INTRODUCTION TO ALGEBRAIC TOPOLOGY

GEOFFREY POWELL

1. GENERAL TOPOLOGY

1.1. Topological spaces.

Notation 1.1. For *X* a set, $\mathscr{P}(X)$ denotes the power set of *X* (the set of subsets of *X*).

Definition 1.2.

- (1) A topological space (X, \mathscr{U}) is a set X equipped with a *topology* $\mathscr{U} \subset \mathscr{P}(X)$ such that $\emptyset, X \in \mathscr{U}$ and \mathscr{U} is closed under *finite* intersections and *arbitrary* unions.
- (2) A subset A ⊂ X is open for the topology U if and only if it belongs to U and is *closed* if the complement X\A is open.
- (3) A *neighbourhood* of a point $x \in X$ is a subset $B \subset X$ containing x such that $\exists U \in \mathscr{U}$ such that $x \in U \subset B$.
- (4) A subset 𝔅 ⊂ 𝒱 is a *basis* for the topology 𝒱 if every element of 𝒱 can be expressed as the union of elements of 𝔅.
- (5) A subset S ⊂ U is a *sub-basis* for the topology U if the set of finite intersections of elements of S is a basis for U.

If the topology \mathscr{U} is clear from the context, a topological space (X, \mathscr{U}) may be denoted simply by *X*.

Remark 1.3. A given set *X* can have many different topologies; for example the *coarse topology* on *X* is $\mathscr{U}_{\text{coarse}} := \{\emptyset, X\}$ and the *discrete topology* is $\mathscr{U}_{\text{discrete}} := \mathscr{P}(X)$. In the coarse topology, the only open sets are \emptyset and *X* whereas, in the discrete topology, every subset is both open and closed.

More generally, a topology \mathscr{V} on X is finer than \mathscr{U} (or \mathscr{U} is coarser than \mathscr{V}) if $\mathscr{U} \subset \mathscr{V}$; this defines a *partial order* on the set of topologies on X. The coarse topology is the minimal element and the discrete topology the maximal element for this partial order.

Recall that a *metric* on a set X is a real-valued function $d : X \times X \to \mathbb{R}$ such that, for all $x, y, z \in X$:

- (1) $d(x, y) \ge 0$ with equality iff x = y;
- (2) d(x,y) = d(y,x);
- (3) $d(x,z) \le d(x,y) + d(y,z)$ (the triangle inequality).

A *metric space* is a pair (X, d) with d a metric on X. For $0 < \varepsilon \in \mathbb{R}$ and $x \in X$ the open ball of radius ε centred at x is

$$B_{\varepsilon}(x) := \{ y \in X | d(x, y) < \varepsilon \}.$$

Definition 1.4. For (X, d) a metric space, the *underlying topological space* (X, \mathcal{U}_d) is the topology with basis:

$$\{B_{\varepsilon}(x)|x \in X, \ 0 < \varepsilon \in \mathbb{R}\}.$$

Date: December 11, 2013.

This preliminary version is available at: http://math.univ-angers.fr/~powell.

Corrections welcome (modifications and corrections are indicated in the margin by 🗸 dd/mm/yy).

Equivalently, a subset $U \subset X$ is open (belongs to \mathscr{U}_d) if and only if, $\forall u \in U, \exists \varepsilon > 0$ such that $B_{\varepsilon}(u) \subset U$.

Example 1.5. Metric spaces give a source of examples of topological spaces; for example, for $n \in \mathbb{N}$, \mathbb{R}^n equipped with the usual Euclidean metric is a metric space; this defines the 'usual' topology on \mathbb{R}^n .

In general a subset $A \subset X$ of a topological space (X, \mathscr{U}) is neither open nor closed.

Definition 1.6. For $A \subset X$ a subset of a topological space (X, \mathcal{U}) , the

- (1) *interior* $A^{\circ} \subset A$ is the largest open subset contained in A, so that $A^{\circ} := \bigcup_{U \subset A, U \in \mathscr{U}} U$;
- (2) *closure* $\overline{A} \supset A$ is the smallest closed subset containing A, so that $\overline{A} := \bigcap_{A \subset Z, X \setminus Z \in \mathcal{U}} Z$;
- (3) frontier $\partial A := \overline{A} \setminus A^{\circ}$.

Remark 1.7.

- (1) If $A \subset X$ is closed, then the frontier ∂A is the usual notion of *boundary* of *A*.
- (2) The interior (respectively closure) of *A* can be very different from *A*; for example, for the coarse topology (*X*, *U*_{coarse}), if *A* is not open, then *A*° = Ø and *A* = *X*, so that ∂*A* = *X*.

Definition 1.8. A subset $A \subset X$ is *dense* if $\overline{A} = X$.

The notion of covering of a topological space is fundamental.

Definition 1.9. A *covering* of a topological space X is a family of subsets $\{A_i | i \in \mathscr{I}\}$ such that $\bigcup_{i \in \mathscr{I}} A_i = X$. The covering is *open* (or an *open cover*) if each subset $A_i \subset X$ is open.

A subcovering of $\{A_i | i \in \mathscr{I}\}$ is a covering $\{B_j | j \in \mathscr{J}\}$ such that $\mathscr{J} \subset \mathscr{I}$ and, $\forall j \in \mathscr{J}, B_j = A_j$.

Remark 1.10. Intuitively, a topological space *X* is constructed by gluing together spaces of an open cover.

1.2. Continuous maps.

Definition 1.11. For topological spaces (X, \mathscr{U}) , (Y, \mathscr{V}) , a map $f : X \to Y$ is *continuous* (or f is a *continuous map*) if $\forall V \in \mathscr{V}$ open in Y, the preimage $f^{-1}(V) \in \mathscr{U}$ is open in X.

Exercise 1.12. For *X*, *Y* metric spaces equipped with the underlying topology, show that $f : X \to Y$ is continuous if and only if $\forall x \in X, \forall 0 < \varepsilon \in \mathbb{R}, \exists 0 < \delta \in \mathbb{R}$ such that $f(B_{\delta}(x)) \subset B_{\varepsilon}(f(x))$. (This is the usual $\varepsilon - \delta$ definition of continuity.)

Proposition 1.13. For topological spaces $(X, \mathcal{U}), (Y, \mathcal{V}), (Z, \mathcal{W}),$

- (1) the identity map Id_X is continuous;
- (2) the composite $g \circ f$ of continuous maps $f : X \to Y$, $g : Y \to Z$ is a continuous map $g \circ f : X \to Z$;
- (3) *if* (Y, \mathcal{V}) *is the coarse topology, then* every *set map* $f : X \to Y$ *is continuous;*
- (4) *if* (X, \mathscr{U}) *is the discrete topology, then* every *set map* $f : X \to Y$ *is continuous.*

Proof. Exercise.

Exercise 1.14. When is the identity map $(X, \mathscr{U}) \to (X, \mathscr{V})$ continuous?

Remark 1.15. Topological spaces and continuous maps form a *category* \mathfrak{Top} , with

▷ objects: topological spaces (these form a *class* rather than a *set*);

✓14/09/13

 \triangleright morphisms: continuous maps, equipped with composition of continuous maps. Explicitly Hom_{\mathfrak{Top}}(*X*, *Y*) is the set of continuous maps from *X* to *Y* and composition is a set map

 $\circ : \operatorname{Hom}_{\mathfrak{Top}}(Y, Z) \times \operatorname{Hom}_{\mathfrak{Top}}(X, Y) \to \operatorname{Hom}_{\mathfrak{Top}}(X, Z).$

These satisfy the *Axioms* of a category: the existence and properties of identity morphisms $Id_X \in Hom_{\mathfrak{Top}}(X, X)$ and associativity of composition of morphisms.

Example 1.16. Further examples of categories which are important here are:

- (1) the category Set of sets and all maps;
- (2) the category Group of groups and group homomorphisms;
- (3) the category $\mathfrak{A}b$ of *abelian* (or commutative) groups and group homomorphisms.

As in any category, there is a natural notion of *isomorphism* of topological spaces:

Definition 1.17. For (X, \mathscr{U}) , (Y, \mathscr{V}) topological spaces,

- (1) a continuous map $f : X \to Y$ is a *homeomorphism* if there exists a continuous map $g : Y \to X$ such that $g \circ f = \text{Id}_X$ and $f \circ g = \text{Id}_Y$. (If g exists, then g is unique, namely the *inverse* of f; moreover g is a homeomorphism.)
- (2) Two spaces X, Y are *homeomorphic* if there exists a homeomorphism $f : X \to Y$.

Remark 1.18. Homeomorphic spaces are considered as being *equivalent*. A topological space *X* usually admits many interesting self-homeomorphisms.

Definition 1.19. A continuous map $f : X \to Y$ is *open* (respectively *closed*) if f(A) is *open* (resp. *closed*) for every *open* (resp. *closed*) subset $A \subset X$.

Remark 1.20. Let $f : X \to Y$ be a continuous map which is a bijection of sets.

- (1) In general *f* is not a homeomorphism. (Give an example.)
- (2) The map f is open if and only if it is closed. (Prove this.)
- (3) The map *f* is a homeomorphism if and only if it is open (and closed). (Prove this.)

1.3. The subspace topology.

Definition 1.21. For (X, \mathscr{U}) a topological space and $A \subset X$, the subspace topology (A, \mathscr{U}_A) is given by $\mathscr{U}_A := \{A \cap U | U \in \mathscr{U}\}$. Thus a subset $V \subset A$ is open if and only if there exists $U \in \mathscr{U}$ such that $A \cap U = V$.

Exercise 1.22. For A, X as above, show that

- (1) the inclusion $i : A \hookrightarrow X$ is continuous for the subspace topology (A, \mathscr{U}_A) ;
- (2) the subspace topology is the *coarsest* topology on A for which i : A → X is continuous;
- (3) a map $g: W \to A$ is continuous if and only if the composite $i \circ g: W \to X$ is continuous.

The subspace topology provides many more examples of topological spaces.

Example 1.23.

- (1) The usual topology on the interval $I := [0, 1] \subset \mathbb{R}$ is the subspace topology.
- (2) The set of rational numbers $\mathbb{Q} \subset \mathbb{R}$ can be equipped with the subspace
 - topology (show that this is not homeomorphic to the discrete topology).
- (3) The sphere S^n is the subspace $S^n \subset \mathbb{R}^{n+1}$ of points of norm one.

✓ 14/09/13

Remark 1.24. For $f : X \to Y$ a map between topological spaces, the image $f(X) \subset Y$ of f is a subset of Y, which can be equipped with the subspace topology. Then the map f is continuous if and only if the induced map $f : X \twoheadrightarrow f(X)$ is continuous.

1.4. New spaces from old.

Definition 1.25. For topological spaces (X, \mathscr{U}) , (Y, \mathscr{V}) , the *disjoint union* $X \amalg Y$ is the topological space with underlying set the disjoint union and with basis for the topology given by $\mathscr{U} \amalg \mathscr{V}$ (interpreted via $\mathscr{P}(X), \mathscr{P}(Y) \subset \mathscr{P}(X \amalg Y)$).

This is equipped with continuous inclusions

 $X \xrightarrow{i_X} X \amalg Y \xleftarrow{i_Y} Y.$

The space *X* II *Y* has a universal property (in the terminology of categories, it is a *coproduct*):

Proposition 1.26. For $f_X : X \to Z$ and $f_Y : Y \to Z$ be continuous maps, there is a unique continuous map $f : X \amalg Y \to Z$ such that $f_X = f \circ i_X$ and $f_Y = f \circ i_Y$.

Proof. Exercise.

Definition 1.27. For topological spaces (X, \mathscr{U}) , (Y, \mathscr{V}) , the *product* $X \times Y$ is the topological space with underlying set the product $X \times Y$ and with topology defined by the basis $\{U \times V | U \in \mathscr{U}, V \in \mathscr{V}\}$.

The projections

$$X \xrightarrow{p_X} X \times Y \xrightarrow{p_Y} Y$$

are continuous surjections.

The product space $X \times Y$ also has a universal property (it is a *categorical product*):

Proposition 1.28. For $g_X : Z \to X$ and $g_Y : Z \to Y$ continuous maps, there is a unique continuous map $g : Z \to X \times Y$ such that $p_X \circ g = g_X$ and $p_Y \circ g = g_Y$.

Proof. It suffices to show that the set map defined by $g(z) = (g_X(z), g_Y(z))$ is continuous. (Exercise.)

Exercise 1.29. For *X*, *Y* topological spaces, show that the projections $p_X : X \times Y \rightarrow X$ and $p_Y : X \times Y \rightarrow Y$ are open maps.

Proposition 1.30. For continuous maps $f : X_1 \to X_2$ and $g : Y_1 \to Y_2$, the maps

$$f \times \mathrm{Id}_Y : X_1 \times Y \to X_2 \times Y$$
$$\mathrm{Id}_X \times g : X \times Y_1 \to X \times Y_2$$

are continuous.

Proof. Exercise.

Example 1.31. Let $n \in \mathbb{N}$ be a natural number.

- (1) The product topology on $\mathbb{R}^n \cong (\mathbb{R})^{\times n}$ is equivalent to the topology associated to the Euclidean metric on \mathbb{R}^n . (Prove this.)
- (2) The *n*-dimensional solid cube is the product space $I^{\times n}$; this is equivalent to the subspace topology associated to the inclusion $I^{\times n} \subset \mathbb{R}^{\times n} = \mathbb{R}^n$.
- (3) The *torus* T is defined as a topological space as $T := S^1 \times S^1$.
- (4) The *cylinder* on a topological space X is, by definition the space X × I. It is equipped with the inclusions i₀, i₁ : X ⇒ X × I induced by the inclusions of subspaces {0}, {1} ⊂ I.

Definition 1.32. Let $X \xrightarrow{p} B \xleftarrow{q} Y$ be continuous maps of topological spaces. The *fibre product* $X \times_B Y$ is the subspace of the product space $X \times Y$ formed by the subspace of elements $(x, y) \in X \times Y$ such that p(x) = q(y) in B.

Remark 1.33. If * is the singleton topological space (which has a unique topology), there are unique continuous maps $X \xrightarrow{p} * \xleftarrow{q} Y$ and $X \times_* Y \cong X \times Y$ is the product space.

Exercise 1.34. Formulate a *universal property* for the fibre product.

The product of topological spaces allows the introduction of the notion of a *topological group*.

Definition 1.35. A topological group is a group *G* equipped with a topology such that the structure maps:

$$\begin{array}{rcl} \mu & : & G \times G \to G \\ \chi & : & G \to G \end{array}$$

are continuous maps, where μ is the multiplication $\mu(g,h) = gh$ and χ the inverse $\chi(g) = g^{-1}$.

A homomorphism $\varphi : G \to H$ between topological groups is a group homomorphism which is continuous as a map of topological spaces.

Remark 1.36. If *G* is a group, then $(G, \mathscr{U}_{\text{discrete}})$ is a topological group.

Example 1.37. The circle S^1 is a subspace of $\mathbb{C}^* := \mathbb{C} \setminus \{0\} \subset \mathbb{C}$. The multiplication of \mathbb{C} provides S^1 with the structure of a topological group.

Definition 1.38. For *G* a topological group, a (left) *G*-space is a topological space *X* equipped with a (left) *G*-action such that the structure map $\nu : G \times X \to X$ is continuous. (Recall that the axioms of a *G*-action require that ν is associative (ie $\nu(g,\nu(h,x)) = \nu(\mu(g,h),x)$) and the identity element $e \in G$ acts trivially ($\nu(e,x) = x$).

A morphism of left *G*-spaces is a continuous map $f : X \to Y$ which is compatible with the respective *G*-actions.

Example 1.39. The discrete group $\mathbb{Z}/2 = \{1, -1\}$ acts on the sphere $S^n \subset \mathbb{R}^{n+1}$ by the antipodal action (-1)x = -x.

Exercise 1.40. For *X* a *G*-space and $g \in G$, show that the map $\nu(g, -) : X \to X$ is a homeomorphism.

1.5. The quotient topology. Recall that, to give a surjective map of sets $p : X \to Y$ is equivalent to defining an equivalence relation R on X together with a bijection $X/\sim_R \cong Y$. Explicitly, the relation associated to p is given by $x \sim y$ if and only if p(x) = p(y). The *fibres* $p^{-1}(y)$ of p are precisely the equivalence classes of R.

Definition 1.41. For (X, \mathscr{U}) a topological space and $p : X \twoheadrightarrow Y$ a surjective map of sets, the *quotient topology* (Y, \mathscr{U}_p) on Y is the *finest* topology on Y for which p is a continuous map. Explicitly: $V \subset Y$ is open in Y if and only if $p^{-1}(V) \in \mathscr{U}$.

(Terminology: a continuous surjection $p : X \to Y$ is a *quotient map* if Y has the quotient topology.)

Proposition 1.42. For X, Z topological spaces and $p : X \rightarrow Y$ a surjective map of sets, with Y equipped with the quotient topology, a map $g : Y \rightarrow Z$ is continuous if and only if the composite $g \circ p : X \rightarrow Z$ is continuous.

Proof. Exercise.

Exercise 1.43. Let $p : X \twoheadrightarrow Y$ and $q : Y \twoheadrightarrow Z$ be continuous surjections such that p is a quotient map. Show that q is a quotient map if and only if $q \circ p$ is a quotient map.

Example 1.44. Consider the antipodal action of $\mathbb{Z}/2 = \{1, -1\}$ on the sphere S^n . Real projective space of dimension n is the quotient space

$$\mathbb{R}P^n := S^n / \sim$$

where the equivalence relation collapses orbits: $x \sim -x$.

(Observation: S^n is a smooth manifold; the action of $\mathbb{Z}/2$ is free, hence the smooth structure passes to $\mathbb{R}P^n$.)

Remark 1.45. More generally, if *X* is a left *G*-space, then the space *X*/*G* (the space of *G*-orbits) is the quotient of *X* by the relation $x \sim \nu(g, x) \forall g \in G, x \in X$.

Example 1.46. The *Möbius band M* is the quotient

$$M := I \times I / \sim$$

where $(s,0) \sim (1-s,1) \ \forall s \in I$, which can be embedded in \mathbb{R}^3 as a band with a twist.

The projection onto the second factor $p_2 : I \times I \to I$ induces a projection $M \twoheadrightarrow S^1$, which *locally* is a projection from a product.

Example 1.47. The *Klein bottle K* is the quotient

$$K := (S^1 \times I) / \sim$$

where the relation identifies the ends of the cylinder by $(0, x) \sim (1, -x)$, using the antipodal action on S^1 .

The projection map $S^1 \times I \twoheadrightarrow I$ induces a projection $K \twoheadrightarrow S^1$, which *locally* is a projection from a product.

Remark 1.48. The projections $M \rightarrow S^1$ and $K \rightarrow S^1$ are examples of *fibre bundles*.

The quotient topology allows the definition of the *cone* and the *suspension* of a space.

Definition 1.49. For *X* a topological space,

(1) the (unreduced) *cone* on *X* is the quotient space

$$CX := (X \times I) / \sim$$

where \sim is the equivalence relation $(x, 1) \sim (x', 1)$, $\forall x, x' \in X$, equipped with the continuous map $i : X \hookrightarrow CX$ induced by $i_0 : X \to X \times I$;

(2) the (unreduced) *suspension* of *X* is the quotient space

$$\Sigma X := (X \times I) / \sim',$$

where \sim' is the equivalence relation $(x, \varepsilon) \sim' (x', \varepsilon), \forall x, x' \in X, \varepsilon \in \{0, 1\}.$

Remark 1.50. By construction, there are continuous maps $X \hookrightarrow CX \twoheadrightarrow \widetilde{\Sigma}X$ and the composite sends X to a point. (More precisely, $X \subset CX$ is the fibre of $CX \twoheadrightarrow \widetilde{\Sigma}X$ over this point.)

Exercise 1.51. For $f : X \to Y$ a continuous map, show that

(1) the continuous map $f \times I : X \times I \rightarrow Y \times I$ induces a continuous map $Cf : CX \rightarrow CY$ which fits into the commutative diagram

(2) $C(\operatorname{Id}_X) = \operatorname{Id}_{CX};$

(3) if $g: Y \to Z$ is continuous, then $C(g \circ f) = C(g) \circ C(f)$ as a map $CX \to CZ$. (These properties correspond to the fact that the cone is a *functor* from \mathfrak{Top} to \mathfrak{Top} ; this is denoted by $C: \mathfrak{Top} \to \mathfrak{Top}$.)

Establish the analogous properties for $\Sigma : \mathfrak{Top} \to \mathfrak{Top}$.

The quotient topology provides ways of constructing new topological spaces from old; in particular it is used for *gluing* topological spaces.

Definition 1.52. For continuous maps of topological spaces $X \stackrel{i}{\leftarrow} A \stackrel{j}{\rightarrow} Y$, the topological space $X \bigcup_A Y$ is the quotient $X \amalg Y / \sim$ by the relation $i(a) \sim j(a)$ (understood via the inclusions i_X, i_Y).

Remark 1.53. When $A = \emptyset$, $X \cup_{\emptyset} Y \cong X \amalg Y$.

Exercise 1.54. Formulate a *universal property* of $X \cup_A Y$.

2. BASIC PROPERTIES OF TOPOLOGICAL SPACES

2.1. Connectivity.

Definition 2.1. A topological space *X* is connected if the only subsets of *X* which are both open and closed are \emptyset , *X*. Equivalently, if $X = U \cup V$, with *U*, *V* open and non-empty, then $U \cap V \neq \emptyset$.

Example 2.2. The space \mathbb{R} is connected (prove this!). However, the subspace $\mathbb{Q} \subset \mathbb{R}$ is *not* connected.

Proposition 2.3.

- (1) The continuous image of a connected space is connected.
- (2) If X and Y are homeomorphic, then X is connected if and only if Y is connected.

Proposition 2.4. Let Z be a connected subset of a topological space X; then the closure \overline{Z} is connected.

Proof. Let *A* be a closed and open subset of \overline{Z} , then $A \cap Z$ is open and closed in *Z*; since *Z* is connected, $A \cap Z$ is either *Z* or \emptyset . Since *Z* is dense in \overline{Z} , $A \cap Z \neq \emptyset$, so $A \cap Z = Z$, or equivalently $Z \subset A$; it follows that $\overline{Z} = A$, since *A* is closed in \overline{Z} . \Box

Theorem 2.5. *A topological space X can be written as a disjoint union*

$$X = \coprod_{i \in \pi(X)} X_i$$

of connected components, where each X_i is a maximal connected subspace of X, in particular is closed in X; $\pi(X)$ is the set of connected components of X.

Example 2.6. For $\mathbb{Q} \subset \mathbb{R}$, equipped with the subspace topology, the connected components are precisely the *points* of \mathbb{Q} : the space \mathbb{Q} is *totally disconnected*. Moreover, the set $\pi(X)$ is in bijection with \mathbb{Q} and hence inherits a topology.

This example shows that the connected components of a space are not in general open.

Remark 2.7. The set $\pi(X)$ of connected components of a topological space is a homeomorphism invariant of a space. For example, *X* is connected if and only if $|\pi(X)| = 1$.

Proposition 2.8. For connected topological spaces X, Y, the product $X \times Y$ is connected.

Proof. Exercise.

2.2. **Separation.** The notion of *separation* highlights one of the standard properties of metric spaces.

Definition 2.9. A topological space *X* is *Hausdorff* (or *separated* or T_2) if, $\forall x \neq y \in X$, \exists open sets $x \in U$, $y \in V$ such that $U \cap V = \emptyset$.

Example 2.10.

- (1) The coarse topology on a set *X* is separated if and only if $|X| \leq 1$.
- (2) The set of real numbers ℝ with the *finite complement topology* (a non-empty subset *U* is open if and only if ℝ*U* is a finite set) is *not* separated.

Exercise 2.11. For X, Y homeomorphic topological spaces, show that X is Hausdorff if and only if Y is Hausdorff.

GEOFFREY POWELL

Proposition 2.12. A topological space X is Hausdorff if and only if the diagonal subset $\Delta \subset X \times X$ (of elements of the form (x, x)) is closed.

Proof. Exercise.

Proposition 2.13. For X, Y non-empty topological spaces, the product $X \times Y$ is Hausdorff if and only if X and Y are both Hausdorff.

Proof. Exercise.

 \square

Exercise 2.14. Show that the subspace $A \subset X$ of a Hausdorff topological space X is Hausdorff.

Passage to a quotient space does *not* in general preserve separation.

Example 2.15. Let \mathbb{R}^{\ominus} denote the quotient of $\mathbb{R} \amalg \mathbb{R}$ which identifies the two subspaces $\mathbb{R}\setminus\{0\}$; thus the underlying set of \mathbb{R}^{\ominus} identifies with $\mathbb{R}\amalg\{0\}$; this is the space of real numbers with two origins $0_1, 0_2$. The space \mathbb{R}^{\ominus} is not Hausdorff, since open neighbourhoods of the distinct points $0_1, 0_2$ always intersect.

2.3. Compact spaces.

Definition 2.16. A topological space X is *compact* if every open cover admits a finite subcover

 \mathfrak{T} In the French literature, this property is called *quasi-compact*; the *Remark* 2.17. space is *compact* if it is also separated.

Example 2.18. The interval I = [0, 1] is compact (this is the *Heine-Borel* theorem), whereas \mathbb{R} is *not* compact. Similarly, the open interval $(0,1) \subset I$ is not compact; this shows that a subspace of a compact space need not be compact.

Proposition 2.19. For X, Y homeomorphic topological spaces, X is compact if and only *if Y is compact.*

Proof. Exercise.

Proposition 2.20.

- (1) A closed subset of a compact space is compact.
- (2) The continuous image of a compact space is compact.

Proof. Exercise.

In presence of a *separation* hypothesis, the first property has a converse:

Proposition 2.21. A compact subspace of a Hausdorff topological space is closed.

Proof. Exercise.

 \square

Proposition 2.22. Let $p: X \to Y$ be a continuous map which is surjective. If X is compact and Y is separated then Y has the quotient topology.

In particular, if p is a bijection of sets, then p is a homeomorphism.

Proof. It suffices to show that a subset $A \subset Y$ such that $f^{-1}(A)$ is closed, is closed in Y.

Proposition 2.20 implies that the closed subspace $f^{-1}(A)$ is compact in X, since X is compact; moreover, by Proposition 2.20, the image $f(f^{-1}(A)) = A$ is compact. Since *Y* is Hausdorff, the compact space *A* is closed by Proposition 2.21, as required. \square

Example 2.23.

(1) The surjection $I = [0, 1] \twoheadrightarrow S^1 \subset \mathbb{C}$ defined by $t \mapsto e^{2\pi i t}$ is continuous and I is compact and S^1 is separated, hence

$$S^1 \cong I/0 \sim 1.$$

- (2) The analogous argument shows that the torus $S^1 \times S^1$ is homeomorphic to the quotient space of $I \times I$ which identifies $(0, s) \sim (1, s)$ and $(t, 0) \sim (t, 1)$.
- (3) Real projective space $\mathbb{R}P^n$ is homeomorphic to the quotient of $\mathbb{R}^{n+1}\setminus\{0\}$ by the group action of $\mathbb{R}\setminus\{0\}$ given by

$$\nu(\lambda, (x_0, \dots, x_n)) = (\lambda x_0, \dots, \lambda x_n).$$

The orbit of (x_0, \ldots, x_n) is usually denoted by $[x_0 : \ldots : x_n]$.

2.4. Locally compact spaces.

Definition 2.24. A topological space *X* is *locally compact* if each point has a compact neighbourhood.

Exercise 2.25. Show that

- (1) a compact space is locally compact;
- (2) a closed subset of a locally compact space is locally compact.

2.5. **Paths.** A point $x \in X$ of a topological space is equivalent to a (continuous) map $* \xrightarrow{x} X$; we consider *deforming points* along *paths*.

Definition 2.26.

- (1) A *path* γ in a topological space *X* is a continuous map $I = [0, 1] \xrightarrow{\gamma} X$; this is also referred to as a path *from* $\gamma(0)$ *to* $\gamma(1)$.
- (2) The *inverse path* $\gamma^{-1} : I \to X$ is the path $\gamma^{-1}(t) = \gamma(1-t)$.
- (3) If $\lambda : I \to X$ is a path with $\lambda(0) = \gamma(1)$, the *composite path* $\gamma \cdot \lambda : I \to X$ is given by

$$\gamma \cdot \lambda(t) = \begin{cases} \gamma(2t) & 0 \le 2t \le 1\\ \lambda(2t-1) & 1 \le 2t \le 2. \end{cases}$$

Exercise 2.27. Verify that γ^{-1} and $\gamma \cdot \lambda$ are paths.

Proposition 2.28. For $\gamma : I \to X$ a path in X and $f : X \to Y$ a continuous map, the composite map $f \circ \gamma : I \to Y$ is a path in Y from $f(\gamma(0))$ to $f(\gamma(1))$.

Proof. Exercise.

Definition 2.29. Let *X* be a topological space,

(1) *X* is *path connected* if, $\forall x, y \in X$, $\exists \gamma$ a path from *x* to *y*.

(2) *X* is *locally path connected* if, $\forall x \in X$ and for every neighbourhood $x \in A \subset$

X, there exists an path connected open subspace $x \in V \subset A$.

Remark 2.30. A path connected space is *not* necessarily locally path connected. (Give an example.)

Proposition 2.31. For X a topological space,

- (1) *if X is path connected, then X is connected;*
- (2) if X is locally path connected and connected, then X is path connected.

Proof. Exercise.

Exercise 2.32. Give an example of a space which is connected but not path connected.

The relation on points of *X* given by $x \sim y$ if and only if \exists a path from *x* to *y* is an equivalence relation (exercise), hence a topological space decomposes as the disjoint union of path-connected components.

✓14/09/13

✓ 14/09/13

✓14/09/13

Definition 2.33. For *X* a topological space, $\pi_0(X)$ denotes the *set of path-connected components* of *X*.

Proposition 2.34. A continuous map $f : X \to Y$ induces a map of sets $\pi_0(f) : \pi_0(X) \to \pi_0(Y)$; the association $f \mapsto \pi_0(f)$ has the following properties:

- (1) $\pi_0(\mathrm{Id}_X) = \mathrm{Id}_{\pi_0(X)};$
- (2) if $X \xrightarrow{f} Y \xrightarrow{g} Z$ are composable continuous maps, then $\pi_0(g \circ f) = \pi_0(g) \circ \pi_0(f)$.

Proof. Exercise.

Remark 2.35. This is an example of a *functor* from the category \mathfrak{Top} of topological spaces to the category \mathfrak{Set} of sets.

