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Géométrie analytique dans le plan et l’espace
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1. Le plan affine

Introduction

Problème de minimum. Dans le plan, on considère un cercle C et une parabole Γ n’ayant
aucun point en commun. Trouver un segment de longueur minimale s’appuyant sur les deux
courbes.

On peut considérer un cas explicite : C décrit par l’équation (x − 3)2 + (y + 1)2 = 4 et Γ
par x = −y2.
Aires. Dans le plan euclidien on considère le triangle [ABC]. On note par M , N et P les
points appartenant aux côtés [BC], [AC] et [AB], respectivement, tels que

AP

PB
= BM

MC
= CN

NA
= p

q
,

où p, q ∈ N∗. Si {E} = (BN) ∩ (CP ), {F} = (CP ) ∩ (AM) et {G} = (AM) ∩ (BN), calculer
le rapport entre l’aire du triangle [EFG] et celle du triangle initial [ABC].

A

B

C

P

M

N

E

F

G

Figure 1: La représentation graphique du cas p = 1 et q = 2.

Étude de trajectoires. On considère une table de billard parfaite (sur laquelle la bille
se déplace sans frottement et les réflexions sur les murs se font avec des angles égaux) de
forme rectangulaire. En lançant une bille, nous voulons comprendre le comportement de sa
trajectoire en fonction de point initial et de la direction du vecteur vitesse : est-elle périodique,
ou “remplira”-t-elle toute la table ? On pourrait aussi considérer une table de forme circulaire !

1. Le plan affine

1.1. Systèmes de coordonnées cartésiennes du plan

Par définition, tout élément de R2 est un couple de nombres réels, c’est-à-dire

R2 = {(a, b) | a, b ∈ R}.

Dans ce cours, nous considérons le plan affine réel A2
R muni d’un repère Oxy — O est l’origine

et x et y les deux coordonnées. Le plan affine muni d’un repère s’identifie à R2:
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1. Le plan affine

• O s’identifie à (0, 0)
• l’axe des coordonnées x à R× {0}
• l’axe des coordonnées y à {0} × R

Un élément de A2
R = R2 est appelé un point est sera noté P = (a, b). En général, les points

seront désignés par des lettres majuscules (A, B, P , etc.) ; les droites par des lettres majuscules
calligraphiques (D ou encore L, ou bien par (AB) — la droite passant par les points A et B) ; le
segment ayant pour extrémités les points A et B sera noté [AB] ; le triangle dont les sommets
sont A, B et C sera noté [ABC], et ainsi de suite.

Si P = (a, b), alors on appelle a et b les deux coordonnées du point P . Il y a trois points
distingués dans notre identification, O = (0, 0), X = (1, 0) et Y = (0, 1). En général trois
points non alignés définissent un repère, ou un système de coordonnées. Ici, les points O,
X et Y définissent le système de coordonnées dans lequel le point P a les coordonnées a et
b.

Les points X = (1, 0) et Y = (0, 1) déterminent “l’unité” le long des droites (OX) et (OY )
respectivement. En notant x et y les coordonnées le long de ces droites, nous écrirons

(OX) = {(x, y) | y = 0} et (OY ) = {(x, y) | x = 0}.

Par la suite, quand il n’y aura pas de confusion possible, nous utiliserons la notation abrégée
(OX) = {y = 0} (et (OY ) = {x = 0}). Nous utiliserons aussi la notation usuelle Oxy pour
le repère (O,X, Y ) qui met en évidence l’origine O et le système (naturel ou canonique) de
coordonnées (x, y). Dans ce système de coordonnée, si P = (a, b), nous écrirons x(P ) = a ou
xP = a et y(P ) = b ou yP = b.

Définition 1.1. Une droite dans le plan affine muni du repère Oxy est un sous-ensemble D
pour lequel il existe trois réels α, β et γ tels que

1) D = {P | αxP + β yP + γ = 0}
2) α et β ne sont pas simultanément nuls.

On dit que D est la droite d’équation (cartésienne) αx+ β y + γ = 0.

Deux aspects sont à approfondir dans cette définition. D’abord, les trois constantes α, β
et γ ne sont pas uniques ; toutes les équations λαx + λβ y + λγ = 0 avec λ 6= 0 définissent la
même droite. Puis, la définition dépend du repère choisi Oxy. Le premier aspect sera discuté
par la suite ; nous reviendrons sur le deuxième dans certains exercices et à la fin du cours.

Définition 1.2. Deux droites distinctes sont dites parallèles si elles n’ont aucun point commun.
On dit que les droites ne s’intersectent pas.

Lemme 1.3. Deux droites D : αx+ β y + γ = 0, et D′ : α′ x+ β′ y + γ′ = 0 sont parallèles si
et seulement si αβ′ = α′β.

Démonstration. De manière générale, deux sous-ensembles X et Y (d’un certain ensemble) ont
un élément en commun signifie, par définition, X∩Y 6= ∅. Par exemple pour deux courbes dans
le plan affine, avoir un point en commun revient à dire qu’il existe un point dont les coordonnées
satisfont les équations choisies pour décrire les courbes. Explicitement, pour étudier les points
communs des deux courbes, nous devons étudier le système formé avec leurs équations.
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1. Le plan affine

Pour établir l’implication D ‖ D′ =⇒ αβ′ = α′β, nous supposons αβ′ 6= α′β et montrons
que le système {

αx+ β y + γ = 0
α′ x+ β′ y + γ′ = 0

admet la solution x0 = − γβ′−γ′β
αβ′−α′β , y0 = −αγ′−α′γ

αβ′−α′β .
Pour l’autre implication, nous supposons par l’absurde l’existence d’un point commun P =

(x0, y0). Comme αβ′ = α′β, en supposant (on peut le faire, voire la définition 1.2) α 6= 0, on a

β′ = α′

α
β.

Alors, ou bien β = β′ = 0 et γ′

γ = α′x0
αx0

= α′

α , ou bien β′

β = α′

α et = γ′

γ en utilisant P0. Donc les
droites sont identiques. �

Le lemme dont une interprétation équivalente du parallélisme, celle utile dans les calculs.
Elle est “presque” équivalente à la condition α

α′ = β
β′ qui exprime mieux la proportionnalité des

coefficients de x et de y des deux droites. Il faut noter que sous cette forme, l’égalité n’a pas
toujours de sens (par exemple si β′ = 0)

Proposition 1.4 (ve postulat d’Euclide1). Soit D une droite et P un point tel que P 6∈ D.
Alors il existe une unique droite passant par P et parallèle à D.

Démonstration. Soit αx + β y + γ = 0 une équation de D et soit P = (a, b). On pose D′ :
α (x − a) + β (y − b) = 0. La droite D′ est parallèle à D et passe par P . Pour finir, on vérifie
l’unicité. �

Dans la preuve précédente, toutes les droites d’équation αx+β y+γ′ = 0, avec γ′ ∈ R, sont
parallèles à D. Cet ensemble de droites est appelé le faisceau des droites parallèles à D.

Proposition 1.5 (ier postulat d’Euclide). Si A 6= B, alors il existe une unique droite (AB)
(c’est-à-dire une droite passant par A et B) et elle admet pour équation2

(yB − yA)x− (xB − xA) y +
(
− (yB − yA)xA + (xB − xA) yA

)
= 0.

Corollaire 1.6. Les points deux à deux distincts A, B et C sont alignés si, et seulement si,

(xB − xA)(yC − yA) = (yB − yA)(xC − xA).

Remarque 1.7. Trois points non alignés et ordonnés dans le plan, Ω, S et T , forment un
repère noté (Ω,S, T ). En notant par s et t les coordonnées le long des axes (ΩS) et (ΩT ) re-
spectivement, le repère est noté aussi Ωst— comme Oxy pour le repère naturel de R2 (cf. figure
2).

Pour trouver les coordonnées sP et tP d’un point P , on considère les droites passant par
P et parallèles à (ΩT ) et (ΩS) respectivement ; elles intersectent (ΩS) en A et (ΩT ) en B.
L’abscisse sP du point P dans le système de coordonnées (s, t) est obtenue comme suit : notons
a le réel positif ou nul tel que ΩA = aΩS — on mesure des segments le long d’une droite pour
laquelle ΩS représente l’unité. Alors sP = a si A et S sont du même côté par rapport à Ω, et
sP = −a sinon.

1Euclide a été actif vers 300 av.J. C. à Alexandrie.
2La forme x−xA

xB−xA
= y−yA

yB−yA
est peut-être plus facile à retenir, même si elle n’est pas toujours bien définie.
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1. Le plan affine

Ω

S

T

P

x

y

st

B

A

Figure 2: Deux repères dans du plan affine

1.2. Équations cartésiennes et paramétriques d’une droite

En général, une droite peut être décrite de plusieurs façons équivalentes. On a vu qu’une droite
admet une infinité d’équations. On peut obtenir une écriture unique en posant

D : y = px+ q.

La droite D décrite ci-dessus est la droite qui coupe l’axe des y en (0, q) et dont la pente est p :
si (x, y) est un point de D, alors l’ordonnée du point de D ayant pour abscisse x+ 1 est y + p
— à une augmentation d’une unité pour la coordonnée x correspond une augmentation de p
unités pour la coordonnée y.

Cette description d’une droite est bien unique, car on a défini p et q par des propriétés
géométriques de la droite. Le problème est que cette description ne convient pas à
toutes les droites du plan. Les droites verticales (de même direction que l’axe des y) sont
décrites par des équations du type x = c.

On peut décrire aussi une droite D de manière dynamique, en fonction d’un paramètre t ∈ R.

Proposition 1.8. Étant donnés deux points distincts A et B, la droite (AB) est décrite par
une représentation paramétrique{

x = (xB − xA) t+ xA
y = (yB − yA) t+ yA, t ∈ R.

(1.1)

Réciproquement, toute représentation paramétrique{
x = α t+ a

y = β t+ b, t ∈ R,

avec α et β non simultanément nuls, décrit une droite passant par le point de coordonnées (a, b).

Démonstration. Pour la première partie, notons d’abord que les coefficients xB−xA et yB−yA
ne sont pas simultanément nuls — les points A et B sont distincts. Posons t = x−xA

xB−xA = y−yA
yB−yA

dans l’équation de D vue dans la proposition 1.5. Réciproquement, comme α et β ne sont pas
tous deux nuls, éliminons t dans la représentation paramétrique. �

La présentation paramétrique (1.1) de la droite D n’est pas unique ; elle dépend, au moins,
du choix initial des deux points A et B.
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1. Le plan affine

Faisceau des droites parallèles.. Pour α et β fixés non simultanément nuls, on a introduit
le faisceau Dλ : αx+ β y + λ = 0, où λ ∈ R. En équations paramétriques. . .
Vecteur directeur.. Si x = at+ x0, y = bt+ y0 est une paramétrisation de la droite D avec
t ∈ R, on dit que D est la droite passant par P0 = (x0, y0) de vecteur directeur v = (a, b).
Dans cette écriture v est un élément de R2 — on ne fait pas l’identification de R2

avec le plan affine ! On a un vecteur et non pas un point. La liaison entre le plan
affine et les vecteurs de R2 est la suivante. Un vecteur v est la donnée d’une paire ordonnée de
points (A,B) dans le plan, l’origine et l’extrémité de v, c’est-à-dire d’une flèche issue de A et
d’extrémité B ; on a

v = −−→AB = (xB − xA, yB − yA).

