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Le 2∗) de l’exercice 6 est un peu plus compliqué par rapport aux autres questions de l’examen et
représente un point du total de 20 points.

Exercice 1.
1) Donner la définition en ε et δ de lim

x→∞
f(x) = 2.

2) Calculer la limite en +∞ de Sn où Sn =
n−1∑
j=0

k(n + k)
n3 .

3) Montrer que ∫ π
2

0
sin(x3) dx <

π4

26 .

(Indication : Au cas ou aucune idée ne s’impose à vous, on pourrait commencer par esquisser le
graphe de sinus sur [0, π] ainsi que la droite tangente à ce graphe au point d’abscisse x = 0.)

Solution.
1) La définition de lim

x→+∞
f(x) = 2, en symboles, est

∀ε > 0, ∃δ(ε) > 0 tel que ∀x ∈ Df , x > δ(ε) ⇒ |f(x) − 2| < ε.

2) On a

lim
n→+∞

Sn = lim
n→+∞

n−1∑
j=0

k(n + k)
n3 = lim

n→+∞

1
n

n−1∑
j=0

(
k

n
+

(k

n

)2)

=
∫ 1

0
(x + x2) dx = 1

2 + 1
3 = 5

6 .

3) On a l’inégalité sin x3 ≤ x3 pour tout x ∈
[
0, π

2
]
, avec égalité si et seulement si x = 0. Alors

∫ π
2

0
sin x3 dx <

∫ π
2

0
x3 dx =

[
x4

4

] π
2

0
= π4

26 .

Remarque. Cette inégalité peut être améliorée car la fonction x 7→ x3 prend des valeurs supérieures
à 1 quand x > 1. En bornant sin x3 par x3 sur [0, 1] et puis par 1 quand x ≥ 1, on obtient

∫ π
2

0
sin x3 dx <

∫ 1

0
x3 dx +

∫ π
2

1
dx =

[
x4

4

]1

0
+ [x]

π
2
1 = 1

4 + π

2 − 1 = π

2 − 3
4 .

Peut-on améliorer cette nouvelle inégalité en considérant le deuxième terme de la borne utilisée
dans le calcul précédent ?
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Exercice 2.
1) En utilisant un changement de variable (on voudrait “faire disparaître” la racine), calculer

J =
∫ 3

0

dx

1 +
√

x
.

2) En utilisant l’intégration par parties pour établir une formule de récurrence, calculer

I2n =
∫ π

2

0
cos2n x dx.

(Indication : On pourrait commencer par remarquer que cos2n x = cos x · cos2n−1 x.)

Solution.
1) Avec le changement de variable 1 +

√
x = t, c’est-à-dire

x = (t − 1)2 et dx = 2(t − 1) dt,

on a ∫ 3

0

dx

1 +
√

x
=

∫ 1+
√

3

1

2(t − 1)
t

dt = 2
∫ 1+

√
3

1
dt − 2

∫ 1+
√

3

1

dt

t

= 2
√

3 − 2 ln(1 +
√

3) = 2
√

3 − ln(4 + 2
√

3).

2) En intégrant par parties,

I2n =
∫ π

2

0
cos2n x dx. =

∫ π
2

0
(sin x)′ cos2n−1 x dx

=
[
sin x cos2n−1 x

] π
2

0
−

∫ π
2

0
sin x (cos2n−1 x)′ dx

= −
∫ π

2

0
sin x

(
(2n − 1) cos2n−2 x (− sin x)

)
dx

= (2n − 1)
∫ π

2

0
sin2 x cos2n−2 x dx = (2n − 1)

∫ π
2

0
(1 − cos2 x) cos2n−2 x dx

= (2n − 1)I2n−2 − (2n − 1)I2n.

Il s’ensuit que
I2n = 2n − 1

2n
I2n−2,

c’est-à-dire
I2n = 2n − 1

2n
· 2n − 3

2n − 2 · · · · 3
4 · 1

2 I0 = (2n)!
n!2 22n

π

2 .

