Géométrie analytique dans le plan et ’espace
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1. Le plan affine

Introduction

PROBLEME DE MINIMUM. Dans le plan, on considére un cercle C et une parabole I' n’ayant
aucun point en commun. Trouver un segment de longueur minimale s’appuyant sur les deux
courbes.

On peut considérer un cas explicite: C décrit par Péquation (z —3)2 + (y+1)2 =4 et I’

par & = —1°.

AIRES. Dans le plan euclidien on consideére le triangle [ABC]. On note par M, N et P les
points appartenant aux cotés [BC|, [AC] et [AB], respectivement, tels que

AP BM CON p

PB MC NA ¢
oup,qe N Si{E} = (BN)N(CP),{F} = (CP)N(AM) et {G} = (AM) N (BN), calculer
le rapport entre 'aire du triangle [EFG] et celle du triangle initial [ABC].

A

M
C

Figure 1: La représentation graphique du cas p=1et ¢ = 2.

ETUDE DE TRAJECTOIRES. On considére une table de billard parfaite (sur laquelle la bille
se déplace sans frottement et les réflexions sur les murs se font avec des angles égaux) de
forme rectangulaire. En lancant une bille, nous voulons comprendre le comportement de sa
trajectoire en fonction de point initial et de la direction du vecteur vitesse: est-elle périodique,
ou “remplira”-t-elle toute la table? On pourrait aussi considérer une table de forme circulaire !

1. Le plan affine

1.1. Systémes de coordonnées cartésiennes du plan
Par définition, tout élément de R? est un couple de nombres réels, ¢’est-a-dire
R? = {(a,b) | a,b € R}.

Dans ce cours, nous considérons le plan affine réel Aﬁ muni d’un repere Oxy — O est 'origine
et z et y les deux coordonnées. Le plan affine muni d’un repére s’identifie & R?:
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e O s’identifie & (0,0)
e ’axe des coordonnées x a R x {0}
e l'axe des coordonnées y a {0} x R

Un élément de A]%g = R? est appelé un point est sera noté P = (a,b). En général, les points
seront désignés par des lettres majuscules (A, B, P, etc.); les droites par des lettres majuscules
calligraphiques (D ou encore L, ou bien par (AB) — la droite passant par les points A et B); le
segment ayant pour extrémités les points A et B sera noté [AB]; le triangle dont les sommets
sont A, B et C sera noté [ABC], et ainsi de suite.

Si P = (a,b), alors on appelle a et b les deux coordonnées du point P. Il y a trois points
distingués dans notre identification, O = (0,0), X = (1,0) et Y = (0,1). En général trois
points non alignés définissent un repere, ou un systeme de coordonnées. Ici, les points O,
X et Y définissent le systéme de coordonnées dans lequel le point P a les coordonnées a et

b.

Les points X = (1,0) et Y = (0,1) déterminent “'unité” le long des droites (OX) et (OY)
respectivement. En notant x et y les coordonnées le long de ces droites, nous écrirons

(OX) ={(z,9) [y=0} et (OY)={(z,y) |z =0}

Par la suite, quand il n’y aura pas de confusion possible, nous utiliserons la notation abrégée
(OX) = {y = 0} (et (OY) = {x = 0}). Nous utiliserons aussi la notation usuelle Ozy pour
le repére (O, X,Y) qui met en évidence l'origine O et le systéme (naturel ou canonique) de
coordonnées (z,y). Dans ce systéme de coordonnée, si P = (a,b), nous écrirons x(P) = a ou
zp=aety(P)=bouyp=>o

Définition 1.1. Une droite dans le plan affine muni du repere Oxy est un sous-ensemble D
pour lequel il existe trois réels «, 5 et v tels que

1) D={P|azp+Byp+7=0}
2) « et B ne sont pas simultanément nuls.

On dit que D est la droite d’équation (cartésienne) az + Sy + v = 0.

Deux aspects sont a approfondir dans cette définition. D’abord, les trois constantes «, [
et v ne sont pas uniques; toutes les équations Aax + ABy + Ay = 0 avec A # 0 définissent la
méme droite. Puis, la définition dépend du repére choisi Oxy. Le premier aspect sera discuté
par la suite; nous reviendrons sur le deuxieme dans certains exercices et a la fin du cours.

Définition 1.2. Deux droites distinctes sont dites paralléles si elles n’ont aucun point commun.
On dit que les droites ne s’intersectent pas.

Lemme 1.3. Deux droites D:ax+ Sy +~v=0, et D' :a’x+ ' y++ =0 sont paralléles si
et seulement si a8’ = o'f.

Démonstration. De maniére générale, deux sous-ensembles X et Y (d’un certain ensemble) ont
un élément en commun signifie, par définition, X NY # @. Par exemple pour deux courbes dans
le plan affine, avoir un point en commun revient a dire qu’il existe un point dont les coordonnées
satisfont les équations choisies pour décrire les courbes. Explicitement, pour étudier les points
communs des deux courbes, nous devons étudier le systéme formé avec leurs équations.
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Pour établir I'implication D | D' = af’ = o/, nous supposons aff’ # o/ et montrons
que le systeme

arx+By+v=0
orx+fy+y =0

admet la solution z, = —%, Yo = —%.
Pour I'autre implication, nous supposons par ’absurde 'existence d’un point commun P =

(%, Yy)- Comme off' = a’B, en supposant (on peut le faire, voire la définition 1.2) o # 0, on a

/

B'==8.
(67

Alors, ou bien 8 =" =0 et 77/ = 220 — %,, ou bien % = %/ et = 77/ en utilisant F,. Donc les
droites sont identiques. O

Le lemme dont une interprétation équivalente du parallélisme, celle utile dans les calculs.
Elle est “presque” équivalente a la condition = = g qui exprime mieux la proportionnalité des
coefficients de = et de y des deux droites. Il faut noter que sous cette forme, I’égalité n’a pas

toujours de sens (par exemple si 5’ = 0)

Proposition 1.4 (V¢ postulat d’Euclide'). Soit D une droite et P un point tel que P ¢ D.
Alors il existe une unique droite passant par P et paralléle d D.

Démonstration. Soit ax + Sy + v = 0 une équation de D et soit P = (a,b). On pose D’ :
a(x—a)+ B(y —b) = 0. La droite D’ est parallele a D et passe par P. Pour finir, on vérifie
I'unicité. O

Dans la preuve précédente, toutes les droites d’équation ax+ Sy ++" = 0, avec ' € R, sont
paralleles & D. Cet ensemble de droites est appelé le faisceau des droites paralléles a D.

Proposition 1.5 (1°" postulat d’Euclide). Si A # B, alors il existe une unique droite (AB)
(c’est-a-dire une droite passant par A et B) et elle admet pour équation®

(Wp—ya)r—(xp—24)y+ (= (Yp —Ya)Ts+ (x5 —74) yy) = 0.
Corollaire 1.6. Les points deux o deux distincts A, B et C sont alignés si, et seulement si,
(@ —24) (e —ya) = Wp —ya)(@c — z4)-

Remarque 1.7. Trois points non alignés et ordonnés dans le plan, {2, S et T, forment un
repere noté (£2,5,7). En notant par s et t les coordonnées le long des axes (£25) et (£27) re-
spectivement, le repére est noté aussi §2st — comme Oxy pour le repére naturel de R? (cf. figure
2).

Pour trouver les coordonnées sp et tp d'un point P, on considere les droites passant par
P et paralleles a (£27") et (£25) respectivement ; elles intersectent (£25) en A et (£27) en B.
L’abscisse sp du point P dans le systéme de coordonnées (s, t) est obtenue comme suit : notons
a le réel positif ou nul tel que 24 = a {25 — on mesure des segments le long d’une droite pour
laquelle 25 représente I'unité. Alors sp = a si A et S sont du méme c6té par rapport a 2, et
$p = —a sinon.

'Euclide a été actif vers 300 av.J. C. & Alexandrie.

2La forme ﬁ = y;;—_y;A est peut-étre plus facile & retenir, méme si elle n’est pas toujours bien définie.
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Figure 2: Deux repéres dans du plan affine

1.2. Equations cartésiennes et paramétriques d’une droite

En général, une droite peut étre décrite de plusieurs facons équivalentes. On a vu qu’une droite
admet une infinité d’équations. On peut obtenir une écriture unique en posant

D:y=px—+q.

La droite D décrite ci-dessus est la droite qui coupe ’axe des y en (0, q) et dont la pente est p:
si (z,y) est un point de D, alors 'ordonnée du point de D ayant pour abscisse = + 1 est y + p
— a une augmentation d’une unité pour la coordonnée = correspond une augmentation de p
unités pour la coordonnée y.

Cette description d’une droite est bien unique, car on a défini p et g par des propriétés
géométriques de la droite. Le probléme est que cette description ne convient pas a
toutes les droites du plan. Les droites verticales (de méme direction que 'axe des y) sont
décrites par des équations du type = = c.

On peut décrire aussi une droite D de maniére dynamique, en fonction d’un parametre ¢t € R.

Proposition 1.8. Etant donnés deux points distincts A et B, la droite (AB) est décrite par
une représentation paramétrique

y=(yp—ya)t+ys teR

Réciproquement, toute représentation paramétrique

r=«at+a
y=p0t+b, teR,

avec a et B non simultanément nuls, décrit une droite passant par le point de coordonnées (a,b).

Démonstration. Pour la premiere partie, notons d’abord que les coefficients 5 — 2 4 et yg —y4

ne sont pas simultanément nuls — les points A et B sont distincts. Posons ¢t = x”:_:”;A = yzi?—_yyAA
dans I’équation de D vue dans la proposition 1.5. Réciproquement, comme « et 5 ne sont pas
tous deux nuls, éliminons ¢ dans la représentation paramétrique. Il

La présentation paramétrique (1.1) de la droite D n’est pas unique; elle dépend, au moins,
du choix initial des deux points A et B.
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FAISCEAU DES DROITES PARALLELES.. Pour « et 3 fixés non simultanément nuls, on a introduit
le faisceau Dy : oz + By + A =0, ou A € R. En équations paramétriques. ..