• à partir du repère (O,X, Y ) on forme deux vecteurs particuliers, ex := −−→OX = (1, 0) et
ey = −−→OY = (0, 1).

• Les deux vecteurs −−→AB et −−→CD sont égaux ou identiques si les quatre points A, B, C et D
vérifient l’égalité suivante,

(xB − xA, yB − yA) = (xD − xC , yD − yC),

ce qui revient à dire que, composante par composante, xB − xA = xD − xC et yB − yA =
yD− yC . Géométriquement, les quatre points forment un parallélogramme [ABDC], avec
[AB] et [CD] deux côtés parallèles.
• Tout vecteur peut être représenté par une flèche issue d’un point quelconque du plan.
• Dans le système canonique de coordonnées, tout vecteur a un représentant distingué : la
flèche issue de l’origine et ayant la pointe en un certain point P . Dans ce cas v = (xP , yP ),
où xP et yP sont les coordonnées du point P . De cette façon, après avoir fixé une origine
dans le plan, c’est-à-dire après avoir choisi un point O, on obtient une correspondance
bijective entre les points du plan et les vecteurs : à tout point correspond un unique
vecteur, et à tout vecteur correspond un unique point.
• L’ensemble des vecteurs R2 est muni naturellement de deux opérations algébriques : la
multiplication d’un vecteur par un nombre réel et l’addition de deux vecteurs. En parti-
culier, v = (a, b) = a ex + b ey. De plus, pour A, B et C dans A2, on a −−→AB +−−→BC = −→AC
(relation de Chasles3).
• On dit que deux vecteurs v = (a, b) et w = (c, d) sont colinéaires s’il existe une constante
k ∈ R telle que v = kw ou w = kv. De manière équivalente, cela se ramène à la relation
ad− bc = 0.
• L’addition de deux points de A2 n’existe pas. En revanche, on peut donner un sens
à l’addition d’un point et d’un vecteur. Si P ∈ A2 est un point du plan et v ∈ R2 un
vecteur, alors Q = P + v est le point du plan représentant l’extrémité du vecteur v vu
comme flèche issue de P , c’est-à-dire −−→PQ = v. En coordonnées, si v = (a, b), on a

(xQ, yQ) = Q = P + v = (xP , yP ) + (a, b) = (xP + a, yP + b).

Proposition 1.9. Si D : αx + β y + γ = 0, alors (−β, α) est un vecteur directeur de D.
Réciproquement, si v = (a, b) est un vecteur directeur de D, alors il existe c ∈ R tel que
D : −b x+ a y + c = 0.

3Michel Chasles, Épernon 1793 – Paris 1880
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1. Le plan affine

définition équation cartésienne (ou
implicite) paramétrisation

DP0,v est la droite passant
par P0 = (x0, y0) et de vecteur

directeur v = (a, b)

−bx+ ay + (bx0 − ay0) = 0
ou

x− x0
a

= y − y0
b

{
x = x0 + at

y = y0 + bt, t ∈ R
ou

(x, y) = (x0, y0) + t(a, b), t ∈ R

Table 1: La droite passant par P0 de vecteur directeur v 6= 0.

Remarque 1.10 (Paramétrisation d’un segment). Soient A et B deux points du plan affine.
Le vecteur −−→AB permet d’écrire une paramétrisation du segment [AB] en l’interprétant comme
“vecteur vitesse”. L’identité

Pt = A+ t
−−→
AB

pour t ∈ [0, 1] décrit les points Pt du segment [AB]. En coordonnées on obtient

xt = (1− t)xA + txB et yt = (1− t)yA + tyB.

Définition. Pour A, B, C trois points sur une droite D tels que A 6= B, on appelle rapport
algébrique AC/AB la constante k définie par −→AC = k

−−→
AB.

Théorème 1.11 (Thalès). Soit [ABC] un triangle et soit D une droite qui coupe les droites
(AB) et (AC) en B′ et C ′, respectivement. Alors D ‖ (BC) si et seulement si AB

AB′
= AC

AC′
.

Démonstration. . . . �

1.3. Exercices

Exercice 1.1.
1) Soit la droite D du plan définie par l’équation 2x− y + 6 = 0. Déterminer une paramétri-

sation de D.
2) Même question pour D : 2x− 3ay + 4 = 0, où a ∈ R.
3) Soit la droite D du plan définie par la paramétrisation x = 2− t et y = −1+3t, pour t ∈ R.

Déterminer une équation cartésienne (ou implicite) de D.

Exercice 1.2. On considère les points P0 = (−1, 2), A = (2, 0) et B = (8,−5 + a), avec a ∈ R,
ainsi que le vecteur v = (3,−2). On note D la droite passant par le point P0 et ayant v comme
vecteur directeur. Quelle est la position de A, respectivement B, par rapport à D ?

Exercice 1.3. On considère les points A = (−1, 1), B = (2,−1) et C = (1, 3). Si Q est un
point tel que −−→BQ = 3−−→QC, donner une équation décrivant la droite (AQ).

Exercice 1.4. Notons F (x, y) = ax+by+c avec a et b non simultanément nuls. Alors l’équation
F (x, y) = 0 définit une droite que l’on note D. Soient P , Q et R trois points distincts tels que
F (xP , yP ) = 1, F (xQ, yQ) = −1 et F (xR, yR) = 1. Quelles affirmations sont correctes parmi les
suivantes ?

1) La droite (PQ) coupe D en un point Ω tel que Q se trouve entre P et Ω.
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2. Produit scalaire et distance dans le plan

2) La droite (PQ) est parallèle à D et la droite (PR) coupe D en un point Ω.
3) La droite (PQ) est parallèle à D et la droite (QR) coupe D en un point Ω.
4) Les droites (PQ) et (QR) coupent toutes les deux la droite D.
5) Aucune des réponses proposées.

Exercice 1.5. On considère les droites définies par D1 : 2x − 5 y + 6 = 0 et D2 : (m + 1)x +
(m2 − 3m− 10) y − 1 = 0, où m ∈ R est un paramètre. Trouver tous les m pour lesquels D1 et
D2 sont parallèles.

2. Produit scalaire et distance dans le plan

2.1. Le produit scalaire et la distance

La distance entre les points P et Q, notée PQ, est par définition la longueur du segment [PQ].
La notation d(P,Q) souligne le fait que d est une distance sur A2, c’est-à-dire une fonction
d : A2 ×A2 → R+ qui vérifie les propriétés énumérées dans le lemme 2.3 ci-dessous. Puisque la
distance entre deux points se trouvant sur un axe de coordonnées s’exprime en utilisant l’unité
de mesure le long de cet axe, la distance PQ s’exprime à l’aide de la formule de Pythagore,

d(P,Q) =
√

(xQ − xP )2 + (yQ − yP )2.

Le plan affine muni de la distance d introduite ci-dessus devient le plan euclidien, noté
E2 ; cette distance nous permet de “comparer” des segments, de calculer des aires, ou encore
d’introduire la notion de perpendicularité. On dit que deux segments [AB] et [AC] sont per-
pendiculaires — l’angle B̂AC est droit — si le triangle [ABC] vérifie la formule de Pythagore,

BC2 = AB2 +AC2.

De manière générale, la mesure de l’angle formé par les segments [AB] et [AC] est introduite
en termes de longueur : si C ′ ∈ (AB) est tel que l’angle ÂC ′C est droit, alors

AC ′ = ±AC cos(B̂AC).

Le signe est + si les vecteurs −−→AB et
−−→
AC ′ pointent dans la même direction et − sinon. La relation

précédente, pour des raisons de symétrie, peut s’écrire comme

ABAC cos(B̂AC) = ±ABAC ′.

Voir la figure 3.
Dans le lemme suivant on interprète cette égalité en utilisant les coordonnées des points.

Lemme 2.1. ABAC cos(B̂AC) = (xB − xA)(xC − xA) + (yB − yA)(yC − yA).

Démonstration. Comme le membre de droite est invarié par les translations, on peut supposer
que A est l’origine du système de coordonnées cartésiennes On veut donc démontrer la relation

OBOC cos(B̂OC) = xBxC + yByC .
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2. Produit scalaire et distance dans le plan

x

y

A

B

C

C ′

O

Figure 3: Le triangle [ABC] est rectangle en C et C ′ ∈ [AB] tel que la droite (CC ′) est perpendiculaire
à (AB) ; les triangles [ABC] et [ACC ′] sont semblables.

Par la suite, pour la clarté, on suppose que le triangle [BOC] est aigu en O. On a vu lors la
discussion précédente que si C ′ est la projection de C sur la droite (OB), alors

OBOC cos(B̂OC) = OBOC ′.

Mais le point C ′ est tel que le triangle [OC ′C] est rectangle en C ′. Soit P un point quelconque
appartenant à la demi droite [OB). On a

−→
OP = λ

−→
OB avec λ ≥ 0.

On cherche le scalaire λ0 ≥ 0 tel que P = C ′. Une condition nécessaire pour trouver λ0 est

OC2 = OP 2 + PC2

c’est-à-dire
x2
C + y2

C = λ2(x2
B + y2

B) + (xC − λxB)2 + (yC − λyB)2.

On obtient
λ = 0 et λ = xBxC + yByC

x2
B + y2

B

=: λ0.

On conclut

OBOC cos(B̂OC) = OBOC ′ = OB λ0OB = (x2
B + y2

B) xBxC + yByC
x2
B + y2

B

= xBxC + yByC .

�

La formule pour le cosinus de l’angle engendré par −−→AB et −→AC établie dans le lemme précé-
dent, suggère la définition suivante :

Définition 2.2. Quels que soient deux vecteurs v,v′ ∈ R2, le produit scalaire de v = (α, β) et
v′ = (α′, β′) est le nombre réel

〈v,v′〉 =
〈
(α, β), (α′, β′)

〉
= αα′ + ββ′.

En prenant v = −−→OP et w = −−→OQ des vecteurs non nuls, on trouve

PQ = d(P,Q) =
√
〈
−−→
PQ,

−−→
PQ〉 =

√
〈w − v,w − v〉

et

cos(P̂OQ) = 〈
−−→
OP,

−−→
OQ〉

OP OQ
= 〈v,w〉
‖v‖ ‖w‖

où ‖v‖ =
√
〈v,v〉.

9



2. Produit scalaire et distance dans le plan

Lemme 2.3. La distance euclidienne d(P,Q) vérifie les propriétés suivantes.

• La positivité, c’est-à-dire que pour tous points P et Q dans le plan A2, d(P,Q) ≥ 0, avec
égalité si et seulement si, P = Q.
• La symétrie, c’est-à-dire que pour tous points P et Q dans le plan A2, d(P,Q) = d(Q,P ).
• L’inégalité triangulaire, c’est-à-dire que pour tous points P , Q et R dans le plan A2,

d(P,R) ≤ d(P,Q) + d(Q,R), (2.1)

avec égalité si et seulement si, les trois points sont alignés de telle sorte que Q se trouve
entre P et R.

Démonstration. La positivité et la symétrie sont évidentes. Nous traduisons l’inégalité du
triangle en utilisant des vecteurs : si v = (a, b) = −−→QP et w = (c, d) = −−→QR, alors

d(P,Q) = d(Q,P ) =
√
〈
−−→
QP,

−−→
QP 〉 =

√
a2 + b2

d(Q,R) =
√
c2 + d2

d(P,R) =
√
〈
−−→
PQ+−−→QR,−−→PQ+−−→QR〉 =

√
〈−v + w,−v + w〉 =

√
(c− a)2 + (d− b)2.