2.6. **Mapping spaces.** The set of paths in a topological space *X* has a natural topology, which is a particular case of the following:

Definition 2.36. For topological spaces X, Y, let Map(X, Y) (sometimes written Y^X) denote the set of continuous maps from X to Y equipped with the *compact*open topology, which is defined by the *sub-basis* of subsets $\langle K, U \rangle$ for $K \subset X$ compact and $U \subset Y$ open, where

$$\langle K, U \rangle := \{ f : X \to Y | f(K) \subset U \}.$$

The *path space* of X is the space Map(I, X) (or X^{I}).

Proposition 2.37. *Restriction to the endpoints* $0, 1 \in I$ *induces continuous surjections:*

$$X^I \xrightarrow{p_0} X.$$

Proof. Exercise.

3. Номотору

3.1. **Motivation.** The *category* of topological spaces and continuous maps is very rigid. This is illustrated by considering the paths of a topological space *X*.

Suppose that λ, μ, ν are three paths $I \to X$ which are *composable* ($\lambda(1) = \mu(0)$ and $\mu(1) = \nu(0)$). Then there there are two *a priori* different composite paths from $\lambda(0)$ to $\nu(1)$

$$(\lambda \cdot \mu) \cdot \nu, \ \lambda \cdot (\mu \cdot \nu) : I \to X;$$

namely, the composition of paths is *not associative*. (Exercise: give a simple example where these paths are different.)

The problem arises from the fact that the composites are defined using two *different* homeomorphisms

$$I_1 \cup_{1_1 \sim 0_2} I_2 \cup_{1_2 \sim 0_3} I_3 \cong I,$$

where I_1, I_2, I_3 are copies of the interval. (Explicitly, the two composites rely on the decompositions $[0, 1] = [0, \frac{1}{4}] \cup [\frac{1}{4}, \frac{1}{2}] \cup [\frac{1}{2}, 1]$ and $[0, 1] = [0, \frac{1}{2}] \cup [\frac{1}{2}, \frac{3}{4}] \cup [\frac{3}{4}, 1]$, together with the linear homeomorphisms between the sub-intervals and [0, 1].)

Similarly, the composite $\lambda \cdot \lambda^{-1}$ is a path from $\lambda(0)$ to $\lambda(0)$ which retraces its steps. One would like to consider this as being 'equivalent' to the constant path $c_{\lambda(0)} : I \to X$, (defined by $c_{\lambda(0)}(t) = \lambda(0)$); however, these are *not equal* as paths, unless λ is itself a constant path.

To get around these problems, one *reparametrizes* paths; this uses the notion of *continuous deformation* or *homotopy*.

3.2. **Homotopy.** The notion of homotopy formalizes the idea of *continuous deformation* corresponding to a *continuous family* of continuous maps f_t , indexed by $t \in \mathbb{R}$.

Definition 3.1. Let $f, g : X \rightrightarrows Y$ be two continuous maps.

(1) A *homotopy* from *f* to *g* is a continuous map $H : X \times I \rightarrow Y$ which makes the following diagram commute

(2) The maps *f*, *g* are *homotopic* if there exists a homotopy from *f* to *g*; this will be denoted by *f* ∼ *g*.

Example 3.2. If $X = \{*\}$, then continuous maps $f, g : X \Rightarrow Y$ correspond to points f(*), g(*) of Y. A homotopy from f to g is a path from f(*) to g(*). In the general case, for each point $x \in X$, the restriction $H(x, -) : I \rightarrow Y$ is a path from f(x) to g(x) in Y; the definition of homotopy requires that the set of paths $\{H(x, -)|x \in X\}$ forms a *continuous family*.

Remark 3.3. The homotopy *H* from *f* to *g* is not unique; for example, if $\alpha : I \to I$ is *any* continuous map such that $\alpha|_{\partial I}$ is the identity (ie the endpoints of the interval are fixed), then $H_{\alpha} := H \circ (Id_X \times \alpha)$ is a homotopy from *f* to *g*. The map α *reparametrizes* the homotopy.

When considering homotopies between paths in *X* from x_1 to x_2 , one wants to consider continuous families of paths from x_1 to x_2 . This imposes a restriction on the homotopy in terms of the values on the endpoints $\partial I = \{0,1\} \subset I$. This corresponds to the general notion of *homotopy relative to a subset* $A \subset X$.

Definition 3.4. For $A \subset X$ and maps $f, g : X \rightrightarrows Y$ such that $f|_A = g|_A : A \rightrightarrows Y$,

GEOFFREY POWELL

- (1) a *homotopy relative to* A from f to g is a homotopy $H : X \times I \to Y$ from f to g such that $H(a,t) = f(a) = g(a) \ \forall a \in A, t \in I$;
- (2) f and g are *homotopic rel* A if there exists a relative homotopy (rel A) from f to g (this is denoted $f \sim g \operatorname{rel} A$ or $f \sim_{\operatorname{rel} A} g$).

Example 3.5. For $\gamma_0, \gamma_1 : I \Rightarrow Y$ two paths in *Y* such that $\gamma_0(0) = \gamma_1(0)$ and $\gamma_0(1) = \gamma_1(1)$, a homotopy rel ∂I from γ_0 to γ_1 is a continuous family of paths $\{\gamma_t | t \in I\}$ from $\gamma_0(0)$ to $\gamma_0(1)$.

Remark 3.6. The notion of relative homotopy rel \emptyset coincides with the *absolute* version given in Definition 3.1.

3.3. **First properties of homotopy.** The notion of homotopy leads to a *weaker* notion of equivalence between topological spaces than homeomorphism: spaces can be deformed *continuously*. For *surfaces*, this is often referred to as *rubber sheet geometry*.

Notation 3.7. For topological spaces $X, Y, A \subset X$ a subspace and $\psi : A \to Y$ a continuous map, let

$$\operatorname{Hom}_{\mathfrak{Top}}(X,Y)_{\psi} \subset \operatorname{Hom}_{\mathfrak{Top}}(X,Y)$$

denote the set of continuous maps $f : X \to Y$ such that $f|_A = \psi : A \to Y$.

Proposition 3.8. In the situation of Notation 3.7, the relation $\sim_{\text{rel }A}$ is an equivalence relation on $\text{Hom}_{\mathfrak{Top}}(X,Y)_{\psi}$.

Proof.

- ▷ *reflexivity*: for $f \in \text{Hom}_{\mathfrak{Top}}(X, Y)_{\psi}$, it suffices to take the homotopy H(x, t) = f(x) (this is a constant family);
- ▷ *symmetry*: if *H* is a relative homotopy from *f* to *g*, then *H'* defined by H'(x,t) := H(x, 1 t) is a relative homotopy from *g* to *f*;
- ▷ *transitivity*: this corresponds to gluing homotopies, which generalizes the composition of paths; if H_1 is a homotopy rel A from f to g and H_2 is a homotopy rel A from g to h, then $H : X \times I \to Y$ defined by

$$H(x,t) := \begin{cases} H_1(x,2t) & 0 \le t \le \frac{1}{2} \\ H_2(x,2t-1) & \frac{1}{2} \le t \le 1 \end{cases}$$

is a homotopy rel A from f to h.

Remark 3.9. It can be useful to represent a homotopy H from f to g by a diagram

$$X \underbrace{\bigcup_{g}^{f}}_{g} Y.$$

Then, the transitivity homotopy H corresponds to the *vertical* composition of H_1 and H_2 in the following diagram:

Use of such diagrams is formalized by the theory of 2-*categories;* this theory will *not* be used here!

Homotopy behaves well with respect to composing maps:

Proposition 3.10. For continuous maps $\alpha : U \to X$, $f, g : X \rightrightarrows Y$ and $\omega : Y \to Z$, if $f \sim g$ are homotopic then

$$(\omega \circ f \circ \alpha) \sim (\omega \circ g \circ \alpha)$$

Proof. Let H be a homotopy from f to g; the required homotopy is represented by the following diagram

$$U \xrightarrow{\alpha} X \underbrace{\bigcup_{g}^{J}}_{H} Y \xrightarrow{\omega} Z.$$

(Exercise: write down this homotopy explicitly.)

Exercise 3.11.

- Suppose that *B* ⊂ *U* such that α(*B*) ⊂ *A*; formulate and prove a version of Proposition 3.10 for relative homotopy.
- (2) For continuous maps $f, g : X \rightrightarrows Y$ and $\omega, \zeta : Y \rightrightarrows Z$ such that $f \sim g$ and $\omega \sim \zeta$, show that the composites $\omega \circ f, \zeta \circ g : X \rightrightarrows Z$ are homotopic.
 - More precisely, given homotopies represented by the diagram

give an explicit homotopy from $\omega \circ f$ to $\zeta \circ g$ by using transitivity from Proposition 3.8 and Proposition 3.10. (The form of the diagram should suggest how to do this.)

Since the homotopy relation \sim is an equivalence relation (by Proposition 3.8), one can pass to homotopy classes.

Notation 3.12. For topological spaces *X*, *Y*, write

$$[X,Y] := \operatorname{Hom}_{\mathfrak{Top}}(X,Y)/\sim$$

for the set of *homotopy classes* of continuous maps from X to Y. The homotopy class of a continuous map $f : X \to Y$ will be denoted [f].

Proposition 3.13. For topological spaces X, Y, Z, the composition of continuous maps induces a composition law:

$$[Y,Z]\times [X,Y] \longrightarrow [X,Z]$$

$$[g], [f] \longmapsto [g \circ f].$$

The class $[Id_X] \in [X, X]$ acts as the identity for this composition and composition is associative.

Proof. Exercise (use Proposition 3.10 and Exercise 3.11).

Remark 3.14. Proposition 3.13 gives a *category* with objects topological spaces and morphisms homotopy classes of continuous maps. (Exercise: check the axioms of a category - see Section A.1.)

This is *not* the *homotopy category of topological spaces* which is usually studied in algebraic topology. This is given by restricting to a well-behaved class of topological spaces (*CW-complexes*); most spaces arising naturally in geometry can be given the structure of a CW-complex, so this is not a serious restriction.

13

GEOFFREY POWELL

3.4. **Homotopy equivalence.** The notion of homotopy leads naturally to that of *homotopy equivalence*:

Definition 3.15.

- (1) A continuous map $f : X \to Y$ is a *homotopy equivalence* if there exists a *homotopy inverse* $g : Y \to X$ (namely a continuous map such that $g \circ f \sim \text{Id}_X$ and $f \circ g \sim \text{Id}_Y$).
- (2) Topological spaces X, Y are homotopy equivalent (or have the same homotopy *type*) if there exists a homotopy equivalence $f : X \to Y$; write $X \simeq Y$ in this case.
- Remark 3.16.
 - The simplest topological space is Ø; however there is *no* map of sets X → Ø unless X = Ø, in which case the only map is Id_Ø (which is continuous!). Thus the only topological space homotopy equivalent to Ø is Ø itself.

(The space \emptyset is in fact the *initial object* of the category of topological spaces, \mathfrak{Top} , in the language of category theory. Namely, there is a *unique* continuous map $\emptyset \to X$ to any topological space *X*.)

(2) The singleton set * has a unique topology (the discrete and coarse topologies coincide) and also plays a special rôle amongst topological spaces: for any topological space, there is a unique (continuous) map *X* → *. This means that * is the *final object* of *Cop*.

A point $x \in X$ corresponds to a continuous map $x : * \to X$ which is the inclusion of the subspace $\{x\}$; the unique map $X \to *$ provides a *retraction* of this inclusion.

It is natural to consider the topological spaces which are homotopically equivalent to *.

Definition 3.17.

- (1) A topological space X is *contractible* if $X \simeq *$.
- (2) A continuous map $f : X \to Y$ is *homotopically trivial* if it is homotopic to a constant map.

Exercise 3.18. Show that a space X is contractible if and only if the identity map Id_X is homotopic to a constant map.

Example 3.19. The following spaces are contractible:

- (1) the interval *I*;
- (2) Euclidean space \mathbb{R}^n , $n \in \mathbb{N}$;
- (3) the closed ball $e^n \subset \mathbb{R}^n$.

For example, the continuous map $H : I \times I \to I$, $(s, t) \mapsto st$ shows that the identity map Id_I is homotopic to the constant map on I with value $0 \in [0, 1]$.

Proposition 3.20. Let X, Y be topological spaces.

- (1) If X, Y are homeomorphic then $X \simeq Y$ have the same homotopy type.
- (2) The relation \simeq is an equivalence relation.

Proof. Exercise.

Example 3.21. The spaces $\mathbb{R}^2 \setminus \{0\}$ and S^1 have the same homotopy type. The inclusion $i : S^1 \hookrightarrow \mathbb{R}^2$ admits a *retract* $r : \mathbb{R}^2 \setminus \{0\} \to S^1$ which sends a point $(\rho \cos \theta, \rho \sin \theta) \mapsto (\cos \theta, \sin \theta)$, where $\rho > 0$; the composite $i \circ r : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2 \setminus \{0\}$ is homotopic to the identity map (exercise!).

However, these spaces are *not* homeomorphic. One way of showing this is to observe that, for any point $* \in S^1$, the complement $S^1 \setminus \{*\}$ is homeomorphic to

(0,1), which is contractible. The space $\mathbb{R}^2 \setminus \{0,*\}$ is homotopy equivalent to a figure eight embedded in \mathbb{R}^2 ; we shall be able to show shortly that this space is *not* contractible, hence neither is $\mathbb{R}^2 \setminus \{0,*\}$.

Remark 3.22. The example shows that the relation \simeq is *coarser* than the relation \cong ; one of the aims of algebraic topology is to understand topological spaces *up to homotopy equivalence*.

3.5. The cone and homotopically trivial maps. Recall that the cone CX with base a topological space X is the quotient $X \times I/X \times \{1\}$ and that the inclusion $i_0 : X \to X \times I$ induces the inclusion $i : X \to CX$ of the base of the cone, which fits into the commutative diagram

The *homotopical* importance of the cone CX on a space X is shown by the following result:

Proposition 3.23.

- (1) The cone CX on a topological space X is contractible.
- (2) A continuous map $f : X \to Y$ is homotopically trivial if and only if it extends to a continuous map $\tilde{f} : CX \to Y$ making the following diagram commute:

Proof. For the first point, define a continuous map $H : (X \times I) \times I \to X \times I$ by $((x, s), t) \mapsto (x, s(1 - t) + t)$. The map \tilde{H} is a homotopy between $\mathrm{Id}_{X \times I}$ and the projection to the top of the cylinder, $(x, s) \mapsto (x, 1)$.

By construction, $\tilde{H}((x, 1), t) = (x, 1)$, hence \tilde{H} induces a continuous map

$$H: CX \times I \to CX$$

(this uses the defining property of the quotient map $X \times I \twoheadrightarrow CX$). Moreover, H is a homotopy between Id_{CX} and the constant map sending CX to the point of the cone, by construction of \tilde{H} . This proves that CX is contractible.

For the second point, consider the commutative diagram

If \tilde{f} exists, then the composite $X \times I \twoheadrightarrow CX \xrightarrow{\tilde{f}} Y$ defines a homotopy between f and a constant map.

Conversely, let $K : X \times I \to Y$ be a homotopy between the map f and a constant map with value $y \in Y$. The map $\tilde{f} : CX \to Y$ defined by $\tilde{f}([x,t]) = K(x,t)$ is a continuous map (well-defined since $K(x,1) = y \ \forall x \in X$).

GEOFFREY POWELL

3.6. **Deformation retracts.** A deformation retract is a special form of homotopy equivalence.

Definition 3.24. Let *A* be a subspace of *X* equipped with the inclusion $i : A \hookrightarrow X$.

- (1) *A* is a *retract* of *X* if there exists a *retraction* $r : X \to A$, namely a continuous map such that $r \circ i = \text{Id}_A$;
- (2) *A* is a *deformation retract* of *X* if there exists a retraction *r* such that $i \circ r \sim \operatorname{Id}_X$;
- (3) A is a strong deformation retract of X if there exists a retraction r such that i ∘ r ∼_{rel A} Id_X.

Proposition 3.25. If $A \subset X$ is a deformation retract with respect to the inclusion *i* and the retraction *r*, then *i*, *r* are homotopy equivalences, in particular A and X have the same homotopy type.

Proof. Exercise.

Example 3.26. For any $n \in \mathbb{N}$, $S^n \hookrightarrow \mathbb{R}^{n+1} \setminus \{0\}$, S^n is a strong deformation retract of $\mathbb{R}^{n+1} \setminus \{0\}$.

Example 3.27. Consider the Möbius band M (recall that this is defined as the quotient of $I \times I$ by the relation $(s, 0) \sim (1 - s, 1)$). There are two natural embeddings of the circle S^1 in M:

- The *zero section* (the terminology comes from the theory of vector bundles and is not important for this example) which is induced by the continuous map *I* → *I* × *I*, *t* ↦ (¹/₂, *t*).
- (2) The boundary $\partial M \cong S^1$.

The projection $M \twoheadrightarrow S^1$ induced by $I \times I \to I$, $(s,t) \mapsto t$ is a retract of the zero section, which is a strong deformation retract of M. However, the inclusion $S^1 \cong \partial M \hookrightarrow M$ does not even admit a retract! We will shortly see how to prove this.

Example 3.28. Let *X* denote the subspace $\{0\} \cup \{\frac{1}{n} | 0 < n \in \mathbb{N}\} \subset \mathbb{R}$. (Note that the topology on *X* is *not* the discrete topology.) By Proposition 3.23, the space *CX* is contractible.

Consider $0 \in X \subset CX$; $\{0\} \subset CX$ is a deformation retract of CX but is *not* a strong deformation retract of CX (equivalently, Id_{CX} is not homotopic rel $\{0\}$ to the constant map at $\{0\}$). (Exercise: prove this assertion.) The problem arises from the fact that, for any open neighbourhood of 0 in X, the inclusion $\{0\} \subset U$ is not a homeomorphism and is not even a homotopy equivalence.

Form the space $Y := CX \cup_{\{0\}} CX$ by identifying the two respective points $0 \in CX$. Although each cone is contractible, the space *Y* is *not*. One cannot simply first collapse one cone and then the other.

Proposition 3.29. The subspace $\operatorname{Map}(I, I)_{\partial I} \subset \operatorname{Map}(I, I)$ of continuous maps which restrict to the identity on ∂I is contractible and the subspace $\{\operatorname{Id}_I\} \subset \operatorname{Map}(I, I)_{\partial I}$ is a strong deformation retract.

Proof. Define a homotopy $H : \operatorname{Map}(I, I)_{\partial I} \times I \to \operatorname{Map}(I, I)_{\partial I}$ by

$$H(\varphi, t) = \{ s \mapsto st + (1 - t)\varphi(s) \}.$$

Thus $H(\varphi, 0) = \varphi$ and $H(\varphi, 1) = \operatorname{Id}_I$ is a homotopy between the identity map on $\operatorname{Map}(I, I)_{\partial I}$ and the constant map with value Id_I ; moreover $H(\operatorname{Id}_I, t) = \operatorname{Id}_I \forall t \in I$. This homotopy exhibits $\{\operatorname{Id}_I\}$ as a strong deformation retract of $\operatorname{Map}(I, I)_{\partial I}$. \Box

Remark 3.30. The space $Map(I, I)_{\partial I}$ acts as the *space of reparametrizations of homotopies,* via the *evaluation map*:

$$\begin{aligned} \text{eval}: I \times \text{Map}(I, I) &\to I \\ (s, \varphi) &\mapsto \varphi(s). \end{aligned}$$

Namely, if $H : X \times I \rightarrow Y$ is a homotopy, then the evaluation map induces the composite:

$$X \times I \times \operatorname{Map}(I, I)_{\partial I} \xrightarrow{\operatorname{Id}_X \times \operatorname{eval}} X \times I \xrightarrow{H} Y.$$

Fixing a reparametrization $\varphi \in Map(I, I)_{\partial I}$, this gives the homotopy H_{φ} as in Remark 3.3.

3.7. **Paths again.** With the notion of relative homotopy in hand, we can resolve the problems of Section 3.1:

Notation 3.31. For *X* a topological space and $x \in X$, let $c_x : I \to X$ denote the *constant path* $t \mapsto x$.

Proposition 3.32. For X a topological space and composable paths $\lambda, \mu, \nu : I \to X$:

(1) the composite paths $(\lambda \cdot \mu) \cdot \nu$, $\lambda \cdot (\mu \cdot \nu) : I \to X$ are homotopic rel ∂I ;

(2) the composite path $\lambda \cdot \lambda^{-1} : I \to X$ is homotopic rel ∂I to the constant path $c_{\lambda(0)}$.

Proof. The results are proved by *reparametrization*. For example, consider the second point.

The continuous map $H : I \times I \rightarrow X$ defined by

$$H(s,t) = \begin{cases} \lambda(2st) & 0 \le s \le \frac{1}{2} \\ \lambda(2(1-s)t) & \frac{1}{2} \le s \le 1 \end{cases}$$

is a homotopy rel ∂I between the constant map $c_{\lambda(0)}$ and $\lambda \cdot \lambda^{-1}$.

(Exercise: prove the associativity property.)

This leads to an important *invariant* of a topological space, the *fundamental groupoid*:

Definition 3.33. For *X* a topological space, the *fundamental groupoid* $\Pi(X)$ of *X* is the small category:

- \triangleright Ob $\Pi(X) = X$ (the objects are the points of *X*);
- ▷ Hom_{$\Pi(X)$} $(x, y) = \{[\gamma] | \gamma : I \to X, \overline{\gamma(0)} = x, \gamma(1) = y\}$ is the set of homotopy classes rel ∂I of continuous paths from x to y;

with identity maps $[c_x] \in \text{Hom}_{\Pi(X)}(x, x)$ and composition induced by composition of paths $[\mu] \circ [\lambda] = [\lambda \cdot \mu]$.

The inverse of $[\lambda]$ is $[\lambda^{-1}]$.

Exercise 3.34. Prove that $\Pi(X)$ is a groupoid.

Remark 3.35. For each topological space X, we obtain the fundamental groupoid $\Pi(X)$; this contains important information on the topological space X (as we shall see). Moreover, if $f : X \to Y$ is a continuous map, the fundamental groupoids are related by a *morphism*

$$\Pi(X) \stackrel{\Pi(f)}{\to} \Pi(Y).$$

This is an example of a *functor* from Top to *groupoids*. (See Section A.2 for the notion of a functor.)

Exercise 3.36. Show that one can recover the set of path connected components $\pi_0(X)$ of a topological space X from its fundamental groupoid $\Pi(X)$.

GEOFFREY POWELL

4. The fundamental group

4.1. Path connected components revisited. Recall that [X, Y] denotes the set of *homotopy classes* of continuous maps from X to Y; a homotopy class is denoted [f], where $f : X \to Y$ is a continuous map, so that [f] = [g] if and only if f is homotopic to g.

Proposition 4.1. For X a topological space, π_0 defines a functor $\pi_0 : \mathfrak{Top} \to \mathfrak{Set}$. Moreover, there is a natural bijection of sets:

$$\pi_0(X) \cong [*, X].$$

Proof. For *X* a topological space, we first establish the bijection of sets, by showing that the respective definitions are equivalent.

A continuous map $* \to X$ is equivalent to a *point* x of X. For two points $x, y \in X$, a homotopy from x to y is a continuous map $H : I \cong * \times I \to X$ such that H(0) = x and H(1) = y; this is a continuous path from x to y. Hence x and y (considered as maps to X) are homotopic if and only if $x \sim y$ are connected by a path.

If $f : X \to Y$ is a continuous map, the induced map of sets $\pi_0(f) : \pi_0(X) \to \pi_0(Y)$ is defined by

$$\pi_0(f)[x] := [f(x)].$$

This is equivalent to the composition

$$[X,Y] \circ [*,X] \to [*,Y]$$

defined on homotopy classes (see Proposition 3.13).

In any category \mathscr{C} , for A an object of \mathscr{C} , the association $B \mapsto \operatorname{Hom}_{\mathscr{C}}(A, B)$ defines a *representable* functor with values in the category of sets:

$$\operatorname{Hom}_{\mathscr{C}}(A, -) : \mathscr{C} \to \mathfrak{Set}.$$

(Exercise: prove this assertion.) If follows immediately that $\pi_0(X)$ is a functor, by taking for \mathscr{C} the category introduced in Proposition 3.13).

Remark 4.2. The *naturality* in the statement of Proposition 4.1 corresponds to a *natural equivalence* in category theory (see Section A.3).

4.2. Groupoids and the fundamental groupoid revisited. A *small* groupoid is a *small category* \mathscr{G} (so that the objects form a *set*) in which every morphism is invertible. Namely

- ▷ there is an associative composition law o;
- ▷ every object admits an identity morphism for this composition law;
- $\triangleright \text{ every morphism admits an inverse } f \mapsto f^{-1}, \operatorname{Hom}_{\mathscr{G}}(A, B) \stackrel{(-)^{-1}}{\to} \operatorname{Hom}_{\mathscr{G}}(B, A).$

A morphism of groupoids $\varphi : \mathscr{G}_1 \to \mathscr{G}_2$ is a functor from \mathscr{G}_1 to \mathscr{G}_2 . This is equivalent to

- ▷ a map of sets φ : Ob (\mathscr{G}_1) \rightarrow Ob (\mathscr{G}_2);
- ▷ for all pairs of objects A, B of \mathscr{G}_1 , a set map

 $\varphi_{A,B}$: Hom $\mathscr{G}_1(A,B) \to$ Hom $\mathscr{G}_2(\varphi(A),\varphi(B))$

which is compatible with composition and sends identity maps to identity maps.

Remark 4.3. The behaviour of a morphism of groupoids on inverses follows automatically ($\varphi(f^{-1}) = \varphi(f)^{-1}$), so this is not required in the definition.

Definition 4.4. Let Groupoid denote the category of small groupoids, with

- ▷ objects: small groupoids
- ▷ morphisms: morphisms of groupoids.

This is a full subcategory of the category \mathfrak{CAT} of small categories (see Definition A.3).

Example 4.5. A discrete group *G* is equivalent to a groupoid <u>*G*</u> with a single object *, by taking $\operatorname{Hom}_{\underline{G}}(*,*) = G$, with composition induced by group multiplication and inverse by group inverse. If G_1 , G_2 are discrete groups, a morphism of the associated groupoids $\underline{G_1} \to \underline{G_2}$ is equivalent to a group morphism $G_1 \to G_2$.

Conversely, for any small groupoid \mathscr{G} and object A of \mathscr{G} , $\operatorname{Hom}_{\mathscr{G}}(A, A)$ is a group.

Exercise 4.6. Show that the association $G \mapsto \underline{G}$ defines a fully faithful embedding (see Definition A.9) of the category of groups in the category of small groupoids

 $\mathfrak{Group} \hookrightarrow \mathfrak{Groupoid}.$

Definition 4.7. For \mathscr{G} a small groupoid, define

- (1) the equivalence relation ~ on Ob \mathscr{G} by $A \sim B$ if and only if $\operatorname{Hom}_{\mathscr{G}}(A, B) \neq \emptyset$;
- (2) $\pi_0(\mathscr{G}) := \operatorname{Ob} \mathscr{G} / \sim$, the set of *connected components* of \mathscr{G} ;

(3) \mathscr{G} is connected if $|\pi_0(\mathscr{G})| = 1$.

Proposition 4.8. The connected component defines a functor

 $\pi_0(-): \mathfrak{Groupoid} \to \mathfrak{Set}.$

Proof. Exercise.

Exercise 4.9. For \mathscr{G} a small groupoid and objects $A, B \in Ob \mathscr{G}$ such that $A \sim B$, show that the groups $\operatorname{Hom}_{\mathscr{G}}(A, A)$ and $\operatorname{Hom}_{\mathscr{G}}(B, B)$ are isomorphic.

Recall the definition of the fundamental groupoid of a space *X*:

Definition 4.10. For *X* a topological space, the fundamental groupoid $\Pi(X)$ has

- \triangleright Ob $\Pi(X) = X$, the set of points of *X*;
- \triangleright Hom_{$\Pi(X)$} $(x, y) := \{\alpha : I \to X | \alpha(0) = x, \alpha(1) = y\} / \sim \text{rel } \partial I$, the set of homotopy classes rel ∂I of continuous paths from x to y;
- ▷ composition induced by composition of paths: $[\beta] \circ [\alpha] := [\alpha \cdot \beta];$ ▷ inverse given by $[\alpha]^{-1} := [\alpha^{-1}]$
- \triangleright inverse given by $[\alpha]^{-1} := [\alpha^{-1}]$.

Remark 4.11. If a *path* in *X* from *x* to *y* is thought of as a *homotopy* between $x, y : * \Rightarrow X$, the composite of paths α (from *x* to *y*) and β (from *y* to *z*) should be thought of as a composite of homotopies:

using the diagrammatic representation of Remark 3.9.

A homotopy rel ∂I between paths α_1 to α_2 in X is a map $H : I \times I \to X$ where the first coordinate corresponds to progression along the path and the second progression along the homotopy (H is a homotopy between homotopies).

This should now be represented by

$$\alpha_1 \begin{pmatrix} x \\ H \\ u \end{pmatrix} \alpha_2$$

There are *two* possible compositions:

- ▷ *vertical* composition corresponds to composition of paths;
- \triangleright horizontal composition corresponds to composition of homotopies rel ∂I .

Proposition 4.12. *The fundamental groupoid defines a* functor:

$$\Pi(-): \mathfrak{Top} \to \mathfrak{Groupoid}.$$

Proof. We require to show that a continuous map $f : X \to Y$ induces a morphism of groupoids $\Pi(f)$ such that

- $\triangleright \forall X, \Pi(\mathrm{Id}_X)$ is the identity morphism of $\Pi(X)$;
- \triangleright for composable continuous maps $X \xrightarrow{f} Y \xrightarrow{g} Z$,

$$\Pi(g \circ f) = \Pi(g) \circ \Pi(f).$$

On the objects of *X* (that is the points $x \in X$), $\Pi(f)$ is the underlying map of sets $f : X \to Y$. On a morphism $[\alpha]$, represented by a continuous path $\alpha : I \to X$, $\Pi(f)[\alpha] = [f \circ \alpha]$. This defines a morphism of groupoids.

The morphism of groupoids $\Pi(\mathrm{Id}_X) : \Pi(X) \to \Pi(X)$ is clearly the identity and behaviour on composites is easy to check.

There are two notions of connected component associated to a topological space X: the set of path-connected components $\pi_0(X)$ and the set of components of the fundamental groupoid $\Pi(X)$. These coincide:

Proposition 4.13. The functors

$$\begin{aligned} \pi_0(-) : \mathfrak{Top} &\to \mathfrak{Set} \\ \pi_0 \circ \Pi(-) : \mathfrak{Top} &\to \mathfrak{Set} \end{aligned}$$

are naturally isomorphic.