VECTEUR DIRECTEUR.. Siz = at+ x,,y = bt +y, est une paramétrisation de la droite D avec
t € R, on dit que D est la droite passant par Py, = (z,,y,) de vecteur directeur v = (a,b).
Dans cette écriture v est un élément de R? — on ne fait pas I’identification de R?
avec le plan affine! On a un vecteur et non pas un point. La liaison entre le plan
affine et les vecteurs de R? est la suivante. Un vecteur v est la donnée d’une paire ordonnée de
points (A, B) dans le plan, 'origine et l'extrémité de v, c’est-a-dire d’une fleche issue de A et
d’extrémité B ; on a

v:ﬁ: (T — T4 Yp —Ya)-

) parti_r> du repére (O, X,Y) on forme deux vecteurs particuliers, e, := O—X) = (1,0) et
e, =0Y = (0,1).

Les deux vecteurs zﬁ et C? sont égaux ou identiques si les quatre points A, B, C et D
vérifient 1’égalité suivante,

(T =24,y —Ya) = (Tp — T, ¥p — Yo)s

ce qui revient a dire que, composante par composante, Tz — T4 = Tp — T et yg — Yy, =
Yp — Yo- Géométriquement, les quatre points forment un parallélogramme [ABDC], avec
[AB] et [C'D] deux cotés paralleles.

Tout vecteur peut étre représenté par une fleche issue d’un point quelconque du plan.

Dans le systeme canonique de coordonnées, tout vecteur a un représentant distingué: la
fleche issue de l'origine et ayant la pointe en un certain point P. Dans ce cas v = (zp, yp),
ou xp et yp sont les coordonnées du point P. De cette fagon, apres avoir fixé une origine
dans le plan, c’est-a-dire apres avoir choisi un point O, on obtient une correspondance
bijective entre les points du plan et les vecteurs: a tout point correspond un unique
vecteur, et a tout vecteur correspond un unique point.

L’ensemble des vecteurs R? est muni naturellement de deux opérations algébriques: la
multiplication d’'un vecteur par un nombre réel et I'addition de deux vecteurs. En parti-
culier, v = (a,b) = ae, + be,. De plus, pour A, B et C' dans A% on a E + B? = ﬁ
(relation de Chasles?).

On dit que deux vecteurs v = (a,b) et w = (¢, d) sont colinéaires s'il existe une constante
k € R telle que v = kw ou w = kv. De maniere équivalente, cela se raméne a la relation
ad —bc = 0.

L’addition de deux points de A? n’existe pas. En revanche, on peut donner un sens
a P’addition d’un point et d’un vecteur. Si P € A? est un point du plan et v € R? un
vecteur, alors Q = P + v est le point du plan représentant 'extrémité du vecteur v vu
comme fléche issue de P, c’est-a-dire PQ) = v. En coordonnées, si v = (a,b), on a

(vayQ> =Q=P+v= (a:p,yp)+(a,b) = (xP+a7yP+b)'

Proposition 1.9. Si D : ax + By + v = 0, alors (—f,a) est un vecteur directeur de D.
Réciproquement, si v = (a,b) est un vecteur directeur de D, alors il existe ¢ € R tel que
D:—-bxr+ay+c=0.

3Michel Chasles, Epernon 1793 — Paris 1880
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définition equatlo?;;ﬂt?::;nne (ou paramétrisation
DPo,v est la droite passant b+ ay + (b —ayp) =0 {HI . moj__;f teR
par Py = (zg,yo) et de vecteur ou ¥y="% ’
directeur v = (a, b) T—Ty Y—Y on
a - b (l‘,y) = (x07y0) + t(a7 b)v teR

Table 1: La droite passant par Py de vecteur directeur v # 0.

Remarque 1.10 (Paramétrisation d’un segment). Soient A et B deux points du plan affine.

Le vecteur E permet d’écrire une paramétrisation du segment [AB] en Uinterprétant comme
“vecteur vitesse”. L’identité

P,=A+tAD
pour t € [0, 1] décrit les points P, du segment [AB]. En coordonnées on obtient
r,=1—-tz,s+teg et y,=1—1t)y, +tyg.

Définition. Pour A, B, C trois points sur une droite D tels que A # B, on appelle rapport
algébrique AC/AB la constante k définie par 1@ = kﬁ .

Théoréme 1.11 (Thales). Soit [ABC| un triangle et soit D une droite qui coupe les droites

(AB) et (AC) en B’ et C', respectivement. Alors D || (BC) si et seulement si % = AA—g,.

Démonstration. ... 0

1.3. Exercices

Exercice 1.1.

1) Soit la droite D du plan définie par ’équation 2x — y + 6 = 0. Déterminer une paramétri-
sation de D.

2) Méme question pour D : 2z — 3ay +4 =0, ou a € R.

3) Soit la droite D du plan définie par la paramétrisation x = 2—t et y = —143t, pour t € R.
Déterminer une équation cartésienne (ou implicite) de D.

Exercice 1.2. On considere les points P, = (—1,2), A = (2,0) et B = (8, —-5+a), avec a € R,
ainsi que le vecteur v = (3, —2). On note D la droite passant par le point P, et ayant v comme
vecteur directeur. Quelle est la position de A, respectivement B, par rapport a D?

Exercice 1.3. On consideére les points A = (—1,1), B = (2,-1) et C = (1,3). Si @ est un
point tel que Bﬁ =3 Cﬁ , donner une équation décrivant la droite (AQ).

Exercice 1.4. Notons F(z,y) = az+by+c avec a et b non simultanément nuls. Alors I’équation
F(x,y) = 0 définit une droite que ’on note D. Soient P, @) et R trois points distincts tels que
F(xp,yp) =1, F(zg,yg) = —1 et F(xg,yg) = 1. Quelles affirmations sont correctes parmi les
suivantes ?

1) La droite (PQ) coupe D en un point {2 tel que @ se trouve entre P et (2.
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2) La droite (PQ) est parallele a D et la droite (PR) coupe D en un point (2.
3) La droite (PQ) est parallele a D et la droite (QR) coupe D en un point 2.
4) Les droites (PQ) et (QR) coupent toutes les deux la droite D.

5) Aucune des réponses proposées.

Exercice 1.5. On considere les droites définies par D; : 22 —5y+6=0et Dy : (m+ 1)z +
(m? —3m —10)y — 1 =0, o m € R est un parametre. Trouver tous les m pour lesquels D, et
D, sont paralleles.

2. Produit scalaire et distance dans le plan

2.1. Le produit scalaire et la distance

La distance entre les points P et @, notée PQ, est par définition la longueur du segment [PQ)].
La notation d(P,Q) souligne le fait que d est une distance sur A2, c’est-a-dire une fonction
d: A% x A2 — Rt qui vérifie les propriétés énumérées dans le lemme 2.3 ci-dessous. Puisque la
distance entre deux points se trouvant sur un axe de coordonnées s’exprime en utilisant 1’unité
de mesure le long de cet axe, la distance P(Q) s’exprime & ’aide de la formule de Pythagore,

d(P,Q) = /(xq — 2p)* + (yq — yp)*.

Le plan affine muni de la distance d introduite ci-dessus devient le plan euclidien, noté
E2 ; cette distance nous permet de “comparer” des segments, de calculer des aires, ou encore
d’introduire la notion de perpendicularité. On dit que deux segments [AB] et [AC] sont per-
pendiculaires — ’angle BAC est droit — si le triangle [ABC vérifie la formule de Pythagore,

BC? = AB? + AC?.

De maniére générale, la mesure de angle formé par les segments [AB] et [AC] est introduite
en termes de longueur: si C’ € (AB) est tel que 'angle AC'C' est droit, alors

AC' = £AC cos(BAC).

—
Le signe est + si les vecteurs Ag et AC" pointent dans la méme direction et — sinon. La relation
précédente, pour des raisons de symétrie, peut s’écrire comme

AB AC cos(BAC) = +AB AC'.

Voir la figure 3.
Dans le lemme suivant on interprete cette égalité en utilisant les coordonnées des points.

Lemme 2.1. AB AC COS(W) =(xg—z4)(@c—24)+ (g —Ya) Yo — Ya)-

Démonstration. Comme le membre de droite est invarié par les translations, on peut supposer
que A est lorigine du systeme de coordonnées cartésiennes On veut donc démontrer la relation

OBOC cos(gO\C’) =2pTo + YrYo-
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Figure 3: Le triangle [ABC] est rectangle en C et C’' € [AB] tel que la droite (CC”’) est perpendiculaire
a (AB); les triangles [ABC] et [ACC’] sont semblables.

Par la suite, pour la clarté, on suppose que le triangle [BOC] est aigu en O. On a vu lors la
discussion précédente que si C’ est la projection de C sur la droite (OB), alors

OB OC cos(BOC) = OB OC'.

Mais le point C” est tel que le triangle [OC’C] est rectangle en C’. Soit P un point quelconque
appartenant a la demi droite [OB). On a

O?:)\O? avec A > 0.
On cherche le scalaire A\; > 0 tel que P = C”. Une condition nécessaire pour trouver A, est
0C? = OP? + PC?
c’est-a-dire
e+ ye = N2 + yB) + (2o — Arg)? + (yo — Ayp)”.

On obtient
A=0 et A= IBTOTYpYC _ )

2 3 0
s tYp

On conclut
2O _ r_ _ .2 o2\ EB%c T YpYo
B B
Il

La formule pour le cosinus de ’angle engendré par B et ﬁ établie dans le lemme précé-
dent, suggere la définition suivante :

Définition 2.2. Quels que soient deux vecteurs v, v’ € R?, le produit scalaire de v = («, ) et
v’ = (, ') est le nombre réel

<U?UI> = <(Od,5), (O/a 6,>> = oo/ + 65/

En prenant v = O? et w= Oﬁ des vecteurs non nuls, on trouve

PQ = d(P,Q) = (PG, PQ) = \/(w — v,w — v)
—— _(0P,0Q) _ (v,w)

«s(POQ)="5500 = ol w]

et

ou [Jvf| = /(v,v).
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Lemme 2.3. La distance euclidienne d(P, Q) vérifie les propriétés suivantes.

e La positivité, c’est-a-dire que pour tous points P et Q dans le plan A%, d(P,Q) > 0, avec
égalité si et seulement si, P = Q.
o La symétrie, c’est-a-dire que pour tous points P et Q dans le plan A?, d(P,Q) = d(Q, P).

o L’inégalité triangulaire, c’est-a-dire que pour tous points P, Q et R dans le plan A?,
d(P,R) < d(P,Q) +d(Q, R), (2.1)

avec égalité si et seulement si, les trois points sont alignés de telle sorte que Q) se trouve
entre P et R.