L’inégalité (2.1) devient √
a2 + b2 +

√
c2 + d2 ≥

√
(c− a)2 + (d− b)2.

Comme les deux membres de cette inégalité sont positifs, en élevant au carré, nous obtenons
l’inégalité équivalente

(a2 + b2) + 2
√
a2 + b2

√
c2 + d2 + (c2 + d2) ≥ (c− a)2 + (d− b)2,

ou encore √
a2 + b2

√
c2 + d2 ≥ −ac− bd.

Si le membre de droite est strictement négatif, alors cette inégalité est toujours vérifiée stricte-
ment. S’il est positif ou nul, nous élevons de nouveau au carré les deux membres pour arriver
à l’inégalité équivalente

(a2 + b2)(c2 + d2) ≥ (ac+ bd)2.

Or,

(a2 + b2)(c2 + d2)− (ac+ bd)2 = a2c2 + a2d2 + b2c2 + b2d2 − (a2c2 + 2abcd+ b2d2)
= a2d2 + b2c2 − 2abcd
= (ad− bc)2

≥ 0

et donc, par équivalence, l’inégalité (2.1) est vérifiée. De plus, l’inégalité (2.1) est une égalité
si, et seulement si, ad − bc = 0 et ac + bd ≤ 0, c’est-à-dire si et seulement si, les vecteurs v et
w vérifient w = 0, ou v = λw pour un λ ≤ 0. Cette condition de proportionnalité des vecteurs
v et w est équivalente à la condition d’alignement des trois points P , Q et R, avec le point Q
placé entre les points P et R. �
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2. Produit scalaire et distance dans le plan

2.2. La perpendicularité

D’après le lemme 2.1, les droites (AB) et (AC) forment un angle droit (sont perpendiculaires)
si et seulement si, 〈−−→AB,−→AC〉 = 0. On introduit la notion suivante :

Définition 2.4. Deux vecteurs u et v de R2 sont dits orthogonaux si leur produit scalaire est
nul, soit encore

〈u,v〉 = 0.

Ainsi deux droites sont perpendiculaires si et seulement si, leurs vecteurs directeurs sont ortho-
gonaux, ou un vecteur est orthogonal à une droite si et seulement si, le vecteur est orthogonal
à un vecteur directeur de la droite.

Théorème 2.5 (Théorème de Pythagore généralisé). Les longueurs des côtés du triangle [ABC]
vérifient

BC2 = AB2 +AC2 − 2ABAC cos(B̂AC).

Démonstration. En utilisant le point de vue de la preuve du lemme 2.1, nous obtenons

BC2 = (xC − xB)2 + (yC − yB)2

=
(
(xC − xA)− (xB − xA)

)2 +
(
(yC − yA)− (yB − yA)

)2
= (xC − xA)2 − 2 (xC − xA)(xB − xA) + (xB − xA)2

+ (yC − yA)2 − 2 (yC − yA)(yB − yA) + (yB − yA)2

= AC2 +AB2 − 2 〈−→AC,−−→AB〉.
�

Proposition 2.6. Soit D une droite d’équation ax+ by+ c = 0. Alors le vecteur n = (a, b) est
un vecteur orthogonal à D. (On dira que n est un vecteur normal à D.)

Démonstration. Un vecteur directeur de D est le vecteur v = (b,−a). Alors

〈n,v〉 = ab+ b(−a) = 0.
�

Définition. La distance d’un point P0 à une droite D est la plus petite des distances entre P0
et P ∈ D. On la note d(P0,D).

Proposition 2.7 (Distance d’un point à une droite). Soit D : ax + by + c = 0 une droite et
soit P0 un point de coordonnées (x0, y0). Alors,

d(P0,D) = |ax0 + by0 + c|√
a2 + b2

et cette distance est atteinte par l’unique point Q ∈ D tel que les droites D et (P0Q) sont
perpendiculaires : P0Q = d(P0,D).

Démonstration. L’idée de la preuve du lemme 2.1 peut être adaptée pour obtenir ce résultat
par un argument d’optimisation. En utilisant la formule de Pythagore, on voit que la distance
minimale est atteinte en Q ∈ D pour lequel la droite (P0Q) est perpendiculaire à D. On écrit

11



2. Produit scalaire et distance dans le plan

x

y

D
Q

P0

Figure 4: Les droites D et (P0Q) sont perpendiculaires. Par exemple, dans la figure, la distance de
P0 = (−1, 2) à D : 2x− 9 y + 4 = 0, c’est-à-dire P0Q, est obtenue en calculant |2·(−1)−9·2+4|√

22+92 = 16√
85 .

l’équation de (P0Q), la droite qui passe par P0 et dirigée par le vecteur v = (a, b)

b(x− x0)− a(y − y0) = 0.

Les coordonnées de Q, l’intersection de D et de (P0Q), sont la solution de{
ax+ by = −c (équation pour D)
bx− ay = bx0 − ay0. (équation pour (P0Q))

On obtient
xQ = b2x0 − aby0 − ac

a2 + b2 et yQ = −abx0 + a2y0 − bc
a2 + b2 ,

Donc,

P0Q
2 = (xQ − x0)2 + (yQ − y0)2

=
(
b2x0 − aby0 − ac

a2 + b2 − x0

)2
+
(−abx0 + a2y0 − bc

a2 + b2 − y0

)2

= 1
(a2 + b2)2 [(−a2x0 − aby0 − ac)2 + (−abx0 − b

2y0 − bc)2]

= 1
(a2 + b2)2 [a2(ax0 + by0 + c)2 + b2(ax0 + by0 + c)2]

= (ax0 + by0 + c)2

a2 + b2 .

�

2.3. Le cercle

Définition. Le cercle de centre A et rayon r > 0, est l’ensemble des points du plan euclidien
situés à la distance r de A. On le note CA,r.

Lemme 2.8. Si A = (a, b), alors CA,r = {P = (x, y) | (x− a)2 + (y − b)2 = r2}.

Proposition 2.9. Étant donné les nombres réels α, β, γ, l’ensemble des points qui vérifient
l’équation

x2 + y2 + αx+ βy + γ = 0

est

12



2. Produit scalaire et distance dans le plan

x

y

Ω

Figure 5: Plusieurs cercles décrits par l’équation x2 + y2 + 2x+ 4y+ γ = 0, avec γ ∈ {−14,−29/4,−6}.
Leurs centre est le point Ω = (2, 1).

i) le cercle CΩ,ρ avec Ω = (−α/2,−β/2) et ρ =
√

α2

4 + β2

4 − γ si α2

4 + β2

4 − γ > 0 ;

ii) le point Ω = (−α/2,−β/2 si α2

4 + β2

4 − γ = 0 ;

iii) vide si α2

4 + β2

4 − γ < 0.

Lemme 2.10. Soit C un cercle et [AB] une corde, c’est-à-dire A,B ∈ C. Si Ω est le centre de
C, alors le triangle [ΩAB] est isocèle.

Ce lemme est trivial car [ΩA] et [ΩB] sont des rayons. Il s’ensuit l’égalité (ou la congruence)
entre les angles Ω̂AB et ÂBΩ. Dans la suite, un angle sera toujours déterminé par un point et
deux demi droites issues de ce point, ou, de manière équivalente, un point et deux vecteurs. Nous
ne distinguerons pas entre un angle et sa mesure. C’est là un abus de langage qui simplifiera
l’exposé et, nous espérons, ne jettera pas de confusion. La configuration point + 2 vecteurs
fait apparaître deux “angles” dont la somme vaut 2π ou 360◦. L’angle introduit ci-dessus est
toujours le plus petit des deux.

Théorème 2.11. Dans le plan euclidien, la somme des angles d’un triangle est égale à π.

Démonstration. On utilise la proposition 1.4 et les dessins ci-dessus.

A

B C

�

Corollaire 2.12. Quatre points sont cocycliques si et seulement si, dans le quadrilatère qu’ils
forment la somme des angles opposés est π.

13



2. Produit scalaire et distance dans le plan

Démonstration. Soient A, B et C trois des points et soit C l’unique cercle circonscrit au triangle
[ABC]. Nous supposons d’abord que D ∈ C et que nous avons la configuration de la figure 6.
La somme des angles du quadrilatère vérifie

Â+ B̂ + Ĉ + D̂ = 2π.

En utilisant les triangles isocèles [AΩB], [BΩC], [CΩD] et [DΩA], voir le lemme 2.10, on a,
par exemple,

2π = Â+ B̂ + Ĉ + D̂ = 2(D̂AΩ + Ω̂AB + B̂CΩ + Ω̂CD = Â+ Ĉ.

La réciproque découle facilement en considérant le cercle par trois des points, disons A, B
et C. Alors il intersecte la droite (CD) en C et en encore un point D′. Mais, comme les points
A, B, C et D′ sont cocycliques, B̂ + D̂′ = π = B̂ + D̂ par hypothèse. Donc D = D′. �

A

B

C

D

Ω

Figure 6: Quatre point cocycliques

2.4. L’intersection d’une droite avec un cercle

On considère le cercle CO,r, avec r > 0 et une droite quelconque D. Nous voulons décrire la
position de la droite par rapport au cercle.

On suppose que D n’est pas verticale dans le système de coordonnées cartésiennes choisi,
Oxy. Soit B = (0, b) le point d’intersection de D avec l’axe des y. Pour faire l’étude, nous
utiliserons une description paramétrique de la droite D. Si u = (α, β) est un vecteur directeur
de D, nous avons

D = {(x, y) | x = αt, y = b+ βt, t ∈ R}.

Nous pouvons supposer que α2 + β2 = 1, c’est-à-dire que la norme de u vaut 1. Étudier la
position de D = DB,u par rapport au cercle est équivalent à déterminer les solutions du système
(non linéaire) 

x2 + y2 = r2

x = αt

y = b+ βt.

En substituant x et y dans la première égalité, nous obtenons

(αt)2 + (b+ βt)2 = r2

14



2. Produit scalaire et distance dans le plan

c’est-à-dire
t2 + 2βb t+ (b2 − r2) = 0.

Le discriminant de cette équation de degré 2 en t vérifie

∆/4 = β2b2 − (b2 − r2).

On conclut que D coupe le cercle CO,r

B

O

Q RM

Figure 7: Droites passant par B et cercle de centre O ; la droite noire coupe le cercle en deux points
distincts. Les droites rouges le coupent chacune avec multiplicité 2 — elles sont tangentes au cercle. Sur
la figure sont marqués aussi le centre M du segment [OB] ainsi que le cercle (en pointillé) de centre M
et diamètre [OB]. Remarquer que les points de tangence Q et R se trouvent sur ce cercle.

• en deux points distincts si |b| < r, ou si |b| ≥ r et β2b2 − (b2 − r2) > 0 (géométriquement
ceci veut dire qu’on a deux points d’intersection distincts si, ou bien le point B est à
l’intérieur du cercle, ou bien il est sur le cercle ou à l’extérieur et le vecteur unitaire
directeur de la droite satisfait une condition numérique)
• en un unique point (avec multiplicité 2) si |b| ≥ r et β2b2 − (b2 − r2) = 0
• en aucun point si β2b2 − (b2 − r2) < 0.