Proof. Exercise. (See Section A.3 for the notion of natural equivalence.) \Box

Remark 4.14. Proposition 4.12 introduces the morphism of groupoids $\Pi(f)$ associated to a continuous map $f : X \to Y$. What happens for two maps $f, g : X \rightrightarrows Y$ which are homotopic via $H : X \times I \to Y$?

Consider a path α from x to y in X then there is a diagram of composable paths:

where the square represents two paths from f(x) to f(y) in Y. The path corresponding to the bottom of the square is obtained from $g(\alpha)$ by composing with the path H(x, -) from f(x) to g(x) and the inverse of the path H(y, -) from f(y) to g(y). The homotopy H induces a homotopy rel ∂I between these two paths (exercise).

For points $x, y \in X$, define the map of sets

 $H_{x,y}$: Hom_{$\Pi(Y)$} $(g(x), g(y)) \to$ Hom_{$\Pi(Y)$}(f(x), f(y))

by $[\beta] \mapsto [H(y, -)]^{-1} \circ [\beta] \circ [H(x, -)]$, generalizing the construction used above. This provides the compatibility between $\Pi(g)$ and $\Pi(f)$ which is given by the commutative diagram

$$\operatorname{Hom}_{\Pi(X)}(x,y) \xrightarrow{\Pi(f)} \operatorname{Hom}_{\Pi(Y)}(g(x),g(y)) \xrightarrow{\cong} \operatorname{Hom}_{\Pi(Y)}(f(x),f(y)).$$

(Exercise: verify that $H_{x,y}$ is a bijection.)

This could be made more conceptual by introducing the general notion of *homo-topy* between morphisms of groupoids.

4.3. The fundamental group. If the topological space *X* is path connected, most of the information encoded in the fundamental groupoid $\Pi(X)$ can be recovered by fixing a point $x \in X$ and considering:

$$\operatorname{Hom}_{\Pi(X)}(x,x)$$

which is a *group* (see Example 4.5). Thus, we consider *loops* in X, which start and end at x (loops *based* at x).

Definition 4.15. For X a topological space and $x \in X$, the *fundamental group* $\pi_1(X, x)$ is the group with

- ▷ elements {[α]| α (0) = α (1) = x}, the set of homotopy classes rel ∂I of continuous paths starting and ending at x;
- ▷ group multiplication $[\alpha][\beta] = [\alpha \cdot \beta];$
- \triangleright inverse $[\alpha]^{-1} = [\alpha^{-1}].$

Remark 4.16. The group multiplication is defined by the composition of paths. This must not be confused with the group structure \circ on $\operatorname{Hom}_{\Pi(X)}(x, x)$ which is given by $[\alpha] \circ [\beta] = [\beta \cdot \alpha]$; this is the *opposite* group structure.

Exercise 4.17. Show that the fundamental group $\pi_1(X, x)$ depends only upon the path-connected component of *X* containing *x*.

The fundamental group is defined in terms of *pointed* topological spaces.

Definition 4.18.

- (1) A pointed topological space is a pair (X, x) where X is a topological space equipped with a *basepoint* $x \in X$.
- (2) The category of *pointed* topological spaces, \mathfrak{Top}_{\bullet} , has:
 - \triangleright objects: pointed topological spaces (X, x)
 - ▷ morphisms: Hom_{\mathfrak{Top}} ((X, x), (Y, y)) is the set of continuous maps $f : X \to Y$ such that f(x) = y.
- (3) For (X, x) and (Y, y) pointed topological spaces, let

 $[(X, x), (Y, y)]_{\mathfrak{Top}}$

denote the set of homotopy classes rel *x* of morphisms $(X, x) \rightarrow (Y, y)$.

Example 4.19. The circle S^1 is homeomorphic to the quotient space $[0,1]/0 \sim 1$, which has a natural choice of basepoint, given by the image of 0. Write this pointed space as $(S^1, *)$.

Proposition 4.20. *The fundamental group defines a functor:*

$$\pi_1(-): \mathfrak{Top}_{\bullet} \to \mathfrak{Group}.$$

Proof. (This can be deduced from Proposition 4.12.) If $f : (X, x) \to (Y, y)$ is a morphism of pointed spaces (so that f(x) = y), the morphism of groups

$$\pi_1(f):\pi_1(X,x)\to\pi_1(Y,y)$$

is given by $\pi_1(f)[\alpha] = [f \circ \alpha]$.

It is straightforward to check that $\pi_1(f)$ is a morphism of groups and that this defines a functor (exercise!).

Exercise 4.21. Show that

(1) a loop based at $x \in X$ is equivalent to a morphism in \mathfrak{Top}_{\bullet} :

$$(S^1, *) \to (X, x);$$

(2) there is a natural isomorphism (of sets)

$$\pi_1(X, x) \cong [(S^1, *), (X, x)]_{\mathfrak{Top}_{\bullet}}.$$

(3) How can one recover the group structure?

The dependency on the choice of basepoint (within a path-connected component) is explained by the following.

Proposition 4.22. For X a topological space and $[\gamma] \in \text{Hom}_{\Pi(X)}(x, y)$, there is an isomorphism of groups

$$\Phi_{[\gamma]}: \pi_1(X, y) \to \pi_1(X, x)$$

defined for α *a loop based at* y *by* $\Phi_{[\gamma]}[\alpha] = [\gamma \cdot \alpha \cdot \gamma^{-1}].$

Proof. Exercise (hint: draw a picture - compare also Exercise 4.9).

Proposition 4.23. For $H: X \times I \to Y$ a homotopy from f to g, where $f, g: X \rightrightarrows Y$ are continuous map, and $x \in X$ a basepoint, the associated path $H(x, -): I \to Y$ induces a group isomorphism $\Phi_{[H(x, -)]}$ which fits into the commutative diagram:

Proof. Exercise. (This corresponds to the discussion in Remark 4.14 for the fundamental groupoid; the proof is a good exercise in understanding *based* homotopies.) \Box

Corollary 4.24. For $f : X \to Y$ a homotopy equivalence, the induced map

$$\pi_1(f):\pi_1(X,x) \xrightarrow{\cong} \pi_1(Y,f(x))$$

is an isomorphism of groups.

In particular, if X is contractible, then $\pi_1(X, x) \cong \{e\}$, the trivial group.

Proof. Exercise.

Remark 4.25. This shows that the fundamental group $\pi_1(X, x)$ is a *pointed homotopy invariant* of (X, x).

Remark 4.26. There are many interesting path-connected spaces X such that $\pi_1(X, x) = \{e\}$ but which are *not contractible*. For example, $X = S^2$.

4.4. **Interlude on groups.** In order to motivate the constructions used in the following section, we recall the construction of the *free product* $G \star H$ of groups G, H and, more generally, the *pushout* $G \star_K H$ associated to the diagram of solid arrows:

Definition 4.27. Let $\mathscr{F} : \mathfrak{Set} \to \mathfrak{Group}$ denote the *free group* functor, which associates to a set *S* the group freely generated by the elements of *S*.

Exercise 4.28. For S a set,

(1) give an explicit description of the free group $\mathscr{F}(S)$, in particular, show that there is a natural inclusion of sets $S \hookrightarrow \mathscr{F}(S)$ (which will be denoted here by $s \mapsto [s]$);

(2) show that $\mathscr{F}(S)$ satisfies the following *universal property*: $\forall G \in Ob \mathfrak{Group}$, there is a *natural* bijection

 $\operatorname{Hom}_{\mathfrak{Group}}(\mathscr{F}(S),G) \cong \operatorname{Hom}_{\mathfrak{Set}}(S,G),$

where, on the right hand side, *G* is considered as a set;

(3) describe the natural morphism of groups $\mathscr{F}(G) \to G$ corresponding to the identity map (of sets!) of *G*.

Remark 4.29. To give a group G by a *presentation* by generators and relations is equivalent to giving a set S of generators, which induces a *surjective* group morphism

$$\mathscr{F}(S) \twoheadrightarrow G$$

and a set of relations, $R \subset \mathscr{F}(S)$, which generate a normal subgroup $N \lhd \mathscr{F}(S)$ such that $G \cong \mathscr{F}(S)/N$.

Another way of representing this is by the *presentation*

$$\mathscr{F}(R) \to \mathscr{F}(S) \twoheadrightarrow G.$$

Note that the image of $\mathscr{F}(R)$ in $\mathscr{F}(S)$ is not in general a normal subgroup.

Example 4.30. Every group *G* has a *canonical* presentation, taking *G* as the set of generators and the set of relations $\{[g_1][g_2][g_1g_2]^{-1}|(g_1,g_2) \in G \times G\}$. This involves no arbitrary choices, hence a morphism of groups $\varphi : G \to H$ induces a commutative diagram:

$$\begin{array}{c|c} \mathscr{F}(G \times G) \longrightarrow \mathscr{F}(G) \longrightarrow G \\ \\ \mathscr{F}(\varphi \times \varphi) \middle| & & & \downarrow \mathscr{F}(\varphi) \\ \\ \mathscr{F}(H \times H) \longrightarrow \mathscr{F}(H) \longrightarrow H. \end{array}$$

This explains the adjective canonical.

Definition 4.31. For groups *G*, *H*, the *free product* of *G* and *H* is the group

$$G \star H := \mathscr{F}(G \amalg H)/N$$

where N is the normal subgroup $N \lhd \mathscr{F}(G \amalg H)$ generated by the following relations

(1)
$$[g_1][g_2][g_1g_2]^{-1};$$

(2) $[h_1][h_2][h_1h_2]^{-1},$

 $\forall g_1, g_2 \in G \text{ and } h_1, h_2 \in H.$

Exercise 4.32. Using the notation of the definition, check that the relations imply that $[e_G] = e = [e_H]$, where e_G , e_H and e are the respective identities of $G, H, \mathscr{F}(G \amalg H)$. Show that $[g^{-1}] = [g]^{-1}$ and $[h^{-1}] = [h]^{-1} \forall g \in G, h \in H$.

Exercise 4.33. For groups G, H, show that the set maps $G \to \mathscr{F}(G) \subset \mathscr{F}(G \amalg H)$ and $H \to \mathscr{F}(H) \subset \mathscr{F}(G \cup H)$ induce group morphisms:

$$G \to G \star H \leftarrow H.$$

Show that group morphisms $\varphi : G \to Q$, $\psi : H \to Q$ induce a *unique* morphism of groups: $G \star H \to Q$.

Definition 4.34. For group morphisms $H \stackrel{j}{\leftarrow} K \stackrel{i}{\rightarrow} G$, let $G \star_K H$ denote the quotient of $G \star H$ by the normal subgroup generated by

$$[i(\kappa)][j(\kappa)]^{-1} \ \forall \kappa \in K.$$

Remark 4.35. Taking $K = \{e\}$ (which is the *initial object* of the category of groups - and also the *final object*), $G \star_{\{e\}} H = G \star H$.

✓ 03/10/13

✓ 03/10/13

23

✓ 03/10/13

Exercise 4.36. Establish the *universal property* of $G \star_K H$: given morphisms $\varphi : G \to G$ $Q, \psi: H \to Q$ of groups which make the outer square commute,

there is a *unique* morphism of groups $G \star_K H \to Q$ (indicated by the dotted arrow) which makes the diagram commute.

Exercise 4.37. For G a group, show that there exist sets R, S and a group homomorphism $\mathscr{F}(R) \to \mathscr{F}(S)$ such that

$$G \cong \mathscr{F}(S) \star_{\mathscr{F}(R)} \{e\}.$$

4.5. The Seifert-van Kampen theorem for the fundamental groupoid. We require techniques for calculating the fundamental group $\pi_1(X, x)$; for instance, suppose that $X = U \bigcup V$, where U and V are open subsets of X, how can we calculate $\pi_1(X, x)$ for $x \in U \cap V$, from information given by U and V? It turns out to be more natural to consider the fundamental groupoid $\Pi(X)$. The key technical ingredient is that I and $I \times I$ are compact metric spaces; this allows Lebesgue's theorem to be applied:

Proposition 4.38. For M a compact metric space and $\mathcal{U} = \{U_i | i \in \mathcal{I}\}$ an open cover of *M*, there exists a Lebesgue number $0 < \varepsilon \in \mathbb{R}$ such that, $\forall m \in M \exists i_m \in \mathscr{I}$ such that

$$B_{\varepsilon}(m) \subset U_{i_m}.$$

Proof. Exercise.

Proposition 4.38 is applied to the spaces $I, I \times I$ to *decompose* paths and homotopies between paths.

Corollary 4.39. Let $\mathscr{V} = \{V_j | j \in \mathscr{J}\}$ be an open cover of a topological space X and $\alpha: I \to X, H: I \times I \to X$ be continuous maps, then $\exists N \in \mathbb{N}$ such that

- (1) $\forall 0 \leq a < N, \exists j_a \in \mathscr{J} \text{ such that } \alpha([\frac{a}{N}, \frac{a+1}{N}]) \subset V_{j_a};$ (2) $\forall 0 \leq a, b < N, \exists j_{a,b} \in \mathscr{J} \text{ such that } H([\frac{a}{N}, \frac{a+1}{N}] \times [\frac{b}{N}, \frac{b+1}{N}]) \subset V_{j_{a,b}}.$

Proof. Let ε_I be the Lebesgue number provided by Proposition 4.38 for the open cover $\{f^{-1}(U_j)\}$ of *I* and $\varepsilon_{I \times I}$ the Lebesgue number for the open cover $\{H^{-1}(U_j)\}$ of $I \times I$. Set $\varepsilon := \min\{\varepsilon_I, \varepsilon_{I \times I}\}$, then taking $0 < N \in \mathbb{N}$ such that $\frac{1}{N} < \frac{\varepsilon}{2}$, the result follows.

For simplicity, we now limit discussion to an open cover $X = U \bigcup V$. The inclusions of subspaces

✓ 01/10/13

induce a commutative diagram of morphisms of groupoids:

$$\begin{array}{c|c} \Pi(U \cap V) \xrightarrow{\Pi(i_U)} \Pi(U) \\ \hline \Pi(i_V) & & & & \\ \Pi(V) \xrightarrow{\Pi(j_V)} \Pi(X). \end{array}$$

Remark 4.40. Although the underlying maps on *objects* are the inclusions, the morphisms of groupoids are not in general injective on the *morphisms*. (Two paths can become homotopic rel ∂I in a larger space.)

The Seifert-van Kampen theorem shows that $\Pi(X)$ is obtained by *gluing* the groupoids $\Pi(U)$ and $\Pi(V)$ together, building in compatibility via $\Pi(i_U)$ and $\Pi(i_V)$. The starting point is the following observation:

Lemma 4.41. Let $\alpha : I \to X$ be a path in X, then there exists a decomposition

$$[\alpha] = [\alpha_N] \circ \ldots \circ [\alpha_1]$$

in $\Pi(X)$ such that, $\forall t, 1 \leq t \leq N$, one of the following holds:

(1) $[\alpha_t] = \Pi(j_U)[\alpha_t^U] \text{ or}$ (2) $[\alpha_t] = \Pi(j_V)[\alpha_t^V],$

for some $\alpha_t^U: I \to U$ or $\alpha_t^V: I \to V$.

Proof. An immediate consequence of Corollary 4.39.

Definition 4.42. For an open cover $X = U \cup V$, let $\Pi^{U,V}(X)$ denote the groupoid with

 $\begin{array}{l} \triangleright \mbox{ objects: } Ob \ \Pi^{U,V}(X) = X; \\ \triangleright \ \mbox{ morphisms: composable sequences generated by } \{ [\alpha^U] \in Mor\Pi(U) \} \mbox{ and } \\ \{ [\alpha^V] \in Mor\Pi(V) \} \mbox{ subject to the following relations:} \\ (1) \ [\alpha^U_2] \circ [\alpha^U_1] = [\alpha^U_1 \cdot \alpha^U_2] \\ (2) \ [\alpha^V_2] \circ [\alpha^V_1] = [\alpha^V_1 \cdot \alpha^V_2] \\ (3) \ [i_U(\alpha^{U\cap V})] = [i_V(\alpha^{U\cap V})] \\ \mbox{ for paths } \alpha^U_s : I \to U, \alpha^V_s : I \to V \mbox{ and } \alpha^{U\cap V} : I \to U \cap V. \end{array}$

Exercise 4.43. Check that $\Pi^{U,V}(X)$ is a groupoid and that the inclusions $U, V \subset X$ induce a morphism of groupoids:

$$\Pi^{U,V}(X) \to \Pi(X)$$

which is the identity map on objects and which fits into the commutative diagram:

Theorem 4.44. For U, V an open cover of X,

$$\Pi^{U,V}(X) \to \Pi(X)$$

is an isomorphism of groupoids.

Proof. On the level of objects, the morphism is the identity and Lemma 4.41 shows that it is *surjective* on morphisms: to a path $\alpha : I \to X$, one associates the morphism of $\Pi^{U,V}(X)$:

$$[\alpha]] := [\alpha_N^{Z_N}] \circ \ldots \circ [\alpha_1^{Z_1}]$$

 $[[\alpha]] := [\alpha_N^{Z_N}] \circ \ldots \circ [\alpha_1^{Z_1}]$ where $Z_t \in \{U, V\}$, as in the decomposition of Lemma 4.41; by construction, this maps to $[\alpha]$. The compatibility with composition in *U* and *V* built into the definition of $\Pi^{U,V}(X)$ shows that the element $[[\alpha]]$ does not depend on N.

For injectivity on morphisms, suppose that $[\alpha] = [\beta]$ in $\Pi(X)$, we require to show that $[[\alpha]] = [[\beta]]$ in $\Pi^{U,V}(X)$. Hence fix a homotopy rel ∂I from α to β and choose $N \in \mathbb{N}$ as in Corollary 4.39; in particular this value of N can be used to construct $[\alpha]$ and $[\beta]$. Thus $I \times I$ is subdivided into N^2 squares such that Hmaps each small square either to U or to V; restricting to a small square, H induces a homotopy between the composites corresponding to the edges.

The heart of the argument is to analyse what happens when adjacent squares map to different opens; this means that, on their intersection, they map to $U \cap V$. For example, consider the following situation:

representing a diagram of composable paths and homotopies, where the superscript V in α^V indicates a path $I \to V$, for example; γ is a path $I \to U \cap V$, hence can be considered as a path to *both* U and V.

The right hand square gives the identity in $\Pi^{U,V}(X)$:

$$[\boldsymbol{\gamma}^V] \circ [\boldsymbol{\alpha}^V] = [\boldsymbol{\alpha}^V \cdot \boldsymbol{\gamma}^V] = [(i_V \boldsymbol{\gamma}) \cdot \boldsymbol{\beta}^V] = [\boldsymbol{\beta}^V] \circ [i_V(\boldsymbol{\gamma})]$$

and the left hand square :

$$[i_U(\gamma)] \circ [\alpha^U] = [\alpha^U \cdot (i_U \gamma)] = [\gamma^U \cdot \beta^U] = [\beta^U] \circ [\gamma^U].$$

Using the identity $[i_U(\gamma)] = [i_V(\gamma)]$, it follows that

 $[\gamma^{V}] \circ [\alpha^{V}] \circ [\alpha^{U}] = [\beta^{V}] \circ [i_{V}(\gamma)] \circ [\alpha^{U}] = [\beta^{V}] \circ [i_{U}(\gamma)] \circ [\alpha^{U}] = [\beta^{V}] \circ [\beta^{U}] \circ [\gamma^{U}].$ Thus, in $\Pi^{U,V}(X)$, the composite around the top of the rectangle is equal to the composite around the bottom.

The argument can be carried out for any choices of U, V in the above diagram. A straightforward recursive argument then shows that $[[\alpha]] = [[\beta]]$ as required. \Box

Remark 4.45. Working with the fundamental groupoid $\Pi(X)$ has the technical advantage that it is not necessary to impose any extra hypotheses on U, V and $U \cap$ V. The price to pay is the introduction (given here in an *ad hoc* manner) of the groupoid $\Pi^{U,V}(X)$.

As an immediate application, we get our first non-trivial calculation:

Theorem 4.46. There is an isomorphism of groups

 $\pi_1(S^1, *) \cong \mathbb{Z}.$

Proof. Fix $0 < \varepsilon < 1$ (to improve intuition, take ε very close to 0). Take the open cover of $S^1 \subset \mathbb{R}^2$ by $U := S^1 \cap \mathbb{R}^2_{y > -\varepsilon}$ and $V := S^1 \cap \mathbb{R}^2_{y < \varepsilon}$, so that U, Vare contractible (homeomorphic to open intervals) and $U \cap V$ is homeomorphic to a disjoint union of two (small!) open intervals. Consider the calculation of $\operatorname{Hom}_{\Pi(S^1)}(*,*)$ using the Seifert-van Kampen theorem, where $* = (0,1) \in S^1$. Choose distinguished paths $\gamma^U: I \to U$ and $\gamma^V: I \to V$ so that $\operatorname{Hom}_{\Pi(U)}(*, -*) =$

 $\{[\gamma^U]\}$ and $\operatorname{Hom}_{\Pi(V)}(*, -*) = \{[\gamma^V]\}$ (exercise: why is this possible?). This gives the loops $[\gamma^U \cdot (\gamma^V)^{-1}]$ and $[\gamma^V \cdot (\gamma^U)^{-1}]$ which are mutually inverse.

Using the relations in the definition of $\Pi^{U,V}(S^1)$, because $U \cap V$ is the disjoint union of two contractible spaces, it is straightforward to see that, for $[\alpha] \in \text{Hom}_{\Pi(S^1)}(*,*)$, there is a *unique* integer *n* such that

$$[\alpha] = \left([\gamma^V]^{-1} \circ [\gamma^U] \right)^{\circ n}$$

(exercise: prove this assertion!). The result follows.

Remark 4.47. It is *not* possible to prove this result using the fundamental group version of the Seifert-van Kampen theorem, (see Theorem 4.49 below). Why?

Corollary 4.48. The circle S^1 is not contractible.

4.6. The Seifert-van Kampen theorem for the fundamental group. Consider U, V an open cover of X and choose a basepoint $* \in U \cap V$ (which also gives a basepoint for U, V and X). The inclusions induce a commutative diagram of morphisms between fundamental groups:

$$\pi_1(U \cap V, *) \longrightarrow \pi_1(U, *)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\pi_1(V, *) \longrightarrow \pi_1(X, *).$$

This induces a unique group morphism (by Exercise 4.36):

$$\pi_1(U, *) \star_{\pi_1(U \cap V, *)} \pi_1(V, *) \to \pi_1(X, *).$$

Theorem 4.49. For U, V an open cover of X and basepoint $* \in U \cap V$, if $U \cap V$, U, V are all path-connected, then the group morphism $\pi_1(U,*) \star_{\pi_1(U \cap V,*)} \pi_1(V,*) \to \pi_1(X,*)$ is an isomorphism.

Proof. This result is a *consequence* of the result for the fundamental groupoid, Theorem 4.44, which did not require the path-connected hypothesis. It can be proved by adapting the proof of Theorem 4.44 to use loops. (Exercise: prove this result!) \Box

Exercise 4.50. Calculate $\pi_1(S^1 \vee S^1, *)$, where $S^1 \vee S^1$ is the *wedge* of two copies of $(S^1, *)$, obtained by identifying the basepoints.

As a consequence, calculate $\pi_1(\mathbb{R}^2 \setminus \{0, *\}), \bullet)$, for any basepoint \bullet .

Remark 4.51. Theorem 4.49 admits the conceptual interpretation that $\pi_1(-,-)$ preserves pushouts. Namely, the open cover U, V allows X to be recovered by gluing along $U \cap V$, which can be interpreted as saying that X is the pushout in pointed topological spaces of the diagram $V \leftarrow U \cap V \rightarrow U$.

Similarly, the group $\pi_1(U,*) \star_{\pi_1(U \cap V,*)} \pi_1(V,*)$ is the *pushout* of the diagram $\pi_1(V,*) \leftarrow \pi_1(U \cap V,*) \rightarrow \pi_1(U,*)$ (this is the universal property established in Exercise 4.36).

Note that the path-connected hypothesis has to be imposed on the spaces $U, V, U \cap V$.

Example 4.52. The conclusion of Theorem 4.49 is *false* for the open cover of the circle S^1 used in Theorem 4.46. (Exercise: check this.) The theorem is not violated, however, since $U \cap V$ is not path connected.

4.7. First applications of the Seifert-van Kampen theorem.

Definition 4.53. A topological space *X* is *simply connected* if it is path connected and, for any choice of basepoint, $\pi_1(X, x) = \{e\}$.

Proposition 4.54. For $2 \le n \in \mathbb{Z}$, the sphere S^n is simply connected.

Proof. The sphere S^n is path connected if n > 0; choose an open cover U^+ , U^- of S^n by the northern and southern hemispheres, so that $U^+ \cap U^-$ is homeomorphic to $S^{n-1} \times (-\varepsilon, \varepsilon)$. Since $n \ge 2$, these spaces are all path connected.

Choosing a basepoint $* \in U^+ \cap U^-$. The spaces U^+, U^- are contractible, hence the Seifert-van Kampen theorem implies that

$$\pi_1(S^n, *) \cong \{e\} \star_{\pi_1(S^{n-1}, *)} \{e\} \cong \{e\}.$$

In the category of pointed topological spaces, \mathfrak{Top}_{\bullet} , one replaces disjoint union II by the *wedge product*.

Definition 4.55. For (X, x), (Y, y) pointed topological spaces, the *wedge* $X \vee Y$ is the quotient

$$X \lor Y := (X \amalg Y)/x \sim y$$

which glues the basepoints together, pointed by the image of x and y.

Remark 4.56. To ensure that basepoints behave well in *homotopy theory*, one requires a hypothesis which ensures that there is a *nice* neighbourhood of the basepoint.

The following condition is introduced in [FT10]; it is slightly weaker than the condition *well pointed* which is frequently used.

Definition 4.57. A pointed topological space (X, x) is *correctly pointed* if there is an open neighbourhood $x \in V$ such that $V \simeq x$ rel $\{x\}$ (x is a strong deformation retract of V - see Section 3.6).

Proposition 4.58. For (X, x), (Y, y) path-connected, correctly-pointed topological spaces,

$$\pi_1(X \lor Y, *) \cong \pi_1(X, x) \star \pi_1(Y, y)$$

Proof. Let $x \in V_x \subset X$ and $y \in V_y \subset Y$ be open neighbourhoods which are strong deformation retracts of the basepoint. Then $U_Y := V_x \lor Y$ and $U_X := X \lor V_y$ give an open cover of $X \lor Y$ with $U_Y \simeq Y$, $U_X \simeq X$ and $U_Y \cap U_X = V_x \lor V_y \simeq *$. The conclusion follows from Theorem 4.49.

Example 4.59. For $n \in \mathbb{N}$, $\pi_1(\bigvee_n S^1, *) \cong \mathbb{Z}^{*n}$ is the free group on *n* generators.

Exercise 4.60. Give an example of a wedge $X \lor Y$ for which the conclusion of Proposition 4.58 is *false*.

4.8. Attaching cells. A fundamental way of *building* topological spaces is by *gluing* on cells. Here a cell of dimension n is $e^n \subset \mathbb{R}^n$, the closed Euclidean ball, which has boundary $\partial e^n = S^{n-1}$. The cell is *glued* to a topological space along its boundary.

Notation 4.61. For $f: S^n \to X$ a continuous map, let C_f denote the quotient space

$$C_f := (X \amalg e^{n+1})/s \sim f(s) \in X, \forall s \in \partial e^{n+1}.$$

This is equipped with the natural inclusion $X \hookrightarrow C_f$.

Remark 4.62. The notation reflects the fact that this is a special case of the construction of the *mapping cone* of a continuous map (note that e^{n+1} is homeomorphic to the cone CS^n).

Example 4.63. The projective plane $\mathbb{R}P^2$ is homeomorphic to the mapping cone $C_{[2]}$ of the continuous map $S^1 \stackrel{[2]}{\longrightarrow} S^1, z \mapsto z^2$ (considering $S^1 \subset \mathbb{C}$).

Proposition 4.64. For $f : S^n \to X$ a continuous map (with $n \ge 1$) and C_f the mapping cone of f, pointed by $x = f(*) \in X \subset C_f$, for $* \in S^n$:

(1) *if* n = 1, the inclusion $X \hookrightarrow C_f$ induces an isomorphism

$$\pi_1(C_f, x) \cong \pi_1(X, x) / [f]$$

where $[f] \lhd \pi_1(X, x)$ is the normal subgroup generated by the image of $\pi_1(f)$: $\pi_1(S^1, *) \cong \mathbb{Z} \to \pi_1(X, x);$

(2) if n > 1, $\pi_1(X, x) \cong \pi_1(C_f, x)$.

Proof. We may assume that X is path connected, since the image of f lies in a single path component of X.

By construction, C_f is a quotient of $X \amalg e^{n+1}$. Take an open cover U_∂ , U of e^{n+1} such that $S^n \subset U_\partial$ is homeomorphic to $S^n \times [0,1)$, $U \cong (e^{n+1})^\circ$ and $U_\partial \cap U \cong$ $S^n \times (0,1)$. Write V for the image of $X \amalg U_\partial$ in C_f and U for the image of U. Hence, by construction, $U, V, U \cap V$ are path connected and U is contractible, $U \cap V \simeq S^n$ and $V \simeq X$ (exercise: check this!).

Applying the Seifert-van Kampen theorem gives

$$\pi_1(C_f, x) \cong \pi_1(X, x) \star_{\pi_1(S^n, *)} \{e\}.$$

For $n \ge 2$, $\pi_1(S^n, *) \cong \{e\}$ and the result is clear. In the case n = 1, the right hand side is, by construction, isomorphic to the stated quotient.

Exercise 4.65. What happens when n = 0?

Example 4.66. Recall from Example 4.63 that $\mathbb{R}P^2$ is homeomorphic to the mapping cone $C_{[2]}$ of $S^1 \stackrel{[2]}{\longrightarrow} S^1$. Hence

$$\pi_1(\mathbb{R}P^2, *) \cong \mathbb{Z}/2.$$

 $(\mathbb{R}P^2$ is path connected, hence the choice of basepoint is unimportant.)

Moreover, considering the wedge product:

$$\pi_1(\mathbb{R}P^2 \vee \mathbb{R}P^2, *) \cong \mathbb{Z}/2 \star \mathbb{Z}/2.$$

4.9. **Products.** The product of two topological spaces is a *categorical product*: to give a continuous map to the product is equivalent to specifying the components. This means that the calculation of the fundamental group of a product is straightforward.