Exercice 3. On considère la fonction f : [0, π
4 ] → R définie par f(x) = 1√

cos x
. Dans le système

de coordonnés Oxyz, on note X le solide de révolution obtenu en tournant le graphe de f (c’est-
à-dire la courbe définie par y = f(x) dans le plan z = 0) autour de l’axe Ox et délimité par les
plans x = 0 et x = π

4 . Calculer son volume v(X). (Indication : Dans l’intégrale qu’on est amené a
calculer, on pourrait multiplier en haut et en bas la fraction à intégrer par cos x pour identifier un
changement de variable.)

Solution.
On a

V = π

∫ π
4

0
f2(x) dx = π

∫ π
4

0

dx

cos x
= π

∫ π
4

0

cos x dx

1 − sin2 x
= π

∫ π
4

0

d sin x

1 − sin2 x
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donc, en mettant t = sin x,

V = π

∫ 1√
2

0

dt

1 − t2 = π

2

[
ln 1 + t

1 − t

] 1√
2

0
= π

2 ln
√

2 + 1√
2 − 1

= π

2 ln (
√

2 + 1)2

2 − 1 = π ln(
√

2 + 1).

Exercice 4. Les énoncés suivants sont-ils vrais ou faux ? Justifier soigneusement vos réponses
(avec des arguments ou des contre exemples).

1) Il existe une fonction continue et bijective f :
]
−π

2 , π
2

[
→ R.

2) Une fonction continue h : [0, 1[ → R atteint ses bornes.
3) Il existe une fonction continue et bijective g : ]−1, 1[ → [−π, π].

Solution.
1) Oui ! La fonction tan réalise une bijection continue (à vrai dire C∞ ou analytique) entre]

−π
2 , π

2
[

et R.
2) Non. La fonction f(x) = x définie sur [0, 1[ n’atteint pas la borne sup de son ensemble de

valeurs qui est [0, 1[.
3) Non. Si une telle fonction g existait, alors g−1 réaliserait une bijection continue entre [−π, π]

et ]−1, 1[. Mais une fonction continue sur un intervalle fermé et borné atteint ses bornes, c’est-à-
dire son ensemble des image est un intervalle fermé et borné. Mais l’ensemble des images de g−1

serait ]−1, 1[, d’où une contradiction.

Exercice 5. Soit f : ]−∞, 1[ → R définie par f(x) = x2

1−x .
1) Esquisser le graphe de f .
2) Exprimer en utilisant ε et δ la phrase f n’est pas uniformément continue.
3) Justifier que f n’est pas uniformément continue.

Solution.
1) On a f ′(x) = x(2−x)

(1−x)2 , c’est-à-dire f ′ s’annule en 0 et son signe est le même que celui de x. On
a le tableau de variations ci-dessous.

x

f ′(x)

f(x)

−∞ 0 1

− 0 −

+∞+∞

00

+∞

De plus, f admet la droite y = −x − 1 comme asymptote oblique à −∞ et la droite x = 1 comme
asymptote verticale en 1−. L’esquisse de la courbe représentative est réalisée dans la figure 1.

2) La fonction f n’est pas uniformément continue si

∃ε0 > 0 tel que ∀δ > 0 ∃x′
δ, x′′

δ ∈ ]−∞, 1[ tels que |x′
δ − x′′

δ | < δ et |f(x′
δ) − f(x′′

δ )| ≥ ε0.

3) Il suffit de vérifier l’affirmation précédente pour δ = 1
n , c’est-à-dire de démontrer que

∃ε0 > 0 tel que ∀n ∈ N∗ ∃un, vn ∈ ]−∞, 1[ tels que |un − vn| <
1
n

et |f(un) − f(vn)| ≥ ε0.

On prend,
un = 1 − 1

n
et vn = 1 − 1

2n
.
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x

y

1

Figure 1: Le graphe de f ; la non continuité uniforme est due au comportement de f
dans le voisinage de 1−.

Alors

|f(un) − f(vn)| = f(vn) − f(un) =
(1 − 1

2n)2

1
2n

−
(1 − 1

n)2

1
n

= 2n

(
1 − 1

n
+ 1

4n2

)
− n

(
1 − 2

n
+ 1

n2

)
= 2n − 2 + 1

2n
− n + 2 − 1

n

= n − 1
2n

≥ 1
2

pour tout n ∈ N∗. On prend ε0 = 1
2 .