Démonstration. La positivité et la symétrie sont évidentes. Nous traduisons l'inégalité du
triangle en utilisant des vecteurs: si v = (a,b) = Q? et w = (¢,d) = @, alors

d(P,Q) = d(Q, P) = \/(QP.QP) = Va? 1+ 17
d(Q,R) = Ve + a2
d(P,R) = (PG + QR, PG + QR) = \/{—v + w, —v + w) = \/(c— a)? + (d— b)2.

L’inégalité (2.1) devient

Va2 TR+ VET B >\ (e~ a)? + (d - b)2.

Comme les deux membres de cette inégalité sont positifs, en élevant au carré, nous obtenons
I'inégalité équivalente

(a® + %) +2Va? + B2V + 2 + (P +d%) > (c — a)? + (d — b)?,

ou encore

\/a2+62\/c2+d2 > —ac — bd.

Si le membre de droite est strictement négatif, alors cette inégalité est toujours vérifiée stricte-
ment. S’il est positif ou nul, nous élevons de nouveau au carré les deux membres pour arriver
a l'inégalité équivalente
(a® +b*)(c* 4+ d*) > (ac + bd)>.
Or,
(a® +0*)(? + d?) — (ac + bd)* = a*c* + a®d* + b*? + b*d® — (a®c? + 2abed + b2 d?)

= a?d® 4+ b2 — 2abed

= (ad — bc)?

>0
et donc, par équivalence, I'inégalité (2.1) est vérifiée. De plus, l'inégalité (2.1) est une égalité
si, et seulement si, ad — bc = 0 et ac + bd < 0, c’est-a-dire si et seulement si, les vecteurs v et
w vérifient w = 0, ou v = Aw pour un A < 0. Cette condition de proportionnalité des vecteurs

v et w est équivalente a la condition d’alignement des trois points P, Q et R, avec le point )
placé entre les points P et R. O
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2. Produit scalaire et distance dans le plan

2.2. La perpendicularité

D’apres le lemme 2.1, les droites (AB) et (AC) forment un angle droit (sont perpendiculaires)
si et seulement si, <1@ ,AC) = 0. On introduit la notion suivante :

Définition 2.4. Deux vecteurs u et v de R? sont dits orthogonauz si leur produit scalaire est
nul, soit encore

(u,v) =0.

Ainsi deux droites sont perpendiculaires si et seulement si, leurs vecteurs directeurs sont ortho-
gonaux, ou un vecteur est orthogonal a une droite si et seulement si, le vecteur est orthogonal
a un vecteur directeur de la droite.

Théoréme 2.5 (Théoréme de Pythagore généralisé). Les longueurs des cotés du triangle [ABC]
vérifient .
BC? = AB* 4+ AC? — 2 AB AC cos(BAC).

Démonstration. En utilisant le point de vue de la preuve du lemme 2.1, nous obtenons

= (g —25)* + (o — yp)’

= ((zg —24) — (25— 22))" + (o —ya) — Wp —ya))’
= (wc—14)* =2(zc —ay)(rp —3y) + (25 —2,)°

+ (e —ya)® —2We —ya) s —ya) + (Yp —ya)°

— AC? + AB? — 2 (AC, AB).
O

Proposition 2.6. Soit D une droite d’équation ax + by +c = 0. Alors le vecteur n = (a,b) est
un vecteur orthogonal a D. (On dira que n est un vecteur normal d D.)

Démonstration. Un vecteur directeur de D est le vecteur v = (b, —a). Alors

(n,v) = ab+ b(—a) = 0.
O

Définition. La distance d'un point F,; a une droite D est la plus petite des distances entre F,
et P € D. On la note d(P,, D).

Proposition 2.7 (Distance d'un point & une droite). Soit D : ax + by + ¢ = 0 une droite et
soit Py un point de coordonnées (x,y,). Alors,

lax, + by, +
va? + b?

et cette distance est atteinte par l'unique point Q@ € D tel que les droites D et (PyQ) sont
perpendiculaires : PyQ = d(P,, D).

d(Fy, D) =

Démonstration. L’idée de la preuve du lemme 2.1 peut étre adaptée pour obtenir ce résultat
par un argument d’optimisation. En utilisant la formule de Pythagore, on voit que la distance
minimale est atteinte en @ € D pour lequel la droite (F,Q) est perpendiculaire a D. On écrit

11



2. Produit scalaire et distance dans le plan

Q %

Figure 4: Les droites D et (PyQ) sont perpendiculaires. Par exemple, dans la figure, la distance de

Py=(-1,2)aD:2x—9y+4 =0, cest-a-dire PyQ, est obtenue en calculant % = \}%.

I’équation de (P)Q), la droite qui passe par P, et dirigée par le vecteur v = (a, b)

bz — ) —aly —yp) = 0.

Les coordonnées de @, 'intersection de D et de (P,Q), sont la solution de

ar + by = —c (équation pour D)
{bm — ay = bz, — ay,. (équation pour (F,Q))
On obtient b2z, — aby, — ac —abzxy + a’y, — be
Tg=—" a2 b% et Yo = Oaz n b20 7
Donc,

FQ* = (g — z9)® + (Yo — Y)?

([ bPzy — abyy — ac > [ —abxy + a’y, — be 2
- a2 o) a + b2 ~ Yo

1

= (00 — abyo = ac)® + (—abg — by — b))
1

= @l (oot b +0)" 46 (ay by +0)’

_ (amy +byy +¢)?

B a? + b? '

2.3. Le cercle

Définition. Le cercle de centre A et rayon r > 0, est 'ensemble des points du plan euclidien
situés a la distance 7 de A. On le note Cy ,..

Lemme 2.8. Si A= (a,b), alors C,, = {P = (z,y) | (x — a)> + (y — b)* = r?}.
Proposition 2.9. Etant donné les nombres réels o, B, v, Uensemble des points qui vérifient
[’équation

?+y*+ar+By+v=0

est

12



2. Produit scalaire et distance dans le plan

L2
\\/ X
Figure 5: Plusieurs cercles décrits par I'équation 2% + y? + 2z + 4y +v = 0, avec vy € {—14, —29/4, —6}.
Leurs centre est le point 2 = (2,1).

) e corcle oy anee © = (02,52 et p= /T Ty i 4% 450,
ii) le point 2 = (—«a/2,—5/2 si %2 + %2 —y=0;

PN . o2 2

iii) wide 32%+%—ry<0,

Lemme 2.10. Soit C un cercle et [AB] une corde, c’est-a-dire A, B € C. Si {2 est le centre de
C, alors le triangle [{2AB] est isocéle.

Ce lemme est trivial car [{2A] et [{2B] sont des rayons. Il s’ensuit ’égalité (ou la congruence)
entre les angles QAB et ABQ. Dans la suite, un angle sera toujours déterminé par un point et
deux demi droites issues de ce point, ou, de maniére équivalente, un point et deux vecteurs. Nous
ne distinguerons pas entre un angle et sa mesure. C’est la un abus de langage qui simplifiera
I’exposé et, nous espérons, ne jettera pas de confusion. La configuration point 4+ 2 vecteurs
fait apparaitre deux “angles” dont la somme vaut 27 ou 360°. L’angle introduit ci-dessus est
toujours le plus petit des deux.

Théoréme 2.11. Dans le plan euclidien, la somme des angles d’un triangle est égale a .

Démonstration. On utilise la proposition 1.4 et les dessins ci-dessus.

A

O

Corollaire 2.12. Quatre points sont cocycliques si et seulement si, dans le quadrilatére qu’ils
forment la somme des angles opposés est .

13



2. Produit scalaire et distance dans le plan

Démonstration. Soient A, B et C' trois des points et soit C I'unique cercle circonscrit au triangle
[ABC]. Nous supposons d’abord que D € C et que nous avons la configuration de la figure 6.
La somme des angles du quadrilatere vérifie

A+B+C+D=2m
En utilisant les triangles isoceles [A2B], [B2C|, [C{2D] et [D2A], voir le lemme 2.10, on a,
par exemple,

or=A+B+C+D=2DAR+ QAB+BCQ+2CD=A4+C.

La réciproque découle facilement en considérant le cercle par trois des points, disons A, B
et C'. Alors il intersecte la droite (C’D)\ en C et en encore un point D’. Mais, comme les points
A, B, C et D’ sont cocycliques, B+ D' = 1 = B + D par hypothése. Donc D = D’. O

Figure 6: Quatre point cocycliques

2.4. L’intersection d’une droite avec un cercle

On considere le cercle CO,T, avec 7 > 0 et une droite quelconque D. Nous voulons décrire la
position de la droite par rapport au cercle.

On suppose que D n’est pas verticale dans le systéme de coordonnées cartésiennes choisi,
Oxy. Soit B = (0,b) le point d’intersection de D avec l'axe des y. Pour faire ’étude, nous
utiliserons une description paramétrique de la droite D. Si u = («, ) est un vecteur directeur
de D, nous avons

D={(z,y) |z =at,y=>b+ ft, t € R}.

Nous pouvons supposer que a2 + 32 = 1, c’est-a-dire que la norme de u vaut 1. Etudier la
position de D = Dp , par rapport au cercle est équivalent a déterminer les solutions du systéme
(non linéaire)

x2+y2:r2
T =at
y = b+ pt.

En substituant z et y dans la premiére égalité, nous obtenons

(at)? + (b + ft)? = 12

14



2. Produit scalaire et distance dans le plan

c’est-a-dire
t2 +28bt + (b —r?) =0.

Le discriminant de cette équation de degré 2 en t vérifie
AJ4 = B20% — (b —r?).

On conclut que D coupe le cercle Cp,) ,.

Figure 7: Droites passant par B et cercle de centre O ; la droite noire coupe le cercle en deux points
distincts. Les droites rouges le coupent chacune avec multiplicité 2 — elles sont tangentes au cercle. Sur
la figure sont marqués aussi le centre M du segment [OB] ainsi que le cercle (en pointillé) de centre M
et diameétre [OB]. Remarquer que les points de tangence @) et R se trouvent sur ce cercle.

e en deux points distincts si [b| < r, ou si |b| > 7 et 82b? — (b2 — r2) > 0 (géométriquement
ceci veut dire qu’on a deux points d’intersection distincts si, ou bien le point B est a
Iintérieur du cercle, ou bien il est sur le cercle ou a l'extérieur et le vecteur unitaire
directeur de la droite satisfait une condition numérique)

e en un unique point (avec multiplicité 2) si |[b] > 7 et 520 — (b2 —12) =0

e en aucun point si 32b? — (b —r2) < 0.