Remarque 2.13. D’abord il faut noter que β2b2− (b2− r2) < 0 implique |b| ≥ r. Par la suite,
il faut clarifier l’expression “en un unique point avec multiplicité 2”. Soit C une courbe dans le
plan décrite par une équation f(x, y) = 0. Soit B = (a, b) un point appartenant à C et soit D
une droite passant par B. On étudie la position de D par rapport à C dans un voisinage de B.
Pour ce faire, nous considérons une paramétrisation de la droite, (x = a+αt et y = b+βt) telle
que B corresponde au paramètre t = 0. La résolution du système qui contrôle l’intersection de
D avec C nous amène à l’équation en t

ϕ(t) := f(a+ αt, b+ βt) = 0.

Comme ϕ(0) = 0, le développement de Taylor de ϕ en 0 est de la forme ϕ(t) = ctm + · · · . La
multiplicité d’intersection de D avec C dans le voisinage de B est l’entier m.

Définition 2.14. Doit C une courbe et P ∈ C. Une droite D 3 P est dite droite tangente à C
en P si la multiplicité d’intersection D avec C dans le voisinage de P est ≥ 2.

Exemple 2.15. La droite tangente à un cercle CΩ,r en P ∈ C est la droite passant par P et
perpendiculaire au “rayon” (ΩP ).
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2. Produit scalaire et distance dans le plan

2.5. Les éléments d’Euclide. Le plan euclidien

Euclide a donné une présentation axiomatique des mathématiques (connues à son époque dans
la civilisation hellénique). Il a commencé par fixer 25 définitions, 5 postulats et 5 notions
communes, les fondations de son système. Cet ensemble axiomatique lui a permis de démontrer
les propositions des 13 volumes des “Éléments”. Les 5 postulats sont les suivants :

i. Par deux points distincts on peut tracer un unique segment de droite les joignant.
ii. Un segment de droite peut être prolongé indéfiniment des deux côtés.

iii. En tout point et pour tout nombre strictement positif, on peut construire un cercle centré
sur le point et de rayon le nombre.

iv. Deux angles droits sont égaux (coïncident).
v. Par un point extérieur à une droite on peut tracer une unique droite parallèle à celle-ci.

Les quatre premiers postulats imposent certaines caractéristiques au plan euclidien : les iie
et iiie impliquent que le plan est infini et qu’il ne contient pas “de trou” ; le ive que le plan est
homogène et isotrope (c’est-à-dire le même en tout point et dans toute direction) et le ier fixe
la nature des droites. Enfin, le ve tient une place spéciale et impose une unicité concernant les
parallèles.

Le plan affine A2
R avec la distance canonique induite par le produit scalaire 〈·, ·〉 (voir la

définition 2.2) fournit un modèle4 du plan euclidien ; il sera appelé le plan euclidien et sera noté
E2 par la suite.

Remarque 2.16. Notre modèle du plan euclidien est construit sur R2. Nous savons que R2

peut être vu comme l’ensemble des nombres complexes en posant z = x+iy ; cette identification
nous permet d’utiliser les nombres complexes dans les raisonnements géométriques. Pour un
point P = (a, b) dans le plan muni du repère Oxy, on appelle affixe de P le nombre complexe
z + P = a+ ib.

2.6. Faisceaux de cercles

Soient Γ1 et Γ2 deux cercles de centres Ω1 6= Ω2. On veut étudier le faisceau des cercles
déterminé par Γ1 et Γ2 — la famille de “cercles” dont les équations sont des combinaisons
linéaires des équations de Γ1 et Γ2. Explicitement, si Ωj = (aj , bj) et si rj > 0 est le rayon de
Γj , alors chaque courbe de la famille est définie par une équation du type

λ1[(x− a1)2 + (y − b1)2 − r2
1] + λ2[(x− a2)2 + (y − b2)2 − r2

2] = 0

pour λ1, λ2 ∈ R non simultanément nuls.
Premier cas. Les deux cercles se coupent en deux points distincts, E et F . Alors la droite
(EF ) est perpendiculaire à (Ω1Ω2) et tout autre cercle du faisceau passe par E et F . En
particulier, le centre d’un tel cercle appartient à (Ω1Ω2). La droite (EF ) est un des cercles de
la famille (un cercle de rayon infini). Elle est obtenue pour λ1 = −λ2 et est appelée l’axe radical
de Ω1 et Ω2.

4Un modèle est une construction qui vérifie les cinq postulats. Une géométrie différente peut être obtenue en
considérant la sphère (dans l’espace euclidien usuel) et en définissant les droites comme étant les grands cercles.
La distance entre deux points est la distance mesurée sur la sphère. Quels seront les postulats d’Euclide non
vérifiés par cette géométrie ?
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2. Produit scalaire et distance dans le plan

Ω1

Ω2

Figure 8: small Faisceau de cercles passant par deux points ; tous les cercles du faisceau sont
réels.

Deuxième cas. Les deux cercles ne se coupent pas. Alors, quels que soient deux éléments Γ
et Γ ′ du faisceau, Γ et Γ ′ n’ont aucun point en commun.

Comme dans le premier cas, dans ce faisceau il y a une unique droite ∆, l’axe radical des
deux cercles, qui est perpendiculaire à (Ω1, Ω2). De plus, la famille contient exactement deux
cercles dégénérés, c’est-à-dire deux points A et B. La droite ∆ est la médiatrice du segment
[AB].

Ω1 Ω2

A B

Figure 9: Faisceau de deux cercles qui ne se coupent pas ; les deux points A et B sont les deux cercles
dégénérés du faisceau. Une infinité des cercles du faisceau sont imaginaires. Pour un point P (quelconque)
de l’axe radical du faisceau, sa puissance par rapport à tout cercle du faisceau est la même.

Remarque. Dans ce cas, le faisceau contient une infinité de cercles imaginaires.
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2. Produit scalaire et distance dans le plan

2.7. Exercices

Exercice 2.1. Dans E2, on considère les points A = (1, 1) et Pt = (t, t2), où t > 1 joue le rôle
d’un paramètre. Calculer

lim
t→1+

−−→
APt

‖
−−→
APt‖

.

(Le vecteur ci-dessus a deux composantes. La limite est calculée en la considérant composante
par composante.)

Exercice 2.2. Soient O l’origine du système de coordonnées et A le point de coordonnées (2, 0).
Pour chaque point P appartenant à la droite d’équation y = 1 formons le triangle [OAP ]. Pour
combien de tels points P le périmètre du triangle [OAP ] vaut-il 5 ?

Exercice 2.3. Soient [ABC] et [A′B′C ′] deux triangles. On dit qu’ils sont congruents, [ABC] ≡
[A′B′C ′], si tous leurs éléments (côtés et angles) sont deux à deux égaux.

1) Montrer que si Â = Â′, B̂ = B̂′ et AB = A′B′, alors [ABC] ≡ [A′B′C ′].
2) Si Â = Â′, B̂ = B̂′ et AC = A′C ′, peut-on conclure que [ABC] ≡ [A′B′C ′] ?
3) Montrer que si Â = Â′, AB = A′B′ et AC = A′C ′, alors [ABC] ≡ [A′B′C ′].
4) Si Â = Â′, AB = A′B′ et BC = B′C ′, peut-on conclure que [ABC] ≡ [A′B′C ′] ?

Exercice 2.4 (Triplets de Pythagore). On se propose de déterminer les triplets de Pythagore
(a, b, c) tels que a2 = b2 + c2, avec a, b et c trois entiers (positifs) premiers entre eux dans leur
ensemble.

Dans le repère Oxy, nous considérons le cercle trigonométrique C = CO,1, le point W =
(−1, 0) ∈ C et la droite T tangente à C en E = (1, 0).

1) Expliciter en coordonnées la projection stéréographique p : Cr{W} → T , c’est-à-dire l’application
définie par p(A) = A′, où A ∈ C r {W}, et A′ ∈ T tel que les points W , A et A′ sont alignés.

2) Montrer que les coordonnées de A sont des nombres rationnels si, et seulement si, celles de
A′ sont aussi des nombres rationnels.

3) Conclure.

Exercice 2.5.
1) On considère le triangle isocèle [ABC] avec b = AB = AC et α ∈ ]0, π[ la mesure de l’angle

Â. Pour tout point P ∈ [BC], calculer la somme des distances de P aux droites (AB) et (AC).
2) Utiliser ce résultat pour déterminer le lieu géométrique des points P tels que d(P,D1) +

d(P,D2) = a, avec a > 0 fixé, où D1 et D2 sont deux droites fixées.

Exercice 2.6.
1) Soient p > 0, le point F = (0, p/2) et la droiteD : y = −p/2. Déterminer le lieu géométrique

(une équation) des points P du plan euclidien tels que PF = d(P,D). Ce lieu est appelée la
parabole de foyer F et de droite directrice D.

2) Déterminer l’équation de la parabole de foyer F = (−1, 2) et de directrice
D : 3x− 4y + 1 = 0.

Exercice 2.7. La tangente à la parabole en un point quelconque.

Exercice 2.8. On considère la parabole Γ de foyer F et directrice D.
1) Soit L la droite qui passe par le foyer F perpendiculairement à la directrice D. Montrer

que pour tout point P ∈ Γ r L, la droite perpendiculaire à L passant par P coupe L en H et
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3. Vers le Déterminant d’une matrice 2 × 2

Γ en P ′ 6= P tels que PH = HP ′. Cette droite est appelée l’axe de symétrie de la parabole.
(On peut démontrer que c’est l’unique droite possédant la propriété précédente.)

2) Démontrer que si la parabole peut refléter la lumière, alors les rayons parallèles à l’axe de
symétrie sont reflétés par le foyer.

3) En déduire que la tangente en un point P de la parabole est la bissectrice de l’angle formé
par [PF ) et la droite passant par P et perpendiculaire à la directrice.

4) Soit L la droite tangente au sommet de la parabole. Montrer que pour tout point Q ∈ L,
si TQ est l’autre tangente à la parabole passant par Q, alors TQ est perpendiculaire à (Q,F ).

3. Vers le Déterminant d’une matrice 2× 2

3.1. Aires d’un parallélogramme et d’un triangle

Comme application de la proposition 2.7 nous calculons l’aire d’un parallélogramme en fonction
des coordonnées de ses sommets.

x

y

A

B

C

D

D′

O

Figure 10: L’aire du parallélogramme [ABCD] est donnée par le produit AB ·DD′, où les droites (DD′)
et (AB) sont perpendiculaires.

Proposition 3.1. Soient A, B, C et D les sommets d’un parallélogramme. Alors l’aire du
parallélogramme [ABCD] est égale à

σ([ABCD]) = |(xB − xA)(yD − yA)− (xD − xA)(yB − yA)|.

Démonstration. Comme
σ([ABCD]) = AB d(D, (AB)),

et, d’après la proposition 1.5,

(AB) : (yB − yA)x− (xB − xA)y +
(
− (yB − yA)xA + (xB − xA)yA

)
= 0,

on obtient, en utilisant la proposition 2.7,

d(D, (AB)) =
|(yB − yA)xD − (xB − xA)yD +

(
− (yB − yA)xA + (xB − xA)yA

)
|√

(yB − yA)2 + (xB − xA)2
.

Donc
σ([ABCD]) = |(xD − xA)(yB − yA)− (xB − xA)(yD − yA)|.