Proposition 4.67. For (X, x), (Y, y) pointed topological spaces, the projections $X \stackrel{p_X}{\leftarrow} X \times Y \stackrel{p_Y}{\rightarrow} Y$ induce an isomorphism of groups

$$\pi_1(X \times Y, (x, y)) \stackrel{\cong}{\to} \pi_1(X, x) \times \pi_1(Y, y).$$

Proof. The projections are pointed maps, hence induce morphisms of groups

$$\pi_1(X,x) \stackrel{\pi_1(p_X)}{\leftarrow} \pi_1(X \times Y, (x,y)) \stackrel{\pi_1(p_Y)}{\to} \pi_1(Y,y),$$

which induce the given morphism of groups.

Consider the based circle $(S^1, *)$ a loop based at (x, y) in $X \times Y$ is a continuous *pointed* map $\alpha : (S^1, *) \rightarrow (X \times Y, (x, y))$. This is equivalent to giving the two component maps, which are loops $p_X \circ \alpha : (S^1, *) \rightarrow (X, x)$ and $p_Y \circ \alpha : (S^1, *) \rightarrow (Y, y)$.

Similarly, a *based* homotopy $H : S^1 \times I \to X \times Y$ between two loops based at (x, y) is equivalent to giving the component based homotopies $H_X : S^1 \times I \to X$ and $H_Y : S^1 \times I \to X$.

It follows that the map $[\alpha] \mapsto ([p_X \circ \alpha], [p_Y \circ \alpha] \text{ is a bijection, as required.} \square$

Example 4.68. The fundamental group of the torus $S^1 \times S^1$ is

$$\pi_1(S^1 \times S^1, (*, *)) \cong \pi_1(S^1, *) \times \pi_1(S^1, *)$$
$$\cong \mathbb{Z} \times \mathbb{Z},$$

the free abelian group on two generators.

Remark 4.69. There is an alternative method for calculating $\pi_1(S^1 \times S^1, (*, *))$ by using Proposition 4.64. The torus is a quotient $I \times I \twoheadrightarrow S^1 \times S^1$ of the square. Under this map, the boundary $\partial(I \times I)$ is sent to $S^1 \vee S^1$ and filling in the square is equivalent to adding a two-cell, which is glued along an attaching mapping

$$f: \partial e^2 \cong S^1 \to S^1 \vee S^1.$$

The map f has class $[f] \in \pi_1(S^1 \vee S^1, *) \cong \langle \alpha \rangle \star \langle \beta \rangle$; this class identifies as $\alpha \beta \alpha^{-1} \beta^{-1}$, the *commutator* on the generators of the free group (prove this!).

Proposition 4.64 gives

$$\pi_1(S^1 \times S^1, (*, *)) \cong \langle \alpha \rangle \star \langle \beta \rangle / (\alpha \beta \alpha^{-1} \beta^{-1})$$

which is isomorphic to the free abelian group on α , β .

Exercise 4.70. Calculate the fundamental group of the Klein bottle K (see Example 1.47). Deduce that the torus $S^1 \times S^1$ and K do not have the same homotopy type.

4.10. Groups as fundamental groups.

Theorem 4.71. For G a discrete group, there exists a pointed topological space (X_G, x) such that

$$\pi_1(X_G, x) \cong G.$$

Moreover, this construction is functorial: $G \mapsto X_G$ *is a functor*

$$\mathfrak{Group} \to \mathfrak{Top}_{\bullet}.$$

Proof. If *G* admits a *finite presentation* (finitely many generators and relations), the existence of such a X_G follows easily from Proposition 4.64. (Exercise!)

However, the construction can be made *functorial* by using the canonical presentation

$$\mathscr{F}(G \times G) \to \mathscr{F}(G) \twoheadrightarrow G$$

of Example 4.30. Namely, X_G is built from the (in general infinite) wedge $\bigvee_{g \in G} S^1$ by attaching, for each pair $(g_1, g_2) \in G \times G$ a two cell along the loop $S^1 \to \bigvee_{g \in G} S^1$ which is given by the path

$$\alpha_{g_1} \cdot \alpha_{g_2} \cdot \alpha_{g_1g_2}^{-1},$$

where $\alpha_g : S^1 \to \bigvee_{g \in G} S^1$ is the inclusion of the circle indexed by g, which can be interpreted as a *loop*. It is clear that this construction is functorial (no arbitrary choices have been made).

The proof of Proposition 4.64 generalizes to this setting, which shows that the space X_G has the required fundamental group. (Exercise: fill in the details.)

Example 4.72. Carrying out this construction for the group $\mathbb{Z}/2$, one has

$$\mathbb{Z}/2 = \{0, 1\}$$

$$\mathbb{Z}/2 \times \mathbb{Z}/2 = \{(0, 0), (0, 1), (1, 0), (1, 1)\}$$

so that $X_{\mathbb{Z}/2}$ is built from $S^1 \vee S^1$ by attaching four 2-cells.

7

This space is *homotopy equivalent* to $\mathbb{R}P^2$; the cells and relations associated to $0 \in \mathbb{Z}/2$ are redundant.

Remark 4.73. Theorem 4.71 shows that algebraic topology contains group theory!

Remark 4.74. There is a *better* construction, which is given by the *classifying space* of a group. This is a special case of the construction of the *classifying space* BC of a small category C. See Example 6.42 and Remark 6.47.

✓24/10/13

✓11/12/13

4.11. Addendum: mapping cylinders and mapping cones. The mapping cone is \checkmark ^{10/10/13} a very important construction in homotopy theory; it was introduced in Section 4.8 in the special case of attaching cells. To introduce the general construction, we first consider the *mapping cylinder*.

Recall that the cylinder on a topological space *X* is the space $X \times I$; the inclusion $X \hookrightarrow X \times I$, $x \mapsto (x, 0)$ gives the subspace $X_0 \subset X \times I$, which is a strong deformation retract of $X \times I$ (see Definition 3.24), with retract the projection $X \times I \xrightarrow{p_X} X$. In particular, *X* and $X \times I$ have the same homotopy type. The same construction works replacing *I* with the open subspaces $[0, \frac{2}{3})$, for example.

Definition 4.75. For $f : X \to Y$ a continuous map, the *mapping cylinder* M_f is the quotient space of $(X \times I) \amalg Y$

$$M_f := (X \times I) \cup_{(x,1) \sim f(x)} Y$$

which corresponds to gluing the end of the cylinder $X \times \{1\}$ to Y using the map f.

The inclusion $Y \hookrightarrow M_f$ and the retraction $M_f \to Y$ induced by the projection $X \times I \to X$ exhibits Y as a deformation retract of M_f and the inclusion $X_0 \subset X \times I$ provides an inclusion $X \stackrel{i}{\hookrightarrow} M_f$.

Lemma 4.76. For $f : X \to Y$, the following diagram commutes:

Proof. Exercise.

Remark 4.77. The mapping cylinder M_f has a standard open cover:

$$U := X \times [0, \frac{2}{3})$$
$$V := \left(X \times (\frac{1}{3}, 1]\right) \cup_f Y$$

so that *X* is a deformation retract of *U* and *V* \simeq *Y*. The intersection *U* \cap *V* identifies with the subspace *X* $\times (\frac{1}{3}, \frac{2}{3})$ of the cylinder, and has the homotopy type of *X*.

The factorization of f given by Lemma 4.76 replaces f by the inclusion $X \hookrightarrow M_f$ followed by the homotopy equivalence $M_f \xrightarrow{\simeq} Y$. The open neighbourhood U of X means that the inclusion has *good homotopical properties*.

Definition 4.78. For $f : X \to Y$ a continuous map, the *mapping cone* C_f is the quotient

$$C_f := M_f / (x, 0) \sim (x', 0)$$

which collapses the subspace $X \times \{0\}$ of the attached cylinder to a point. This is homeomorphic to the space obtained by attaching the cone CX to Y using the map f to glue the base.

Remark 4.79. The open cover $M_f = U \cup V$ induces an open cover $\underline{U}, \underline{V}$ by passage to the quotient. Here \underline{V} is homeomorphic to V and $\underline{U} \cap \underline{V} \cong X \times (\frac{1}{3}, \frac{2}{3})$ has the homotopy type of X. However, the space \underline{U} is *contractible* (it is a cone).

Remark 4.80. There is a quotient map

$$C_f \cong CX \cup_f Y \twoheadrightarrow Y/\text{Image}f$$

given by collapsing the cone CX to a point.

In general there spaces are not homotopy equivalent.

GEOFFREY POWELL

Example 4.81.

- (1) Consider $f : X = \{*_1, *_2\} \rightarrow \{*\} = Y$. The space *Y*/Image *f* is simply $\{*\}$, whereas the cone C_f is homeomorphic to S^1 . These spaces do not have the same homotopy type.
- (2) Consider $f, g: \partial I \Rightarrow I$, where f is the constant map at 0 and g is the inclusion of the boundary. Since I is contractible, f, g are homotopic. However:

$$I/\text{Image}f \cong I$$
$$I/\text{Image}g \cong S^1,$$

in particular, these two spaces do not have the same homotopy type. Hence the quotient by the image of a map does *not* behave well in homotopy theory.

Remark 4.82. The construction of the mapping cone is *homotopy invariant*: if $f \simeq g$, then $C_f \simeq C_g$.

5. COVERING SPACES

5.1. Slice categories.

Definition 5.1. For \mathscr{C} a category and $X \in Ob \mathscr{C}$, let $\mathscr{C} \downarrow X$ denote the category of objects over *X*:

- \triangleright objects: morphisms with range X in $\mathscr{C}: E \xrightarrow{f} X$;
- \triangleright a morphism from $E \xrightarrow{f} X$ to $E' \xrightarrow{f'} X$ is a morphism $g : E \to E'$ which makes the following diagram commute:

Exercise 5.2. For \mathscr{C} , *X* as above,

- (1) check that $\mathscr{C} \downarrow X$ is a category; if \mathscr{C} is small, show that $\mathscr{C} \downarrow X$ is small;
- (2) show that a morphism $\beta : X \to Y$ induces a functor $\mathscr{C} \downarrow \beta : \mathscr{C} \downarrow X \to \mathscr{C} \downarrow Y$;
- (3) deduce that, if \mathscr{C} is small, $\mathscr{C} \downarrow -$ defines a functor $\mathscr{C} \to \mathfrak{CAT}$ to the category of small categories.

Example 5.3. The case of interest here is where $\mathscr{C} = \mathfrak{Top}$ is the category of topological spaces and continuous maps; the category $\mathfrak{Top} \downarrow B$ is the category of topological spaces over *B*.

Definition 5.4. For *B* a topological space and $E_1 \xrightarrow{f_1} B$, $E_2 \xrightarrow{f_2} B$

(1) the *coproduct* $(E_1 \xrightarrow{f_1} B) \amalg (E_2 \xrightarrow{f_2} B)$ in $\mathfrak{Top} \downarrow B$ is the topological space $E_1 \amalg E_2$ equipped with the continuous map $E_1 \amalg E_2 \xrightarrow{f_2 \amalg f_2} B$;

✔07/11/13

(2) the *fibre product* in $\mathfrak{Top} \downarrow B$ is the topological space $E_1 \times_B E_2$ (the subspace $\{(e_1, e_2) \in E_1 \times E_2 | f_1(e_1) = f_2(e_2)\}$), equipped with the continuous map $E_1 \times_B E_2 \to B$ induced by $(e_1, e_2) \mapsto f_1(e_1) = f_2(e_2)$.

Proposition 5.5. For $A \rightarrow B$ a continuous map, the fibre product $- \times_B A$ induces the base change functor

$$\begin{array}{rcl} \mathfrak{Top} \downarrow B & \to & \mathfrak{Top} \downarrow A \\ (E \to B) & \mapsto & (E \times_B A \xrightarrow{p_A} A) \end{array}$$

where p_A is induced by the projection $E \times A \rightarrow A$.

Proof. Exercise.

Remark 5.6. Base change or *pull back* is a fundamental construction; frequently we are interested in studying objects $E \xrightarrow{f} B$ where *f* has specified properties which are preserved under pullback.

5.2. Local homeomorphisms, locally trivial maps and covering maps. Covering spaces arise naturally in algebraic topology. The first non-trivial examples occur in considering the circle; here S^1 is considered as the subspace of $\mathbb{C} \{z \mid |z| = 1\}$.

Example 5.7. Consider the following continuous maps

- (1) $p : \mathbb{R} \to S^1, t \mapsto e^{2\pi t};$
- (2) $[n]: S^1 \to S^1$, for $0 \neq n \in \mathbb{Z}$, given by $z \mapsto z^n$.

Both p and [n] are surjective (this is why n = 0 is excluded); for instance, the inverse image $p^{-1}(1)$ is $\mathbb{Z} \subset \mathbb{R}$, whereas the inverse image $[n]^{-1}(1)$ is the multiplicative

subgroup of *n*th roots of unity $\in \mathbb{C}$, which is isomorphic to \mathbb{Z}/n . More is true: there is nothing special about the choice of the point $1 \in S^1$ above.

Moreover, as remarked above, p(0) = 1; restricting the map p to the open interval $\left(-\frac{1}{2}, \frac{1}{2}\right)$, p defines a *homeomorphism*

$$\mathbb{R} \supset (-\frac{1}{2}, \frac{1}{2}) \xrightarrow{p, \cong} S^1 \backslash \{-1\} \subset S^1$$

from an open neighbourhood of $0 \in \mathbb{R}$ to an open neighbourhood of $1 \in S^1$. Better still everything can be shifted by an integer k. (Exercise: exhibit a similar property of $[n] : S^1 \to S^1$.)

The property indicated above is that of a local homeomorphism:

Definition 5.8. A continuous map $f : X \to Y$ is a *local homeomorphism* if, for every point $x \in X$, there exists an open neighbourhood $x \in U_x \subset X$ such that $f(U_x)$ is open in Y and $f|_{U_x} : U_x \xrightarrow{\cong} f(U_x)$ is a homeomorphism.

Example 5.9.

- (1) Every homeomorphism is a local homeomorphism.
- (2) The maps $p, [n] : S^1 \to S^1$ $(n \neq 0)$ are local homeomorphisms.
- (3) The inclusion $(0,1) \hookrightarrow \mathbb{R}$ is a local homeomorphism. In particular, an open homeomorphism is not necessarily surjective.
- (4) Recall (Example 2.15) that R[⊖] is the real line with the origin doubled. Identifying the two origins gives a continuous surjection

 $q: \mathbb{R}^{\ominus} \twoheadrightarrow \mathbb{R}.$

This is a quotient map, which is a local homeomorphism. The inverse image $q^{-1}(t)$, for $t \in \mathbb{R}$ is a single point everywhere, *except* at t = 0.

Lemma 5.10. A local homeomorphism $f : X \to Y$ is an open map (for every open subset $U \subset X$, f(U) is open in Y).

Proof. Exercise.

Exercise 5.11. Give an example of an open map which is *not* a local homeomorphism.

Proposition 5.12. For $X \xrightarrow{f} Y \xrightarrow{g} Z$ continuous maps,

(1) *if* f, g are both local homeomorphisms, then so is $g \circ f$;

(2) *if* g and $g \circ f$ are both local homeomorphisms, then so is f.

Proof. Suppose that f, g are local homeomorphisms, thus there exist open neighbourhoods $x \in U_x \subset X$ and $f(x) \in V_{f(x)} \subset Y$ which satisfy the conditions of Definition 5.8 for f and g respectively. Then $f(U_x) \cap V_{f(x)} \subset Y$ is open and contains f(x); the subset $W_x := f^{-1}(f(U_x) \cap V_{f(x)}) \cap U_x \subset X$ is an open neighbourhood of x. By construction, $g \circ f(W_x)$ is an open subset of $g(V_{f(x)})$, hence is open in Z; moreover, $(g \circ f)|_{W_x}$ is a homeomorphism onto $g \circ f(W_x)$. This proves the first point.

For the second point, since $g \circ f$ is a local homeomorphism by hypothesis, $\forall x \in X$ there exists an open neighbourhood $x \in U'_x$ such that $g \circ f(U'_x)$ is open in Z and the restriction of $g \circ f$ to U'_x is a homeomorphism. Similarly, there is an open neighbourhood $f(x) \in V_{f(x)}$ as above. Consider the open subspace $A_{g \circ f(x)} := g \circ f(U'_x) \cap g(V_{f(x)}) \subset Z$, which contains $g \circ f(x)$. The inverse image of $A_{g \circ f(x)}$ under the homeomorphism $g \circ f|_{U'_x}$ is the required open neighbourhood of x for the continuous map f.

Exercise 5.13. Give examples of continuous maps $X \xrightarrow{f} Y \xrightarrow{g} Z$ such that

- (1) $g \circ f$ is a local homeomorphism (such as the identity map!) but f (hence g also) is not a local homeomorphism;
- (2) $f, g \circ f$ are local homeomorphisms but g is not. (Hint: f can be the inclusion of an open subset.)

The local homeomorphisms of Example 5.7 have a further property: they are *locally trivial*. The following is the general definition of local triviality.

Definition 5.14. A continuous map $p : E \rightarrow B$ is

(1) *trivial* (or a *projection*) if there exists a space *F* and a homeomorphism $E \xrightarrow{\cong} F \times B$ which makes the following diagram commute:

where pr_B is the projection onto *B*;

(2) *locally trivial* if there exists an open cover (a *trivializing cover*) $\mathscr{U} := \{U_i | i \in \mathscr{I}\}$ such that the restriction $p^{-1}(U_i) \to U_i$ is trivial $\forall i \in \mathscr{I}$.

Exercise 5.15. When is a locally trivial continuous map a local homeomorphism?

Remark 5.16. Frequently when studying locally trivial maps, one imposes a condition on how the spaces $p^{-1}(U_i)$ can be glued together to form *E*. This is considered in the general theory of *fibre bundles*.

Definition 5.17. A continuous map $p : E \rightarrow B$ is

- (1) a *covering* (of *B*) if it is locally trivial and, $\forall b \in B$, the fibre $p^{-1}(b)$ is a **non-empty** discrete topological subspace of *E*;
- (2) a *finite covering* (of *B*) if, in addition, each $|p^{-1}(b)| < \infty \forall b \in B$. If the cardinality $|p^{-1}(b)| = n$ is constant, *p* is a covering with *n*-sheets (or leaves).

Remark 5.18. The non-empty hypothesis ensures that a covering map is surjective.

Example 5.19.

- (1) If *B* is a topological space and *K* a set (considered as a topological space with the discrete topology), the projection $pr_B : K \times B \rightarrow B$ is a covering map.
- (2) The map $p : \mathbb{R} \to S^1$, $t \mapsto e^{2\pi t}$ is a covering map with fibre $p^{-1}(z) \cong \mathbb{Z}$, $\forall z \in S^1$.
- (3) The map $[n]: S^1 \to S^1, z \mapsto z^n \ (n \neq 0)$ is a finite covering with *n* sheets.

Proposition 5.20. *If* $p : E \to B$ *is a covering, then* p *is a local homeomorphism.*

Proof. Exercise.

Exercise 5.21. Show that

- (1) the inclusion of an open subspace $U \subset X$ (which is a local homeomorphism) is a covering if and only if U = X;
- (2) the quotient map $\mathbb{R}^{\ominus} \twoheadrightarrow \mathbb{R}$ is not a covering.

Proposition 5.22. *For* $p : E \rightarrow B$ *a covering map, the map*

$$B \to \mathbb{N}, b \mapsto |p^{-1}(b)|$$

is continuous, where \mathbb{N} is given the discrete topology. In particular, the cardinality of fibres is constant on each connected component of B.

GEOFFREY POWELL

Proof. By hypothesis, $\forall b \in B$ there is an open neighbourhood $b \in U \subset B$ such that $p^{-1}(U) \cong K \times U$, for some set K and the restriction $p|_{p^{-1}(U)}$ identifies the projection. In particular, the cardinality of the fibres is constant on U.

Proposition 5.23. For $p_1: E_1 \rightarrow B$, $p_2: E_2 \rightarrow B$ two covering maps,

- (1) the map $p_1 \amalg p_2 : E_1 \amalg E_2 \to B$ is a covering, which is finite if and only if both p_1 and p_2 are finite;
- (2) the fibre product $E_1 \times_B E_2$, equipped with the induced map $p : E_1 \times_B E_2 \to B$, $(e_1, e_2) \mapsto p_1(e_1)$ is a covering, which is finite if and only if both p_1 and p_2 are finite.

5.3. Morphisms.

Definition 5.24. For $p_1 : E_1 \to B$, $p_2 : E_2 \to B$ covering spaces, a morphism of covering spaces $(E_1 \to B) \to (E_2 \to B)$ is a morphism in $\mathfrak{Top} \downarrow B$, namely a continuous map $f : E_1 \to E_2$ which makes

commute.

Remark 5.25. Proposition 5.12 implies that the continuous map $f : E_1 \rightarrow E_2$ of Definition 5.24 is a local homeomorphism.

Proposition 5.26. Covering spaces over B and morphisms of covering spaces over B form a category $\mathfrak{Cover}(B)$.

Proof. Exercise.

✓ 23/10/13

Remark 5.27. Proposition 5.26 implies that there is a natural notion of *isomorphism* of covering spaces; this is simply a morphism of covering spaces corresponding to a *homeomorphism* $f : E_1 \rightarrow E_2$ (as in Definition 5.24).

Example 5.28. For B a connected topological space and sets K, L (discrete topological spaces), consider a morphism between the trivial coverings

By commutativity of the diagram, f is of the form $(b,k) \mapsto (b,g(b,k))$ for a continuous map $g : B \times K \to L$. In particular, for fixed $k \in K$, $g(-,k) : B \to L$ is continuous, hence is constant, since L is a discrete topological space and B is connected, by hypothesis.

It follows that the morphism of coverings is equivalent to a set map $\overline{f} : K \to L$. In particular $f : B \times K \to B \times L$ is a covering map if and only if \overline{f} is surjective.

Proposition 5.29. For *B* a locally connected topological space and a morphism of covering spaces

- (1) the image of f defines covering spaces Image(f) → B and E₂\Image(f) → B and the induced morphism E₁ → Image(f) is a morphism of covering spaces over B;
- (2) there is an isomorphism of covering spaces E₂ ≃ Image(f) II (E₂\Image(f)) over B;
- (3) the morphism $E_1 \rightarrow \text{Image}(f)$ is a covering.

In particular, if f is surjective (for instance if E_2 is connected), then $f : E_1 \to E_2$ is a covering.

Proof. The result is proved by reducing to the case where both p_1 and p_2 are trivial coverings over a connected topological space; this case follows using the analysis of Example 5.28.

For the general case, for any $b \in B$, there exists a connected open neighbourhood $b \in U \subset B$ such that p_1, p_2 are trivial when restricted to U, since B is locally connected, by hypothesis.

Proposition 5.30. Let $p : E \to B$ be a covering. Then the associated covering $p^{[2]} : E \times_B E \to B$ is isomorphic to

$$\left(E \to B \right) \amalg \left(E' \to B \right)$$

where $E' \subset E \times_B E$ is the subspace of points (e_1, e_2) such that $e_1 \neq e_2$ and $E \rightarrow B$ the diagonal subspace $E_{\text{diag}} \subset E \times_B E$ of points (e, e).

Proof. As sets it is clear that $E \times_B E = E' \amalg E_{\text{diag}}$; by considering local behaviour it follows that this is a homeomorphism of topological spaces and that the projections are coverings.

Remark 5.31. If *B* is locally connected, one can deduce the result from Proposition 5.29, since the diagonal map induces a morphism of covering spaces:

5.4. Lifting maps.

Definition 5.32. For $p : E \to B$ a covering and $g : X \to B$ a continuous map, a *lifting* of g is a continuous map $\tilde{g} : X \to E$ which defines a morphism of \mathfrak{Top}/B , so that the following diagram commutes:

$$\begin{array}{c} \tilde{g} \xrightarrow{q} \mathcal{A} \\ \downarrow p \\ X \xrightarrow{q} \mathcal{B}. \end{array}$$

Example 5.33. Liftings do not always exist; for example:

This can be proved using the fundamental group: the space \mathbb{R} is contractible, hence has $\pi_1(\mathbb{R}, *) = \{e\}$, whereas $\pi_1(S^1, *) \cong \mathbb{Z}$. The group \mathbb{Z} is not a retract of the trivial group $\{e\}$.

Under a connectivity hypothesis, liftings (when they exist) are unique:

Proposition 5.34. For $p : E \to B$ a covering and $g : X \to B$ a continuous map, where X is connected, two liftings $\tilde{g}_1, \tilde{g}_2 : X \rightrightarrows E$ of g coincide if and only if $\exists x \in X$ such that $\tilde{g}_1(x) = \tilde{g}_2(x)$.

Proof. The liftings \tilde{g}_1, \tilde{g}_2 induce a continuous map $G : X \to E \times_B E$, by $x \mapsto (\tilde{g}_1(x), \tilde{g}_2(x))$ which fits into a commutative diagram

where the isomorphism of coverings is provided by Proposition 5.30.

The hypothesis that *X* is connected implies that, under the isomorphism, *G* maps either to E_{diag} or to *E'*. In the first case $\tilde{g}_1 = \tilde{g}_2$ and in the second, $\forall x \in X$, $\tilde{g}_1(x) \neq \tilde{g}_2(x)$.

Example 5.35. Recall that a covering map is a local homeomorphism. Unicity of liftings does not hold in general for local homeomorphisms: for instance, consider the quotient map

 $q:\mathbb{R}^\ominus\to\mathbb{R}$

which identifies the 'two origins' (see Example 2.15 for \mathbb{R}^{\ominus}). As observed in Example 5.9, this is a local homeomorphism. However, there are two *sections* of *q* (that is *lifts* of the identity $Id_{\mathbb{R}}$), corresponding to which of the 'two origins' is chosen. These coincide for all $0 \neq t \in \mathbb{R}$.

The behaviour of the morphism of fundamental groupoids $\Pi(p) : \Pi(E) \to \Pi(B)$ associated to a covering *p* determines the covering under suitable hypotheses. The key ingredient is the lifting of paths and homotopies.

Theorem 5.36. For $p: E \to B$ a covering and $\alpha, \beta: I \rightrightarrows B$ two paths such $\alpha \sim_{\text{rel} \partial I} \beta$ via a homotopy $H: I \times I \to B$,

- (1) for any $e \in p^{-1}(\alpha(0))$, there exist unique lifts $\tilde{\alpha}_e, \tilde{\beta}_e : I \to E$ of α, β respectively such that $\tilde{\alpha}_e(0) = e = \tilde{\beta}_e(0)$;

Proof. Consider the path $\alpha : I \to B$ (the argument for β is identical) and take an open cover $\mathscr{U} := \{U_i | i \in \mathscr{I}\}$ which trivializes the covering, so that $p^{-1}(U_i) \cong U_i \times K_i$, for some discrete topological space K_i . By Lebesgue's theorem, Proposition 4.38, $\exists 0 < N \in \mathbb{N}$ such that $\forall 0 \le s < N, \exists i_s \in \mathscr{I}$ such that $\alpha([\frac{s}{N}, \frac{s}{N}] \subset U_{i_s})$.

The lifting $\tilde{\alpha}$ is constructed inductively on s for each sub-interval of the form $[0, \frac{s}{N}]$. To start the process, one takes $\tilde{\alpha}(0) = x$. Suppose $\tilde{\alpha}$ constructed on $[0, \frac{s}{N}]$ and consider the extension to $[0, \frac{s+1}{N}] = [0, \frac{s}{N}] \cup [\frac{s}{N}, \frac{s+1}{N}]$. By hypothesis of the trivializing cover, $p^{-1}(U_{i_s})$ is a trivial covering, hence there exists a *unique* lifting of $\alpha|_{[\frac{s}{N},\frac{s+1}{N}]}$ to $p^{-1}(U_{i_s}) \subset E$ with value at $\frac{s}{N}$ equal to $\tilde{\alpha}(\frac{s}{N})$. By construction this gives an extension to a continuous map $\tilde{\alpha}$ defined on $[0, \frac{s+1}{N}]$.

Consider the homotopy $H : I \times I \to B$; the lifting to \tilde{H} uses a generalization of the previous argument. Lebesgue's theorem provides a decomposition of $I \times I$ into squares of edge $\frac{1}{N}$ each of which maps to just one open of \mathscr{U} . As before, one constructs a lifting by adding the little squares; the unicity result of Proposition 5.34 implies that the individual lifts can be glued along the edges to define the continuous map \tilde{H} .

It remains to show that \tilde{H} is a homotopy rel ∂I between $\tilde{\alpha}$ and $\tilde{\beta}$. By construction $\tilde{H}|_{\{0\}\times I}$ and $\tilde{H}|_{\{1\}\times I}$ are lifts of the respective constant maps at $\alpha(0)$ and $\alpha(1)$.

By unicity of liftings (Proposition 5.34), these liftings are respectively the constant maps at $\tilde{\alpha}(0) = x$ and at $\alpha(1)$.

Similarly, by uniqueness of liftings, $\hat{H}|_{I \times \{0\}} = \tilde{\alpha}$ and $\hat{H}|_{I \times \{1\}} = \hat{\beta}$. It follows, since $\tilde{H}|_{\{1\} \times I}$ is constant at $\tilde{\alpha}(1)$, that $\tilde{\alpha}(1) = \tilde{\beta}(1)$ and \tilde{H} is a relative homotopy, as required.

Corollary 5.37. For $p: E \rightarrow B$ a covering,

- (1) the groupoid morphism $\Pi(p) : \Pi(E) \to \Pi(B)$ is faithful $(\forall e_1, e_2 \in E, the map \operatorname{Hom}_{\Pi(E)}(e_1, e_2) \to \operatorname{Hom}_{\Pi(B)}(p(e_1), p(e_2))$ is injective);
- (2) $\forall e \in E$, the group morphism $\pi_1(p) : \pi_1(E, e) \to \pi_1(B, p(e))$ is injective.

Proof. Consider two morphisms $[\tilde{\alpha}], [\tilde{\beta}] \in \text{Hom}_{\Pi(E)}(e_1, e_2)$, represented by paths $\tilde{\alpha}, \tilde{\beta} : I \Rightarrow E$. If $\Pi(p)[\tilde{\alpha}] = \Pi(p)[\tilde{\beta}]$, then $\alpha := p(\tilde{\alpha})$ and $\beta := p(\tilde{\beta})$ are homotopic rel ∂I . By construction, $\tilde{\alpha}$ and $\tilde{\beta}$ are lifts of α and β respectively, with the same starting point, e_1 . By the lifting of homotopies, Theorem 5.36, it follows that $\tilde{\alpha}$ and $\tilde{\beta}$ are homotopic rel ∂I .

The second statement follows from the first.