Remarque 2.13. D’abord il faut noter que 326 — (b — r?) < 0 implique |b| > r. Par la suite,
il faut clarifier I’expression “en un unique point avec multiplicité 2”. Soit C une courbe dans le
plan décrite par une équation f(x,y) = 0. Soit B = (a,b) un point appartenant a C et soit D
une droite passant par B. On étudie la position de D par rapport a C dans un voisinage de B.
Pour ce faire, nous considérons une paramétrisation de la droite, (x = a+at et y = b+ (t) telle
que B corresponde au parametre ¢ = 0. La résolution du systeme qui contréle 'intersection de
D avec C nous amene a I’équation en ¢

o(t) == fla+at,b+ Gt) =0.

Comme ¢(0) = 0, le développement de Taylor de ¢ en 0 est de la forme ¢(t) = ct™ +---. La
multiplicité d’intersection de D avec C dans le voisinage de B est I'entier m.

Définition 2.14. Doit C une courbe et P € C. Une droite D 3 P est dite droite tangente a C
en P si la multiplicité d’intersection D avec C dans le voisinage de P est > 2.

Exemple 2.15. La droite tangente a un cercle CQ,T en P € C est la droite passant par P et
perpendiculaire au “rayon” ({2P).
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2. Produit scalaire et distance dans le plan

2.5. Les éléments d’Euclide. Le plan euclidien

Euclide a donné une présentation axiomatique des mathématiques (connues & son époque dans
la civilisation hellénique). Il a commencé par fixer 25 définitions, 5 postulats et 5 notions
communes, les fondations de son systeme. Cet ensemble axiomatique lui a permis de démontrer
les propositions des 13 volumes des “Eléments”. Les 5 postulats sont les suivants:

1. Par deux points distincts on peut tracer un unique segment de droite les joignant.
1. Un segment de droite peut étre prolongé indéfiniment des deux cotés.

1. En tout point et pour tout nombre strictement positif, on peut construire un cercle centré
sur le point et de rayon le nombre.

1v. Deux angles droits sont égaux (coincident).

v. Par un point extérieur & une droite on peut tracer une unique droite parallele a celle-ci.

Les quatre premiers postulats imposent certaines caractéristiques au plan euclidien : les 11°
et 111° impliquent que le plan est infini et qu’il ne contient pas “de trou”; le 1Iv® que le plan est
homogene et isotrope (c’est-a-dire le méme en tout point et dans toute direction) et le 1 fixe
la nature des droites. Enfin, le v° tient une place spéciale et impose une unicité concernant les
paralleles.

Le plan affine A% avec la distance canonique induite par le produit scalaire (-,-) (voir la
définition 2.2) fournit un modele* du plan euclidien ; il sera appelé le plan euclidien et sera noté
[E? par la suite.

Remarque 2.16. Notre modéle du plan euclidien est construit sur R%2. Nous savons que R?
peut étre vu comme ’ensemble des nombres complexes en posant z = x4y ; cette identification
nous permet d’utiliser les nombres complexes dans les raisonnements géométriques. Pour un
point P = (a,b) dans le plan muni du repére Oxy, on appelle affixe de P le nombre complexe
z+ P =a+1ib.

2.6. Faisceaux de cercles

Soient I} et I, deux cercles de centres {2, # (2,. On veut étudier le faisceau des cercles
déterminé par I et I, — la famille de “cercles” dont les équations sont des combinaisons
linéaires des équations de I'} et I},. Explicitement, si Qj = (aj, bj) et sir; >0 est le rayon de
I';, alors chaque courbe de la famille est définie par une équation du type

M@ —a)?+ (y—b)* =il + Xl(@ —ay)® + (y — by)* —13] =0

pour A;, Ay € R non simultanément nuls.

PREMIER CAS. Les deux cercles se coupent en deux points distincts, F et F'. Alors la droite
(EF) est perpendiculaire & (£2,f2,) et tout autre cercle du faisceau passe par E et F. En
particulier, le centre d'un tel cercle appartient a (§2,2,). La droite (EF') est un des cercles de

la famille (un cercle de rayon infini). Elle est obtenue pour \; = —\, et est appelée ['aze radical
de (2, et §2,.

4Un modele est une construction qui vérifie les cing postulats. Une géométrie différente peut étre obtenue en
considérant la sphére (dans ’espace euclidien usuel) et en définissant les droites comme étant les grands cercles.
La distance entre deux points est la distance mesurée sur la sphere. Quels seront les postulats d’Euclide non
vérifiés par cette géométrie ?
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2. Produit scalaire et distance dans le plan

Figure 8: small Faisceau de cercles passant par deux points; tous les cercles du faisceau sont
réels.

DEUXIEME CAS. Les deux cercles ne se coupent pas. Alors, quels que soient deux éléments I’
et I du faisceau, I' et I n’ont aucun point en commun.

Comme dans le premier cas, dans ce faisceau il y a une unique droite A, I'axe radical des
deux cercles, qui est perpendiculaire & (£2;,f2,). De plus, la famille contient exactement deux

cercles dégénérés, c’est-a-dire deux points A et B. La droite A est la médiatrice du segment
[AB].

Figure 9: Faisceau de deux cercles qui ne se coupent pas; les deux points A et B sont les deux cercles
dégénérés du faisceau. Une infinité des cercles du faisceau sont imaginaires. Pour un point P (quelconque)
de ’axe radical du faisceau, sa puissance par rapport a tout cercle du faisceau est la méme.

Remarque. Dans ce cas, le faisceau contient une infinité de cercles imaginaires.
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2. Produit scalaire et distance dans le plan

2.7. Exercices

Exercice 2.1. Dans 2, on considere les points A = (1,1) et P, = (¢,t2), ou t > 1 joue le r6le
d’un parametre. Calculer
AT,

lim .

=1+ | AP
(Le vecteur ci-dessus a deux composantes. La limite est calculée en la considérant composante
par composante.)

Exercice 2.2. Soient O 'origine du systeme de coordonnées et A le point de coordonnées (2, 0).
Pour chaque point P appartenant a la droite d’équation y = 1 formons le triangle [OAP]. Pour
combien de tels points P le périmetre du triangle [OAP] vaut-il 57

Exercice 2.3. Soient [ABC] et [A’ B'C'] deux triangles. On dit qu’ils sont congruents, [ABC] =
[A'B'C"], si tous leurs éléments (cotés et angles) sont deux a deux égaux.

1) Montrer que si A A’ B=B et AB= A'B, alors [ABC] = [A/'B'C").

2 SiA=A, B=H et AC' = A'C’, peut-on conclure que [ABC] = [A'B'C"]?

3) Montrer que si A=A AB= A’B’ et AC = A'C’, alors [ABC| = [A'B'C"].

4)Si A=A, AB= A'B et BC = B'C’, peut-on conclure que [ABC] = [A’B'C"]?

Exercice 2.4 (Triplets de Pythagore). On se propose de déterminer les triplets de Pythagore
(a,b,c) tels que a® = b2 + 2, avec a, b et c trois entiers (positifs) premiers entre eux dans leur
ensemble.
Dans le repere Ozy, nous considérons le cercle trigonométrique C = Cg 4, le point W =

(—1,0) € C et la droite T tangente & C en E = (1,0).

1) Expliciter en coordonnées la projection stéréographique p : C~\{W} — T, c’est-a-dire 'application
définie par p(A) = A’, ot A€ C~ {W}, et A" €T tel que les points W, A et A’ sont alignés.

2) Montrer que les coordonnées de A sont des nombres rationnels si, et seulement si, celles de
A’ sont aussi des nombres rationnels.

3) Conclure.

Exercice 2.5.
1) On considere le triangle isocele [ABC] avec b = AB = AC et o €]0, 7| la mesure de 'angle
A. Pour tout point P € [BC], calculer la somme des distances de P aux droites (AB) et (AC).
2) Utiliser ce résultat pour déterminer le lieu géométrique des points P tels que d(P,D;) +
d(P,D,) = a, avec a > 0 fixé, ot D; et D, sont deux droites fixées.

Exercice 2.6.

1) Soient p > 0, le point F' = (0, p/2) et la droite D : y = —p/2. Déterminer le lieu géométrique
(une équation) des points P du plan euclidien tels que PF = d(P, D). Ce lieu est appelée la
parabole de foyer F' et de droite directrice D.

2) Déterminer I’équation de la parabole de foyer F' = (—1,2) et de directrice
D:3z—-4y+1=0.

Exercice 2.7. La tangente a la parabole en un point quelconque.
Exercice 2.8. On considere la parabole I' de foyer F' et directrice D.

1) Soit L la droite qui passe par le foyer F' perpendiculairement a la directrice D. Montrer
que pour tout point P € I' \ L, la droite perpendiculaire a £ passant par P coupe £ en H et
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3. Vers le Déterminant d’une matrice 2 x 2

I' en P' # P tels que PH = HP'. Cette droite est appelée 'axe de symétrie de la parabole.
(On peut démontrer que c’est 'unique droite possédant la propriété précédente.)

2) Démontrer que si la parabole peut refléter la lumiére, alors les rayons paralleéles a ’axe de
symétrie sont reflétés par le foyer.

3) En déduire que la tangente en un point P de la parabole est la bissectrice de 'angle formé
par [PF) et la droite passant par P et perpendiculaire a la directrice.

4) Soit L la droite tangente au sommet de la parabole. Montrer que pour tout point Q) € L,
si 7, est Pautre tangente a la parabole passant par @, alors T, est perpendiculaire a (Q, F).

3. Vers le Déterminant d’une matrice 2 x 2

3.1. Aires d’un parallélogramme et d’un triangle

Comme application de la proposition 2.7 nous calculons 'aire d’un parallélogramme en fonction
des coordonnées de ses sommets.

D/

Figure 10: L’aire du parallélogramme [ABC D] est donnée par le produit AB-DD’, ou les droites (DD")
et (AB) sont perpendiculaires.