�

19



3. Vers le Déterminant d’une matrice 2 × 2

Si −−→AB = v = (α, β) et −−→AD = w = (γ, δ), la formule de la proposition précédente devient

σ( v,w) = |αδ − βγ| (3.1)

où l’on désigne par v,w le parallélogramme engendré par les vecteurs v et w. On remarque
que les points A, B et D sont alignés si, et seulement si, les vecteurs v et w sont liés — leurs
coordonnées sont proportionnelles —, c’est-à-dire si et seulement si,

αδ − βγ = 0,

ce qui correspond au fait que l’aire du parallélogramme v,w est nulle.

Remarque 3.2. La quantité αδ − βγ associée aux vecteurs v = (α, β) et w = (γ, δ) sera
appelée le déterminant des vecteurs v et w (dans le système de coordonnées choisi). On verra
plus loin que c’est la notion centrale de nos études géométriques dans le plan et dans l’espace.
(Voir aussi la remarque 3.6.)

Corollaire 3.3. Soient A, B et C trois points dans le plan. Alors

σ([ABC]) = 1
2 |(xB − xA)(yC − yA)− (yB − yA)(xC − xA)|.

Exemple 3.4. Soient A, B et C trois points distincts. Le lieu géométrique des points M du
plan tels que σ([ABC]) = σ([ABM ]) est la réunion de deux droites : la droite D parallèle à
(AB) et passant par C et la droite symétrique de D par rapport à (AB).

Nous voulons justifier cette affirmation. Pour simplifier les notations, nous supposons que
le point A est l’origine du système de coordonnées. Maintenant, si M est un point quelconque
de coordonnées (x, y) qui satisfait à la propriété σ([ABC]) = σ([ABM ]), alors

1
2 |xB yC − yB xC | = σ([ABC]) = σ([ABM ]) = 1

2 |xB y − yB x|.

Par conséquent, M satisfait, ou bien à l’équation

xB yC − yB xC = −(xB y − yB x),

ou bien à l’équation
xB yC − yB xC = xB y − yB x.

Nous arrivons à l’ensemble formé par les deux droites parallèles

D : yB x− xB y − (yB xC − xB yC) = 0 et D′ : yB x− xB y + (yB xC − xB yC) = 0.

3.2. Intersection de droites et systèmes d’équations à deux inconnues

Lors de la démonstration de la formule pour la distance d’un point P0 à une droite D (voir la
Proposition 2.7), nous avons utilisé la construction d’un point (le point Q) comme intersection
de deux droites, à savoir la droite D et la droite passant par P0 et perpendiculaire à D. En
général, l’étude de la position relative de deux droites D1 et D2 dans le plan est équivalente à
l’étude du système d’équations linéaires{

a1x+ b1y + c1 = 0
a2x+ b2y + c2 = 0

(∗)
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3. Vers le Déterminant d’une matrice 2 × 2

formé avec une équation de chacune des droites. Tout point de coordonnées (x∗, y∗) satisfaisant
les deux équations du système appartient nécessairement à chacune des droites décrites par (∗).
Pour résoudre le système, multiplions la première équation par b2 et la deuxième par −b1. En
les additionnant, nous obtenons la relation

(a1b2 − a2b1)x∗ = b1c2 − b2c1.

On conclut que la solution du système est unique et donnée par

x∗ = b1c2 − b2c1
a1b2 − a2b1

et y∗ = −a1c2 + a2c1
a1b2 − a2b1

si et seulement si, a1b2 − a2b1 6= 0.
Les positions relatives de deux droites dans le plan affine sont caractérisées dans le tableau

suivant. On peut remarquer la relation forte entre la configuration géométrique des deux droites
et le comportement algébrique du système formé par les équations qui définissent ces deux
droites.

géométrie algèbre calcul

les deux droites se coupent le système (∗) admet une
solution unique

a1b2 − a2b1 6= 0
(vecteurs normaux non liés)

les deux droites sont
parallèles (distinctes)

le système (∗) n’admet
aucune solution

a1b2 − a2b1 = 0 (vecteurs
normaux liés) et équations

non proportionnelles
les deux droites sont

confondues
le système (∗) admet une

infinité de solutions équations proportionnelles

Remarque 3.5. Si les deux équations d’un système sont proportionnelles, le système admet une
infinité de solutions. L’ensemble de ces solutions est la droite elle-même, c’est-à-dire {(x,−a

b x−
c
b) | x ∈ R} si, par exemple, b 6= 0. Dans cette expression, x paramètre les points de la droite.

En résumé, résoudre un système linéaire à deux inconnues est équivalent à décrire l’intersection
de deux droites dans le plan. Dans ce qui suit nous introduisons le déterminant de deux vecteurs
et présentons quelques applications basées sur l’intersection des droites.

Remarque 3.6 (Définition). L’existence d’une solution unique pour le système (∗) est contrôlée
par l’expression a1b2 − a2b1. Celle-ci dépend des coefficients de x et y dans les deux équations,
c’est-à-dire des vecteurs normaux u1 = (a1, b1) et u2 = (a2, b2) aux deux droites. On introduit
les notations

M =
(
a1 b1
a2 b2

)
et det(M) = det(u1,u2) :=

∣∣∣∣∣a1 b1
a2 b2

∣∣∣∣∣ = a1b2 − a2b1

et l’on appelle M la matrice formée par les vecteurs u1 et u2 (ou les éléments a1, . . . , b2) et
det(M) le déterminant de M , ou le déterminant des vecteurs u1 et u2.

Situations rencontrées précédemment qui font intervenir le déterminant :

• L’aire du parallélogramme v,w est calculée par la formule | det(u,v)|.
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3. Vers le Déterminant d’une matrice 2 × 2

• La solution du système (∗), si elle existe et qu’elle est unique, est donnée par5

x∗ =

∣∣∣∣∣−c1 b1
−c2 b2

∣∣∣∣∣∣∣∣∣∣a1 b1
a2 b2

∣∣∣∣∣
et y∗ =

∣∣∣∣∣a1 −c1
a2 −c2

∣∣∣∣∣∣∣∣∣∣a1 b1
a2 b2

∣∣∣∣∣
.

• Une équation de la droite passant par A = (xA, yA) et B = (xB, yB) peut s’écrire comme∣∣∣∣∣ x− xB y − yB
xA − xB yA − yB

∣∣∣∣∣ = 0. (3.2)

Proposition 3.7. Les hauteurs d’un triangle sont concourantes en un point H appelé ortho-
centre du triangle.

Démonstration. On choisit le système des coordonnées tel que les sommets du triangle [ABC]
deviennent B = (0, 0), C = (c, 0) et A = (a, α), où α 6= 0 car le triangle est supposé non aplati.

La hauteur issue de A intersecte (BC) en A′ = (a, 0). La hauteur issue de B est la droite
passant par l’origine (c’est-à-dire B) et de vecteur normal −→CA = (a − c, α). On obtient, si B′
est son point d’intersection avec (AC),

(BB′) : (a− c)x+ αy = 0.

Le point H d’intersection de (AA′) et (BB′) est H = (a,−a(a−c)
α ). Il suffit de vérifier que −−→CH

et −−→AB sont perpendiculaires. �

Théorème 3.8 (Ceva6). Soit [ABC] un triangle et soient P ∈ [BC], Q ∈ [AC] et R ∈ [AB]
trois points distincts de A, B et C. Alors les trois droites (AP ), (BQ) et (CR) sont concourantes
si, et seulement si,

AR

BR

BP

CP

CQ

AQ
= 1.

Démonstration. Si les droites sont concourantes en J , alors

σ(AJB)
σ(AJC) = σ(APB)− σ(JPB)

σ(APC)− σ(JPC) = BP

CP
.

Le résultat s’ensuit en obtenant des égalités analogues pour les deux autres quotients de la
formule. Dans l’autre sens, on utilise l’implication précédente en considérant la droite passant
par C et le point d’intersection des droites (AP ) et (BQ). �

Corollaire 3.9. Les bissectrices (resp. médianes) d’un triangle sont concourantes.

Démonstration. Pour les bissectrices il faut d’abord démontrer que DB
DC = AB

AC , où (AD) est la
bissectrice de Â, avec D ∈ [BC]. Nous considérons (BP ) ‖ (AD), avec P ∈ (AC) et nous
appliquons Thalès en remarquant que AB = AP . (Voir la figure 11.) �

5Ces expressions sont appelées “formule de Cramer”. Elles sont valables dans un cadre plus général, à savoir
d’un système linéaire carré de n équations et n inconnues.

6Giovanni Ceva, Milan 1647 – Mantoue 1734
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3. Vers le Déterminant d’une matrice 2 × 2

A

B

C

D

P

Figure 11: Construction utilisée dans la preuve de l’affirmation concernant les bissectrices dans un
triangle. Les droites (AD) et BP ) sont parallèles.

3.3. Exercices

Exercice 3.1. On considère la droite D définie par D : x − 3 y + 3 = 0 ainsi que les points A
et B ayant les coordonnées xA = 3, yA = 1 et xB = −9, yB = −3. Déterminer le nombre de
points P appartenant à la droite D tels que l’aire du triangle [ABP ] soit égale à 6.

Exercice 3.2. On considère la droite D : y = −1 et le cercle C de centre O et rayon 2. La
droite D coupe (intersecte) le cercle C en deux points A = (−

√
3,−1) et B = (

√
3,−1). Pour

combien de points M appartenant au cercle C l’aire du triangle [ABM ] vaut-elle
√

3 ?

Exercice 3.3 (Héron). Soit [ABC] un triangle. On note a = BC, b = CA et c = AB. Rappeler
la formule du cours qui exprime σ, l’aire du triangle, en fonction des coordonnées des points A,
B et C. En choisissant l’origine du système des coordonnées en un des points, calculer σ2 et
simplifier l’expression en faisant apparaître les longueurs des côtés pour obtenir la formule de
Héron,

σ2 = p(p− a)(p− b)(p− c),

où p = (a+ b+ c)/2.

Exercice 3.4. Soient les systèmes

(A)
{

3x − 2y = −1
x − 3y = 2

(B)
{

x + 2y = 1
3x + 6y = 3

(C)
{

3x − 4y = −1
−15x + 20y = −5

(D)
{

2x + 5y = 1
x − 3y = −5

.

Lesquels admettent une unique solution ?

Exercice 3.5. Dans le système{
ax − 2(a+ 1)y = −1
−x + (a+ 3)y = 2

a est un paramètre réel. Trouver les a pour lesquels le système n’admet aucune solution.
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4. Géométrie dans l’espace affine et l’espace euclidien

Exercice 3.6. Pour combien de valeurs de a le système
{
ax + y = 2a+ 2
x + ay = −2a− 2

admet

une infinité de solutions ?

Exercice 3.7. Trouver les solutions du système{
ax + y = 2a+ 2
x + ay = −2a− 2

où a ∈ ]− 1, 1[ est un paramètre réel.

Exercice 3.8. Dans E2, on considère le point A = (1, 3) et les deux droites D1 : x − y = 0 et
D2 : 1

2 x− y = 0. Pour tout a ∈ R, on construit le point Bi comme intersection de la droite Di
avec la droite L : y = a, i ∈ {1, 2}. Trouver les valeurs de a pour lesquelles σ([AB1B2]) = 1.

Exercice 3.9. Soit C le cercle défini par x2 + y2 = r2 et soit P un point quelconque extérieur
au cercle, c’est-à-dire les coordonnées de P satisfont x2

P + y2
P > r2.