Theorem 5.38. For a covering $p : E \to B$ and $g : X \to B$ a continuous map, where X is connected and locally path connected, there exists a lifting

(where p(e) = g(x)) if and only if $g_*(\pi_1(X, x)) \subset \operatorname{Image}\{\pi_1(E, e) \xrightarrow{p_*} \pi_1(B, g(x))\}$.

Proof. The condition on π_1 is clearly necessary.

For the converse, the construction is carried out in two steps: first a map \tilde{g} is constructed using path lifting and then the local path connectivity is used to show that it is continuous. The hypotheses imply that *X* is path connected.

Fix $x \in X$ and $e \in E$ such that p(e) = g(x); for a point $y \in X$, define $\tilde{g}(y) := \widetilde{g(\alpha)}_e(1)$, where α is any path from x to y in X. By Theorem 5.36, $\tilde{g}(y)$ only depends on $[\alpha] \in \operatorname{Hom}_{\Pi(X)}(x, y)$.

Consider the hypothesis on π_1 ; by lifting of homotopies (Theorem 5.36), this implies that any composite pointed map $(S^1, *) \to (X, x) \to (B, g(x))$ lifts to a map $(S^1, *) \to (E, *)$. In particular, if α , β are two paths from x to y in X, the composite path $\beta^{-1} \circ \alpha$ defines a loop $(S^1, *) \to (X, x)$ which lifts to a *loop* as above. By construction this provides lifts $\widehat{g(\alpha)}$ and $\widehat{g(\beta)}$ which compose to form a loop - hence have the same endpoints, as required.

It remains to prove that \tilde{g} is continuous. The space E has a basis of open subsets given by pairs (U, k) where $U \subset B$ is open such that $p^{-1}(U) \cong U \times K$ is a trivial covering and $k \in K$. It suffices to show that $\tilde{g}^{-1}(U, k)$ is open in X.

Consider $y \in \tilde{g}^{-1}(U,k) \subset X$; since X is locally path connected, there exists a path connected open subset $y \in V \subset X$ such that $g(V) \subset U$. By unicity of path lifting and the fact that $p^{-1}(U)$ is a trivial cover, it follows that \tilde{g} maps V to (U,k). This completes the proof.

Recall from Definition 4.18 the category \mathfrak{Top}_{\bullet} of pointed (or based) topological spaces and the notation for the set of based homotopy classes $[(X, x), (Y, y)]_{\mathfrak{Top}_{\bullet}}$ of based maps from X to Y.

Definition 5.39. For (X, x) a pointed topological space and $0 < n \in \mathbb{N}$, the *nth* homotopy group is

$$\pi_n(X, x) := [(S^n, *), (X, x)]_{\mathfrak{Top}_{\bullet}}$$

where the addition of morphisms is induced by the *pinch map* $S^n \to S^n \vee S^n$ which collapses the equator to a point. (Exercise: prove that $\pi_n(X, x)$ is a group and that, for n = 1, this recovers the fundamental group.)

Remark 5.40.

(1) The *n*th homotopy group defines a functor

 $\pi_n(-):\mathfrak{Top}_{\bullet}\to\mathfrak{Group}.$

(Exercise: check this.)

(2) For $n \ge 2$, $\pi_n(X, x)$ is an *abelian* group. (Slightly harder exercise: why?)

Corollary 5.41. For $p : E \to B$ a covering, basepoints $b \in B$, $e \in p^{-1}(b)$ and $2 \le n \in \mathbb{N}$, the covering map p induces an isomorphism:

$$\pi_n(p): \pi_n(E,e) \xrightarrow{=} \pi_n(B,b).$$

Proof. For $n \ge 1$, S^n is connected and locally path connected and, for $n \ge 2$, Proposition 4.54 shows that $\pi_1(S^n, *) = 0$. Hence Theorem 5.38 implies that any based continuous map $(S^n, *) \to (B, b)$ lifts to a continuous map $(S^n, *) \to (E, e)$, which shows surjectivity of $\pi_n(p)$. To show injectivity, one uses the lifting of homotopies, as in Theorem 5.36. (Exercise: provide the details.)

Remark 5.42. One way of understanding this result is by the *much more* general theory of *fibrations*, which is based on the lifting property of homotopies. In particular, a covering $p : E \to B$ is a fibration, with fibre $F := p^{-1}(b)$ (in the case of coverings, F is a discrete space). In general, a fibration $F \to E \to B$ gives a relationship between the homotopy groups $\pi_n(F)$, $\pi_n(E)$ and $\pi_n(B)$.

5.5. Morphisms between coverings and the universal cover. The general lifting result, Theorem 5.38, has an immediate application to the study of the category of coverings Cover(B) over B.

Proposition 5.43. For *B* a connected and locally path connected topological space and two coverings $p_1 : E_1 \to B$, $p_2 : E_2 \to B$, where E_1 is connected, and points $b \in B$, $e_1 \in p_1^{-1}(b)$, $e_2 \in p_2^{-1}(b)$, there exists a morphism of coverings

if and only if $(p_1)_*\pi_1(E_1, e_1) \subset (p_2)_*\pi_1(E_2, e_2) \subset \pi_1(B, b)$.

Proof. An immediate consequence of Theorem 5.38.

Recall from Definition 4.53 that a space *X* is simply connected if $|\pi_0(X)| = 1$ and $\pi_1(X, x) = \{e\}$, for any choice of basepoint.

Corollary 5.44. For *B* a connected and locally path connected topological space and two coverings $p_1 : E_1 \to B$, $p_2 : E_2 \to B$ and points $b \in B$, $e_1 \in p_1^{-1}(b)$, $e_2 \in p_2^{-1}(b)$,

- (1) if E_1 is simply-connected, there is a unique morphism of coverings $E_1 \rightarrow E_2$ which sends e_1 to e_2 ;
- (2) if E_2 is simply-connected and E_1 is connected but $\pi_1(E_1, e_1) \neq \{e\}$ there is no morphism of coverings from E_1 to E_2 ;
- (3) *if* E_1 , E_2 are both simply-connected, then any morphism of coverings from E_1 to E_2 is an isomorphism.

Proof. The first two statements are straightforward applications of Proposition 5.43. The first statement and unicity of lifts implies the final statement. \Box

This shows the interest of the following definition:

40

√01/11/13

Definition 5.45. A *universal cover* of a topological space *B* is a covering $p : E \rightarrow B$ such that *E* is simply-connected.

Remark 5.46.

- (1) A universal cover need not exist.
- (2) If *B* is connected and locally path connected, Corollary 5.44 implies that (if

it exists) a universal cover is unique up to isomorphism (but *not* unique isomorphism, in general). Thus one can talk about *the* universal cover, without ambiguity; this is frequently denoted

$$\tilde{p}: B \to B.$$

(3) If *B* admits a universal cover, *B* is path connected.

Example 5.47.

- (1) The universal cover of the circle is the covering $\mathbb{R} \to S^1$.
- (2) The universal cover of the torus $S^1 \times S^1$ is $\mathbb{R}^2 \to S^1 \times S^1$, given by the product of two copies of the universal covering of S^1 .
- (3) The universal covering of $\mathbb{R}P^2$ is the quotient map $S^2 \to \mathbb{R}P^2$, associated to the antipodal action (see Example 1.44.)

To prove the *existence* of a universal cover, the following condition is introduced.

Definition 5.48. A topological space *B* is *semi-locally simply-connected* if, $\forall b \in B$, $\exists b \in U \subset B$ an open neighbourhood such that the inclusion $U \hookrightarrow B$ induces the trivial group homomorphism

$$\pi_1(U,b) \stackrel{\{e\}}{\to} \pi_1(B,b).$$

(Every loop in *U* based at *b* is based homotopic *in B* to the constant loop.)

This condition is *necessary* for the existence of a universal cover. Here it is not necessary to assume that B is locally path connected (but see the discussion in Remark 5.46).

Proposition 5.49. For *B* a topological space, if a universal cover $\tilde{p} : \tilde{B} \to B$ exists, then *B* is semi-locally simply-connected.

Proof. For $b \in B$, there exists an open neighbourhood $b \in U \subset B$ such that $\tilde{p}^{-1}(U)$ is a trivial covering. This satisfies the required hypothesis, since a loop α in U based at b lifts to a *loop* $\tilde{\alpha}$ in $\tilde{p}^{-1}(U) \subset \tilde{B}$, since the open U trivializes the covering. By hypothesis, the space \tilde{B} is simply-connected, hence the loop $\tilde{\alpha}$ is based homotopic to a constant loop in \tilde{B} (*not* necessarily in $\tilde{p}^{-1}(U)$), by a homotopy H. The based homotopy $\tilde{p} \circ H$ shows that α is homotopic to the constant loop at b in B, as required.

Remarkably, this condition is also *sufficient* when *B* is connected and locally path connected. The key point is the following Lemma.

Lemma 5.50. For *B* a topological space and *U* a neighbourhood of *b* in *B* such that $\pi_1(U,b) \xrightarrow{\{e\}} \pi_1(B,b)$ is the trivial morphism, the image of $[\gamma] \in \operatorname{Hom}_{\Pi(U)}(u,b)$ in $\operatorname{Hom}_{\Pi(B)}(u,b)$ depends only upon $u \in U$.

Proof. Suppose that γ_1 , γ_2 are two paths in U from u to b; then the composite path $\gamma_2 \circ \gamma_1^{-1}$ is a loop in U based at b. By the hypothesis, this becomes based homotopically trivial in B; thus, in the fundamental groupoid $\Pi(B)$:

$$[\gamma_2] \circ [\gamma_1]^{-1} = \mathrm{Id}_b.$$

This implies that $[\gamma_1] = [\gamma_2]$ in $\Pi(B)$, as required.

Theorem 5.51. *For B a topological space which is connected and locally path connected, B admits a universal cover if and only if B is semi-locally simply-connected.*

Proof. (Sketch.) The condition is necessary, by Proposition 5.49. Hence it suffices to show existence, under the hypotheses.

Fix a basepoint $* \in B$ and define the underlying set of *B* to be

$$B := \prod_{b \in B} \operatorname{Hom}_{\Pi(B)}(b, *)$$

equipped with the projection $\tilde{p} : \tilde{B} \to B$ which sends $[\gamma] \mapsto \gamma(0)$. Thus, the fibre at $b \in B$ is the set $\operatorname{Hom}_{\Pi(B)}(b, *)$.

It remains to

- (1) define the topology on \tilde{B} , using the fact that each $b \in B$ admits a pathconnected open neighbourhood $b \in U$ such that $\pi_1(U, b) \to \pi_1(B, b)$ is the trivial morphism (using Lemma 5.50);
- (2) show that \tilde{p} is continuous;
- (3) show that \tilde{p} is a covering;
- (4) show that \hat{B} is path connected and deduce that \hat{B} is a universal cover.

5.6. Coverings from group actions. In general, if a group G acts continuously on a topological space X, the quotient map

$$X \twoheadrightarrow G \backslash X$$

(which sends a point *x* to its *G*-orbit) is not a covering map.

Example 5.52. The action of $\mathbb{Z}/2$ on \mathbb{R} by $t \mapsto -t$ defines a quotient map

$$\mathbb{R} \twoheadrightarrow [0,\infty) \subset \mathbb{R}$$

which is not a covering.

Definition 5.53. A left action of the (discrete) group *G* on a topological space *X* is *totally discontinuous* if, $\forall x \in X$, $\exists x \in U_x$ an open neighbourhood such that $gU_x \cap U_x \neq \emptyset$ if and only if g = e.

Remark 5.54. A totally discontinuous action $G \times X \to X$ is necessarily *free*.

Proposition 5.55. For a totally discontinuous action $G \times X \to X$ of a discrete group on the topological space X, the quotient map

$$X \twoheadrightarrow G \backslash X$$

is a covering, with fibre G.

ous. The associated covering (Example 1.44) is

Moreover, the left action of the group G on X is by automorphisms of the covering.

Proof. For a trivializing cover, take $\{U_x | x \in X\}$, where U_x is as in Definition 5.53. It is clear that the homeomorphism $g : X \to X$, for $g \in G$, defined by the left

action of *G*, induces an automorphism of the covering. \Box **Example 5.56.** The antipodal action of $\mathbb{Z}/2$ on the sphere S^n is totally discontinu-

$$S^n \to \mathbb{R}P^n$$
.

For n > 1, by Proposition 4.54 the sphere S^n is simply-connected and locally path connected, so this is the universal cover.

Proposition 5.57. For $\tilde{p} : B \to B$ the universal cover of a connected and locally path connected space B and $b \in B$, the group $\pi_1(B, b)$ acts naturally on the left by automorphisms of the covering \tilde{p} and the group action is totally discontinuous. The universal covering is isomorphic to the quotient covering

$$\tilde{B} \twoheadrightarrow \pi_1(B,b) \backslash \tilde{B}.$$

Proof. (Indication.) The result can be proved from the construction of the universal cover indicated in the proof of Theorem 5.51. \Box

5.7. **Monodromy and classification.** The lifting of paths gives rise to the monodromy action of the fundamental group on the fibre of a covering. Recall that, for *G* a group, a right *G*-set is a set *X* equipped with an action:

$$\begin{array}{rccc} X \times G & \to & X \\ (x,g) & \mapsto & xg \end{array}$$

which is associative ((xg)h = x(gh)) and unital (xe = x).

Notation 5.58. For G a group, write \mathfrak{Set}_G for the category of *right G-sets* and *G*-equivariant morphisms and $\overline{\mathfrak{Set}}_G$ for the full subcategory of *non-empty* right *G*-sets.

Theorem 5.59. For $p : E \to B$ a covering and $b \in B$, there exists a natural right action of $\pi_1(B, b)$ on the fibre $p^{-1}(b)$. This corresponds to a functor:

$$\mathfrak{Cover}(B) \to \overline{\mathfrak{Set}}_{\pi_1(B,b)}$$
$$p \mapsto p^{-1}(b).$$

Moreover,

- (1) the stabilizer in $\pi_1(B, b)$ of a point $e \in p^{-1}(b)$ is the subgroup $p_*(\pi_1(E, e)) \subset \pi_1(B, b)$;
- (2) *E* is path connected if and only if the $\pi_1(B, b)$ action is transitive.

Proof. Recall that, by definition of a covering, the fibre $p^{-1}(b)$ is non-empty.

Consider $e \in p^{-1}(b)$ and a loop α based at b which defines an element $[\alpha] \in \pi_1(B, b)$. Define:

$$e[\alpha] := \tilde{\alpha}_e(1),$$

where $\tilde{\alpha}_e$ is the lift of α with $\alpha_e(0) = e$. By Theorem 5.36, $e[\alpha]$ depends only upon the class $[\alpha]$.

It is straightforward to check that this defines a *right* action of $\pi_1(B, b)$ on the fibre $p^{-1}(b)$ (this is where the convention used in defining the group structure of $\pi_1(B, b)$ intervenes). Moreover, the action is *natural* with respect to covering spaces.

An element $[\alpha]$ stabilizes e (that is $e[\alpha] = e$) if and only if the lift satisfies $\tilde{\alpha}_e(1) = e$, so that $\tilde{\alpha}_e$ is a loop based at $e \in E$. Thus $[\alpha]$ is in the image of the monomorphism $p_* : \pi_1(E, e) \hookrightarrow \pi_1(B, b)$.

If *E* is path connected, for any two points $e_1, e_2 \in p^{-1}(b)$ of the fibre, there is a path γ from e_1 to e_2 in *E*. The projection $p(\gamma)$ is a loop in *B* based at *b*, which has lift $\tilde{\gamma}_{e_1} = \gamma$. It follows that $e_1[p(\gamma)] = e_2$, thus the action is transitive.

It is straightforward to prove the converse: if the $\pi_1(B, b)$ -action is transitive, then *E* is path connected. (Exercise.)

When *B* is connected and locally path connected and admits a universal cover, the above provides an equivalence of categories. This shows the power of the fundamental group.

Theorem 5.60. For *B* a connected and locally path connected space which admits a universal cover $\tilde{p} : \tilde{B} \to B$, the functor

$$\mathfrak{Cover}(B) \to \overline{\mathfrak{Set}}_{\pi_1(B,b)}$$
$$p \mapsto p^{-1}(b).$$

is an equivalence of categories.

Proof. (Indications.) For F a non-empty right $\pi_1(B, b)$ -set, define the topological space

$$E_F := F \times_{\pi_1(B,b)} B$$

using the left action of $\pi_1(B, b)$ on \tilde{B} (see Proposition 5.57). This is the quotient of the product space $F \times \tilde{B}$ by the relation

$$(yg, x) = (y, gx)$$

 $\forall y \in F, g \in \pi_1(B, b), x \in \tilde{B}.$

This construction is *functorial in* F, in particular the map $F \to *$ of $\pi_1(B, b)$ -sets induces

$$p_F: E_F \to * \times_{\pi_1(B,b)} B \cong B,$$

by Proposition 5.57. The continuous map p_F is a covering map, with fibre F (exercise: prove this!).

Thus, the above defines a functor:

$$\begin{array}{rcl} \overline{\mathfrak{Set}}_{\pi_1(B,b)} & \to & \mathfrak{Cover}(B). \\ & F & \mapsto & p_F: E_F \to B. \end{array}$$

It is straightforward to show that the fibre $p_F^{-1}(b)$ identifies with F with the given $\pi_1(B, b)$ -action. Hence, to complete the proof, it suffices to show that there is a natural isomorphism of coverings

$$E_{p^{-1}(b)} \xrightarrow{\cong} (p: E \to B),$$

for any covering *p*. This is constructed by using the lifting result, Proposition 5.43. \Box

Remark 5.61.

- (1) The universal cover corresponds to the free $\pi_1(B, b)$ -set $\pi_1(B, b)$.
- (2) The space E_F is path connected if and only if F is a transitive $\pi_1(B, b)$ -set. The covering associated to a transitive $\pi_1(B, b)$ set $H \setminus \pi_1(B, b)$ (for H a subgroup of $\pi_1(B, b)$) is:

$$H \setminus \tilde{B} \to B$$

where $H \setminus \hat{B}$ is the quotient of \hat{B} by the action of H on \hat{B} . In particular, the universal covering map \tilde{p} factorizes as covering maps:

$$\tilde{B} \rightarrow H \setminus \tilde{B} \rightarrow B$$
.

It is essential to study examples in order to get a good understanding of coverings.

Example 5.62. Theorem 5.60 applies to the wedge $S^1 \vee S^1$ of two circles, which is usually pointed by the common point.

$$\pi_1(S^1 \lor S^1, *) \cong \mathbb{Z} \star \mathbb{Z}$$

is the free group on two generators. The category $\mathfrak{Set}_{\mathbb{Z}*\mathbb{Z}}$ is *very* rich.

Exercise 5.63.

- (1) Describe the universal cover of $S^1 \vee S^1$.
- (2) Classify the two-sheeted covers of $S^1 \vee S^1$ (up to isomorphism).
- (3) Slightly harder: classify the three-sheeted covers of $S^1 \vee S^1$.

Theorem 5.60 means that, to understand coverings, one must understand the category of *G*-sets.

Exercise 5.64. Let $H, K \leq G$ be subgoups of the group G and consider the transitive right G-sets $H \setminus G$ and $K \setminus G$.

(1) Show that

- (a) to give a map of *G*-sets $f : H \setminus G \to K \setminus G$, it suffices to specify the element f(He) (the image of the coset of the identity $e \in G$);
- (b) there exists a map of *G* sets with $f(He) = K\gamma$ if and only if, $\forall h \in H$, $\gamma h\gamma^{-1} \in K$ (or $H \leq \gamma^{-1}K\gamma$).
- (2) When are the *G*-sets $H \setminus G$ and $K \setminus G$ isomorphic?
- (3) Describe the group of automorphisms of $H \setminus G$.

5.8. **Naturality.** The conclusion of Theorem 5.60 is *natural* in the base space *B*.

Lemma 5.65. A group morphism $\varphi : G \to H$ induces a functor

$$\varphi^*:\mathfrak{Set}_H\to\mathfrak{Set}_G$$

by restriction along φ *, such that* $\varphi^* X$ *has underlying set* X *with* H *action given by* $xg := x(\varphi(g))$ *.*

Proof. Exercise.

Proposition 5.66. For $f : B \to C$ a continuous map and basepoint $b \in B$, the following diagram commutes (up to natural isomorphism)

$$\begin{array}{c|c} \mathfrak{Cover}(C) & \xrightarrow{p \mapsto p^{-1}(f(b))} \overline{\mathfrak{Set}}_{\pi_1(C,f(b))} \\ f^* & & & \\ f^* & & & \\ \mathfrak{Cover}(B) & \xrightarrow{q \mapsto q^{-1}(b)} \overline{\mathfrak{Set}}_{\pi_1(B,b)}, \end{array}$$

where f^* denotes the pullback of coverings along f.

Proof. Consider the behaviour on objects: for a covering $p : E \to C$; the pullback along f gives the commutative square of continuous maps

$$\begin{array}{c|c} E \times_C B & \overline{f} & E \\ q := f^* p & & \downarrow p \\ B & \xrightarrow{f} & C, \end{array}$$

in which the vertical morphisms are coverings.

The fibre $q^{-1}(b)$ of $q := f^*p$ over *b* identifies with $p^{-1}(c)$ via \overline{f} , hence it remains to consider the action of the fundamental groups. Consider a based loop α in *B*, based at *b* and an element *x* of the fibre $q^{-1}(b)$. The lift $\tilde{\alpha}$ of α such that $\tilde{\alpha}(0) = x$ defines a lift $\overline{f} \circ \tilde{\alpha}$ of $f \circ \alpha$ starting at $\overline{f}(x)$.

By the definition of the Monodromy action and unicity of path lifts, this shows that the $\pi_1(B, b)$ action on $q^{-1}(b)$ identifies with the restricted action $\pi_1(f)^*(p^{-1}(f(b)))$. To complete the proof, it remains to check that this identification is *natural* with respect to morphisms of covering spaces (exercise).

Corollary 5.67. Let B, C be connected and locally path connected spaces which admit a universal cover. If $f : B \to C$ is a continuous map which induces an isomorphism $\pi_1(f) : \pi_1(B, b) \xrightarrow{\cong} \pi_1(C, f(b))$ for $b \in B$, then

$$f^*: \mathfrak{Cover}(C) \to \mathfrak{Cover}(B)$$

is an equivalence of categories.

Proof. The result is a straightforward consequence of Proposition 5.66.

Remark 5.68. This result shows that, in order to understand covering spaces (for *nice* spaces, such as CW-complexes) it is sufficient to consider spaces which can be built from cells of dimension at most two. *Exercise: why?*

5.9. Galois coverings.

Notation 5.69. For $p : E \to B$ a covering, let Aut(p) denote the group of automorphisms (in Cover(B)) of p. (Elements are homeomorphisms $E \to E$ which commute with p.)

Lemma 5.70. For $p : E \to B$ a covering and $b \in B$, the group Aut(p) acts (on the left) on the fibre $p^{-1}(b)$.

Moreover, for any $e \in p^{-1}(b)$ *the set map*

$$\begin{array}{rcl} \operatorname{Aut}(p) & \hookrightarrow & p^{-1}(b) \\ g & \mapsto & g(e) \end{array}$$

is injective.

Proof. The first statement is clear and the second follows by unicity of liftings (Proposition 5.34). \Box

Definition 5.71. A covering $p : E \to B$ is *Galois* if *E* is path connected and the action of the automorphism group Aut(p) on the fibres is transitive.

Example 5.72. For *X* a path-connected topological space and a totally-discontinuous action $G \times X \to X$, the associated covering (cf. Proposition 5.55)

 $X \twoheadrightarrow G \backslash X$

is Galois.

The classification result, Theorem 5.60, means that the Galois condition can be detected in terms of the associated $\pi_1(B, b)$ -set.

Theorem 5.73. For *B* a connected, locally path connected space which admits a universal cover $\tilde{p} : \tilde{B} \to B$, the covering $p_F : E_F \to B$ is Galois if and only if *F* is isomorphic to a transitive right $\pi_1(B, b)$ -set of the form

 $N \setminus \pi_1(B, b),$

where $N \triangleleft \pi_1(B, b)$ is a normal subgroup.

Proof. (Indications.) The result can either be proved directly as a consequence of Proposition 5.43 or as a Corollary of Theorem 5.60. (Cf. Exercise 5.64.) \Box

Corollary 5.74. For *B* a connected, locally path connected space which admits a universal cover, if $\pi_1(B,b)$ is abelian then every covering of *B* is Galois.

Proof. Exercise.

Example 5.75. The circle S^1 is connected, locally path connected with universal cover $\mathbb{R} \to S^1$ and fundamental group \mathbb{Z} (thus abelian!). Hence every covering of S^1 is Galois.

Using Theorem 5.60, one shows that the examples of Example 5.7 give the set of isomorphism classes of coverings of S^1 . (Exercise.)

Exercise 5.76. What can be said about coverings of the torus, $S^1 \times S^1$?

Exercise 5.77. Give an example of a covering which is not Galois.

6. Homology

We have seen that the fundamental group is a useful invariant of path-connected spaces. However, simply connected spaces are *invisible* to the fundamental group (by definition!); for example, π_1 cannot see the difference between the spheres S^m and S^n for $m, n \ge 2$.

The higher homotopy groups $\pi_n(X, x)$ $n \ge 2$, are *much* more powerful - but are very difficult to calculate. For $n \in \mathbb{N}$, the *n*th *homology group* $H_n(X)$ of a space X is an abelian group which provides useful invariants of the space. In particular

▷ homology ($n \in \mathbb{N}$) is a functor:

$$H_n:\mathfrak{Top}\to\mathfrak{A}b$$

with values in abelian groups which satisfies the **homotopy axiom**: if $f \sim g$ are homotopic continuous maps from X to Y, then $H_n(f) = H_n(g)$: $H_n(X) \to H_n(Y)$;

 \triangleright the homology of a point is $H_n(*) = 0$ except for $H_0(*) = 0$; moreover, homology satisfies the **dimension axiom**:

$$H_n(S^t) \cong \begin{cases} \mathbb{Z} \oplus \mathbb{Z} & n = t = 0\\ \mathbb{Z} & n = 0 < t\\ \mathbb{Z} & n = t > 0; \end{cases}$$

in particular homology sees *higher dimensional phenomena* than the fundamental group;

- ▷ homology is *calculable*: for example
 - (1) the homology of a disjoint union is the direct sum: $H_n(X \amalg Y) \cong H_n(X) \oplus H_n(Y)$;
 - (2) if *X* admits a *triangulation*, $H_n(X)$ can be calculated in terms of the combinatorial data defining the triangulation.

Remark 6.1. The homology groups of spheres are much simpler that the *higher homotopy groups*, $\pi_t(S^n)$ (which, for $n \ge 2$, are unknown for $t \gg 0$!). For example, $\pi_3(S^2) \cong \mathbb{Z}$, generated by the *Hopf map* η , which is represented by the Hopf fibration $S^3 \simeq \mathbb{C}^2 \setminus \{0\} \to \mathbb{C}P^1 \simeq S^2$, which sends $0 \neq (z_1, z_2) \in \mathbb{C}^2 \mapsto [z_1 : z_2] \in \mathbb{C}P^1$.

As a first example of the usefulness of homology, consider the following:

Definition 6.2. The degree of a continuous map $f : S^n \to S^n$ ($0 < n \in \mathbb{N}$) is the integer deg(f) which defines the morphism of abelian groups

$$H_n(f): H_n(S^n) \cong \mathbb{Z} \to \mathbb{Z} \cong H_n(S^n)$$

(A morphism $\mathbb{Z} \to \mathbb{Z}$ is uniquely determined by the image of a chosen generator.)

Remark 6.3. It is a fundamental result (the Hurewicz theorem) that the degree of f determines the homotopy class of f.

To construct homology, we need some knowledge of homological algebra.

6.1. **Exact sequences.** In this section, \mathscr{A} denotes the category of modules over a fixed commutative ring *R*. For example, taking $R = \mathbb{Z}$, this is the category of abelian groups.

Remark 6.4. More generally, *A* can be taken to be any *abelian category*. (See [Wei94], for example, for a definition.)

Recall the definition of the *kernel* and the *image* of a morphism $f : M \to N$ of \mathscr{A} :

 \triangleright the kernel ker $(f) := \{m \in M | f(m) = 0\} \subseteq M;$

 \triangleright the image image $(f) := \{n \in N | \exists m \in M \text{s.t.} f(m) = n\} \subseteq N.$

The important properties of \mathscr{A} are the following:

(1) \mathscr{A} is an additive category:

GEOFFREY POWELL

- (a) 0 is both *initial* and *final* in \mathscr{A} ;
- (b) $\operatorname{Hom}_{\mathscr{A}}(M, N)$ is an abelian group and composition is biadditive;
- (c) $\operatorname{Hom}_{\mathscr{A}}(X, M \oplus N) \cong \operatorname{Hom}_{\mathscr{A}}(X, M) \oplus \operatorname{Hom}_{\mathscr{A}}(X, N)$ and $\operatorname{Hom}_{\mathscr{A}}(M \oplus N, X) \cong \operatorname{Hom}_{\mathscr{A}}(M, X) \oplus \operatorname{Hom}_{\mathscr{A}}(N, X)$ (in categorical language $M \oplus N$ is both the *product* and the *coproduct* of M and N).
- (d) The zero morphism from M to N is the *trivial morphism* $M \to 0 \to N$.
- (2) For $f: M \to N$ a morphism of \mathscr{A} ,
 - (a) there is a natural isomorphism

$$\operatorname{image}(f) \cong M/\ker(f)$$

where $M/\ker(f)$ is the quotient by the sub-object $\ker(f) \subseteq M$;

(b) any morphism $g: N \to Q$ such that the composite $g \circ f$ is zero factorizes canonically as

(in categorical language, $N \rightarrow N/\text{image}(f)$ is the *cokernel* coker(f) of f). Moreover, the kernel of $N \rightarrow N/\text{image}(f)$ is image(f).

Remark 6.5. The category Group does *not* satisfy all these properties.

- (1) The *free product* (coproduct) of groups \star does not coincide with the *product* \times .
- (2) The relationship between the cokernel and the image is more delicate; this is why the notion of *normal* subgroup is important. Consider an inclusion of groups *H* → *G*, then the cokernel is the quotient *G*/*N_GH*, where *N_GH* is the *normalizer* of *H* in *G* (the smallest normal subgroup containing *H*). The kernel of *G* → *G*/*N_GH* is *N_GH*, which coincides with *H* if and only if *H* is normal.

The following definition is fundamental:

Definition 6.6. Let $M \xrightarrow{f} N \xrightarrow{g} Q$ be morphisms of \mathscr{A} .

- (1) g, f form a sequence if $g \circ f = 0$ (equivalently image $(f) \subseteq \ker(g)$);
- (2) a sequence is *exact* (implicitly at *N*) if image(f) = ker(g).