Proposition 3.1. Soient A, B, C et D les sommets d’un parallélogramme. Alors laire du
parallélogramme [ABC D] est égale a

o([ABCD)) = [(xzp —24)(Yp — Ya) — (@p —24)(Yp — Ya)l-

Démonstration. Comme

o([ABCD)]) = AB d(D, (AB)),
et, d’apres la proposition 1.5,
(AB) : (yp —ya)z — (@ —22)y+ (= (yp —ya)zs + (T —24)ya) =0,
on obtient, en utilisant la proposition 2.7,
(v —ya)rp — (@ —2)yp + (= (Yp —ya)za + (25 — 24)y4)|
Vs —ya)? + (25— 7,4)?

d(D, (AB)) =

Donc
o([ABCD]) = [(zp —24)(yp —ya) — (p — 24)(Wp — ya)l-
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3. Vers le Déterminant d’une matrice 2 x 2

Si AB = v = (o, B) et AD = w = (v,6), la formule de la proposition précédente devient

J(Dv,w> = ’aé_ﬁfy‘ (31)

ou l'on désigne par [/, le parallélogramme engendré par les vecteurs v et w. On remarque
b

que les points A, B et D sont alignés si, et seulement si, les vecteurs v et w sont liés — leurs

coordonnées sont proportionnelles —, c¢’est-a-dire si et seulement si,

ad — 5’7 = Oa
ce qui correspond au fait que I'aire du parallélogramme [/, ,, est nulle.

Remarque 3.2. La quantité ad — [~ associée aux vecteurs v = (o, ) et w = (7,0) sera
appelée le déterminant des vecteurs v et w (dans le systéme de coordonnées choisi). On verra
plus loin que c’est la notion centrale de nos études géométriques dans le plan et dans ’espace.
(Voir aussi la remarque 3.6.)

Corollaire 3.3. Soient A, B et C trois points dans le plan. Alors
1
o([ABC)) = 5 (2 — 24)(yc = Ya) = (b — ya)(zc — 24)l.

Exemple 3.4. Soient A, B et C trois points distincts. Le lieu géométrique des points M du
plan tels que o([ABC]) = o([ABM]) est la réunion de deux droites: la droite D parallele a
(AB) et passant par C et la droite symétrique de D par rapport a (AB).

Nous voulons justifier cette affirmation. Pour simplifier les notations, nous supposons que
le point A est I'origine du systéme de coordonnées. Maintenant, si M est un point quelconque
de coordonnées (x,y) qui satisfait a la propriété o([ABC]) = o([ABM]), alors

1 1
3 [75 %6 — yp el = o([ABC]) = o([ABM)) = 2 |y — yp .
Par conséquent, M satisfait, ou bien a I’équation

TpYc —YpTo = —(rpy —ypw),

ou bien a I’équation
TpYc —YpTc =TBY —Yp.

Nous arrivons a ’ensemble formé par les deux droites paralleles

D:ygr—xgy— (ygro—2yc) =0 et D’:yBx—:cBy+(yBxC—mByC):0.

3.2. Intersection de droites et systémes d’équations a deux inconnues

Lors de la démonstration de la formule pour la distance d’un point F, & une droite D (voir la
Proposition 2.7), nous avons utilisé la construction d’un point (le point ()) comme intersection
de deux droites, a savoir la droite D et la droite passant par F, et perpendiculaire & D. En
général, I’étude de la position relative de deux droites D; et D, dans le plan est équivalente a
I’étude du systeme d’équations linéaires

a2x+b2y+02 :0
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3. Vers le Déterminant d’une matrice 2 x 2

formé avec une équation de chacune des droites. Tout point de coordonnées (z*,y*) satisfaisant
les deux équations du systéme appartient nécessairement & chacune des droites décrites par ().
Pour résoudre le systeme, multiplions la premiere équation par b, et la deuxieme par —b,. En
les additionnant, nous obtenons la relation

(a1b2 - a2b1)l'* — b162 - bQCl
On conclut que la solution du systéme est unique et donnée par
. _ bicg — by

_ « _ T01Cy a9y
=== =2 et yr=—22 =2
arby — ayby arby — agby

si et seulement si, a;by — ayb; # 0.

Les positions relatives de deux droites dans le plan affine sont caractérisées dans le tableau
suivant. On peut remarquer la relation forte entre la configuration géométrique des deux droites
et le comportement algébrique du systeme formé par les équations qui définissent ces deux
droites.

géométrie algébre calcul
le systeme (*) admet une a,by —ayb; #0

les deux droites se coupent

solution unique (vecteurs normaux non liés)
. R ab, — asb; = 0 (vecteurs
les deux droites sont le systéme (*) n’admet 12 2l ( .
. - . normaux liés) et équations
paralleles (distinctes) aucune solution .
non proportionnelles
les deux droites sont le systéme (*) admet une éauations brovortionnelles
confondues infinité de solutions 4 prop

Remarque 3.5. Siles deux équations d’un systéme sont proportionnelles, le systéme admet une
infinité de solutions. L’ensemble de ces solutions est la droite elle-méme, c’est-a-dire {(z, —§ z —
) | © € R} si, par exemple, b # 0. Dans cette expression, x parametre les points de la droite.

En résumé, résoudre un systeme linéaire & deux inconnues est équivalent a décrire l'intersection
de deux droites dans le plan. Dans ce qui suit nous introduisons le déterminant de deux vecteurs
et présentons quelques applications basées sur 'intersection des droites.

Remarque 3.6 (Définition). L’existence d’une solution unique pour le systéme () est controlée
par I'expression a;by — ayb;. Celle-ci dépend des coefficients de x et y dans les deux équations,
c’est-a-dire des vecteurs normaux u; = (a;,b;) et uy = (ay, by) aux deux droites. On introduit
les notations

M = (al bl) et det(M) = det(uy,uy) =
ay by

a; b

1 01

=a,b asb
192 201

Qs bQ‘

et Pon appelle M la matrice formée par les vecteurs u; et u, (ou les éléments ay,...,by) et
det(M) le déterminant de M, ou le déterminant des vecteurs u, et u,.

Situations rencontrées précédemment qui font intervenir le déterminant :

e L’aire du parallélogramme [, ,, est calculée par la formule | det(u,v)|.

w
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3. Vers le Déterminant d’une matrice 2 x 2

e La solution du systéme (x), si elle existe et qu’elle est unique, est donnée par®

‘_Cl by a —¢
—Ccy by N Gy —C
r =" et y =
a; by a; by
as by as by

e Une équation de la droite passant par A = (x4,y,4) et B = (zg,yp) peut s’écrire comme

r—2p Y—Yp

=0. (3.2)
Top—Tp Ya—YB

Proposition 3.7. Les hauteurs d’un triangle sont concourantes en un point H appelé ortho-
centre du triangle.

Démonstration. On choisit le systéme des coordonnées tel que les sommets du triangle [ABC]
deviennent B = (0,0), C' = (¢,0) et A = (a,«a), ot a # 0 car le triangle est supposé non aplati.

La hauteur issue de A intersecte (BC) en A’ = (a,0). La hauteur issue de B est la droite
passant par 'origine (c’est-a-dire B) et de vecteur normal CA = (a — ¢,«). On obtient, si B’
est son point d’intersection avec (AC),

(BB') : (a — ¢)x + ay = 0.

Le point H d’intersection de (AA’) et (BB') est H = (a, —@) 11 suffit de vérifier que CH
et E sont perpendiculaires. O

Théoréme 3.8 (Ceva®). Soit [ABC] un triangle et soient P € [BC], Q € [AC] et R € [AB]
trois points distincts de A, B et C. Alors les trois droites (AP), (BQ) et (C'R) sont concourantes
si, et seulement si,

AR BP CQ _
BRCP AQ

Démonstration. Si les droites sont concourantes en J, alors

0(AJB) o(APB)—o(JPB) BP
oc(AJC) ~ o(APC)—o(JPC) CP’

Le résultat s’ensuit en obtenant des égalités analogues pour les deux autres quotients de la
formule. Dans l'autre sens, on utilise 'implication précédente en considérant la droite passant
par C' et le point d’intersection des droites (AP) et (BQ). O

Corollaire 3.9. Les bissectrices (resp. médianes) d’un triangle sont concourantes.

Démonstration. Pour les bissectrices il faut d’abord démontrer que g—g = ﬁ—g, ou (AD) est la

bissectrice de A, avec D € [BC]. Nous considérons (BP) || (AD), avec P € (AC) et nous
appliquons Thales en remarquant que AB = AP. (Voir la figure 11.) O

5Ces expressions sont appelées “formule de Cramer”. Elles sont valables dans un cadre plus général, & savoir
d’un systéme linéaire carré de n équations et n inconnues.
Giovanni Ceva, Milan 1647 — Mantoue 1734
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3. Vers le Déterminant d’une matrice 2 x 2

C

Figure 11: Construction utilisée dans la preuve de laffirmation concernant les bissectrices dans un
triangle. Les droites (AD) et BP) sont paralléles.

3.3. Exercices

Exercice 3.1. On consideére la droite D définie par D : x — 3y + 3 = 0 ainsi que les points A
et B ayant les coordonnées x4 = 3, y4 = 1 et x5 = —9, yg = —3. Déterminer le nombre de
points P appartenant a la droite D tels que l'aire du triangle [ABP] soit égale a 6.

Exercice 3.2. On considére la droite D : y = —1 et le cercle C de centre O et rayon 2. La
droite D coupe (intersecte) le cercle C en deux points A = (—/3,—1) et B = (v/3,~1). Pour
combien de points M appartenant au cercle C l'aire du triangle [ABM] vaut-elle V37

Exercice 3.3 (Héron). Soit [ABC] un triangle. On note a = BC, b = C A et ¢ = AB. Rappeler
la formule du cours qui exprime o, I'aire du triangle, en fonction des coordonnées des points A,
B et C. En choisissant I'origine du systéme des coordonnées en un des points, calculer o2 et
simplifier I’expression en faisant apparaitre les longueurs des cotés pour obtenir la formule de
Héron,

o® =p(p—a)(p—b)(p—c),

oup=(a+b+c)/2.

Exercice 3.4. Soient les systémes

(A){Bnyzl (B){1:+2y:

rx — 3y = 2 3 + 6y = 3
3r — 4y = -1 20 + by = 1
(©) B (D) B
15z + 20y = -5 x — 3y = -5

Lesquels admettent une unique solution ?