1) Montrer que si D 3 P et D∩C 6= ∅, en notant par P1 et P2 les “deux” points d’intersection,
alors PP1 · PP2 dépend seulement de P et de C. On appelle cette expression la puissance de P
par rapport à C, ρ(P, C).

2) Si C1 et C2 sont deux cercles, déterminer le lieu géométrique des pointsM tels que ρ(P, C1) =
ρ(P, C2).

4. Géométrie dans l’espace affine et l’espace euclidien

Comme pour le plan affine ou euclidien, nous allons considérer l’espace affine A3 muni d’un sys-
tème de coordonnées Oxyz, système qui sera supposé cartésien pour l’espace euclidien. L’espace
affine muni du système de coordonnées s’identifie à R3. Un point de l’espace est représenté par
ses coordonnées ; à tous deux points A, B, on associe le vecteur −−→AB dont les coordonnées sont

x−→
AB

= xB − xA, y−→
AB

= yB − yA, z−→
AB

= zB − zA.

4.1. Plans dans A3

Définition 4.1. Un plan dans l’espace est un sous-ensemble P pour lequel il existe a, b, c et d
quatre réels tels que

P = {P | a xP + b yP + c zP + d = 0}

avec a, b, c non simultanément nuls.

On dit que P est le plan d’équation ax + by + cz + d = 0. Donc les plans de A3 sont les
sous-ensembles définis par des équations de degré 1 en les coordonnées.

Soit P : ax+ by + cz + d = 0. On suppose a 6= 0 et on résout l’équation définissant le plan
comme équation en x. On obtient

x = −d
a
− b

a
y − c

a
z
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4. Géométrie dans l’espace affine et l’espace euclidien

avec y, z ∈ R. On obtient une description paramétrique du plan :xy
z

 =

−d
a

0
0

+ s

− b
a

1
0

+ t

− c
a

0
1

 avec s, t ∈ R. (4.1)

Remarque 4.2. Les éléments apparaissant dans le membre de droite de (4.1) sont, dans l’ordre,
un point P0 = (−d

a , 0, 0) appartenant au plan et deux vecteurs u = (− b
a , 1, 0) et v = (− c

a , 0, 1)
qui sont linéairement indépendants.

Il est utile de noter que le point est une solution particulière de l’équation définissant le
plan, et que les deux vecteurs sont des solutions particulières de l’équation homogène associée
à l’équation du plan. Les combinaisons linéaires su + tv avec s, t ∈ R représentent toutes les
solutions de l’équation homogène associée.

Connaître une paramétrisation du plan P signifie
– un point A et deux vecteurs u et v linéairement indépendants (c’est-à-dire non propor-

tionnels)
– trois points A, B, C non alignés.

(Pour l’équivalence entre ces deux ensembles de données, il suffit de poser B = A + u et
C = A+ v.)

Étant donnée une paramétrisation du plan P, comment peut-on obtenir une équation cartési-
enne de celui-ci ? En pratique, on doit éliminer les paramètres. Par exemple, si P est décrit par
le point A = (1, 0, 2) et les vecteurs u = (1, 2, 3) et v = (−2, 1, 1), alors on sait que

x = 1 + s− 2t
y = 2s+ t

z = 2 + 3s+ t.

Ceci est un système de trois équations et cinq inconnues, x, y, z, s et t. En éliminant s et t, on
obtient, successivement,

s = 1− 2t− x
y = 2− 3t− 2x
z = 5− 5t− 3x


s = 1− 2t− x
y = 2− 3

(
1− 3

5 x−
1
5 z)− 2x

t = 1− 3
5 x−

1
5 z

et donc, la deuxième équation du deuxième système dans laquelle les paramètres s et t n’apparaissent
plus. Elle est une équation cartésienne du plan initial, c’est-à-dire

P : 7x− 5y + 3z − 5 = 0.

En théorie, l’élimination des paramètres fait apparaître naturellement la formule (de développe-
ment) du déterminant d’une matrice 3× 3.

Proposition 4.3. Le plan déterminé par le point A et les vecteurs linéairement indépendants
u et v est défini par l’équation cartésienne

(x− xA)
∣∣∣∣∣yu zu

yv zv

∣∣∣∣∣− xu

∣∣∣∣∣y − yA z − zA
yv zv

∣∣∣∣∣+ xv

∣∣∣∣∣y − yA z − zA
yu zu

∣∣∣∣∣ = 0.
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4. Géométrie dans l’espace affine et l’espace euclidien

Démonstration. Comme u et v sont linéairement indépendants, on suppose que
∣∣∣∣∣yu zu

yv zv

∣∣∣∣∣ 6= 0.

Dans la paramétrisation 
x = xA + xus+ xvt

y = yA + yus+ yvt

z = zA + zus+ zvt

on interprète les deux dernières équations comme un système en s et t ; en appliquant la formule
de Cramer, on obtient la solution

s∗ =

∣∣∣∣∣y − yA yv

z − zA zv

∣∣∣∣∣∣∣∣∣∣yu yv

zu zv

∣∣∣∣∣
et s∗ =

∣∣∣∣∣yu y − yA
zu z − zA

∣∣∣∣∣∣∣∣∣∣yu yv

zu zv

∣∣∣∣∣
.

La première équation devient

x = xA + xu

∣∣∣∣∣y − yA yv

z − zA zv

∣∣∣∣∣∣∣∣∣∣yu yv

zu zv

∣∣∣∣∣
+ xv

∣∣∣∣∣yu y − yA
zu z − zA

∣∣∣∣∣∣∣∣∣∣yu yv

zu zv

∣∣∣∣∣
.

On multipliant avec le dénominateur commun des deux fractions et en réarrangeant7 les termes,
on a

(x− xA)
∣∣∣∣∣yu zu

yv zv

∣∣∣∣∣− xu

∣∣∣∣∣y − yA z − zA
yv zv

∣∣∣∣∣− xv

∣∣∣∣∣ yu zu

y − yA z − zA

∣∣∣∣∣ = 0.

La formule désirée est obtenue après un dernier changement de signe sur le dernier déterminant.
�

Par analogie au déterminant d’une matrice de taille 2× 2, en utilisant la proposition précé-
dente, on introduit le déterminant d’une matrice (un tableau) de taille 3 × 3 (par la suite on
notera M3(R) l’ensemble des matrices de taille 3× 3 à coefficients réels)

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,
comme étant

det(A) =

∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣∣ = a11

∣∣∣∣∣a22 a23
a32 a33

∣∣∣∣∣− a21

∣∣∣∣∣a12 a13
a32 a33

∣∣∣∣∣+ a31

∣∣∣∣∣a12 a13
a22 a23

∣∣∣∣∣ . (4.2)

La formule de la proposition 4.3 donnant une équation pour le plan passant par A et dirigé par
u et v devient ∣∣∣∣∣∣∣

x− xA y − yA z − zA
xu yu zu

xv yv zv

∣∣∣∣∣∣∣ = 0.

7On a utilisé aussi le fait que pour une matrice de taille 2 × 2, det(M) = det(MT ).
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4. Géométrie dans l’espace affine et l’espace euclidien

Remarque 4.4. La formule (4.2) utilisée pour définir le déterminant peut être écrite comme

det(A) = (−1)1+1a11 det(A11) + (−1)2+1a21 det(A21) + (−1)3+1a31 det(A31)

où la matrice Aij est la sous-matrice de A obtenue en enlevant la ième ligne et la jème colonne.
Cette formule généralise celle pour les déterminants 2× 2 :

det
(
a11 a12
a21 a22

)
= a11 det(a22)− a21 det(a12) = a11a22 − a12a21.

Corollaire 4.5. Trois points non alignés P1, P2 et P3 déterminent un unique plan (P1P2P3)
d’équation ∣∣∣∣∣∣∣

x− x1 y − y1 z − z1
x2 − x1 y2 − y1 z2 − z1
x3 − x1 y3 − y1 z3 − z1

∣∣∣∣∣∣∣ = 0.

4.2. Déterminants 3× 3

On avait introduit le déterminant d’une matrice A = (aij) ∈M3(R) dans la section précédente
par la formule

det(A) = (−1)1+1a11 det(A11) + (−1)2+1a21 det(A21) + (−1)3+1a31 det(A31)

Pour tous 1 ≤ i, j ≤ 3, dans l’écriture aij , i désigne la ligne et j la colonne sur lesquelles
l’élément aij est placé dans A. La formule ci-dessus est appelée la formule de développement
du déterminant d’après la première colonne.

Lemme-Définition. Si A = (aij) ∈M3(R), alors

det(A) = a11a22a33 + a13a21a32 + a12a23a31 − a11a23a32 − a12a21a33 − a13a22a31.

Démonstration. D’après la formule (4.2) introduisant le déterminant,

det(A) = a11

∣∣∣∣∣a22 a23
a32 a33

∣∣∣∣∣− a12

∣∣∣∣∣a21 a23
a31 a33

∣∣∣∣∣+ a13

∣∣∣∣∣a21 a22
a31 a32

∣∣∣∣∣
= a11(a22a33 − a23a32) + · · · .

�

Cette formule paraît compliquée, mais il y a plusieurs façons de la comprendre et donc de
l’utiliser.

Première règle de calcul.. On peut trouver la valeur du déterminant de A en développant
depuis n’importe quelle ligne ou n’importe quelle colonne ; par exemple, depuis la deuxième ligne
on a

det(A) =

∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣∣ = a21

∣∣∣∣∣a12 a13
a32 a33

∣∣∣∣∣− a22

∣∣∣∣∣a11 a13
a31 a33

∣∣∣∣∣+ a23

∣∣∣∣∣a11 a12
a31 a32

∣∣∣∣∣ .
On vérifie facilement que l’on retrouve les six termes de la définition. Voir aussi l’exercice 4.1.
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4. Géométrie dans l’espace affine et l’espace euclidien

Deuxième règle de calcul.. Dans la formule du déterminant il y a trois termes apparaissant
avec le signe + et trois apparaissant avec le signe −. Chaque terme, indépendamment du signe,
est le produit de trois éléments de la matrice. Il s’ensuit qu’on peut penser chaque terme dans la
formule du déterminant comme un triangle dont les sommets se trouvent sur certaines positions
de la matrice. La figure 12 représente ces six triangles (isocèles). Il est possible d’utiliser ces
schémas comme moyen mnémotechnique pour retrouver la formule du déterminant.

Figure 12: Les six termes du déterminant d’une matrice 3× 3 représentés comme triangles isocèles sur
les positions de la matrices. Le quatrième triangle correspond au terme − a1 1a3 2a2 3.

4.3. Droites dans l’espace

Par la suite, nous définissons une droite dans l’espace. Le point de vue initial est dynamique,
c’est-à-dire en utilisant une paramétrisation de la droite.

Définition 4.6. Une droite dans l’espace est l’ensemble des points image d’une application
γ : R → R3 définie par γ(t) = (a + αt, b + βt, c + γt), avec v = (α, β, γ) 6= 0. On notera cette
droite par DA,v et on l’appellera la droite passant par le point A = (a, b, c) de vecteur directeur
v.

Donc DA,v = {A + tv | t ∈ R} est la droite passant par A et ayant v 6= 0 comme vecteur
directeur. À travers la paramétrisation, v représente le vecteur vitesse du mouvement qui a
comme image la droite.

Définition 4.7. Deux plans P et P ′ sont dits non-parallèles si les parties homogènes des
équations les définissant ne sont pas proportionnelles.

