. Exercise (the restriction to small categories is necessary so that the functors
beween two categories form a set). �

A.3. Natural transformations. Natural transformations formalize the notion of
natural relations between constructions. They can also be understood as being
morphisms between functors.

Definition A.12. A natural transformation η : F → G between functors F,G : C ⇒

D is a collection of morphisms ηX : F (X)→ G(X) in D , for each X ∈ Ob C , such
that, ∀morphism of C , f : X → Y , the following diagram commutes:

F (X)

ηX

��

F (f) // F (Y )

ηY

��
G(X)

G(f)
// G(Y ).

The identity morphisms IdF (X) define the identity natural transformation IdF .

Lemma A.13. For natural transformations η : F → G and ζ : G → H , where F,G,H
are functors from C to D , the composite morphisms ζX ◦ ηX : F (X) → H(X) define a
natural transformation ζ ◦ η : F → H .

Proof. Exercise. �

Definition A.14. A natural transformation η : F → G is a natural equivalence if it
admits an inverse natural transformation η−1 : G→ F such that η−1 ◦ η = IdF and
η ◦ η−1 = IdG. This is equivalent to the condition that ηX : F (X) → G(X) is an
isomorphism in D , for each X ∈ Ob C . (Exercise: check this affirmation.)

Using the notion of natural equivalence, one has the associated notion of equiv-
alence of categories; this is weaker than the obvious notion of isomorphism of cate-
gories (and much more useful).

Definition A.15. Categories C , D are equivalent if there exists functors F : C → D

and G : D → C and natural equivalences FG
≃
→ IdD and GF

≃
→ IdC .

Remark A.16. Hidden in the above is the fact that CAT has the structure of a 2-
category. As with the consideration of homotopies between continuous maps, it
can be useful to represent a natural transformation η : F → G by a diagram:

C

F
##

G

==D .η
��

�
The direction of ⇒ is important; in general there is no natural transformation

in the opposite direction!
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A.4. Yoneda’s lemma. The Yoneda lemma is a fundamental result in category the-
ory.

Notation A.17. For C a small category, SetC denotes the category of functors from
C to Set, with natural transformations as morphisms.

Example A.18. For X ∈ Ob C an object of C , HomC (X,−) is an object of SetC , the
functor represented by X .

The Yoneda lemma is the following result:

Proposition A.19. For C a small category, F ∈ ObSetC and X an object of C , there is
a natural bijection:

Y : HomSetC (HomC (X,−), F )
∼=
→ F (X).

Proof. A natural transformation η ∈ HomSetC (HomC (X,−), F ) determines, in par-

ticular, a map of sets HomC (X,X)
ηX
→ F (X). Define Y(η) := ηX(1X).

Consider a morphism f : X → Y of C ; a natural transformation η must provide
set maps ηX , ηY which make the following diagram commute:

HomC (X,X)
ηX //

Hom(X,f)

��

F (X)

F (f)

��
HomC (X,Y ) ηY

// F (Y ).

Since Hom(X, f)(1X) = f ∈ HomC (X,Y ), this means that ηY (f) = F (f)
(
ηX(1X)

)
.

Hence, η is uniquely determined by Y(η).
Conversely, an element of x ∈ F (X) induces a natural transformation by this

recipe. �
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