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UNE SOLUTION POUR L’EXERCICE 8 DE LA FEUILLE N° 2

On consideére un triangle [ABC] non aplati. Sur ses cotés on construit, a 'extérieur du triangle, des
triangles équilatéraux. Montrer que les centres de ces trois triangles forment un triangle équilatéral.

Solution.
Dans un systeme de coordonnées orthonormé on a A = (z4,v,4), B = (z5,yp) et C = (20, yo)-
On note a = BC, b= CC et ¢ = AB. On se propose de calculer les coordonnées du point I, voir
la figure 1.
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Figure 1: Le triangle [IJK] est équilatéral.
Le point I est le centre du triangle équilatéral [BC' A']. Comme BC' = a,

a
MI=—"_
2v3

ou M est le milieu du segment [BC]. Donc, si u est un vecteur de norme 1 — on dit que u est

unitaire — tel que v - BC = 0, alors

I:M—Fm:M—i—ia Uu.
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Comme B? =(zc —T,Yc —Yg), On a

1
u:a(yc—yB,—xC+xB).
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En permutant circulairement les sommets du triangle [ABC] dans la derniére formule de (%), il
s’ensuit que
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et que
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Pour finir, il suffit de calculer la longueur du segment [I.J] par exemple, et de voir qu’elle est
invariante si on fait une permutation cyclique en A, B et C.
On commence par calculer les coordonnées du vecteur ﬁ .Ona
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Donc, en multipliant par i, en regroupant des termes et en faisant apparaitre des déterminants
2 % 2,



1
1J? = 6 [(95/; - 903)2 + (yA - ?JB)Q + (fL"B - xc)Q + (CUB - 90)2 + (930 - 93,4)2 + (?Jc - 3/,4)2}
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= % [(9514 —ap)* + (ya —yp)* + (25 —20)* + (yp — y0)* + (wc — 24)* + (Yo — yA)Q}

Il s’ensuit que IJ = JK = K1, donc que [[JK] est un triangle équilatéral.

Remarque. En utilisant les éléments du triangle [ABC] (en supposant que ses sommets respecte
le sens trigonométrique!), on a

1
1J? = 6(a2 +b? + ) + —=o([ABC)),
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ou encore, en utilisant la formule de Héron,

P = L@+ )+ jg Vro—a)p—b)(p—e)
a+b+c
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!Tous les calculs ont supposé implicitement le sens trigonométrique des sommets; il faut voir surtout la partie
sur la construction du vecteur unitaire u.