Après l’introduction du vecteur normal, on verra que P et P ′ sont parallèles si et seulement si
ils admettent des vecteurs normaux liés (ou proportionnels).

Proposition 4.8. Un sous ensemble D se l’espace est une droite si et seulement si il existe
deux plans non parallèles p et P ′ tels que D = P ∩ P ′.

Démonstration. Si D est une droite, d’après la définition 4.6, si A 6= B ∈ D, alors D = D
A,
−→
AB

,
c’est-à-dire

D 3 (x, y, z) = (xA + tu, yA + tv, zA + tw), t ∈ R

où −−→AB = (u, v, w). On peut supposer w 6= 0, car A 6= B. On a

t = z − zA
w

et

(x, y, z) ∈ D si et seulement si,
{
x− xA −

z−zA
w u = 0

y − yA −
z−zA
w v = 0 .
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4. Géométrie dans l’espace affine et l’espace euclidien

Le système, en réorganisant les termes, devient{
wx − uz = wxA − uzA

wy − vz = wyA − vzA
et les deux plans définis par les deux équations ne sont pas parallèles. Réciproquement, on
résout le système de deux équations et trois inconnues en prenant une des inconnue comme
paramètre. �

4.4. Le produit scalaire

Par analogie avec l’étude du plan euclidien E2, on considère le produit scalaire défini par 〈v,w〉 =
vxwx + vywy + vzwz pour tous v,w ∈ R3. Le produit scalaire permet de mesurer les longueur
des vecteurs ainsi que l’angle formé par deux vecteurs de R3, et donc les distance et les angles
dans E3. En particulier, v et w sont orthogonaux si et seulement si, 〈v,w〉 = 0.

Par exemple, pour le plan P : ax + by + cz + d = 0, le vecteur n = (a, b, c) est appelé un
vecteur normal, car pour tous les points P,Q ∈ P, n ⊥

−−→
PQ. Pour voir ceci, il suffit de faire la

différence des identités
axP + byP + czP + d = 0
axQ + byQ + czQ + d = 0

On obtient
0 = a(xQ − xP ) + b(yQ − yP ) + c(zQ − zP ) = 〈n,−−→PQ〉.

Lemme 4.9. La distance d’un point P0 au plan P, d(P0,P) = min{P0P | P ∈ P} est donnée
par d(P0,P) = |ax0+by0+cz0+d|√

a2+b2+c2 . De plus, d(P0,P) = P0Q, où Q ∈ P tel que (P0Q) ⊥ P.

Démonstration. On considère la droite passant par P0 de vecteur directeur n = (a, b, c), un
vecteur normal au plan P. Soit Q le point d’intersection de cette droite avec P. Pour tout
autre point P ∈ P, le triangle [P0QP ] est rectangle en Q, donc P0P > P0Q. Le lemme
s’ensuit en calculant P0Q. Comme les coordonnées des points de la droite DP0,n vérifient (voir
la définition 4.6)

x = x0 + at, y = y0 + bt et z = z0 + ct,

le t∗ correspondant au point Q est obtenu en remplaçant les identités ci-dessus dans l’équation
du plan P. On a

a(x0 + at) + b(y0 + bt) + c(z0 + ct) + d = 0,

donc t∗ = (ax0+by0+cz0+d
a2+b2+c2 et, par conséquent,

Q = (x0 + a t∗, y0 + b t∗, z0 + c t∗).
�

Définition. Soit P0 un point et P un plan dans l’espace. Le point Q ∈ P tel que (P0Q) ⊥ P
est appelé le projeté orthogonal de P0 sur P.

Plus tard, on utilisera le résultat technique suivant (voir la figure 13) :

Lemme 4.10. Soit P ⊂ E3 un plan non parallèle au plan de coordonnées {z = 0}. Soit n
un vecteur normal unitaire de P. On note par D la droite d’intersection de P et du plan de
coordonnées {z = 0}. Si P ∈ P, Q ∈ D tel que (PQ) ⊥ D et P ′ est le projeté orthogonal de P
sur {z = 0}, alors P ′Q = |zn|PQ.
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4. Géométrie dans l’espace affine et l’espace euclidien

P

P ′

Q

x

y

z

D

Figure 13: Les éléments du lemme 4.10 : D est la droite d’intersection des plans P et {z = 0}, P ′ est
la projection de P ∈ P sur {z = 0} et (PQ) ⊥ D.

Démonstration. Si n = a ex + b ey + c ez, alors P : ax + by + cz + d = 0 et la droite D a
u = (b,−a, 0) comme vecteur directeur — vue comme droite dans le plan {z = 0}, le vecteur
(b,−a) doit être non nul. Si −−→PQ = α ex + β ey + γ ez, alors, d’après les hypothèses,

0 = 〈n,−−→PQ〉 = aα+ bβ + cγ, 0 = 〈u,−−→PQ〉 = bα− aβ et 1 = a2 + b2 + c2. (∗)

On peut exprimer α et β en fonction de γ car a et b ne sont pas simultanément nuls : on a

α = − ac

a2 + b2 γ, β = − bc

a2 + b2 γ.

Alors

PQ2 = α2 + β2 + γ2 =
(

a2c2

(a2 + b2)2 + b2c2

(a2 + b2)2 + 1
)
γ2 =

(
c2

a2 + b2 + 1
)
γ2 = γ2

1− c2

en utilisant la dernière identité de (∗). En même temps,
−−→
P ′Q = α ex + β ey (on a projeté sur

{z = 0}), donc

P ′Q 2 = α2 + β2 =
(

a2c2

(a2 + b2)2 + b2c2

(a2 + b2)2

)
γ2 = c2γ2

a2 + b2 = c2γ2

1− c2 = c2 PQ2.

�

4.5. Exercices

Exercice 4.1. Montrer que det(AT ) = det(A), où AT est la transposée de A.

Exercice 4.2. Montrer que les plans by − cz = p, az − bx = q et cx− ay = r contiennent une
droite D si et seulement si, ap + bq + cr = 0. Dans ce cas, montrer que la droite est contenue
aussi dans le plan px+ qy + rz = 0.

Exercice 4.3. Soit D une droite qui n’est pas parallèle au plan z = 0. Montrer qu’il existe
a, a′, b, b′ ∈ R tels que D est définie par

x = az + a′ et y = bz + b′.
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5. Volume, produit vectoriel

Exercice 4.4 (∗). Montrer que les équations d’une droite D ⊂ A3 dépendent de quatre con-
stantes indépendantes.

Exercice 4.5. Soient D : x−a
α = y−b

β = z−c
γ et D′ : x−a′

α′ = y−b′
β′ = z−c′

γ′ deux droites dans
l’espace. Déterminer la distance entre D et D′.

Exercice 4.6. Montrer qu’une droite dans l’espace dépend de quatre coefficients indépendants.

5. Volume, produit vectoriel

5.1. Le produit vectoriel

Dans la proposition 4.3, on a exprimé l’équation du plan déterminé par le point A et les vecteurs
directeurs u et v par la formule

(x− xA)
∣∣∣∣∣yu zu

yv zv

∣∣∣∣∣− xu

∣∣∣∣∣y − yA z − zA
yv zv

∣∣∣∣∣+ xv

∣∣∣∣∣y − yA z − zA
yu zu

∣∣∣∣∣ = 0

interprétée comme l’annulation du déterminant 3× 3∣∣∣∣∣∣∣
x− xA y − yA z − zA
xu yu zu

xv yv zv

∣∣∣∣∣∣∣ = 0.

En utilisant le développement du déterminant d’après la première ligne, on voit que le vecteur( ∣∣∣∣∣yu zu

yv zv

∣∣∣∣∣ , −
∣∣∣∣∣xu zu

xv zv

∣∣∣∣∣ ,
∣∣∣∣∣xu yu

xv yv

∣∣∣∣∣
)

=: u× v

est un vecteur normal au plan, c’est-à-dire orthogonal aux vecteurs u et v. Il est appelé le
produit vectoriel de u et v. Symboliquement,

u× v =

∣∣∣∣∣∣∣
ex ey ez
xu yu zu

xv yv zv

∣∣∣∣∣∣∣ .
Le produit vectoriel satisfait les propriétés suivantes :
• u× v = −v × u
• u× (bv + cw) = au× v + cu×w
• 〈u,v ×w〉 = det(u,v,w).

Proposition 5.1. Deux vecteurs u et v sont liés si et seulement si, u× v = 0. Plus générale-
ment, la norme du produit vectoriel, ‖u × v‖, est l’aire du parallélogramme déterminé par les
deux vecteurs.

La preuve de cette proposition sera donnée dans la section suivante.
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5. Volume, produit vectoriel

5.2. Aire d’un triangle [P1P2P3]

On considère trois points PJ = (xj , yj , zj) (j = 1, 2, 3) dans l’espaceȮn veut calculer l’aire du
triangle [P1P2P3]. Si n est un vecteur normal de norme 1 au plan (P1P2P3), alors ses com-
posantes relient l’aire du triangle aux aires des triangles projetés sur les plans de coordonnées.
Pour voir ceci, on utilise le lemme 4.10.

Lemme 5.2. Soit [P1P2P3] un triangle non-dégénéré dans l’espace et soit n un vecteur normal
unitaire au plan (P1P2P3). Si Q1, Q2 et Q3 sont les projections orthogonales des points sur le
plan de coordonnées {z = 0}, alors

σ([Q1Q2Q3]) = ±zn σ([P1P2P3]).

Démonstration. On peut supposer que le plan de projection passe par un des trois points car
l’aire du triangle projeté ne change pas. Si P1 est ce point, alors D = (P1P2P3) ∩ {z = zP1}.

(P1P2P3) ∩ {z = zP1}
P1

P2

P3

D

P ′3 P ′2

Figure 14: L’aire du triangle [P1P2P3] est la différence de l’aire du triangle [P1DP3] et celle de [P1DP2].

Soit D le point d’intersection dans le plan (P1P2P3) des droites (P2P3) et D (voir la figure
14. Alors

σ(P1P2P3) = σ(P1DP3)− σ(P1DP2) = P1D

2 (P3P
′
3 − P2P

′
2)

et, dans le plan {z = zP1}, où Q1 = P1, Q′2 = P ′2 et Q′3 = P ′3,

σ(Q1Q2Q3) = σ(Q1DQ3)− σ(Q1DQ2) = σ(P1DQ3)− σ(P1DQ2) = P1D

2 (Q3P
′
3 −Q2P

′
2).

Le résultat s’ensuit en utilisant le Lemme 4.10. �

Corollaire 5.3.

4σ(P1P2P3)2 =
∣∣∣∣∣y1 − y3 z1 − z3
y2 − y3 z2 − z3

∣∣∣∣∣
2

+
∣∣∣∣∣x1 − x3 z1 − z3
x2 − x3 z2 − z3

∣∣∣∣∣
2

+
∣∣∣∣∣x1 − x3 y1 − y3
x2 − x3 y2 − y3

∣∣∣∣∣
2

.