Exercice 3.5. Dans le systeme

ar — 2(a+1l)y = -1
-z + (a+3)y = 2

a est un parametre réel. Trouver les a pour lesquels le systéme n’admet aucune solution.
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4. Géométrie dans l’espace affine et ’espace euclidien

ar —+ = 2a 42
Exercice 3.6. Pour combien de valeurs de a le systeme 4 admet
z + ay = —2a-—2
une infinité de solutions ?
Exercice 3.7. Trouver les solutions du systéme
ar + Yy = 2a 4+ 2
x + ay = —2a-2

oua €] —1,1] est un parametre réel.

Exercice 3.8. Dans E?, on considére le point A = (1,3) et les deux droites D; : z — y = 0 et
D, : %x —y = 0. Pour tout a € R, on construit le point B, comme intersection de la droite D,
avec la droite £ : y = a, i € {1,2}. Trouver les valeurs de a pour lesquelles o([AB;B,]) = 1.

Exercice 3.9. Soit C le cercle défini par 22 + 32 = r? et soit P un point quelconque extérieur
au cercle, c’est-a-dire les coordonnées de P satisfont 2% + y% > r2.

1) Montrer que si D > P et DNC # &, en notant par P, et P, les “deux” points d’intersection,
alors PP, - PP, dépend seulement de P et de C. On appelle cette expression la puissance de P
par rapport a C, p(P,C).

2) SiC, et C, sont deux cercles, déterminer le lieu géométrique des points M tels que p(P,C;) =
p(P,Cy).

4. Géométrie dans ’espace affine et ’espace euclidien

Comme pour le plan affine ou euclidien, nous allons considérer I’espace affine A3 muni d’un sys-
teme de coordonnées Oxyz, systeme qui sera supposé cartésien pour I’espace euclidien. L’espace
affine muni du systéme de coordonnées s’identifie & R3. Un point de I’espace est représenté par
ses coordonnées ; a tous deux points A, B, on associe le vecteur E dont les coordonnées sont

T3 =Tp— Ty, Yip =Y —Yar Zip =2B %A

4.1. Plans dans A®

Définition 4.1. Un plan dans ’espace est un sous-ensemble P pour lequel il existe a, b, c et d
quatre réels tels que

avec a, b, ¢ non simultanément nuls.
On dit que P est le plan d’équation az + by + cz +d = 0. Donc les plans de A3 sont les
sous-ensembles définis par des équations de degré 1 en les coordonnées.

Soit P : ax + by + cz +d = 0. On suppose a # 0 et on résout I’équation définissant le plan
comme équation en x. On obtient
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4. Géométrie dans l’espace affine et ’espace euclidien

avec ¥,z € R. On obtient une description paramétrique du plan:

d b

_a -2 _c
a

x
yl=10|+s| 1|+t 0| avec ster (4.1)
z 0 0 1

Remarque 4.2. Les éléments apparaissant dans le membre de droite de (4.1) sont, dans 'ordre,
un point B, = (—g, 0,0) appartenant au plan et deux vecteurs u = (—%, 1,0) et v =(-%£,0,1)
qui sont linéairement indépendants.

Il est utile de noter que le point est une solution particuliere de I’équation définissant le
plan, et que les deux vecteurs sont des solutions particulieres de 1’équation homogéne associée
a I’équation du plan. Les combinaisons linéaires su + tv avec s,t € R représentent toutes les
solutions de I’équation homogene associée.

Connaitre une paramétrisation du plan P signifie
— un point A et deux vecteurs u et v linéairement indépendants (c’est-a-dire non propor-
tionnels)

— trois points A, B, C' non alignés.
(Pour I’équivalence entre ces deux ensembles de données, il suffit de poser B = A + u et
C=A+w.)

Etant donnée une paramétrisation du plan P, comment peut-on obtenir une équation cartési-
enne de celui-ci ? En pratique, on doit éliminer les parametres. Par exemple, si P est décrit par
le point A = (1,0,2) et les vecteurs u = (1,2,3) et v = (—2,1,1), alors on sait que

r=1+s—2t
y=2s+t
z=243s+t.

Ceci est un systeme de trois équations et cinq inconnues, x, y, z, s et t. En éliminant s et ¢, on
obtient, successivement,

s=1—-2t—=x s=1—-2t—=x
y=2-3t—2x y=2-3(1-22—-1%z) -2
z=5—5t—3x tzl—%x—%z

et donc, la deuxiéme équation du deuxiéme systeme dans laquelle les parametres s et ¢t n’apparaissent
plus. Elle est une équation cartésienne du plan initial, c’est-a-dire

P:7x—5y+32—5=0.

En théorie, I’élimination des parametres fait apparaitre naturellement la formule (de développe-
ment) du déterminant d’une matrice 3 x 3.

Proposition 4.3. Le plan déterminé par le point A et les vecteurs linéairement indépendants
u et v est défini par I’équation cartésienne

y—yA Z—ZA
y'U ZT)

y—yA Z—ZA
Yu Zu

Yu Zu
Yo 2o

(x—xy) -z, =0.

+ z,
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4. Géométrie dans l’espace affine et ’espace euclidien

Yu Zu

£ 0.

Démonstration. Comme u et v sont linéairement indépendants, on suppose que
v v

Dans la paramétrisation

T =T +T,5+xT,t

Y=Yt YyuSt Yyt

Z=2z 4+t 2,8+ z,t
on interprete les deux dernieres équations comme un systéme en s et ¢ ; en appliquant la formule
de Cramer, on obtient la solution

Y=Ya Yo Yu Y —Yas
& 224 2 ot o Zy 224
Yu Yo Yu Yo
Z'lL Z’U ZU Z’U
La premiére équation devient
Y=Ya Yy Yu Y —Ya
Z2—2zy % 2, 2Z— 24
T=xy+ T, 4 z, =
Yu Yo Yu Yo
Zu Z’U Zu z’U

On multipliant avec le dénominateur commun des deux fractions et en réarrangeant’ les termes,

on a

Y=Ya 22— 24
y’U Z’U

Yu 2y
Y—=Ya 22— 24

— T, — T, =0.

La formule désirée est obtenue apres un dernier changement de signe sur le dernier déterminant.
O

Par analogie au déterminant d’une matrice de taille 2 x 2, en utilisant la proposition précé-
dente, on introduit le déterminant d’une matrice (un tableau) de taille 3 x 3 (par la suite on
notera M;(R) 'ensemble des matrices de taille 3 x 3 & coefficients réels)

ayj;p Qa2 A3
A=lay ay ay|,

Q31 Gzp GAz3
comme étant

app Qg Qg3

a a
_ _ 12 Q13
det(A) = |ag; ag Qo3| = 13

Qoo Qo3

Q1p Q13
azp QA3

a a
a a
32 33

Ggz; Ggzg A3z

La formule de la proposition 4.3 donnant une équation pour le plan passant par A et dirigé par
u et v devient
T—Ty Y—Ya 2724
T, Yu z =0.
x’U y’U Z’U

"On a utilisé aussi le fait que pour une matrice de taille 2 x 2, det(M) = det(M7).
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4. Géométrie dans l’espace affine et ’espace euclidien

Remarque 4.4. La formule (4.2) utilisée pour définir le déterminant peut étre écrite comme

det(A) = (—1)"tay; det(Ay) + (1) ay; det(Ay) + (—1)* lag, det(Ay))

ou la matrice Aij est la sous-matrice de A obtenue en enlevant la i°™€ ligne et la 7°™¢ colonne.

Cette formule généralise celle pour les déterminants 2 x 2:

a a

11 @12 _ _

det a a = ayy det(agy) — ayy det(ajy) = ajqa9y — aq9as;.
21 G99

Corollaire 4.5. Trois points non alignés Py, P, et P; déterminent un unique plan (P, PyPy)
d’équation

rT—Ty Y—-Y -2

Ty — Ty Yg—Y; 29— 2| =0.

T3 =T Ys— Y% B2

4.2. Déterminants 3 x 3

On avait introduit le déterminant d’une matrice A = (a;;) € M3(R) dans la section précédente
par la formule

det(A) = (=1)"*ay; det(Ayy) + (1) ay; det(Ay) + (—1)*Hag; det(Ay;)
Pour tous 1 < ¢,j < 3, dans Pécriture a;;, @ désigne la ligne et j la colonne sur lesquelles
I'élément a;; est placé dans A. La formule ci-dessus est appelée la formule de développement
du déterminant d’apres la premiere colonne.
Lemme-Définition. Si A = (q;;) € M;(R), alors
det(A) = ayyaga33 + 13051039 + A1509303) — G1109303; — 1509033 — Q13055031 -

Démonstration. D’apres la formule (4.2) introduisant le déterminant,

Qg1 Qoo
AT D)

Qg1 Qo3
as; Qass

= ayy(agags — agzagy) + -+

Qg Qo3

det(A) == a11 a32 a33

+ a5

d

Cette formule parailt compliquée, mais il y a plusieurs facons de la comprendre et donc de
I'utiliser.

PREMIERE REGLE DE CALCUL.. On peut trouver la valeur du déterminant de A en développant
depuis n’importe quelle ligne ou n’importe quelle colonne ; par exemple, depuis la deuxiéme ligne
on a

@11 A1 4g3

a, a
_ _ 11 G2
det(A) = |ay; a9y ag3| = ay;

Qsz; Q3o

ay; Qg3
asz; Qs

Q1g Q13
P > + ao3
32 Q33

Qgz; GQgzp Azg

On vérifie facilement que I'on retrouve les six termes de la définition. Voir aussi 'exercice 4.1.
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4. Géométrie dans l’espace affine et ’espace euclidien

DEUXIEME REGLE DE CALCUL.. Dans la formule du déterminant il y a trois termes apparaissant
avec le signe + et trois apparaissant avec le signe —. Chaque terme, indépendamment du signe,
est le produit de trois éléments de la matrice. Il s’ensuit qu’on peut penser chaque terme dans la
formule du déterminant comme un triangle dont les sommets se trouvent sur certaines positions
de la matrice. La figure 12 représente ces six triangles (isoceles). Il est possible d’utiliser ces
schémas comme moyen mnémotechnique pour retrouver la formule du déterminant.

» .
¢ o

Figure 12: Les six termes du déterminant d’une matrice 3 x 3 représentés comme triangles isocéles sur
les positions de la matrices. Le quatrieme triangle correspond au terme — aj1a320a23.

4.3. Droites dans I’espace

Par la suite, nous définissons une droite dans I’espace. Le point de vue initial est dynamique,
c’est-a-dire en utilisant une paramétrisation de la droite.