A set of morphisms $\{f_n : M_n \to M_{n+1} | n \in \mathbb{Z}\}$, forms a sequence (respectively an *exact sequence*) if and only if each

$$M_{n-1} \stackrel{f_{n-1}}{\to} M_n \stackrel{f_n}{\to} M_{n+1}$$

is a sequence (resp. exact sequence).

Remark 6.7. A set of morphisms $\{f_n : M_n \to M_{n+1} | n \in \mathscr{I} \subset \mathbb{Z}\}$ indexed by a subset $\mathscr{I} \subset \mathbb{Z}$ can always be completed to a set indexed by \mathbb{Z} by replacing the missing objects by 0 and the missing morphisms by zero. (Exercise: why?)

Definition 6.8. A *short exact sequence* in *A* is an exact sequence of the form:

$$0 \to M \xrightarrow{f} N \xrightarrow{g} Q \to 0$$

Exercise 6.9. Check the following assertions.

(1) For $A \subset B$ in \mathscr{A} , there is a short exact sequence:

 $0 \to A \to B \to B/A \to 0.$

(2) For $f: M \to N$ a morphism of \mathscr{A} , there are short exact sequences:

$$0 \to \ker(f) \to M \to \operatorname{image}(f) \to 0$$

$$0 \to \operatorname{image}(f) \to N \to \operatorname{coker}(f) \to 0.$$

(3) For $M, N \in Ob \mathscr{A}$, there is a short exact sequence

$$0 \to M \to M \oplus N \to N \to 0.$$

(This is known as a *split short exact sequence*.)

(4) $\forall 0 \neq n \in \mathbb{N}$, multiplication by *n* induces an exact sequence:

$$0 \to \mathbb{Z} \xrightarrow{n} \mathbb{Z} \to \mathbb{Z}/n \to 0.$$

Exercise 6.10. For $0 \to M \xrightarrow{f} N \xrightarrow{g} Q \to 0$ a short exact sequence in \mathscr{A} , show that there exists a *section* $s : Q \to N$ (a morphism of \mathscr{A} such that $g \circ s = \mathrm{Id}_Q$) if and only if there exists an isomorphism making the following diagram commute:

where the top row is the *split short exact sequence* of the previous exercise.

6.2. Chain complexes and homology.

Definition 6.11.

- (1) A complex (or chain complex) in \mathscr{A} is a sequence $\{d_n : C_n \to C_{n-1} | n \in \mathbb{Z}\}$ (equivalently $d_n \circ d_{n-1} = 0 \forall n$). This will be denoted by (C_{\bullet}, d) or simply C when no confusion is likely.
- (2) A morphism of chain complexes $\varphi : C \to D$ is a set of morphisms $\{\varphi_n : C_n \to D_n | n \in \mathbb{Z}\}$ such that $\forall n \in \mathbb{Z}$ the following diagram commutes:

Remark 6.12. As in Remark 6.7, one can consider chain complexes indexed by \mathbb{N} (by extending by zero).

Proposition 6.13. *Chain complexes in* \mathscr{A} *form a category* $\mathfrak{Ch}(\mathscr{A})$ *which contains* \mathbb{N} *-graded chain complexes as a full subcategory* $\mathfrak{Ch}_{>0}(\mathscr{A})$ *.*

Proof. Exercise.

Remark 6.14. More is true: the category $\mathfrak{Ch}(\mathscr{A})$ is *abelian*. (Optional exercise: make sense of this statement and prove it!)

The *homology* of a complex measures its *failure to be exact*. The terminology below is inspired by the *geometric* origin of chain complexes, for instance from *simplicial homology*.

Definition 6.15. For (C_{\bullet}, d) a chain complex and $n \in \mathbb{Z}$:

- (1) the *n*-cycles $Z_n \subseteq C_n$ is the subobject $Z_n := \ker(d_n)$;
- (2) the *n*-boundaries $B_n \subseteq Z_n$ is the subobject $\operatorname{image}(d_{n+1})$: (which is contained in $\operatorname{ker}(d_n)$, since $d_n \circ d_{n+1} = 0$, by the hypothesis that C_n is a chain complex);
- (3) the *n*th homology is the quotient $H_n(C_{\bullet}, d) := Z_n/B_n$.

Exercise 6.16. For (C_{\bullet}, d) a chain complex, show that $C_{n+1} \to C_n \to C_{n-1}$ is exact if and only if $H_n(C) = 0$.

Proposition 6.17. For $n \in \mathbb{Z}$, the *n*th homology defines a functor:

$$H_n(-): \mathfrak{Ch}(\mathscr{A}) \to \mathscr{A}.$$

Proof. For $\varphi : C \to D$ a morphism of chain complexes, the morphism $\varphi_n : C_n \to D_n$ restricts to morphisms forming a commutative diagram

since the morphisms φ_n are compatible with the differentials. (Exercise: check this).

The morphism $H_n(\varphi) : H_n(C) \to H_n(D)$ sends an element [z] represented by an *n*-cycle $z \in Z_n(C)$ to $[\varphi_n(z)] \in H_n(D)$. By the left hand commutative square, this is independent of the choice of z.

Exercise: check that this defines a functor.

Definition 6.18. A morphism of chain complexes $\varphi : C \to D$ is a *quasi-isomorphism* (or *homology equivalence*) if $H_n(\varphi)$ is an isomorphism $\forall n \in \mathbb{Z}$.

Example 6.19. The chain complex of abelian groups with $d_0 : C_0 = \mathbb{Z} \xrightarrow{\text{Id}} \mathbb{Z} = C_1$ and all other terms zero has homology $H_n(C) = 0 \forall n \in \mathbb{Z}$. The unique morphism of chain complexes $0 \to C$ is a quasi-isomorphism.

Remark 6.20. The *derived category* \mathfrak{DA} of \mathfrak{A} is obtained from $\mathfrak{Ch}(\mathfrak{A})$ by *inverting* the quasi-isomorphisms (the precise construction is slightly delicate). The category \mathfrak{DA} is very important, since it all of the information of $\mathfrak{Ch}(\mathfrak{A})$ which can be seen by homology.

6.3. **Chain homotopy.** There is a notion of *homotopy* for morphisms between chain complexes in \mathscr{A} .

Definition 6.21. For $f, g : C \Rightarrow D$ morphisms of chain complexes in \mathscr{A} , a *chain* homotopy from f to g is a set of morphisms $\{h_n : C_n \to D_{n+1} | n \in \mathbb{Z}\}$ such that $f_n - g_n = d_{n+1}^D \circ h_n + h_{n-1} \circ d_n^C$

Morphisms f, g are *chain homotopic* if there exists a chain homotopy from f to g, denoted by $f \sim g$ (or $f \sim_h g$), if the homotopy is given.

Proposition 6.22.

- The chain homotopy relation ~ is an equivalence relation on morphism of chain complexes ∈ Hom_{ch(𝒜)}(C, D).
- (2) For morphisms of chain complexes

$$B \xrightarrow{u} C \xrightarrow{f} D \xrightarrow{v} E,$$

if $f \sim_h g$ *then* $v \circ f \circ u \sim_{v \circ h \circ u} v \circ g \circ u$.

Proof. The relation \sim is reflexive (take h = 0) and symmetric (replace h by -h). For transitivity, if $\alpha \sim_h \beta$ and $\beta \sim_k \gamma$, then

$$\begin{aligned} \alpha_n - \gamma_n &= (\alpha_n - \beta_n) + (\beta_n - \gamma_n) \\ &= (d_{n+1}^D \circ h_n + h_{n-1} \circ d_n^C) + (d_{n+1}^D \circ k_n + k_{n-1} \circ d_n^C) \\ &= d_{n+1}^D \circ (h_n + k_n) + (h_{n-1} + k_{n-1}) \circ d_n^C \end{aligned}$$

where the additivity of \mathscr{A} is used. Hence $\{h_n + k_n | n \in \mathbb{Z}\}$ forms a chain homotopy from α to γ .

The second statement is left as an exercise. (Use the fact that u, v are chain maps.)

This allows the usual notion of *homotopy equivalence* to be introduced:

Definition 6.23. Chain complexes C, D have the *same chain homotopy type* if there exist morphisms $\varphi : C \to D$ and $\psi : D \to C$ of chain complexes such that $\psi \circ \varphi \sim \mathrm{Id}_C$ and $\varphi \circ \psi \sim \mathrm{Id}_D$; denote the associated relation $C \simeq D$.

A chain complex *C* is *homotopically trivial* if $C \simeq 0$.

Exercise 6.24. Show that \simeq is an equivalence relation on the objects of $\mathfrak{Ch}(\mathscr{A})$.

Example 6.25. For $0 \neq d \in \mathbb{N}$, consider the chain complexes C, D of $\mathfrak{A}b$ with $C_n = 0 = D_n$ if $n \notin \{0, 1\}$ and

$$C_1 = \mathbb{Z} \xrightarrow{\times a} C_0 = \mathbb{Z}$$

$$D_1 = 0 \longrightarrow D_0 = \mathbb{Z}/d.$$

Show that

- (1) The morphism $\mathbb{Z} \twoheadrightarrow \mathbb{Z}/d$ induces a morphism of chain complexes $C \to D$ which induces an isomorphism in homology.
- (2) There is *no* non-zero morphism of chain complexes $D \rightarrow C$.

Deduce that *C*, *D* do not have the same chain homotopy type.

Part of the interest of chain homotopy is through the following:

Proposition 6.26. If $f, g : C \Rightarrow D$ are chain homotopic, then $H_n(f) = H_n(g) : H_n(C) \Rightarrow H_n(D), \forall n \in \mathbb{Z}.$

Proof. Consider a homology class $[z] \in H_n(C)$, represented by a cycle $z \in Z_n(C)$ (so that $d_n^C z = 0$). By definition, $H_n(f)[z] = [f_n(z)]$ and $H_n(g)[z] = [g_n(z)]$. Suppose $f \sim_h g$, so that $f_n - g_n = d_{n+1}^D \circ h_n + h_{n-1} \circ d_n^C$; applied to z, since $d_n^C z = 0$, this gives

$$f_n(z) - g_n(z) = d_{n+1}^D h_n(z).$$

Thus, the cycles (of D_n) $f_n(z)$ and $g_n(z)$ differ by a boundary. Hence, their classes in homology coincide.

6.4. Simplicial objects. If one forgets the condition $d^2 = 0$, a chain complex in \mathscr{A} can be viewed as a *functor*. Consider \mathbb{Z} as a category $\underline{\mathbb{Z}}$, with objects $\{n|n \in \mathbb{Z}\}$ and

$$\operatorname{Hom}_{\underline{\mathbb{Z}}}(a,b) = \begin{cases} * & a \leq b \\ \emptyset & a > b. \end{cases}$$

(This construction is general: a *partially ordered set* can be considered as a category in which $|\text{Hom}(a, b)| \le 1$ and $\text{Hom}(a, b) \ne \emptyset$ if and only if $a \le b$.)

Recall that the opposite category is obtained by 'reversing' the direction of the arrows; thus the opposite category $\underline{\mathbb{Z}}^{\text{op}}$ has objects $\{n|n \in \mathbb{Z}\}$ and

$$\operatorname{Hom}_{\underline{\mathbb{Z}}^{\operatorname{op}}}(a,b) = \begin{cases} * & a \ge b \\ \emptyset & a < b. \end{cases}$$

GEOFFREY POWELL

A functor from $\underline{\mathbb{Z}}^{\text{op}}$ to \mathscr{A} is equivalent to a set of morphisms $\{d_n : C_n \to C_{n-1} | n \in \mathbb{Z}\}$. These functors form a category $\mathscr{A}_{\underline{\mathbb{Z}}}$, with objects the natural transformations of functors. Concretely, a morphism from (C, d^C) to (D, d^D) is a set of morphisms $\{f_n : C_n \to D_n | n \in \mathbb{Z}\}$ which make the squares commute as in definition 6.11.

Remark 6.27. From this viewpoint, the category $\mathfrak{Ch}(\mathscr{A})$ of chain complexes is the *full subcategory* of $\mathscr{A}_{\mathbb{Z}}$ of objects such that $d_{n-1} \circ d_n = 0$, $\forall n$.

The above used the following general notation.

Notation 6.28. For I a small category (the *indexing* category) and C any category,

- (1) the category of functors from \mathscr{I} to \mathscr{C} is written $\mathscr{C}^{\mathscr{I}}$;
- (2) the category of functors from $\mathscr{I}^{\mathrm{op}}$ to \mathscr{C} is written $\mathscr{C}_{\mathscr{I}}$.

The category \mathscr{I} should be visualized as the category of *diagrams of shape* \mathscr{I} in \mathscr{C} .

Exercise 6.29. For \mathscr{I} the category with three objects and non-identity morphisms $\bullet \leftarrow \bullet \rightarrow \bullet$, give an explicit description of the objects and morphisms of the categories $\mathfrak{Top}^{\mathscr{I}}$ and $\mathfrak{Top}_{\mathscr{I}}$.

Exercise 6.30. (Optional.) If \mathscr{A} is an abelian category and \mathscr{I} is a small indexing category, show that $\mathscr{A}^{\mathscr{I}}$ and $\mathscr{A}_{\mathscr{I}}$ are abelian categories. (Note: since $\mathscr{A}_{\mathscr{I}} = \mathscr{A}^{\mathscr{I}^{\circ p}}$, it suffices to treat one case.)

In the case $\mathscr{I} = \underline{\mathbb{Z}}$, show that $\mathfrak{Ch}(\mathscr{A})$ is an abelian subcategory of \mathscr{A}_{Δ} .

Remark 6.31. Chain complexes are not suitable for general categories *C*:

- (1) a zero morphism is required (the category \mathscr{C} must be pointed) for the condition $d^2 = 0$ to have a meaning;
- (2) the notion of *chain homotopy* requires the addition and subtraction of morphisms.

A more general approach is to use *simplicial objects*. These can again be defined as functors; first we need to introduce the *indexing* category.

Definition 6.32.

- (1) For $n \in \mathbb{N}$ let [n] be the category associated to the partially ordered set $(\{0, \ldots, n\}, \leq)$.
- (2) The *ordinal category* Δ is the full subcategory of CAT (the category of small categories) with objects {[n]|n ∈ N}.

Explicitly, Δ has objects $\{[n]|n \in \mathbb{N}\}$ and a morphism from [m] to [n] is a non-decreasing map $f : \{0, \ldots, m\} \rightarrow \{0, \ldots, n\}$ (i.e. $i \leq j \Rightarrow f(i) \leq f(j)$).

The morphisms of Δ can be expressed as composites of the following *generators*:

Definition 6.33. For $0 < n \in \mathbb{N}$,

(1) the *coface* maps $\varepsilon_i : [n-1] \rightarrow [n], 0 \le i \le n$ are given by:

$$\varepsilon_i(j) = \left\{ \begin{array}{ll} j & j < i \\ j+1 & j \ge i \end{array} \right.$$

(the order-preserving inclusion for which *i* is not in the image); (2) the *codegeneracy maps* $\sigma_i : [n] \rightarrow [n-1], 0 \le i \le n-1$:

$$\sigma_i(j) = \begin{cases} j & j \le i \\ j-1 & j > i \end{cases}$$

(the order-preserving surjection with two elements mapping to j).

Example 6.34. Consider the morphisms between [0] and [1] in Δ ; [0] corresponds to the one-point set {0} and [1] to {0,1}. Hence, the morphisms are generated by:

$$[0] \stackrel{\varepsilon_0}{=} \varepsilon_1 \stackrel{\varepsilon_0}{\rightleftharpoons} [1].$$

This diagram is analogous to the diagram of continuous maps:

pt.
$$\equiv_{i_1}^{i_0} \neq I$$
.

Exercise 6.35.

- Show that any morphism [m] → [n] of Δ factors *uniquely* as a composite [m] → [i] → [n] of a surjective order-preserving map followed by an injective order-preserving map.
- (2) Identify the sets of injections [n − 1] → [n] and of surjections [n] → [n − 1]. Deduce that any map can be written as a composite of morphisms of the form ε_i and σ_i.
- (3) Verify the *cosimplicial identities*:

(a)
$$\varepsilon_{j}\varepsilon_{i} = \varepsilon_{i}\varepsilon_{j-1}, i < j$$
 (this is essential);
(b) $\sigma_{j}\sigma_{i} = \sigma_{i}\sigma_{j+1}, i \leq j$;
(c) $\sigma_{j}\varepsilon_{i} = \begin{cases} \varepsilon_{i}\sigma_{j-1} & i < j \\ id & i = j, i = j+1 \\ \varepsilon_{i-1}\sigma_{j} & i > j+1. \end{cases}$

(4) Deduce that the category Δ is *generated* by the morphisms of the form ε_i and σ_j , subject to the *cosimplicial relations*. (This is analogous to the presentation of a group by generators and relations.)

The *coface* and *codegeneracy* maps can be represented by the diagram:

$$[0] \xrightarrow{\varepsilon_0}_{\varepsilon_1 \rightarrow} [1] \xrightarrow{\varepsilon_0}_{\varepsilon_1 \rightarrow} [2] \xrightarrow{\varepsilon_0}_{\varepsilon_1 \rightarrow} [3] \dots$$

As in Example 6.34, this has a *topological model*.

Definition 6.36. For $n \in \mathbb{N}$, let Δ_n^{top} denote the *n*-dimensional *topological simplex*:

$$\Delta_n^{\text{top}} := \{ (x_0, \dots, x_n) \in \mathbb{R}^{n+1} | \sum x_i = 1, \ x_i \ge 0 \forall i \} \subset \mathbb{R}^{n+1}.$$

Thus Δ_n^{top} is the convex hull of its set of vertices, $\{v_i | 0 \leq i \leq n\}$, where $v_i = (0, \ldots, 0, 1, 0, \ldots, 0)$, with 1 in the (i + 1)st coordinate. (The v_i form the standard basis of \mathbb{R}^{n+1} .)

Proposition 6.37. The topological simplexes form a functor $\Delta_{\bullet}^{\text{top}} : \mathbf{\Delta} \to \mathfrak{Top}$, where the map $f : [m] \to [n]$ induces the continuous map $\Delta_m^{\text{top}} \to \Delta_n^{\text{top}}$ which is the restriction of the linear map $\mathbb{R}^{m+1} \to \mathbb{R}^{n+1}$ defined by $v_i \mapsto v_{f(i)}$.

Proof. This is an exercise in using the definitions; since Δ_m^{top} is the convex hull of its vertices to define a map to Δ_n^{top} , it suffices to specify the image of the vertices. \Box

The topological simplexes give a first example of a *cosimplicial object*.

Definition 6.38. For *C* a category,

- (1) the *category of cosimplicial objects* \mathscr{C}^{Δ} is the category with objects functors from Δ to \mathscr{C} and morphisms natural transformations;
- (2) the *category of simplicial objects* \mathscr{C}_{Δ} is the category with objects functors from Δ^{op} to \mathscr{C} and morphisms natural transformations (these are contravariant functors from Δ to \mathscr{C}).

In particular, the *category of simplicial sets* is the category \mathfrak{Set}_{Δ} .

Remark 6.39.

- (1) A simplicial object X_{\bullet} of a category \mathscr{C} is a sequence of objects $\{X_n | n \in \mathbb{N}\}$ of \mathscr{C} equipped (for $0 < n \in \mathbb{N}$) with
 - (a) face maps $\partial_i : X_n \to X_{n-1}$, $0 \le i \le n$, induced by the ε_i ;
 - (b) degeneracies $s_i: X_{n-1} \to X_n, 0 \le i \le n-1$, induced by the σ_i ,

which satisfy simplicial identities (dual to the cosimplicial identities).

- (2) A morphism of simplicial objects f_• : X_• → Y_• is a sequence of morphisms {f_n : X_n → Y_n|n ∈ N} such that, for 0 < n ∈ N,
 (a) ∂_if_n = f_{n-1}∂_i : X_n → Y_{n-1};
 - (b) $s_j f_{n-1} = f_n s_j : X_{n-1} \to Y_n.$

Example 6.40. For $n \in \mathbb{N}$, the object [n] of Δ defines a simplicial set

$$\Delta_n := \operatorname{Hom}_{\Delta}(-, [n]).$$

(Exercise: verify this assertion.)

Exercise 6.41. (Yoneda's Lemma - for simplicial sets). For $n \in \mathbb{N}$ and X_{\bullet} a simplicial set, prove that there is a natural isomorphism:

$$\operatorname{Hom}_{\mathfrak{Set}_{\Delta}}(\Delta_n, X) \cong X_n.$$

(Cf. Section A.4.)

Example 6.42. The ordinal category Δ is, by definition, a full subcategory of \mathfrak{CAT} ; the inclusion defines a functor $\Delta \to \mathfrak{CAT}$, so the categories [n] can be considered as a *cosimplicial category*, or an object of $\mathfrak{CAT}^{\Delta}(!)$.

This observation leads to the definition of the *nerve* of a category. For \mathscr{C} a small category, the *nerve* $N\mathscr{C}$ is the simplicial set with:

$$(N\mathscr{C})_n := \operatorname{Hom}_{\mathfrak{CAT}}([n], \mathscr{C})$$

and with simplicial structure induced by the *cosimplicial structure* of Δ .

For example, $(N\mathscr{C})_0$ is the set Ob \mathscr{C} of objects of \mathscr{C} and $(N\mathscr{C})_1$ the set Mor \mathscr{C} of morphisms of \mathscr{C} . The simplicial structure maps are given by the *identity* morphism map, and the *source* and *target*:

$$(N\mathscr{C})_0 \stackrel{\text{id}}{\underbrace{\leftarrow} s}_{t} (N\mathscr{C})_1.$$

For n > 1, the set $(N\mathscr{C})_n$ is given by the set of composable sequences of n morphisms in \mathscr{C} .

An important example is when \mathscr{C} is the category with one object associated to a discrete group *G*. The nerve *NG* leads directly to the *classifying space BG* of the group *G*; this is a path-connected space with $\pi_1(BG, *) \cong G$ and $\pi_n(BG) = 0$ for n > 0.

Exercise 6.43.

- (1) For \mathscr{C} a small category, describe the face and degeneracy maps (in general) for the nerve $N\mathscr{C}$.
- (2) Show that the nerve defines a functor $N : \mathfrak{CAT} \to \mathfrak{Set}_{\Delta}$ with values in simplicial sets.

6.5. **Singular simplices.** The idea of singular simplices generalizes the consideration of *paths* of a topological space, allowing the interval $I \cong \Delta_1^{\text{top}}$ to be replaced by the higher topological simplices Δ_n^{top} .

Definition 6.44. For X a topological space, let $\mathfrak{Sing}_{\bullet}(X)$ denote the *singular simplicial set* with

$$\mathfrak{Sing}_n(X) := \operatorname{Hom}_{\mathfrak{Top}}(\Delta_n^{\operatorname{top}}, X)$$

and with simplicial structure induced by the *cosimplicial structure* of $\Delta_{\bullet}^{\text{top}}$.

Example 6.45. For *X* a topological space, $\mathfrak{Sing}_0(X)$ is the underlying set of points of *X* and $\mathfrak{Sing}_1(X)$ the set of paths in *X*. The simplicial structure maps

$$\mathfrak{Sing}_0(X) \underbrace{=} \mathfrak{Sing}_1(X)$$

correspond to the endpoints of a path and the constant path.

Proposition 6.46. The singular simplicial set defines a functor

$$\mathfrak{Sing}_{\bullet}:\mathfrak{Top}\to\mathfrak{Set}_{\Delta}$$

Proof. Exercise.

Remark 6.47. There is an associated functor, *geometric realization* (in the language of category theory, it is the *left adjoint* to Ging)

$$- | : \mathfrak{Set}_{\Delta} \to \mathfrak{Top}.$$

The idea of the definition of this functor is very simple: one *extends* the association $\Delta_n \mapsto \Delta_n^{\text{top}}$, using the fact that any simplicial set can be built out of Δ_n . (The explicit definition is not difficult; see for example [GJ99].)

The importance of the functors

$$|-|:\mathfrak{Set}_{\Delta} \rightleftharpoons:\mathfrak{Top}:\mathfrak{Sing}_{\bullet}$$

is that they allow simplicial sets to be used as a *combinatorial model* for (nice) topological spaces. A model for the *homotopy category* of topological spaces can be given using simplicial sets.

For example, the *classifying space* BG of a discrete group G (cf. Example 6.42 is, by definition,

$$BG := |NG|,$$

so that this defines a functor B(-) : $\mathfrak{Group} \to \mathfrak{Top}$.

6.6. **Simplicial chains.** Simplicial abelian groups arise from simplicial sets by applying the following general result.

Proposition 6.48. A functor $F : \mathscr{C} \to \mathscr{D}$ induces functors

$$\begin{array}{rcl} F^{\Delta} & : & \mathscr{C}^{\Delta} \to \mathscr{D}^{\Delta} \\ F_{\Delta} & : & \mathscr{C}_{\Delta} \to \mathscr{D}_{\Delta} \end{array}$$

between the respective categories of cosimplicial objects and of simplicial objects.

Proof. The result is proved by unravelling definitions. For example, if $(X_{\bullet}, \partial_{\bullet}, s_{\bullet})$ is a simplicial object of \mathscr{C} , then its image in \mathscr{D}_{Δ} is $(F(X_{\bullet}), F(\partial_{\bullet}), F(s_{\bullet}))$. It is straightforward to verify that this defines a functor (exercise!).

Exercise 6.49. Prove the analogue of Proposition 6.48 for *any* indexing category \mathscr{I} . Namely, $F : \mathscr{C} \to \mathscr{D}$ induces functors

$$\begin{array}{rcl} F^{\mathscr{I}} & : & \mathscr{C}^{\mathscr{I}} \to \mathscr{D}^{\mathscr{I}} \\ F_{\mathscr{I}} & : & \mathscr{C}_{\mathscr{I}} \to \mathscr{D}_{\mathscr{I}}. \end{array}$$

Example 6.50. The free abelian group functor $\mathbb{Z}[-]$: $\mathfrak{Set} \to \mathfrak{A}b$ induces a functor

$$\mathbb{Z}[-]_{oldsymbol{\Delta}}:\mathfrak{Set}_{oldsymbol{\Delta}} o\mathfrak{A}b_{oldsymbol{\Delta}}$$

from the category of simplicial sets to *simplicial abelian groups*. This functor is fundamental in studying homology.

Recall that \mathscr{A} denotes the category of modules over a fixed commutative ring (or, more generally, an abelian category).

Definition 6.51. For $M_{\bullet} \in Ob \mathscr{A}_{\Delta}$ a simplicial object in \mathscr{A} , let $C_*(M)$ denote the *associated chain complex* with $C_n(M) = M_n$ and differential $d_n : C_n(M) \to C_{n-1}(M)$ given by

$$d_n := \sum_{i=0}^n (-1)^i \partial_i.$$

The fact that $d^2 = 0$ is a consequence of the *simplicial identity* $\partial_i \partial_j = \partial_{j-1} \partial_i$ for i < j.

Exercise 6.52. Prove that $d^2 = 0$ in $C_*(M)$.

Proposition 6.53. The associated chain complex defines a functor $C_* : \mathscr{A}_{\Delta} \to \mathfrak{Ch}_{\geq 0}(\mathscr{A})$ from the category of simplicial objects in \mathscr{A} to non-negatively graded chain complexes in \mathscr{A} .

Proof. It is straightforward to verify that the definition of C_* is natural in M_{\bullet} . (Exercise.)

Remark 6.54. The Dold-Kan theorem (see [Wei94], for example) states that the categories \mathscr{A}_{Δ} and $\mathfrak{Ch}_{\geq 0}(\mathscr{A})$ are *equivalent*. The equivalence is proved using a refinement of the functor C_* , the *normalized chain complex* functor. Thus, the passage from \mathscr{A}_{Δ} to $\mathfrak{Ch}_{\geq 0}(\mathscr{A})$ does not lose any information.

Example 6.55. The composite of the functor $\mathbb{Z}[-]$: $\mathfrak{Set}_{\Delta} \to \mathfrak{A}b_{\Delta}$ with $C_*(-)$: $\mathfrak{A}b_{\Delta} \to \mathfrak{Ch}_{>0}(\mathscr{A})$ gives a functor

$$C_*(\mathbb{Z}[-]): \mathfrak{Set}_{\Delta} \to \mathfrak{Ch}_{>0}(\mathfrak{A}b).$$

The homology of a simplicial set, K_{\bullet} , is (by definition) the homology of $C_*(\mathbb{Z}[K_{\bullet}])$.

Exercise 6.56. For *G* a discrete group, describe the chain complex $C_*(\mathbb{Z}[NG])$.

Definition 6.57. The *singular chains* functor

$$C^{\operatorname{Sing}}:\mathfrak{Top}\to\mathfrak{Ch}_{\geq 0}(\mathfrak{Ab})$$

is the composite functor $X \mapsto C^{\text{Sing}}_*(X) := C_*(\mathbb{Z}[\mathfrak{Sing}_{\bullet}(X)]).$

Exercise 6.58. For *X* a topological space, describe the

- (1) 0-chains=0-cycles
- (2) 0-boundaries
- (3) 1-cycles
- (4) 1-boundaries

of $C_*^{\operatorname{Sing}}(X)$.

Definition 6.59. The *singular homology* $H_*(X)$ of a topological space X is the homology of the chain complex $C_*^{\text{Sing}}(X)$.

Proposition 6.60. *Singular homology defines functors (for* $n \in \mathbb{N}$ *):*

$$H_n(-):\mathfrak{Top}\to\mathfrak{A}b$$

Proof. Clear.

Exercise 6.61. What are the relationships between

It remains to show that singular homology has *good properties*, so that it is *calculable*.

6.7. Algebraic interlude: the long exact sequence associated to a short exact sequence of complexes.

Definition 6.62. A *short exact sequence of chain complexes* in \mathscr{A} is a sequence of morphisms of chain complexes $(A, d^A) \xrightarrow{f} (B, d^B) \xrightarrow{g} (C, d^C)$ such that, $\forall n \in \mathbb{Z}$,

 $0 \longrightarrow A_n \xrightarrow{f_n} B_n \xrightarrow{g_n} C_n \longrightarrow 0$

is a short exact sequence in \mathscr{A} .

Remark 6.63. The category $\mathfrak{Ch}(\mathscr{A})$ is abelian; the above definition coincides with the usual notion of short exact sequence with respect to the abelian structure.

Theorem 6.64. A short exact sequence of chain complexes $(A, d^A) \xrightarrow{f} (B, d^B) \xrightarrow{g} (C, d^C)$ induces a natural long exact sequence in homology:

$$\ldots \to H_n(A) \xrightarrow{H_n(f)} H_n(B) \xrightarrow{H_n(g)} H_n(C) \xrightarrow{\delta_n} H_{n-1}(A) \to \ldots;$$

the morphism δ_n is termed the connecting morphism.