Remarque. Plusieurs étudiants ont invoqué le résultat suivant : Soit f : [a, b[ → R continue telle
que lim

x→b
f(x) = +∞. Alors f n’est pas uniformément continue.

Une preuve de ce résultat aurait été nécessaire.1 La démonstration de ce résultat (voir ci-
dessous) est plus complexe que l’argument dans le cas particulier de la fonction rationnelle de
l’exercice. De plus, le résultat “complet” est le suivant : Soit f : [a, b[ → R continue. La fonction
f est uniformément continue si et seulement si elle à une limite finie en b.

Démonstration. On prend ε0 = 1. On veut démontrer que pour tout δ > 0, il existe x′
δ, x′′

δ ∈ [a, b[
tels que |x′

δ − x′′
δ | < δ et |f(x′

δ) − f(x′′
δ )| ≥ 1.

Soit δ > 0. On pose M = f(1 − δ). Comme lim
x→b

f(x) = +∞, il existe

• ηM > 0 tel que pour tout x qui satisfait −ηM + 1 < x < 1 on a f(x) > M
• η > 0 tel que pour tout x qui satisfait −η + 1 < x < 1 on a f(x) > max(f(1 − ηM ), M) + 1.

On prend
x′

δ = max(1 − δ, 1 − ηM ) et x′′
δ = max(1 − δ, 1 − η).

Alors, d’après la définition de η,
f(x′′

δ ) ≥ f(x′
δ) + 1

1Comme le résultat n’a pas été établi en cours et comme l’examen se proposait de vérifier vos capacités de rédiger
des arguments avec des quantificateurs, l’invoquer seulement n’était pas suffisant pour recevoir le nombre maximal
de points.
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et donc
|f(x′

δ) − f(x′′
δ )| = f(x′′

δ ) − f(x′
δ) ≥ 1.

□

Devoir. Écrire cette preuve en utilisant les suites. Écrire la preuve de l’équivalence énoncée plus
haut.

Exercice 6. Les énoncés suivants sont-ils vrais ou faux ? Justifier soigneusement vos réponses
(avec des arguments ou des contre exemples).

1) Soit f : [a, b] → R une fonction bornée et soit ∆ = [a = x0 < x1 < . . . < xn = b] une
subdivision de [a, b]. L’inégalité suivante entre les sommes de Darboux est toujours vérifiée,

σ∆(f) ≤ σ∆(f).

2∗) Soit f : [a, b] → R une fonction bornée et soit ∆ la subdivision de [a, b] formée avec les points
a, a+b

2 et b. On pose S = σ∆(f). L’affirmation

∀ε > 0, ∃c = cε ∈
[
a,

a + b

2

]
, ∃d = dε ∈

[
a + b

2 , b

]
tels que (f(c) + f(d)) b − a

2 > S − ε

est toujours vérifiée.

Solution.
1) On a

σ∆(f) =
n−1∑
j=0

inf
{

f(x)
∣∣∣ x ∈ [xj , xj+1]

}
(xj+1 − xj)

≤
n−1∑
j=0

sup
{

f(x)
∣∣∣ x ∈ [xj , xj+1]

}
(xj+1 − xj) = σ∆(f).

2) D’après la définition,

S = σ∆(f) = sup
x∈[a,

a+b
2 ]

f(x) b − a

2 + sup
x∈[ a+b

2 ,b]
f(x) b − a

2 .

Soit ε > 0. D’après la définition de la borne sup, il existe cε ∈
[
a, a+b

2

]
tel que

−ε

2 + sup
x∈[a,

a+b
2 ]

f(x) < f(cε) ≤ sup
x∈[a,

a+b
2 ]

f(x)

et il existe dε ∈
[

a+b
2 , b

]
tel que

−ε

2 + sup
x∈[ a+b

2 ,b]
f(x) < f(dε) ≤ sup

x∈[ a+b
2 ,b]

f(x).

Pour finir, on multiplie par b−a
2 les deux inégalités de gauche et on les additionne.

Barème indicatif : 4 — 4 — 2 — 4 — 4 — 2
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