Démonstration. On utilise la formule du lemme 5.2,

z2
n σ(P1P2P3)2 = σ([Q1Q2Q3])2 = 1

4

∣∣∣∣∣x1 − x3 y1 − y3
x2 − x3 y2 − y3

∣∣∣∣∣
2

pour exprimer l’aire du triangle projeté sur le plan {z = 0} en fonction de la composante z du
vecteur normal. On finit en considérant les trois projections et le fait que la norme du vecteur
normal n vaut 1. �
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5. Volume, produit vectoriel

Ce corollaire nous offre une démonstration pour la proposition 5.1. Soit P3 un point de
l’espace et soient P1 = P3 + u et P2 = P3 + v. Alors

σ( u,v)2 = 4σ([P1P2P3])2 =
∣∣∣∣∣yu zu

yv zv

∣∣∣∣∣
2

+
∣∣∣∣∣xu zu

xv zv

∣∣∣∣∣
2

+
∣∣∣∣∣xu yu

xv yv

∣∣∣∣∣
2

= ‖u× v‖2.

5.3. Volume du tétraèdre [P1P2P3P4]

On considère quatre points PJ = (xj , yj , zj) (j = 1, . . . , 4) dans l’espace et on veut calculer le
volume du tétraèdre [P1P2P3P4], noté µ(P1P2P3P4).

Proposition 5.4.

µ(P1P2P3P4) = ±1
6

∣∣∣∣∣∣∣
x1 − x4 y1 − y4 z1 − z4
x2 − x4 y2 − y4 z2 − z4
x3 − x4 y3 − y4 z3 − z4

∣∣∣∣∣∣∣ .
Démonstration. µ(P1P2P3P4) = 1

3 P1Q1 · σ(P2P3P4), où Q1 est le projeté orthogonal de P1 sur
le plan (P2P3P4). On utilise la formule pour la distance de P1 au plan (P2P3P4) ainsi que la
proposition 5.1. �

5.4. Quelques compléments sur les déterminants

Proposition 5.5. Soient u = xuex + yuey + zuez, v et w. Alors il existe α, β, γ ∈ R non
simultanément nuls tels que αu + βv + γw = 0 si et seulement si

det(u,v,w) :=

∣∣∣∣∣∣∣
xu yu zu

xv yv zv

xw yw zw

∣∣∣∣∣∣∣ = 0.

Démonstration. Si αu + βv + γw = 0 avec α, β, γ ∈ R non simultanément nuls, alors, en
supposant α 6= 0, on a u = −β

α v − γ
α w =: bv + cw et on obtient∣∣∣∣∣∣∣

xu yu zu

xv yv zv

xw yw zw

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
bxv + cxw byv + cyw bzv + czw

xv yv zv

xw yw zw

∣∣∣∣∣∣∣
= (bxv + cxw)

∣∣∣∣∣yv zv

yw zw

∣∣∣∣∣− (byv + cyw)
∣∣∣∣∣xv zv

xw zw

∣∣∣∣∣+ (bzv + czw)
∣∣∣∣∣xv yv

xw yw

∣∣∣∣∣
= 0.

Dans l’autre sens, on suppose que u et v ne sont pas proportionnels. Si le déterminant
est nul, alors, d’après la proposition 5.4, les vecteurs u, v et w, vus comme vecteurs issus de
l’origine, se trouve dans un même plan (histoire d’un tétraèdre aplati). Par conséquent, il existe
un vecteur n non nul (normal à ce plan) qui est orthogonal sur les trois vecteurs. On choisit
un repère centré en O et ayant les axes dirigées par u, v et n. Alors w s’exprime en fonction
de u et v seulement. �

33



6. Transformations du plan : translations, rotations, réflexions, homothéties

Cette proposition établit l’équivalence entre l’annulation du déterminant et le linéaire dépen-
dance pour trois vecteurs de R3. On avait obtenu un résultat analogue pour deux vecteurs de
R2.

Une conséquence de la proposition 5.5 est la caractérisation suivante (pour un système de
trois équations à trois inconnues, ou géométriquement, pour l’intersection de trois plans) : Le
système 

a1x+ b1y + c1z = d1
a2x+ b2y + c2z = d2
a3x+ b3y + c3z = d3

admet une solution unique (c’est-à-dire les trois plans s’intersectent en un unique point) si et
seulement si, ∣∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣∣ = 0

(c’est-à-dire les trois vecteurs normaux aux trois plans sont liés).

5.5. Exercices

Exercice 5.1. On veut généraliser la formule de Héron Soit [ABC] un tétraèdre. Soient a, b
et c les longueurs des côtés du triangle [ABC] et d, e et f les longueurs des côtés reliant A, B
et C à D.

1) Rappeler la formule du cours qui exprime V, le volume du tétraèdre, en fonction des
coordonnées des points A, B, C et D.

2) En choisissant l’origine du système des coordonnées en D exprimer V2 comme un produit
de déterminants det(M2) = det(M) det(MT ) = det(MMT ).

3) Montrer que 288V2 =

∣∣∣∣∣∣∣
2d2 d2 + e2 − c2 d2 + f2 − b2

d2 + e2 − c2 2e2 e2 + f2 − a2

d2 + f2 − b2 e2 + f2 − a2 2f2

∣∣∣∣∣∣∣.

6. Transformations du plan : translations, rotations, réflexions,
homothéties

On fixe un repère cartésien Oxy. Par la suite nous décrirons certaines transformations du plan
euclidien E2 : translations, rotations et réflexions. Le cadre est le suivant : une transformation
affine est une application f : E2 → E2 pour laquelle il existe six constantes réelles α, β, γ, δ,
a, b ∈ R telles que, en coordonnées,

(x, y) 7→ f(x, y) = (αx+ βy, γx+ δy) + (a, b)

et
αδ − βγ 6= 0.

Cette deuxième condition est équivalente à f bijective. L’expression pour f(x, y) est plus facile
à comprendre si on utilise le produit matriciel :(

x
y

)
7→
(
α β
γ δ

)(
x
y

)
+
(
a
b

)
. (6.1)
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6. Transformations du plan : translations, rotations, réflexions, homothéties

Lemme 6.1. Si f : E2 → E2 est une transformation affine et si D est une droite, alors f(D)
est une droite.

Les transformations qui nous intéressent ici, sont celles qui conservent les distances, c’est-à-
dire pour tous P,Q ∈ E2, ‖−−→PQ‖ = d(P,Q) = d(f(P ), f(Q)) = ‖

−−−−−−→
f(P )f(Q)‖. Une transformation

qui converse les distances s’appelle une isométrie.

Lemme 6.2. Si f : E2 → E2 est une isométrie et si Γ est un cercle, alors f(D) est un cercle.

Exemple (translation). La translation Tv de vecteur v : P 7→ P + v. Si v = (a, b), alors, en
coordonnées on a

(x, y) 7→ (x+ a, y + b).

En utilisant les matrices, (
x
y

)
7→
(

1 0
0 1

)(
x
y

)
+
(
a
b

)
.

Exemple (rotation). La rotation RO,θ de centre O et d’angle θ : P 7→ Q, où Q est tel que
OP = OQ et l’angle formé par les vecteurs −−→OP et −−→OQ est de mesure θ. En utilisant les fonctions
trigonométriques, et en commençant éventuellement avec ‖−−→OP‖ = 1, on a la rotation de centre
O et d’angle θ est donnée par

(x, y) 7→ (cos(θ)x− sin(θ) y, sin(θ)x+ cos(θ) y).

La formule (6.1) devient (
x
y

)
7→
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
x
y

)
,

et en utilisant les nombres complexes z et w, les affixes des points P et Q = RO,θ(P ) respec-
tivement, la rotation RO,θ est décrite par

w = eiθz. (6.2)

La rotation RΩ,θ de centre Ω et d’angle θ admet une description géométrique simple.
L’écriture en coordonnées dans le système Oxy ne l’est pas ; elle s’obtient en effectuant un
changement de repère. Soit Ωx′y′ le système de coordonnées centré en Ω, ayant les axes paral-
lèles aux axes de Oxy. Le passage entre les deux systèmes est donné par{

x′ = x− xΩ
y′ = y − yΩ

⇐⇒ z′ = z − ω,

où ω est l’affixe du oint Ω (par rapport au système Oxy). Dans le nouveau système de coor-
données, d’après (6.2), la rotation RΩ,θ est décrite par w′ = eiθz′. On obtient alors,

w − ω = eiθ(z − ω),

c’est-à-dire
w = eiθz + (1− eiθ)ω.

Lemme 6.3. Si θ 6= 0 mod 2π, alors Ω est l’unique point fixe de RΩ,θ. (Un point fixe est un
point P tel que RΩ,θ(P ) = P .)
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6. Transformations du plan : translations, rotations, réflexions, homothéties

Démonstration. Soit P un point fixe. Si z est l’affixe de P , alors

z = eiθz + (1− eiθ)ω.

On obtient (1− eiθ)(z − ω) = 0, d’où le résultat. �

Proposition 6.4. Soit f : E2 → E2 l’application définie par f(z) = eiθz + a.

1) Si θ 6= 0 mod 2π, alors f est la rotation de centre Ω et d’angle θ, où l’affixe de Ω est
a

1−eiθ .

2) Si θ = 0 mod 2π, alors f est la translation de vecteur −→OA, où l’affixe de A est a.

Exemple (réflexion). SD, la réflexion par rapport à la droite D : si Q = SD(P ), alors [PQ]
est perpendiculaire à D et est divisé en deux segments égaux par D. D’après la définition, tout
point de la droite D est un point fixe pour la réflexion SD.

Proposition 6.5. Soit D une droite passant par l’origine et faisant un angle θ (cet angle est
défini modulo π) avec l’axe des x. Si z est l’affixe d’un point P et w est l’affixe du point SD(P ),
alors

w = e2iθz.

Démonstration. On remarque que si D est l’axe des x alors w = z. On change le système de
coordonnées tel que D devient l’axe des x′ du nouveau système, c’est-à-dire z′ = e−iθz et on
applique la remarque précédente. �

Exemple (homothétie). HO,k, l’homothétie de centre O et rapport k /∈ {0, 1} : si Q = HO,k(P ),
alors −−→OQ = k

−−→
OP . En écriture complexe, on a w = kz.

Lemme 6.6. L’image d’une droite (un cercle) par une homothétie est une droite (un cercle).
De plus, des droites parallèles sont envoyées dans des droites parallèles.

6.1. Exercices

Exercice 6.1. Deux villes A et B sont séparées par un canal rectiligne. On veut construire un
pont tel que le chemin reliant les deux villes soit le plus court possible. On suppose les berges
parallèles et le pont perpendiculaire au canal.

1) Déterminer la position du pont en considérant le cas numérique suivant : A = (5,−6),
B = (0, 5) et les berges de la rivière sont définies par y = 0 et y = m, avec m ∈ [1, 3]. (Utiliser
une translation.) Traiter le cas général.

2) Résoudre le même problème en considérant que les villes sont séparées par deux canaux
Numériquement, on considéra m = 1 et les berges de la deuxième rivière définies par y = x

3 + 2
et y = x

3 + 4.

Exercice 6.2 (réflexions). Soient D1 : y = 0, D2 : 4x + y = 0 et D3 : x − 2y = 0 trois droites
concourantes en O et soit A = (5, 0) ∈ D1. On veut déterminer les points B ∈ D2 et C ∈ D3
tels que les droites Dj deviennent les bissectrices du triangle [ABC].

1) En supposant le triangle [ABC] construit, quelle est l’image du point A par la réflexion
par rapport à la bissectrices passant par B, c’est-à-dire la droite D2 ?

2) Si A2 = SD2(A) et A3 = SD3(A), quelles propriété satisfont les points A2, A3, B et C ?
3) Utiliser cette remarque pour résoudre le problème.
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