Définition 4.6. Une droite dans ’espace est I’ensemble des points image d’une application
v : R — R3 définie par v(t) = (a + at,b+ ft,c + t), avec v = (o, 3,7) # 0. On notera cette
droite par D, ,, et on 'appellera la droite passant par le point A = (a,b,c) de vecteur directeur
v.

Donc Dy, = {A+tv |t € R} est la droite passant par A et ayant v # 0 comme vecteur

directeur. A travers la paramétrisation, v représente le vecteur vitesse du mouvement qui a
comme image la droite.

Définition 4.7. Deux plans P et P’ sont dits non-paralléles si les parties homogénes des
équations les définissant ne sont pas proportionnelles.

Apres I'introduction du vecteur normal, on verra que P et P’ sont paralleles si et seulement si
ils admettent des vecteurs normaux liés (ou proportionnels).

Proposition 4.8. Un sous ensemble D se [’espace est une droite si et seulement si il existe
deux plans non paralléles p et P’ tels que D =P NP .

Démonstration. Si D est une droite, d’apres la définition 4.6, si A # B € D, alors D =D , =,
c’est-a-dire
D> (x,y,2) = (x4 +tu,yy +tv,z4 +tw), teR

ol ﬁ = (u,v,w). On peut supposer w # 0, car A # B. On a

VA A
t=2_%A
w
et
T —1, — EZFA, = 0
(x,y,2) € D si et seulement si, A v
Y—Yyu— TAU = 0.
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4. Géométrie dans l’espace affine et ’espace euclidien

Le systeme, en réorganisant les termes, devient

{wx —UZ = WTH —UZY

WY — V2 = WYy — VZy

et les deux plans définis par les deux équations ne sont pas paralleles. Réciproquement, on
résout le systeme de deux équations et trois inconnues en prenant une des inconnue comme
parametre. O

4.4. Le produit scalaire

Par analogie avec I’étude du plan euclidien E2, on considére le produit scalaire défini par (v, w) =
VW, + vyw, + v,w, pour tous v, w € R3. Le produit scalaire permet de mesurer les longueur
des vecteurs ainsi que 'angle formé par deux vecteurs de R?, et donc les distance et les angles
dans E3. En particulier, v et w sont orthogonaux si et seulement si, (v, w) = 0.

Par exemple, pour le plan P : az + by + cz + d = 0, le vecteur n = (a,b,c) est appelé un
vecteur normal, car pour tous les points P,QQ € P, n L I@ Pour voir ceci, il suffit de faire la
différence des identités

arp +byp +czp+d=0
arg +byg +czg+d=0
On obtient
0= al(eg —ap) +blyg — yp) + clzg — 2p) = (n, PQ).

Lemme 4.9. La distance d’un point Py au plan P, d(P,, P) = min{P,P | P € P} est donnée
+byo+czo+d )

par d(P,, P) = %. De plus, d(P,,P) = P,Q, ou Q € P tel que (P,Q) L P.
Démonstration. On considére la droite passant par P, de vecteur directeur n = (a,b,c), un
vecteur normal au plan P. Soit @) le point d’intersection de cette droite avec P. Pour tout
autre point P € P, le triangle [P,QP] est rectangle en @), donc PyP > P,(). Le lemme
s’ensuit en calculant FyQ. Comme les coordonnées des points de la droite Dp, ,, vérifient (voir
la définition 4.6)

r=z5t+at, y=y,+bt et z=z+ct
le t* correspondant au point () est obtenu en remplagant les identités ci-dessus dans ’équation
du plan P. On a

a(zy + at) + by, + bt) + c(zy + ct) +d =0,

done t* = (azo+byo+czo+d

bt et, par conséquent,

Q= (zg+at' y,+bt*, zy+ct”).
4

Définition. Soit F, un point et P un plan dans l'espace. Le point @ € P tel que (P,Q) L P
est appelé le projeté orthogonal de F, sur P.

Plus tard, on utilisera le résultat technique suivant (voir la figure 13):
Lemme 4.10. Soit P C E? un plan non paralléle au plan de coordonnées {z = 0}. Soit n
un vecteur normal unitaire de P. On note par D la droite d’intersection de P et du plan de

coordonnées {z =0}. Si P € P, Q € D tel que (PQ) L D et P’ est le projeté orthogonal de P
sur {z =0}, alors P'Q = |z, | PQ.

29



4. Géométrie dans l’espace affine et ’espace euclidien

Figure 13: Les éléments du lemme 4.10: D est la droite d’intersection des plans P et {z = 0}, P’ est
la projection de P € P sur {z =0} et (PQ) L D.

Démonstration. Si n = ae, +be, +ce,, alors P : ar + by + cz +d = 0 et la droite D a
u = (b,—a,0) comme vecteur directeur — vue comme droite dans le plan {z = 0}, le vecteur

(b, —a) doit étre non nul. Si ]@ =ae, + e, +ve,, alors, d’apres les hypotheses,

0= <n,]@) =aa+bB+cy, 0= (u,]@) =ba—af et 1=a®+b*+ . (%)
On peut exprimer « et 8 en fonction de «y car a et b ne sont pas simultanément nuls: on a

ac be
= a2+ b2 v

T a2 42 i
Alors

a?c? b2c2

2 2
2 _ 2 2 2 2 _ C 2 _ 7
PQ*=a”+p“ 4+~ _<(a2+b2)2+(a2+b2)2+1>7 —<a2+b2+1>7 =1 =

—
en utilisant la derniére identité de (). En méme temps, P'Q) = ae, + 3 e, (on a projeté sur
{z =0}), donc

2 2 2.2

b2c? 22 oy
P/ 2 — 2 2 — a~c 2 = = = 2P 2.
== ey T ) Terr ioe T

4.5. Exercices

Exercice 4.1. Montrer que det(A”) = det(A), ou AT est la transposée de A.

Exercice 4.2. Montrer que les plans by — cz = p, az — bxr = q et cx — ay = r contiennent une
droite D si et seulement si, ap + bg + c¢r = 0. Dans ce cas, montrer que la droite est contenue
aussi dans le plan px + qy +rz = 0.

Exercice 4.3. Soit D une droite qui n’est pas parallele au plan z = 0. Montrer qu’il existe
a,a’,b,b’ € R tels que D est définie par

r=az+d et y=>bz+10.
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5. Volume, produit vectoriel

Exercice 4.4 (*). Montrer que les équations d’une droite D C A dépendent de quatre con-
stantes indépendantes.

. . — _— — — —/ _/ .
Exercice 4.5. Soient D : ©¢ = y=b _ % et D or=al — y=b Z,y,c deux droites dans

I’espace. Déterminer la distance entre D et D'.

Exercice 4.6. Montrer qu'une droite dans I’espace dépend de quatre coefficients indépendants.

5. Volume, produit vectoriel

5.1. Le produit vectoriel

Dans la proposition 4.3, on a exprimé I’équation du plan déterminé par le point A et les vecteurs
directeurs w et v par la formule

Yu Zu
Yo v

Y=—Ya 224
y’U Z'U

Y—=Ya 224
yu Zu

($_xA) — Ly +xv =0

interprétée comme ’annulation du déterminant 3 x 3

T—Ty Y—Yyu Z2—2y

Ty, Yu z =0.

) Yo 2y

En utilisant le développement du déterminant d’apres la premiere ligne, on voit que le vecteur

| =

est un vecteur normal au plan, c’est-a-dire orthogonal aux vecteurs w et v. Il est appelé le
produit vectoriel de w et v. Symboliquement,

Yu “u

Y
y’l} Z’U

I

e, €, e,
uxv=\z, Y, =

x’U y'l) z?)
Le produit vectoriel satisfait les propriétés suivantes:
e UXV=—-VXU

eux(bv+cw)=auxv+cuxw
o (u,v X w) = det(u,v,w).

Proposition 5.1. Deux vecteurs u et v sont liés si et seulement si, u X v = 0. Plus générale-
ment, la norme du produit vectoriel, ||u x v||, est l’aire du parallélogramme déterminé par les

deuz vecteurs.

La preuve de cette proposition sera donnée dans la section suivante.
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5. Volume, produit vectoriel

5.2. Aire d’un triangle [P, P,P;|

On considere trois points Py = (;,y;,2;) (j = 1,2,3) dans lespaceOn veut calculer laire du
triangle [P, P,P;]. Si m est un vecteur normal de norme 1 au plan (P, P,P;), alors ses com-
posantes relient I'aire du triangle aux aires des triangles projetés sur les plans de coordonnées.
Pour voir ceci, on utilise le lemme 4.10.

Lemme 5.2. Soit [P, P, P;] un triangle non-dégénéré dans l’espace et soit n un vecteur normal
unitaire au plan (P PyPy). 51 Qq, Q4 et Q4 sont les projections orthogonales des points sur le
plan de coordonnées {z = 0}, alors

0([Q1Q2Q3]) = £z, o([P Py F3]).

Démonstration. On peut supposer que le plan de projection passe par un des trois points car
I'aire du triangle projeté ne change pas. Si P est ce point, alors D = (P, P,P3) N {z = zp, }.

Py

Py D
P} P

(P PyPy) N{z =zp }

Figure 14: L’aire du triangle [Py Py Ps] est la différence de 1aire du triangle [Py D Ps] et celle de [Py D Ps].

Soit D le point d’intersection dans le plan (P, P,P;) des droites (P,P3) et D (voir la figure

14. Alors
P,D

2
et, dans le plan {z = 2p }, o1 Q; = P, Q) = Py et Q3 = Pj,

O'(P1P2P3):U(P1DP3)—U(P1DP2): (P3P§—P2P2/)

P,D
U(Q1Q2Q3) = U(Q1DQ3) —0(Q,DQy) = U(P1DQ3) —o(PDQ,) = 1T (Q3Pé - QQPQ/)'

Le résultat s’ensuit en utilisant le Lemme 4.10. O

Corollaire 5.3.