Proof. The morphisms $H_n(f)$ and $H_n(g)$ are given by functoriality of homology. Start by defining the connecting morphism (for this proof, suppose that \mathscr{A} is the category of modules over a commutative ring R, so we can work in terms of elements).

Consider a homology class $[z] \in H_n(C)$, represented by a cycle $z \in Z_n(C)$; by surjectivity of g_n , there is an element $\tilde{z} \in B_n$ such that $g_n(\tilde{z}) = z$. Since z is a cycle and g is a morphism of chain complexes, $g_{n-1}(d_n^B \tilde{z}) = d_n^C g_n(\tilde{z}) = d_n^C z = 0$, hence the element $y := d_n^B(\tilde{z})$ is in the image of $f_{n-1} : A_{n-1} \to B_{n-1}$, by exactness at B_{n-1} . Moreover, $d_{n-1}^B y = d_{n-1}^B d_n^B(\tilde{z}) = 0$ implies that $d_{n-1}^A y = 0$ (since f_{n-2} is injective). Hence, $y \in Z_{n-1}(A)$ is a cycle; moreover, it is straightforward to check that the homology class $[y] \in H_{n-1}(A)$ is independent of the choice of z and of \tilde{z} (exercise!). Set $\delta_n[z] := [y]$; this defines a morphism in \mathscr{A} ; this construction is *natural*.

The composite $\partial_n H_n(g)$ is trivial, since if $[z] = H_n(g)[w] = [g_n(w)]$, one can take $\tilde{z} = w$, which is a cycle, so that y = 0 (as in the above construction). Similarly, the composite $H_{n-1}(f)\partial_n$ is trivial, since the cycle $y \in H_{n-1}(A)$ maps under f_{n-1} to the boundary $d_n^B(\tilde{z})$. The composite $H_n(g)H_n(f)$ is trivial, since $g_n \circ f_n = 0$, thus we have a *sequence* of homology groups; it remains to check exactness.

Exactness at $H_n(C)$: consider a class $[z] \in H_n(C)$ and suppose that $\delta_n[z] = 0$ in $H_{n-1}(A)$; thus, in the above construction, the element y is a boundary $y = d_n^A \overline{y}$, for some $\overline{y} \in A_n$. Consider $\tilde{z}' := \tilde{z} - f_n(\overline{y}) \in B_n$; clearly $g_n(\tilde{z}') = z$ and, since f is a morphism of chain complexes, $d_n^B(\tilde{z}') = 0$. It follows that $[z] = H_n(g)[\tilde{z}']$, as required.

Exactness at $H_n(A)$: consider an element $[v] \in H_n(A)$ which lies in the kernel of $H_n(f)$, represented by a cycle $v \in Z_n(A)$. Hence $f_n(v)$ is a boundary in B, so there exists $\tilde{\alpha} \in B_{n+1}$ such that $d_{n+1}^B \tilde{\alpha} = f_n(v)$. Moreover, the image $\alpha := g_{n+1}(\tilde{\alpha}) \in C_{n+1}$ is a cycle, since $d_{n+1}^C \alpha = g_n d_{n+1}^B \tilde{\alpha} = g_n f_n(v) = 0$. It is straightforward to check that $[v] = \delta_{n+1}[\alpha]$.

Exactness at $H_n(B)$: consider an element $[w] \in H_n(B)$ which lies in the kernel of $H_n(g)$, represented by a cycle $w \in B_n$; this means that $g_n(w) \in C_n$ is a boundary,

GEOFFREY POWELL

say $g_n(w) = d_{n+1}^C u$. Surjectivity of g_{n+1} gives an element $\tilde{u} \in B_{n+1}$ with $g_{n+1}(\tilde{u}) = u$. The cycle $w' := w - d_{n+1}^B \tilde{u}$ represents the same homology class as w; moreover, by construction $g_n(w') = 0$ (since g is a morphism of chain complexes). Thus $w' \in A_n$ (more precisely is in the image of f_n), by exactness at B_n , and represents a homology class $[w'] \in H_n(A)$. By construction $[w] = H_n(f)[w']$, as required. \Box

6.8. **Relative homology.** The definition of singular homology extends easily to *pairs* of topological spaces, to define *relative homology groups*.

Definition 6.65. The category $\mathfrak{Top}^{[2]}$ of *pairs of topological spaces* has objects (X, A), where X is a topological space and A a subspace, and morphisms $f : (X, A) \to (Y, B)$ given by a continuous map $f : X \to Y$ such that $f(A) \subset B$.

Exercise 6.66.

- (1) Check that $\mathfrak{Top}^{[2]}$ is a category.
- (2) Show that $X \mapsto (X, \emptyset)$ defines a functor $\mathfrak{Top} \to \mathfrak{Top}^{[2]}$, which identifies \mathfrak{Top} as a full subcategory of $\mathfrak{Top}^{[2]}$.
- (3) Show that \mathfrak{Top}_{\bullet} is a full subcategory of $\mathfrak{Top}^{[2]}$.

If (X, A) is a pair of topological spaces, the inclusion $A \subset X$ induces an inclusion of singular simplicial sets $\mathfrak{Sing}(A) \hookrightarrow \mathfrak{Sing}(X)$ and hence a monomorphism of chain complexes:

$$C^{\mathrm{Sing}}(A) \hookrightarrow C^{\mathrm{Sing}}(X).$$

Passage to the quotient gives a chain complex.

Definition 6.67. For (X, A) a pair of topological spaces, let

- (1) $C^{\text{Sing}}(X, A) := C^{\text{Sing}}(X)/C^{\text{Sing}}(A)$ denote the relative singular chain complex;
- (2) $H_n(X, A)$, the *n*th relative homology denote the *n*th homology group of the complex $C^{\text{Sing}}(X, A)$.

Lemma 6.68. For X a topological space, the chain complexes $C^{\text{Sing}}(X)$ and $C^{\text{Sing}}(X, \emptyset)$ are naturally isomorphic, hence there is a natural identification $H_n(X, \emptyset) \cong H_n(X), \forall n \in \mathbb{N}$.

Proof. Clear, since $\mathfrak{Sing}(\emptyset) = \emptyset$, the empty simplicial set, and $\mathbb{Z}[\emptyset] = 0$.

Theorem 6.69. *Relative homology defines functors* $\forall n \in \mathbb{N}$ *:*

j

$$\begin{array}{rcl} H_n(-,-):\mathfrak{Top}^{[2]} &\to \mathfrak{A}b \\ (X,A) &\mapsto & H_n(X,A). \end{array}$$

Moreover, associated to a pair of topological spaces (X, A), there is a natural long exact sequence in homology:

$$\dots \to H_n(A) \xrightarrow{H_n(i)} H_n(X) \to H_n(X, A) \to H_{n-1}(A) \to \dots$$

where $i : A \hookrightarrow X$ denotes the inclusion of the subspace.

Proof. A morphism of pairs of topological spaces $(X, A) \rightarrow (Y, B)$ induces a commutative diagram of chain complexes:

$$\begin{array}{ccc} C^{\mathrm{Sing}}(A) & & & C^{\mathrm{Sing}}(X) \\ & & & & & \downarrow \\ & & & & \downarrow \\ C^{\mathrm{Sing}}(B) & & & C^{\mathrm{Sing}}(Y). \end{array}$$

This induces a morphism of the relative chain complexes $C^{\text{Sing}}(X, A) \to C^{\text{Sing}}(Y, B)$ and this construction is functorial. In homology this induces $H_n(X, A) \to H_n(Y, B)$, $n \in \mathbb{N}$, which gives the functoriality of relative homology.

The long exact sequence is simply that associated to the defining short exact sequence of chain complexes:

$$0 \to C^{\operatorname{Sing}}(A) \to C^{\operatorname{Sing}}(X) \to C^{\operatorname{Sing}}(X, A) \to 0$$

given by Theorem 6.64.

Remark 6.70. The relative homology groups $H_*(X, A)$ give a measure of the *difference* between the homology of X and of its subspace A.

6.9. **Homotopy invariance of homology.** The homotopy invariance of singular homology is a consequence of the following result, by Proposition 6.26.

Theorem 6.71. For $f, g: X \Rightarrow Y$ continuous maps which are homotopic via a homotopy $H: X \times I \to Y$, the homotopy H induces (by a natural construction) a chain homotopy between $C^{\text{Sing}}(f), C^{\text{Sing}}(g): C^{\text{Sing}}(X) \to C^{\text{Sing}}(Y)$.

Proof. The construction of the chain homotopy follows by the method of the *universal example*. It is necessary to construct the sequence of morphisms

$$h_n: C_n^{\operatorname{Sing}}(X) \to C_{n+1}^{\operatorname{Sing}}(Y)$$

A generator of $C_n^{\text{Sing}}(X) = \mathbb{Z}[\mathfrak{Sing}_n(X)]$ (as a free abelian group) is given by a continuous map $\alpha : \Delta_n^{\text{top}} \to X$. This (as in Yoneda's lemma - see Section A.4), is the image under

$$C^{\operatorname{Sing}}(\alpha): C_n^{\operatorname{Sing}}(\Delta_n^{\operatorname{top}}) \to C_n^{\operatorname{Sing}}(X)$$

of the generator given by the identity map $1_{\Delta_n^{\text{top}}}$. Moreover, the morphism $C_*^{\text{Sing}}(\alpha)$ of chain complexes is determined by this element.

Now, suppose that $h_n : C_n^{\text{Sing}}(\Delta_n^{\text{top}}) \to C_{n+1}^{\text{Sing}}(\Delta_n^{\text{top}} \times I)$ is constructed, corresponding to the case $X = \Delta_n^{\text{top}}, Y = \Delta_n^{\text{top}} \times I$ and H the identity map. The image of $\alpha \in C_n^{\text{Sing}}(X)$ is defined to be the image of the identity map under the composite

$$C_n^{\operatorname{Sing}}(\Delta_n^{\operatorname{top}}) \xrightarrow{h_n} C_{n+1}^{\operatorname{Sing}}(\Delta_n^{\operatorname{top}} \times I) \xrightarrow{C^{\operatorname{Sing}}(\alpha \times 1_I)} C_{n+1}^{\operatorname{Sing}}(X \times I) \xrightarrow{C_{n+1}^{\operatorname{Sing}}(H)} C_{n+1}^{\operatorname{Sing}}(Y).$$

(In fact this definition is *imposed* if the chain homotopy h depends naturally on H.)

Thus, the problem reduces to constructing $h_n : C_n^{\text{Sing}}(\Delta_n^{\text{top}}) \to C_{n+1}^{\text{Sing}}(\Delta_n^{\text{top}} \times I)$ with the requisite properties. This is equivalent to giving an element of $C_{n+1}^{\text{Sing}}(\Delta_n^{\text{top}} \times I) = \mathbb{Z}[\mathfrak{Sing}_{n+1}(\Delta_n^{\text{top}} \times I)]$; the construction is based on the *geometric decomposition* of the topological space $\Delta_n^{\text{top}} \times I$ as a union of n+1 topological simplices (homeomorphic to $\Delta_{n+1}^{\text{top}}$) with pairwise disjoint interiors. (This should be seen as an n+1-dimensional triangulation of $\Delta_n^{\text{top}} \times I$.) The construction requires the ordering of vertices to be taken into account, together with the resulting orientations of the simplices.

Writing the vertices of Δ_n^{top} as v_0, \ldots, v_n and the endpoints of I as 0, 1, the product $\Delta_n^{\text{top}} \times I$ is the convex hull of the set of vertices $\mathscr{V}_n := \{(v_i, \varepsilon) | \varepsilon \in \{0, 1\}\}$, considered as a subspace of \mathbb{R}^{n+2} . The set of vertices is equipped with the associated partial order $(v_i, \varepsilon) \leq (v_j, \eta)$ if and only if $i \leq j$ and $\varepsilon \leq \eta$.

For $0 \le t \le n$, define the continuous map $\sigma_t : \Delta_{n+1}^{\text{top}} \to \Delta_n^{\text{top}} \times I$ by the linear extension of

$$v_i(n+1) \mapsto \begin{cases} (v_i, 0) & i \le t\\ (v_{i-1}, 1) & i > t \end{cases}$$

This satisfies $\Delta_n^{\text{top}} \times I = \bigcup_{t=0}^n \text{image}(\sigma_t)$ and the interiors $(\text{image}(\sigma_t))^\circ$ are pairwise disjoint.

For example, for n = 0, Δ_0^{top} is a point, and there is a homeomorphism $\Delta_1^{\text{top}} \cong \Delta_0^{\text{top}} \times I$, which corresponds to σ_0 .

The case n = 1 already illustrates the salient features (see Figure 1): the common face corresponds to the face included by ε_1 applied to the two topological 2-simplices. However, the simplices have different orientations.

In dimension 2 a similar phenomenon occurs (see Figure 2).

The morphism $h_n: C_n^{Sing}(\Delta_n^{top}) \to C_{n+1}^{Sing}(\Delta_n^{top} \times I)$ is defined by the element

$$\sum_{n=0}^{n} (-1)^{t} \sigma_{t} \in \mathbb{Z}[\mathfrak{Sing}_{n}(\Delta_{n}^{\mathrm{top}} \times I)].$$

The alternating sign ensures that, when applying the differential d, the only non-trivial *n*-simplices which appear are those which correspond to the boundary (in the geometric sense!) of $\Delta_n^{\text{top}} \times I$.

Exercise: show that this gives the required chain homotopy. (This follows from the fact that the decomposition of the boundary $\partial(\Delta_n^{\text{top}} \times I)$ into *n*-simplices which is induced by the above decomposition, is compatible with that used for the definition of h_{n-1} .)

Remark 6.72. The geometric decomposition of $\Delta_n^{\text{top}} \times I$ above can be understood entirely in terms of simplicial sets \mathfrak{Set}_{Δ} . Moreover, this gives the notion of *simplicial homotopy*. A simplicial homotopy induces a chain homotopy on applying the functor $C_*(\mathbb{Z}[-])$; the great advantage of *simplicial* homotopy is that it makes sense in *any* category.

6.10. **Barycentric subdivision and little chains.** The standard techniques for calculating homology rely upon its *local* nature; this is a consequence of the procedure of *subdividing* topological simplexes.

Definition 6.73. The *barycentre* of the topological simplex Δ_n^{top} is the point:

$$\sum_{i=0}^{n} \frac{1}{n+1} v_i.$$

By induction upon the dimension *n* of the topological simplices, this leads to the *barycentric subdivision* of Δ_n^{top} . (See Figure 3 for an illustration of the barycentric subdivision of the topological 2-simplex.)

Recall that the topological simplices form a cosimplicial object in \mathfrak{Top} . In particular, the inclusion of a *k*-dimensional face is determined by its set of vertices (equivalently is defined by an order-preserving injection $\{0, \ldots, k\} \hookrightarrow \{0, \ldots, n\}$). The faces of Δ_n^{top} form a partially-ordered set under inclusion of faces.

In the barycentric decomposition of Δ_n^{top} , the vertices are the barycentres of the faces, hence are indexed by the faces. More generally, the topological *k*-simplices appearing in the decomposition are chains of strict face inclusions of length k + 1. This is equivalent to giving an *ordering* of the set of vertices of Δ_n^{top} , i_0, \ldots, i_n , so that the face inclusions are given by

$$v_{i_0} \subset (v_{i_0}v_{i_1}) \subset (v_{i_0}v_{i_1}v_{i_2}) \ldots \subset (v_{i_0}v_{i_1}\ldots v_{i_n}).$$

This ordering of $\{0, ..., n\}$ corresponds to an element $\pi \in \mathfrak{S}_{n+1}$ of the symmetric group on n + 1 letters.

Thus the barycentric decomposition gives

$$\Delta_n^{\mathrm{top}} \cong \bigcup_{\pi \in \mathfrak{S}_{n+1}} \mathrm{image}(\pi)$$

where π defines the map $\pi : \Delta_n^{\text{top}} \to \Delta_n^{\text{top}}$ which sends the *j*th vertex to the barycentre of the *j*th face in the chain of faces corresponding to π . By construction, the interiors $\text{image}(\pi)^\circ$ are pairwise disjoint.

Definition 6.74. For $\mathscr{U} := \{U_i | i \in \mathscr{I}\}$ a family of subsets of a topological space X such that $X = \bigcup_{i \in \mathscr{I}} U_i$, define the *subcomplex of* \mathscr{U} -*little chains*

$$C^{\operatorname{Sing},\mathscr{U}}(X) \subset C^{\operatorname{Sing}}(X)$$

to be the subcomplex generated by singular simplices $\Delta_n^{\text{top}} \to X$ $(n \in \mathbb{N})$ which factor across some $U_i, i \in \mathscr{I}$.

Theorem 6.75. For $\mathscr{U} := \{U_i | i \in \mathscr{I}\}\$ a family of subsets of a topological space X such that $X = \bigcup_{i \in \mathscr{I}} U_i^\circ$, the inclusion

$$C^{\operatorname{Sing},\mathscr{U}}(X) \hookrightarrow C^{\operatorname{Sing}}(X)$$

induces an isomorphism in homology.

The proof of the theorem is based upon the (natural) subdivision operator:

$$S: C^{\mathrm{Sing}}_*(X) \to C^{\mathrm{Sing}}_*(X).$$

In the following definition, the notation introduced in describing the barycentric subdivision of $\Delta_n^{\rm top}$ is used.

Definition 6.76. For X a topological space, let $S : C_*^{\text{Sing}}(X) \to C_*^{\text{Sing}}(X)$ be the chain map which sends a generator $[f] \in C_n^{\text{Sing}}(X) = \mathbb{Z}[\mathfrak{Sing}_n(X)]$ given by a singular simplex $f : \Delta_n^{\text{top}} \to X$ to

$$S([f]) := \sum_{\pi \in \mathfrak{S}_{n+1}} (-1)^{\operatorname{sign}(\pi)} [f \circ \pi].$$

Exercise 6.77. Show that

- (1) S is a chain map;
- (2) S defines a natural transformation C^{Sing}_{*}(−) → C^{Sing}_{*}(−) of functors from Top to Ch_{>0}(𝔅b).

FIGURE 4. The barycentric cylinder decomposition $\Delta_2^{\text{top}} \times I$

Lemma 6.78. For X a topological space, the chain map $S : C_*^{Sing}(X) \to C_*^{Sing}(X)$ is chain homotopic to the identity.

Proof. (Indications.) The proof is similar in spirit to that of Theorem 6.71: one uses a subdivision of the space $\Delta_n^{\text{top}} \times I$ related to barycentric subdivision. These subdivisions are constructed recursively on n; supposing the subdivision constructed for $\Delta_n^{\text{top}} \times I$, this yields a subdivision of $(\partial \Delta_n^{\text{top}} \times \{0\} \cup \Delta_{n+1}^{\text{top}}) \times I$. The subdivision

of $\Delta_{n+1}^{\text{top}}$ is given by forming the cone with respect to the barycentre of $\Delta_{n+1}^{\text{top}} \times \{1\}$. This is illustrated in Figure 4.

Proof of Theorem 6.75. Without loss of generality, one may suppose that $\mathscr U$ is an open cover of X. Recall that $C^{\text{Sing},\mathscr{U}}(X)$ is a subcomplex of $\tilde{C}^{\text{Sing}}(X)$; first show that this induces a surjection in homology.

Consider an element Φ of $C_n^{\text{Sing}}(X)$; since Δ_n^{top} is a compact metric space, Lebesgue's theorem 4.38 implies that there exists a natural number N such that the iterated subdivision $S^{N}(\Phi)$ lies in $C_{n}^{\text{Sing},\mathscr{U}}(X)$ (exercise: prove this assertion). Moreover, if Φ is a cycle, then so is $S^N(\Phi)$, since S^N is a chain map. Since S^N is chain homotopic to the identity map (by Lemma 6.78 and Proposition 6.22), $[S^N(\Phi)] = [\Phi]$, proving surjectivity.

A similar argument establishes that a cycle of $C^{\text{Sing},\mathscr{U}}(X)$ which is a boundary in $C^{\text{Sing}}(X)$ is also a boundary in $C^{\text{Sing},\mathscr{U}}(X)$, noting that S restricts to a chain map $S: C^{Sing,\mathscr{U}}(X) \to C^{Sing,\mathscr{U}}(X)$ which is chain homotopic to the identity. This completes the proof. \square

6.11. First calculations.

Proposition 6.79. The singular chain complex $C^{Sing}(*)$ identifies as follows: $C_n^{Sing}(*) =$ \mathbb{Z} ($\forall n \in \mathbb{N}$) and $d_{n+1} : C_{n+1}^{\operatorname{Sing}}(*) \to C_n^{\operatorname{Sing}}(*)$ is zero if $n \equiv 0 \mod (2)$ and is the identity morphism if $n \equiv 1 \mod (2)$.

In particular, the singular homology of a point is

$$H_n(*) \cong \begin{cases} \mathbb{Z} & n = 0\\ 0 & n > 0. \end{cases}$$

Proof. Since * is the final object of the category of topological spaces, $\mathfrak{Sing}_n(*)$ is a singleton set, $\forall n \in \mathbb{N}$, hence $C_n^{\text{Sing}}(*) = \mathbb{Z}$. The differential d_{n+1} identifies as multiplication by $\sum_{i=0}^{n+1} (-1)^i$; this is 0 if *n* is even and 1 for *n* odd.

Exercise 6.80. Show that the projection $X \rightarrow *$ from a contractible space to a point induces an isomorphism in homology, hence determining $H_n(X)$, by Proposition 6.79.

Proposition 6.81. For X, Y topological spaces, the inclusions $X \hookrightarrow X \amalg Y \leftrightarrow Y$ induce a natural isomorphism of chain complexes

$$C^{\operatorname{Sing}}(X \amalg Y) \cong C^{\operatorname{Sing}}(X) \oplus C^{\operatorname{Sing}}(Y)$$

and hence a natural isomorphism in homology, $\forall n \in \mathbb{N}$ F

$$H_n(X \amalg Y) \cong H_n(X) \oplus H_n(Y).$$

Proof. Since Δ_n^{top} is a connected topological space, it is clear that $\mathfrak{Sing}_n(X \amalg Y) \cong$ $\mathfrak{Sing}_n(X) \amalg \mathfrak{Sing}_n(Y)$ (in fact, this corresponds to an isomorphism of simplicial sets $\mathfrak{Sing}(X \amalg Y) \cong \mathfrak{Sing}(X) \amalg \mathfrak{Sing}(Y)$. The free abelian group functor sends a disjoint union of sets to a direct sum of abelian groups (for the cognoscenti: this is actually a formal consequence of the fact that $\mathbb{Z}[-]$ is a *left adjoint*, which implies that it preserves coproducts).

It is straightforward to check that one obtains a natural isomorphism $C^{\text{Sing}}(X \amalg$ $Y) \cong C^{\text{Sing}}(X) \oplus C^{\text{Sing}}(Y)$ of chain complexes (exercise).

For the conclusion, it suffices to observe that the homology of a direct sum of chain complexes is the direct sum of their homologies (exercise).

Example 6.82. Propositions 6.79 and 6.81 allow the calculation of the homology of S^0 :

$$H_n(S^0) \cong \begin{cases} \mathbb{Z} \oplus \mathbb{Z} & n = 0\\ 0 & n > 0. \end{cases}$$

For pointed topological spaces, it is convenient to use *reduced homology groups*.

GEOFFREY POWELL

Definition 6.83. For (X, *) a pointed space, the *reduced homology* of X is the relative homology group:

$$\tilde{H}_*(X) := H_*(X, *).$$

Lemma 6.84. For (X, *) a pointed topological space, the reduced homology is isomorphic to the quotient of the split inclusion $H_*(*) \to H_*(X)$ induced by the inclusion of the basepoint. In particular, for n > 0, there is a canonical isomorphism $\tilde{H}_n(X) \cong H_n(X)$.

Proof. The projection $X \to *$ provides a retract of the inclusion of the basepoint, so $H_*(*) \hookrightarrow H_*(X)$ is a split inclusion. The reduced homology is identified by the long exact sequence in homology for a pair of topological spaces.

Exercise 6.85. For pointed spaces (X, *), (Y, *) calculate the reduced homology groups $\tilde{H}_*(X \lor Y)$ of the wedge of X and Y in terms of their reduced homology.

Theorem 6.86. For X a locally path-connected space, the continuous projection $X \rightarrow \pi_0(X)$ onto the set of path connected components induces an isomorphism

$$H_0(X) \cong \mathbb{Z}[\pi_0(X)].$$

Proof. The group of singular chains $C_0^{\text{Sing}}(X)$ identify as the free abelian group on the underlying set of X and $C_1^{\text{Sing}}(X)$ as the free abelian group on the set of paths of X. The differential d_1 sends a generator $[\alpha]$ corresponding to a path $\alpha : I \to X$ to $[\alpha(1)] - [\alpha(0)]$. It follows easily that elements [x], [y] of $C_0^{\text{Sing}}(X)$ define the same homology class if and only if they belong to the same path-connected component. The result follows.

Exercise 6.87. Prove that two topological spaces with the same homotopy type $X \simeq Y$ have isomorphic homology groups.

6.12. **Mayer-Vietoris.** The little chains theorem, Theorem 6.75, can be applied when \mathscr{U} is a (suitable) cover with just two subspaces.

Theorem 6.88. For $\mathscr{U} = \{A, B\}$ a cover of a topological space X such that $X = A^{\circ} \cup B^{\circ}$, the inclusions

$$\begin{array}{c|c} A \cap B \xrightarrow{i_A} A \\ \downarrow i_B & & \downarrow j_L \\ B \xrightarrow{j_B} X, \end{array}$$

induce a long exact sequence (the Mayer-Vietoris sequence) in homology:

$$\dots \to H_n(A \cap B) \xrightarrow{i_A - i_B} H_n(A) \oplus H_n(B) \xrightarrow{j_A + j_B} H_n(X) \to H_{n-1}(A \cap B) \to \dots$$

Proof. The singular chain complexes $C^{\text{Sing}}(A)$ and $C^{\text{Sing}}(B)$ can be considered as subcomplexes of $C^{\text{Sing}}(X)$. The intersection of these subcomplexes is again a subcomplex, which identifies with $C^{\text{Sing}}(A \cap B)$, since a singular chain $\alpha : \Delta_n^{\text{top}} \to X \in$ $\mathfrak{Sing}_n(A) \cap \mathfrak{Sing}_n(B)$ necessarily maps to $A \cap B$. The sum of the two subcomplexes $C^{\text{Sing}}(A) + C^{\text{Sing}}(B)$ identifies with $C^{\text{Sing},\mathcal{U}}(X)$, by definition of the latter.

This implies that there is a short exact sequence of chain complexes:

$$0 \to C^{\operatorname{Sing}}(A \cap B) \xrightarrow{C^{\operatorname{Sing}}(i_A) - C^{\operatorname{Sing}}(i_B)} C^{\operatorname{Sing}}(A) \oplus C^{\operatorname{Sing}}(B) \to C^{\operatorname{Sing},\mathscr{U}}(X) \to 0.$$

(To see this, consider the kernel of the map $C^{\text{Sing}}(A) \oplus C^{\text{Sing}}(B) \to C^{\text{Sing},\mathscr{U}}(X)$.) By construction, the composite of the surjection with the canonical inclusion $C^{\text{Sing},\mathscr{U}}(X) \hookrightarrow C^{\text{Sing}}(X)$ identifies with the morphism

$$C^{\operatorname{Sing}}(A) \oplus C^{\operatorname{Sing}}(B) \xrightarrow{C^{\operatorname{Sing}}(j_A) + C^{\operatorname{Sing}}(j_B)} C^{\operatorname{Sing}}(X)$$

of chain complexes.

Theorem 6.64 gives a long exact sequence in homology and the little chains theorem for \mathscr{U} (which is where the hypothesis on the interiors is required) identifies the homology of $C^{\text{Sing},\mathscr{U}}(X)$ with $H_*(X)$. The identification of the morphisms in the long exact sequence is straightforward.

The Mayer-Vietoris long exact sequence allows for the first non-trivial calculations.

Proposition 6.89. For $1 \le n \in \mathbb{N}$, the homology of the sphere S^n is

$$H_t(S^n) \cong \begin{cases} \mathbb{Z} & t \in \{0, n\} \\ 0 & \text{otherwise.} \end{cases}$$

Proof. The result is proved by induction upon n, using the homology of S^0 given by Example 6.82 to calculate the homology of S^1 . For $n \ge 1$, as in Proposition 4.54 (without the restriction $n \ge 2$), take an open cover $S^n = U^+ \cup U^-$ by Northern and Southern hemispheres, so that U^+ , U^- are contractible and $U^+ \cap U^- \simeq S^{n-1}$.

For n = 1, the Mayer-Vietoris sequence for S^1 immediately shows that $H_t(S^1) = 0$ for t > 1 (why?). Using the homotopy invariance of homology (Theorem 6.71) and the fact that $H_1(S^0) = 0 = H_1(U^+) = H_1(U^-)$, the non-trivial part of the long exact sequence is:

$$0 \to H_1(S^1) \to H_0(S^0) \cong \mathbb{Z} \oplus \mathbb{Z} \to H_0(U^+) \oplus H_0(U^-) \cong \mathbb{Z} \oplus \mathbb{Z} \to H_0(S^1) \to 0.$$

The inclusion $S^0 \hookrightarrow U^+$ identifies as $\mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\text{id}+\text{id}} \mathbb{Z}$, likewise for U^- . It follows that $H_1(S^1) \cong \mathbb{Z}$, which embeds diagonally in $H_0(S^0)$ via the connecting morphism. Similarly $H_0(S^1) \cong \mathbb{Z}$ (this fact can also be deduced from Theorem 6.86).

For n > 1, the argument is simpler still; for H_n , the relevant portion of the Mayer-Vietoris sequence is

$$0 \to H_n(S^n) \to H_{n-1}(S^{n-1}) \cong \mathbb{Z} \to 0,$$

providing the required isomorphism.

The identification of $H_0(S^n)$ is straightforward (or apply Theorem 6.86).

6.13. **Excision.** Excision is a powerful tool for understanding relative homology groups.

The proof of the excision theorem is best carried out using the five-lemma, which is a fundamental result of homological algebra. In the following, \mathscr{A} could be any abelian category.