2 2 2
Yy —Ys 2 — 23

Yo — Yz 29 — 23

Lo — T3 29 — %3

Ly — T3z Y —Ys

4o(P,P,P,)? =
(123) Ty — Ty Yy — Us

Démonstration. On utilise la formule du lemme 5.2,

2
1y —2a y;—y
in(P1P2P3)2:U([Q1Q2Q3])2:1 x;—xi y;_yi

pour exprimer l'aire du triangle projeté sur le plan {z = 0} en fonction de la composante z du
vecteur normal. On finit en considérant les trois projections et le fait que la norme du vecteur
normal n vaut 1. OJ

32



5. Volume, produit vectoriel

Ce corollaire nous offre une démonstration pour la proposition 5.1. Soit P; un point de
lespace et soient P} = P; +u et P, = Py +v. Alors

2 2 2
Yy 2 T, =z z, v 9
o((Tu,v)? = 40([PyPyPs])% = |7 “u| 47w Tuf 47w Jul — gy x p?
1S yU Z’U xv v x'U y'U
5.3. Volume du tétraedre [P, P, P3P,
On consideére quatre points P; = (z;,y,,2;) (1 =1 ,4) dans l'espace et on veut calculer le

volume du tétraedre [P, Py Py Py], noté p( P, PyPsPy).

Proposition 5.4.
LTy —=Ty Y=Yy Z1— 2
M(P1P2P3P4):i6 Lo =Ty Yo~ Yy Ro— 2y
T3 =Ty Y3~ Yy 23— 2

Démonstration. p(P,PyPyP,) = % P,Q, - (P,P;P,), ou @ est le projeté orthogonal de P, sur
le plan (P,P;P,). On utilise la formule pour la distance de P, au plan (P,P;P;) ainsi que la
proposition 5.1. O

5.4. Quelques compléments sur les déterminants

Proposition 5.5. Soient u = z,e, + y,e, + z,e,, v et w. Alors il existe o, 8,7 € R non
simultanément nuls tels que au + v +yw = 0 si et seulement si

det(u,v,w) := |z, vy, %, =0.
x’u} yw w

Démonstration. Si au 4+ fv + yw = 0 avec o, 5,7 € R non simultanément nuls, alors, en

supposant a # 0, on a u = —g v — 2w =: bv + cw et on obtient

Ty Yu Zu bz, + cx,, by, +cy, bz, +cz,

xv y’U Z’U = xv y’U z’U

Tw Yw Pw Lo Yw Zw

T, =z x
= (b, +cwy) |7 70| = by +ey) |70 T (b2, ez,) [0
yw w ‘T’LU w $’w yw

=0.

Dans l'autre sens, on suppose que u et v ne sont pas proportionnels. Si le déterminant
est nul, alors, d’apres la proposition 5.4, les vecteurs u, v et w, vus comme vecteurs issus de
Porigine, se trouve dans un méme plan (histoire d’un tétraedre aplati). Par conséquent, il existe
un vecteur n non nul (normal & ce plan) qui est orthogonal sur les trois vecteurs. On choisit
un repere centré en O et ayant les axes dirigées par u, v et n. Alors w s’exprime en fonction
de u et v seulement. O
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6. Transformations du plan: translations, rotations, réflexions, homothéties

Cette proposition établit ’équivalence entre ’annulation du déterminant et le linéaire dépen-
dance pour trois vecteurs de R3. On avait obtenu un résultat analogue pour deux vecteurs de
R2.

Une conséquence de la proposition 5.5 est la caractérisation suivante (pour un systéme de
trois équations & trois inconnues, ou géométriquement, pour U'intersection de trois plans): Le
systéme

ayx + by + ¢z =d;

Ay + byy + coz = dy

asx + by + c3z = dy
admet une solution unique (c’est-a-dire les trois plans s’intersectent en un unique point) si et
seulement si,

a; by o
ay by cy| =0
as by ¢

(c’est-a-dire les trois vecteurs normaux aux trois plans sont liés).

5.5. Exercices

Exercice 5.1. On veut généraliser la formule de Héron Soit [ABC| un tétraedre. Soient a, b
et ¢ les longueurs des cotés du triangle [ABC| et d, e et f les longueurs des cotés reliant A, B
et CaD.

1) Rappeler la formule du cours qui exprime V, le volume du tétraedre, en fonction des
coordonnées des points A, B, C et D.

2) En choisissant I’origine du systéme des coordonnées en D exprimer V? comme un produit
de déterminants det(M?) = det(M) det(M7T) = det(M MT).

242 d+e? - &+ f2 -
3) Montrer que 288 V2 = |d? + ¢ — 2 2¢? e*+ f* —a?|.
d2+f2_b2 62—|—f2—a2 2f2

6. Transformations du plan: translations, rotations, réflexions,
homothéties

On fixe un repere cartésien Ozy. Par la suite nous décrirons certaines transformations du plan
euclidien E?: translations, rotations et réflexions. Le cadre est le suivant : une transformation
affine est une application f : E? — E? pour laquelle il existe six constantes réelles «a, 3, 7, 0,
a,b € R telles que, en coordonnées,

(z,y) = f(z,y) = (az + By, vz + y) + (a,b)

et
ad — By #0.

Cette deuxiéme condition est équivalente & f bijective. L’expression pour f(z,y) est plus facile
a comprendre si on utilise le produit matriciel :

()= 90 6) o
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6. Transformations du plan: translations, rotations, réflexions, homothéties

Lemme 6.1. Si f : E2 — E? est une transformation affine et si D est une droite, alors f(D)
est une droite.

Les transformations qui nous intéressent ici, sont celles qui conservent les distances, c’est-a-

dire pour tous P,Q € E?, ||%H =d(P,Q)=d(f(P), f(Q)) = ||f(P)f(Q)H Une transformation
qui converse les distances s’appelle une isométrie.

Lemme 6.2. Si f : E? — E? est une isométrie et si I' est un cercle, alors f(D) est un cercle.

Exemple (translation). La translation T, de vecteur v: P+ P 4+ v. Si v = (a,b), alors, en
coordonnées on a
(z,y) = (x+a,y+Db).

()= GG 6)

Exemple (rotation). La rotation Ry, de centre O et d’angle 0: P — Q, ot @ est tel que

OP = 0Q et 'angle formé par les vecteurs O? et (ﬁ est de mesure . En utilisant les fonctions
trigonométriques, et en commengant éventuellement avec ||OP| = 1, on a la rotation de centre
O et d’angle 6 est donnée par

En utilisant les matrices,

(x,y) — (cos(0) xz — sin(0) y, sin(0) x + cos(0) y).

x cos(f) —sin(f)\ [z
(y) ~ (sin(&) cos(#) ) (y) ’

et en utilisant les nombres complexes z et w, les affixes des points P et Q = ROﬂ(P) respec-
tivement, la rotation Ry, 4 est décrite par

La formule (6.1) devient

w = ez (6.2)

La rotation Ry, de centre {2 et d’angle § admet une description géométrique simple.
L’écriture en coordonnées dans le systeme Oxy ne 'est pas; elle s’obtient en effectuant un
changement de repére. Soit 22"y le systéme de coordonnées centré en 2, ayant les axes paral-
leles aux axes de Oxy. Le passage entre les deux systémes est donné par

/

r =Tr—

{/ P = Y =z—w,
Yy =Y—1Yp

ou w est affixe du oint 2 (par rapport au systéeme Ozy). Dans le nouveau systéme de coor-
données, d’apres (6.2), la rotation Ry, g est décrite par w' = €2, On obtient alors,

w—w=e?z—-w),

c’est-a-dire
w=e"2+ (1.

Lemme 6.3. 5i 60 # 0 mod 27, alors {2 est l'unique point fize de R, . (Un point fize est un
point P tel que R, o(P) = P.)
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6. Transformations du plan: translations, rotations, réflexions, homothéties

Démonstration. Soit P un point fixe. Si z est I’affixe de P, alors
z=e%2 4+ (1 -,

On obtient (1 — e)(z —w) = 0, d’olt le résultat. O

Proposition 6.4. Soit f : E? — E? l'application définie par f(z) = ez +a.
1) Si 0 # 0 mod 27, alors f est la rotation de centre §2 et d’angle 0, ou Uaffize de (2 est

_a
1—ei? "

—
2) §i0 =0 mod 27, alors f est la translation de vecteur OA, ou l'affize de A est a.

Exemple (réflexion). Sp, la réflexion par rapport a la droite D: si Q@ = Sp(P), alors [PQ)]
est perpendiculaire & D et est divisé en deux segments égaux par D. D’apres la définition, tout
point de la droite D est un point fixe pour la réflexion Sp.

Proposition 6.5. Soit D une droite passant par l'origine et faisant un angle 6 (cet angle est
défini modulo 7) avec U'axe des x. Si z est laffize d’un point P et w est laffize du point Sp(P),
alors

w= ez

Démonstration. On remarque que si D est 'axe des = alors w = Z. On change le systeme de
coordonnées tel que D devient I’axe des 2/ du nouveau systéme, c’est-a-dire 2/ = e~z et on
applique la remarque précédente. O

Exemple (homothétie). Hy, , I'homothétie de centre O et rapport k ¢ {0,1}: si Q = Hp, . (P),
alors @ = kO-}>’ En écriture complexe, on a w = kz.

Lemme 6.6. L’image d’une droite (un cercle) par une homothétie est une droite (un cercle).
De plus, des droites paralléles sont envoyées dans des droites paralléles.

6.1. Exercices

Exercice 6.1. Deux villes A et B sont séparées par un canal rectiligne. On veut construire un
pont tel que le chemin reliant les deux villes soit le plus court possible. On suppose les berges
paralleles et le pont perpendiculaire au canal.

1) Déterminer la position du pont en considérant le cas numérique suivant: A = (5, —6),
B = (0,5) et les berges de la riviere sont définies par y = 0 et y = m, avec m € [1,3]. (Utiliser
une translation.) Traiter le cas général.

2) Résoudre le méme probléme en considérant que les villes sont séparées par deux canaux
Numériquement, on considéra m = 1 et les berges de la deuxi¢me riviere définies par y = § + 2
et y =735 +4.

Exercice 6.2 (réflexions). Soient D; : y =0, Dy : 4 +y =0 et Dy : x — 2y = 0 trois droites
concourantes en O et soit A = (5,0) € D;. On veut déterminer les points B € D, et C' € Dy
tels que les droites D; deviennent les bissectrices du triangle [ABC].

1) En supposant le triangle [ABC| construit, quelle est I'image du point A par la réflexion
par rapport a la bissectrices passant par B, c’est-a-dire la droite D, ?

2) Si Ay = Sp,(A) et A3 = Sp_(A), quelles propriété satisfont les points Ay, A3, B et C7?

3) Utiliser cette remarque pour résoudre le probleme.
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