Proposition 6.90. *For a commutative diagram in A*

$$\begin{array}{c|c} A_0 & \xrightarrow{f_0} & A_1 & \xrightarrow{f_1} & A_2 & \xrightarrow{f_2} & A_3 & \xrightarrow{f_3} & A_4 \\ g_0 & & & & \\ g_0 & & & & \\ g_0 & & & & \\ & & & & \\ B_0 & \xrightarrow{h_0} & B_1 & \xrightarrow{h_1} & B_2 & \xrightarrow{h_2} & B_3 & \xrightarrow{h_3} & B_4 \end{array}$$

in which the rows are exact, if the morphisms g_0, g_1, g_3, g_4 are isomorphisms, then so is g_2 .

Proof. It suffices to show that g_2 is both injective and surjective.

First show injectivity: suppose that $x \in A_2$ lies in the kernel of g_2 then, since g_3 is an isomorphism (in particular injective), x lies in the kernel of f_2 , hence $\exists y \in A_1$ such that $x = f_1(y)$. By commutativity of the diagram, $h_1g_1(y) = 0$, so that $g_1(y)$ lies in the kernel of h_1 , thus in the image of h_0 , say $g_1(y) = h_0(z)$. Since g_0 is an isomorphism, there exists a unique $\tilde{z} \in A_0$ such that $g_0(\tilde{z}) = z$; moreover, since g_1 is injective and $g_1f_0(\tilde{z}) = h_0g_0(\tilde{z}) = g_1(y)$, $f_0(\tilde{z}) = y$. Thus $x = f_1(y) = f_1f_0(\tilde{z}) = 0$, as required.

The proof of surjectivity is *dual*: consider $u \in B_2$, then $h_2(u) \in B_3$ lies in the image of the isomorphism g_3 , say $h_2(u) = g_3(v)$. Arguing as above, v lies in the

GEOFFREY POWELL

kernel of f_3 , hence $\exists w \in A_2$ such that $f_2(w) = v$, so that $h_2g_2(w) = h_2(u)$. It follows that $h_2(u - g_2(w)) = 0$, so that $\exists \alpha \in B_1$ with $h_1(\alpha) = u - g_2(w)$. Since g_1 is an isomorphism, $\exists! \tilde{\alpha} \in A_1$ such that $g_1(\tilde{\alpha}) = \alpha$. Now $g_2f_1(\tilde{\alpha}) = u - g_2(w)$ by commutativity, giving that $g_2(f_1(\tilde{\alpha}) + w) = u$, so g_2 is surjective. \Box

Theorem 6.91. For $(X, A) \in Ob \mathfrak{Top}^{[2]}$ and $U \subset X$ a subspace such that $\overline{U} \subset A^\circ$, the inclusion $(X \setminus U, A \setminus U)$ induces an isomorphism on relative homology groups:

$$H_*(X \setminus U, A \setminus U) \xrightarrow{\cong} H_*(X, A)$$

Proof. Set $\mathscr{U} := \{A, X \setminus U\}$; the hypothesis that $\overline{U} \subset A^{\circ}$ implies that $A^{\circ} \cup (X \setminus U)^{\circ} = X$, so that the little chains theorem can be applied. As in the proof of the Mayer-Vietoris theorem, $C^{\operatorname{Sing}}(\mathscr{U})$ identifies as $C^{\operatorname{Sing}}(A) + C^{\operatorname{Sing}}(X \setminus U)$, in particular, $C^{\operatorname{Sing}}(A)$ is a subcomplex of $C^{\operatorname{Sing}}(\mathscr{U})$. Moreover, one has $C^{\operatorname{Sing}}(A) \cap C^{\operatorname{Sing}}(X \setminus U) = C^{\operatorname{Sing}}(A \setminus U)$. It follows that there is an isomorphism of chain complexes

$$C^{\operatorname{Sing},\mathscr{U}}(X)/C^{\operatorname{Sing}}(A) \cong C^{\operatorname{Sing}}(X \setminus U)/C^{\operatorname{Sing}}(A \setminus U) = C^{\operatorname{Sing}}(X \setminus U, A \setminus U).$$

(Exercise: prove this!)

This gives rise to a morphism between short exact sequences of chain complexes:

where the right hand vertical morphism is induced by $(X \setminus U, A \setminus U) \rightarrow (X, A)$.

Applying homology, the rows induce long exact sequences and the vertical morphisms induce a morphism between the long exact sequences (by the *naturality* of the long exact sequence in Theorem 6.64). The inclusion $C^{\text{Sing},\mathscr{U}}(X) \hookrightarrow C^{\text{Sing}}(X)$ induces an isomorphism in homology, by small chains, Theorem 6.75, hence the five-lemma implies that the right hand vertical morphism also induces an isomorphism in homology, as required.

6.14. The long exact sequence associated to a morphism. Recall from Section 4.11

the mapping cylinder M_f and the mapping cone C_f of a continuous map $f : X \to Y$. The mapping cylinder provides a homotopically good factorization

$$X \xrightarrow{f} M_f \xrightarrow{\simeq} Y$$

of *f* as a *good inclusion* (in the language of a homotopy theory, a *cofibration*) followed by a homotopy equivalence.

The mapping cone C_f is the quotient of M_f obtained by collapsing the free end X of the cylinder to a point. However, the mapping cylinder is also homeomorphic to the identification space:

$$C_f \cong CX \cup_X M_f$$

where the base of the cone is glued to the end of the cylinder.

This gives rise to a commutative diagram of inclusions:

and, in particular, a morphism of pairs:

$$(M_f, X) \to (C_f, CX).$$

FIGURE 5. The mapping cylinder of $f: X \to Y$

FIGURE 6. The mapping cone C_f of $f : X \to Y$

Theorem 6.92. For $f : X \to Y$ a continuous map, there is a natural isomorphism of relative homology groups $H_*(M_f, X) \cong H_*(C_f, CX)$, hence the long exact in homology of the pair (M_f, X) identifies with:

$$\dots H_n(X) \xrightarrow{H_n(f)} H_n(Y) \to \tilde{H}_n(C_f) \to H_{n-1}(X) \to \dots$$

Proof. The cone CX is contractible, hence a standard argument using the fivelemma (Proposition 6.90) implies that the morphism of pairs $(C_f, *) \rightarrow (C_f, CX)$ induces an isomorphism of relative homology groups. (Exercise: provide the details.)

GEOFFREY POWELL

Hence, it suffices to establish the isomorphism $H_*(M_f, X) \cong H_*(C_f, CX)$, which follows by excision (Theorem 6.91). Namely, taking the 'half cone' $U := C_{\frac{1}{2}}X \subset CX$, excision provides an isomorphism $H_*(C_f \setminus U, CX \setminus U) \cong H_*(C_f, CX)$. By construction, $C_f \setminus U \simeq M_f$ and $CX \setminus U \simeq X$ via the inclusions. Homotopy invariance of homology shows that $H_*(C_f \setminus U, CX \setminus U) \cong H_*(M_f, X)$ as required. (Exercise: prove this affirmation.)

Example 6.93. For $f : X = S^n \to Y$ a continuous map consider the mapping cone C_f , which is homeomorphic to the space $Y \cup_f e^{n+1}$ obtained by gluing an n + 1-dimensional cell e^{n+1} along its boundary $\partial e^{n+1} \cong S^n$ via f.

The associated long exact sequence in homology is

$$\dots \to H_t(S^n) \stackrel{H_t(f)}{\to} H_t(Y) \to \tilde{H}_t(Y \cup_f e^{n+1}) \to H_{t-1}(S^n) \to \dots$$

If n > 0, then $H_0(S^n) \to H_0(Y)$ is a split monomorphism, determined by the basepoint component of X to which f maps, so one gets an isomorphism $\tilde{H}_0(Y) \stackrel{\cong}{\to} \tilde{H}_0(C_f)$.

The only other homology groups for which $H_t(Y)$ are $H_t(Y \cup_f e^{n+1})$ are not isomorphic occur in the exact sequence

$$0 \to H_{n+1}(Y) \to H_{n+1}(Y \cup_f e^{n+1}) \to \mathbb{Z} \xrightarrow{H_n(f)} H_n(Y) \to H_n(Y \cup_f e^{n+1}) \to 0.$$

This implies that $H_n(Y \cup_f e^{n+1}) \cong H_n(Y)/\text{image}(f)$. Moreover, if $H_n(f)$ is injective then $H_{n+1}(Y) \cong H_{n+1}(Y \cup_f e^{n+1})$; otherwise ker $(H_n(f))$ is a non-trivial subgroup of \mathbb{Z} , hence is a free abelian group. In this case, one gets an isomorphism

$$H_{n+1}(Y \cup_f e^{n+1}) \cong H_{n+1}(Y) \oplus \mathbb{Z}.$$

(Exercise: provide the details.)

Example 6.94. For $0 \neq d \in \mathbb{Z}$, there is a based continuous map $S^1 \xrightarrow{d} S^1$ which induces multiplication by d on $\pi_1(S^1, *) \cong \mathbb{Z}$. (It is a basic exercise to show that $H_1(f) : H_1(S^1) \to H_1(S^1)$ also corresponds to multiplication by d on $H_1(S^1) \cong \mathbb{Z}$. The mapping cone C_d has homology

e mapping cone C_d has nonlology

$$H_*(C_d) \cong \begin{cases} \mathbb{Z} & * = 0 \\ \mathbb{Z}/d & * = 1 \\ 0 & \text{otherwise} \end{cases}$$

This construction generalizes to higher dimensions, by replacing the circle by S^n and using a *degree* d map.

Exercise 6.95. Show that for any graded abelian group A (concentrated in degrees $0 < n \in \mathbb{N}$) which is finitely-generated in each degree, there exists a topological space X_A such that the reduced homology realizes A:

$$H_*(X_A) \cong A.$$

 $(\Sigma_{X_A}$ is far from being unique!)

Example 6.96. The complex projective plane $\mathbb{C}P^2$ has the homotopy type of the mapping cone C_η of the Hopf map $\eta : S^3 \to S^2$. For degree reasons (exercise: make these explicit!), $H_*(\eta) = 0$, so is not detected by homology. It follows that

$$H_*(\mathbb{C}P^2) \cong \begin{cases} \mathbb{Z} & * \in \{0, 2, 4\} \\ 0 & \text{otherwise.} \end{cases}$$

Hence $\mathbb{C}P^2$ has the same homology groups as $S^2 \vee S^4$, although these spaces do *not* have the same homotopy type.

To see the difference, one requires to look at more structure. For example, one of the following suffice:

(1) pass to *cohomology* and use the *cup product*;

(2) use *cohomology* or *homology* operations.

6.15. **Hurewicz.** The homotopy and homology groups of a space are related by the Hurewicz morphism.

Theorem 6.97. Let X be a path connected topological space. For $0 < n \in \mathbb{N}$, there is a *natural morphism* (the Hurewicz morphism) of groups

$$\pi_n(X, x) \to H_n(X)$$

which sends the homotopy class [f] of a continuous (based) map $f: S^n \to X$ to the image $H_n(f)(1_n)$ of a generator $1_n \in H_n(S^n) \cong \mathbb{Z}$.

For n = 1, this induces an isomorphism

$$\pi_1(X, x)_{ab} \stackrel{\cong}{\to} H_1(X)$$

from the abelianization of $\pi_1(X, x)$ to $H_1(X)$.

If n > 1 and $\pi_t(X, x) = \{e\}$ for t < n, then $\pi_n(X, x) \xrightarrow{\cong} H_n(X)$ is an isomorphism.

Proof. (Indications.) It is a basic exercise to show that the construction defines a morphism of groups, using the definition of the group structure of $\pi_n(X, x)$.

For n = 1, since $H_1(X)$ is an abelian group, the morphism necessarily factors across the *abelianization*

$$\pi_1(X, x) \twoheadrightarrow \pi_1(X, x)_{ab}.$$

(Recall that the abelianization of a group *G* is the quotient G/[G, G] of *G* by its commutator subgroup.) The proof that $\pi_1(X, x)_{ab} \to H_1(X)$ is surjective is straightforward; injectivity requires slightly more work.

The case n > 1 is beyond the scope of this course.

Remark 6.98. The *Hurewicz theorem* above is one of the foundational results of algebraic topology. It can be proved using the *Freudenthal suspension theorem*, which gives an understanding of the relationship between the homotopy groups of a pointed space and of its suspension (in low dimensions). This is *much* more complicated for homotopy groups than for homology (recall that, by Proposition 6.89, the homology groups of the spheres are known; this is *far* from being the case for homotopy groups).

GEOFFREY POWELL

7. Omissions

The previous chapters have only covered the *basics*. There are a number of notable omissions, some of which are indicated below.

7.1. **Coefficients for homology.** In this section, \mathscr{A} denotes the category of modules over a fixed commutative ring *R*. (For applications to homology of topological spaces with coefficients, $R = \mathbb{Z}$).

Definition 7.1. For (C, d) a chain complex in $\mathfrak{Ch}(\mathscr{A})$ and M an R-module, the chain complex $(C, d) \otimes_R M \in Ob \mathfrak{Ch}(\mathscr{A})$ is given by

$$(C \otimes_R M)_n := C_n \otimes_R M$$
$$d_{C \otimes_R M} : C_n \otimes_R M \xrightarrow{d^C \otimes_{\mathrm{id}}} C_{n-1} \otimes_R M.$$

This construction defines a functor $-\otimes_R M : \mathfrak{Ch}(\mathscr{A}) \to \mathfrak{Ch}(\mathscr{A})$.

Remark 7.2.

- (1) When $R = \mathbb{Z}$, an *R*-module is simply an abelian group.
- (2) The above is a special case of the construction of the *tensor product of chain complexes*.

Example 7.3. For *M* an abelian group and *X* a topological space, the chain complex $C^{\text{Sing}}(X) \otimes M$ has terms

$$(C^{\operatorname{Sing}}(X) \otimes M)_n = \mathbb{Z}[\mathfrak{Sing}_n(X)] \otimes M \cong \bigoplus_{f \in \mathfrak{Sing}_n(X)} M$$

Definition 7.4. For M an abelian group and X a topological space, the *homology* with coefficients in M of X is

$$H_*(X;M) := H_*(C^{\operatorname{Sing}}(X) \otimes M).$$

Homology with coefficients defines a functor $H_*(-; M) : \mathfrak{Top} \to \mathfrak{A}b^{\mathbb{N}}$ with values in \mathbb{N} -graded abelian groups.

Exercise 7.5. Check that homology with coefficients is functorial in the coefficients, hence corresponds to a functor:

$$H_*(-;-):\mathfrak{Top}\times\mathfrak{A}b\to\mathfrak{A}b^{\mathbb{N}}.$$

Remark 7.6. One of the advantages of using coefficients is that a judicious choice of coefficients can *simplify* the calculation of homology whilst retaining the information required. Moreover, sometimes additional structure is available when working with coefficients.

For example, if M is taken to be a field \mathbb{K} , one has a *Künneth formula* for the homology of a product of topological spaces:

$$H_*(X \times Y; \mathbb{K}) \cong H_*(X; \mathbb{K}) \otimes_{\mathbb{K}} H_*(Y; \mathbb{K}),$$

where the right hand side is the tensor product of *graded* \mathbb{K} -vector spaces. In particular, this implies that the diagonal map $X \to X \times X$ induces a *coproduct* on $H_*(X;\mathbb{K})$ which has the structure of a *coalgebra*.

7.2. **Cohomology.** Homology with coefficients was introduced by using the functor $-\otimes_R M$ on the category of *R*-modules. Cohomology corresponds to using the *contravariant* functor Hom_{*R*}(-, M).

Remark 7.7. If one applies $\operatorname{Hom}_R(-, M)$ to $d : C_n \to C_{n-1}$, one obtains a morphism of *R*-modules:

$$\operatorname{Hom}_R(C_{n-1}, M) \to \operatorname{Hom}_R(C_n, M)$$

from a term indexed by n - 1 to one indexed by n; that is, the degree *increases*. To stay within chain complexes as defined here, one uses the standard trick of declaring $\text{Hom}_R(C_n, M)$ to be indexed by -n.

This avoids the confusion inherent in talking about *cochain complexes*, since no change of variance is involved, so that the <u>co</u> in cochain is a misnomer.

Definition 7.8. For (C, d) a chain complex in $\mathfrak{Ch}(\mathscr{A})$ and M an R-module, the chain complex $\operatorname{Hom}_R(C, M) \in \operatorname{Ob} \mathfrak{Ch}(\mathscr{A})$ is given by

$$\operatorname{Hom}_{R}(C, M)_{-n} := \operatorname{Hom}_{R}(C_{n}, M)$$
$$d_{\operatorname{Hom}_{R}(C, M)} : \operatorname{Hom}_{R}(C_{n-1}, M) \xrightarrow{\operatorname{Hom}_{d}(d^{C}, \operatorname{id})} \operatorname{Hom}_{R}(C_{n}, M).$$

This construction defines a functor $\operatorname{Hom}_R(-, M) : \mathfrak{Ch}(\mathscr{A})^{\operatorname{op}} \to \mathfrak{Ch}(\mathscr{A}).$

Remark 7.9. With the above definition, if $(C, d) \in Ob \mathfrak{Ch}_{\geq 0}(\mathscr{A})$, then $Hom_R(C, M)$ has non-zero terms concentrated in degrees ≤ 0 .

Definition 7.10. For *M* an abelian group and *X* a topological space, the *n*th singular *cohomology of X with coefficients in M* is defined by

$$H^{n}(X; M) := H_{-n}(\operatorname{Hom}_{\mathbb{Z}}(C^{\operatorname{Sing}}(X), M)),$$

so that singular cohomology with coefficients in M defines a functor $H^*(-; M)$: $\mathfrak{Top}^{\mathrm{op}} \to \mathfrak{A}b^{\mathbb{N}}$ with values in \mathbb{N} -graded abelian groups.

A fundamental result is the existence of the *cup product*; this is induced by the *diagonal map* but, unlike for the coproduct for homology, exists without having to take coefficients in a field.

Theorem 7.11. For *R* a commutative ring and *X* a topological space, the diagonal map $X \to X \times X$ induces the cup product (for $p, q \in \mathbb{N}$):

$$H^p(X;R) \otimes H^q(X;R) \to H^{p+q}(X;R)$$

which gives $H^*(X; R)$ the structure of a graded commutative *R*-algebra.

Proof. The key point is the construction of the *external cup product* for topological spaces *X*, *Y*:

$$H^p(X; R) \otimes H^q(Y; R) \to H^{p+q}(X \times Y; R)$$

which involves comparing the chain complex $C^{\text{Sing}}(X \times Y)$ with $C^{\text{Sing}}(X) \otimes C^{\text{Sing}}(Y)$ (using the tensor product of chain complexes which has not been introduced here!).

The proof of these fundamental results is not particularly difficult, using the material covered in this course. $\hfill \Box$

A.1. Categories.

Definition A.1. A category \mathscr{C} is a class of objects $Ob\mathscr{C}$ equipped with a set of morphisms $Hom_{\mathscr{C}}(X,Y)$ (sometimes written $\mathscr{C}(X,Y)$) for each pair of objects X, Y, together with

- \triangleright an *identity* $\mathrm{Id}_X \in \mathrm{Hom}_{\mathscr{C}}(X, X), \forall X \in \mathrm{Ob} \, \mathscr{C};$
- $\triangleright \text{ a composition law } \circ : \operatorname{Hom}_{\mathscr{C}}(Y, Z) \times \operatorname{Hom}_{\mathscr{C}}(X, Y) \to \operatorname{Hom}_{\mathscr{C}}(X, Z), \forall X, Y, Z \in \operatorname{Ob} \mathscr{C},$

which satisfy the following axioms:

 \triangleright identity axiom: $\forall f \in \operatorname{Hom}_{\mathscr{C}}(X, Y)$, $\operatorname{Id}_{Y} \circ f = f = f \circ \operatorname{Id}_{X}$;

▷ *associativity*: $h \circ (g \circ f) = (h \circ g) \circ f$ whenever the composites are defined.

The category \mathscr{C} is *small* if Ob \mathscr{C} is a set; in this case, the morphisms of \mathscr{C} also form a set, denoted Mor \mathscr{C} .

Example A.2. For *K* a set, the discrete category associated to *K* has objects Ob K = K and $Hom_K(X, Y) = \emptyset$ if $X \neq Y \in K$, whereas $Hom_K(X, X) = \{Id_X\}$ (the only morphisms are the identity morphisms). This category is small.

Definition A.3. A *subcategory* \mathscr{D} of \mathscr{C} is a category \mathscr{D} such that $\operatorname{Ob} \mathscr{D} \subset \operatorname{Ob} \mathscr{C}$ (sub-class) and, $\forall X, Y \in \operatorname{Ob} \mathscr{D}$, $\operatorname{Hom}_{\mathscr{D}}(X, Y) \subset \operatorname{Hom}_{\mathscr{C}}(X, Y)$ so that the identity elements and composition law are compatible.

A subcategory \mathscr{D} of \mathscr{C} is *full* if $\operatorname{Hom}_{\mathscr{D}}(X, Y) = \operatorname{Hom}_{\mathscr{C}}(X, Y)$; a full subcategory is therefore defined by its class of objects.

Definition A.4. For \mathscr{C} a category, the *opposite category* \mathscr{C}^{op} is the category with $\operatorname{Ob} \mathscr{C}^{\text{op}} = \operatorname{Ob} \mathscr{C}$,

$$\operatorname{Hom}_{\mathscr{C}^{\operatorname{op}}}(X,Y) := \operatorname{Hom}_{\mathscr{C}}(Y,X)$$

and with composition law and identity elements induced from \mathscr{C} . (This is the category obtained from \mathscr{C} by *reversing* the morphisms.)

Definition A.5. Let *C* be a category.

- (1) A morphism $f : X \to Y$ admits an *inverse* (or is *inversible*) if $\exists g : Y \to X$ such $f \circ g = \operatorname{Id}_Y$ and $g \circ f = \operatorname{Id}_X$.
- (2) The category *C* is a *groupoid* if every morphism admits an inverse.

Example A.6. A discrete group *G* can be condidered as a groupoid with $Ob G = \{*\}$ and $Hom_G(*, *) = G$.

A.2. Functors. A *functor* is a morphism between categories.

Definition A.7. For categories \mathscr{C} , \mathscr{D} , a *functor* $F : \mathscr{C} \to \mathscr{D}$ assigns to each $X \in Ob \mathscr{C}$ an object $F(X) \in Ob \mathscr{D}$, together with a map of sets $\forall X, Y \in Ob \mathscr{C}$:

$$\begin{array}{rcl} \operatorname{Hom}_{\mathscr{C}}(X,Y) & \to & \operatorname{Hom}_{\mathscr{D}}(F(X),F(Y)) \\ f & \mapsto & F(f) \end{array}$$

such that

 $\triangleright \ \forall X \in \operatorname{Ob} \mathscr{C}, F(\operatorname{Id}_X) = \operatorname{Id}_{F(X)};$

 $\triangleright \ F(g \circ f) = F(g) \circ F(f), \text{ for all composable morphisms } f, g \in \operatorname{Mor} \mathscr{C}.$

A contravariant functor from \mathscr{C} to \mathscr{D} is a functor $F: \mathscr{C}^{\mathrm{op}} \to \mathscr{D}$.

Exercise A.8.

- (1) For \mathscr{C} a category, describe the *identity functor* $\mathrm{Id}\mathscr{C} : \mathscr{C} \to \mathscr{C}$.
- (2) For functors $F : \mathscr{C} \to \mathscr{D}$, $G : \mathscr{D} \to \mathscr{E}$, show that there is a composite functor $G \circ F : \mathscr{C} \to \mathscr{E}$ such that
 - $\triangleright \ G \circ F(X) = G(F(X));$
$\triangleright \ G \circ F(f) = G(F(f)).$

Definition A.9. A functor $F : \mathscr{C} \to \mathscr{D}$ is

- $\triangleright \text{ faithful if } F : \operatorname{Hom}_{\mathscr{C}}(X,Y) \hookrightarrow \operatorname{Hom}_{\mathscr{D}}(F(X),F(Y)) \text{ is an inclusion } \forall X,Y \in \operatorname{Ob} \mathscr{C};$
- $\triangleright \ \textit{fully faithful if } F: \operatorname{Hom}_{\mathscr{C}}(X,Y) \xrightarrow{\cong} \operatorname{Hom}_{\mathscr{D}}(F(X),F(Y)) \text{ is a bijection } \forall X,Y \in \operatorname{Ob} \mathscr{C}.$

Example A.10. A subcategory $\mathscr{D} \subset \mathscr{C}$ induces an *inclusion functor* $\mathscr{D} \to \mathscr{C}$ which is *faithful*; it is *fully faithful* if and only if \mathscr{D} is a full subcategory.

Proposition A.11. The class of small categories and functors form a category (denoted \mathfrak{CAT}).

Proof. Exercise (the restriction to *small* categories is necessary so that the functors beween two categories form a set). \Box

A.3. **Natural transformations.** Natural transformations formalize the notion of *natural* relations between constructions. They can also be understood as being *morphisms* between functors.

Definition A.12. A *natural transformation* $\eta : F \to G$ between functors $F, G : \mathscr{C} \rightrightarrows \mathscr{D}$ is a collection of morphisms $\eta_X : F(X) \to G(X)$ in \mathscr{D} , for each $X \in Ob \mathscr{C}$, such that, \forall morphism of \mathscr{C} , $f : X \to Y$, the following diagram commutes:

$$\begin{array}{c|c} F(X) \xrightarrow{F(f)} F(Y) \\ \eta_X & & & & \\ \eta_X & & & & \\ G(X) \xrightarrow{G(f)} G(Y). \end{array}$$

The identity morphisms $Id_{F(X)}$ define the *identity* natural transformation Id_{F} .

Lemma A.13. For natural transformations $\eta : F \to G$ and $\zeta : G \to H$, where F, G, H are functors from \mathscr{C} to \mathscr{D} , the composite morphisms $\zeta_X \circ \eta_X : F(X) \to H(X)$ define a natural transformation $\zeta \circ \eta : F \to H$.

Proof. Exercise.

Definition A.14. A natural transformation $\eta : F \to G$ is a *natural equivalence* if it admits an inverse natural transformation $\eta^{-1} : G \to F$ such that $\eta^{-1} \circ \eta = \text{Id}_F$ and $\eta \circ \eta^{-1} = \text{Id}_G$. This is equivalent to the condition that $\eta_X : F(X) \to G(X)$ is an isomorphism in \mathscr{D} , for each $X \in \text{Ob } \mathscr{C}$. (Exercise: check this affirmation.)

Using the notion of natural equivalence, one has the associated notion of *equivalence of categories*; this is weaker than the obvious notion of *isomorphism* of categories (and much more useful).

Definition A.15. Categories \mathscr{C} , \mathscr{D} are *equivalent* if there exists functors $F : \mathscr{C} \to \mathscr{D}$ and $G : \mathscr{D} \to \mathscr{C}$ and natural equivalences $FG \xrightarrow{\simeq} \mathrm{Id}_{\mathscr{D}}$ and $GF \xrightarrow{\simeq} \mathrm{Id}_{\mathscr{C}}$.

Remark A.16. Hidden in the above is the fact that \mathfrak{CAT} has the structure of a 2-*category*. As with the consideration of homotopies between continuous maps, it can be useful to represent a natural transformation $\eta : F \to G$ by a diagram:

The direction of \Rightarrow is important; in general there is no natural transformation in the opposite direction!

A.4. **Yoneda's lemma.** The Yoneda lemma is a fundamental result in category theory.

Notation A.17. For \mathscr{C} a small category, $\mathfrak{Set}^{\mathscr{C}}$ denotes the category of functors from \mathscr{C} to \mathfrak{Set} , with natural transformations as morphisms.

Example A.18. For $X \in Ob \mathscr{C}$ an object of \mathscr{C} , $Hom_{\mathscr{C}}(X, -)$ is an object of $\mathfrak{Set}^{\mathscr{C}}$, the functor *represented* by X.

The Yoneda lemma is the following result:

Proposition A.19. For \mathscr{C} a small category, $F \in Ob \mathfrak{Set}^{\mathscr{C}}$ and X an object of \mathscr{C} , there is a natural bijection:

$$\mathfrak{Y}: \operatorname{Hom}_{\mathfrak{Set}^{\mathscr{C}}}(\operatorname{Hom}_{\mathscr{C}}(X, -), F) \xrightarrow{\cong} F(X).$$

Proof. A natural transformation $\eta \in \operatorname{Hom}_{\mathfrak{Set}^{\mathscr{C}}}(\operatorname{Hom}_{\mathscr{C}}(X, -), F)$ determines, in particular, a map of sets $\operatorname{Hom}_{\mathscr{C}}(X, X) \xrightarrow{\eta_X} F(X)$. Define $\mathfrak{Y}(\eta) := \eta_X(1_X)$.

Consider a morphism $f : X \to Y$ of \mathscr{C} ; a natural transformation η must provide set maps η_X , η_Y which make the following diagram commute:

$$\begin{array}{c|c} \operatorname{Hom}_{\mathscr{C}}(X,X) \xrightarrow{\eta_{X}} F(X) \\ \operatorname{Hom}_{\mathscr{C}}(X,f) & & \downarrow^{F(f)} \\ \operatorname{Hom}_{\mathscr{C}}(X,Y) \xrightarrow{\eta_{Y}} F(Y). \end{array}$$

Since $\operatorname{Hom}(X, f)(1_X) = f \in \operatorname{Hom}_{\mathscr{C}}(X, Y)$, this means that $\eta_Y(f) = F(f)(\eta_X(1_X))$. Hence, η is uniquely determined by $\mathfrak{Y}(\eta)$.

Conversely, an element of $x \in F(X)$ induces a natural transformation by this recipe. \Box

74

References

- [Bre97] Glen E. Bredon, Topology and geometry, Graduate Texts in Mathematics, vol. 139, Springer-Verlag, New York, 1997, Corrected third printing of the 1993 original. MR 1700700 (2000b:55001)
- [FT10] Yves Félix and Daniel Tanré, Topologie algébrique, Dunod, Paris, 2010.
- [GJ99] Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, Progress in Mathematics, vol. 174, Birkhäuser Verlag, Basel, 1999. MR 1711612 (2001d:55012)
- [Hat02] Allen Hatcher, *Algebraic topology*, Cambridge University Press, Cambridge, 2002. MR MR1867354 (2002k:55001)
- [May99] J. P. May, A concise course in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1999. MR MR1702278 (2000h:55002)
- [tD08] Tammo tom Dieck, Algebraic topology, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008. MR 2456045 (2009f:55001)
- [Wei94] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR MR1269324 (95f:18001)

LABORATOIRE ANGEVIN DE RECHERCHE EN MATHÉMATIQUES, UMR 6093, FACULTÉ DES SCI-ENCES, UNIVERSITÉ D'ANGERS, 2 BOULEVARD LAVOISIER, 49045 ANGERS, FRANCE

E-mail address: Geoffrey.Powell@math.cnrs.fr