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Abstract. We give a geometric definition of smooth toric Deligne-Mumford stacks
using the action of a ‘‘torus’’. We show that our definition is equivalent to the one of
Borisov, Chen and Smith in terms of stacky fans. In particular, we give a geometric inter-
pretation of the combinatorial data contained in a stacky fan. We also give a bottom up
classification in terms of simplicial toric varieties and fiber products of root stacks.
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Introduction

A toric variety is a normal, separated variety X with an open embedding T ,! X of a
torus such that the action of the torus on itself extends to an action on X . To a toric variety
one can associate a fan, a collection of cones in the lattice of one-parameter subgroups of
T . Toric varieties are very important in algebraic geometry, since algebro-geometric prop-
erties of a toric variety translate in combinatorial properties of the fan, allowing to test con-
jectures and produce interesting examples.

In [10] Borisov, Chen and Smith define toric Deligne-Mumford stacks as explicit
global quotient (smooth) stacks, associated to combinatorial data called stacky fans. Later,
Iwanari proposed in [22] a definition of toric triple as an orbifold with a torus action having
a dense orbit isomorphic to the torus1) and he proved that the 2-category of toric triples is
equivalent to the 2-category of ‘‘toric stacks’’ (We refer to [22] for the definition of ‘‘toric
stacks’’). Nevertheless, it is clear that not all toric Deligne-Mumford stacks are toric triples,
since some of them are not orbifolds.

Then the generalization of the D-collections defined for toric varieties by Cox in [14]
was done by Iwanari in [23] in the orbifold case and by Perroni in [31] in the general case.

In this paper, we define a Deligne-Mumford torus T as a Picard stack isomorphic to
T �BG, where T is a torus, and G is a finite abelian group; we then define a smooth toric
Deligne-Mumford stack as a smooth separated Deligne-Mumford stack with the action of
a Deligne-Mumford torus T having an open dense orbit isomorphic to T. We prove a
classification theorem for smooth toric Deligne-Mumford stacks and show that they coin-
cide with those defined by [10].

The first main result of this paper is a bottom-up description of smooth toric Deligne-
Mumford stacks, as follows: the structure morphism X! X to the coarse moduli space
factors canonically via the toric morphisms

X! Xrig ! Xcan ! X

where X! Xrig is an abelian gerbe over Xrig; Xrig ! Xcan is a fibered product of roots of
toric divisors; and Xcan ! X is the minimal orbifold having X as coarse moduli space.
Here X is a simplicial toric variety, and Xrig and Xcan are smooth toric Deligne-Mumford
stacks. More precisely, this bottom up construction can be stated as follows.

Theorem I. Let X be a smooth toric Deligne-Mumford stack with Deligne-Mumford

torus isomorphic to T �BG. Denote by X the coarse moduli space of X. Denote by n the

number of rays of the fan of X .

1) For the meaning of orbifold in this paper, see §1.2.
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(1) There exist unique ða1; . . . ; anÞ A ðN>0Þn such that the stack Xrig is isomorphic, as

toric Deligne-Mumford stack, to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dcan

1 =Xcana1

q
�X can � � � �X can

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dcan

n =Xcanan

q
;

where Dcan
i is the divisor corresponding to the ray ri.

(2) Given G ¼
Ql
j¼1

mbj
. There exist L1; . . . ;Ll in PicðXrigÞ such that X is isomorphic, as

toric Deligne-Mumford stack, to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1=X

rigb1

q
�X rig � � � �X rig

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ll=X

rigbl

q
:

Moreover, for any j A f1; . . . ; lg, the class ½Lj� in PicðXrigÞ=bj PicðXrigÞ is unique.

In the process, we get a description of the Picard group of smooth toric Deligne-
Mumford stacks, which allows us to characterize weighted projective stacks as complete
toric orbifolds with cyclic Picard group (cf. Proposition 7.28). Moreover, we classify all
complete toric orbifolds of dimension 1 (cf. Example 7.31). We also show that the natural
map from the Brauer group of a smooth toric Deligne-Mumford stack with trivial generic
stabilizer to its open dense torus is injective (cf. Theorem 6.11).

The second main result of this article is to give an explicit relation between the
smooth toric Deligne-Mumford stacks and the stacky fans.

Theorem II. Let X be a smooth toric Deligne-Mumford stack with coarse moduli

space the toric variety denoted by X. Let S be a fan of X in NQ :¼ N nZ Q. Assume that

the rays of S generate NQ. There exists a stacky fan such that X is isomorphic, as toric

Deligne-Mumford stack, to the smooth Deligne-Mumford stack associated to the stacky fan.

Moreover, if X has a trivial generic stabilizer then the stacky fan is unique.

When the smooth toric Deligne-Mumford stack X has a generic stabilizer the non-
uniqueness of the stacky fan comes from three di¤erent choices. We refer to Remark 7.26
for a more precise statement. This result gives a geometrical interpretation of the combina-
torial data of the stacky fan. In fact, the stacky fan can be read o¤ the geometry of the
smooth toric Deligne-Mumford stack just like the fan can be read o¤ the geometry of the
toric variety. Notice that one can deduce the above theorem when X is an orbifold from
[31], Theorem 2.5, and [23], Theorem 1.4, and the geometric characterization of [24],
Theorem 1.3.

In the first part of this article, we fix the conventions and collect some results on
smooth Deligne-Mumford stacks, root constructions, rigidification, toric varieties, Picard
stacks and the action of a Picard stack. In Section 2, we define Deligne-Mumford tori. Sec-
tion 3 contains the definition of smooth toric Deligne-Mumford stacks. In Section 4, we
first define canonical smooth Deligne-Mumford stacks and then we show that the canonical
stack associated to a simplicial toric variety is a smooth toric Deligne-Mumford stack (cf.
Theorem 4.11). In Section 5, we prove the first part of Theorem I. In Section 6, we first
prove in Proposition 6.9 that the essentially trivial banded gerbes over X are in bijection
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with finite extensions of the Picard group of X; then, we show that the natural map from
the Brauer group of a smooth toric Deligne-Mumford stack with trivial generic stabilizer to
its open dense torus is injective (cf. Theorem 6.11). Finally, we prove the second statement
of Theorem I. In Section 7, we prove Theorem II and give some explicit examples. In
Appendix B, we have put some details about the action of a Picard stack.

Acknowledgments. The authors would like to acknowledge support from IHP,
Mittag-Le¿er Institut, SNS where part of this work was carried out, as well as the Euro-
pean projects MISGAM and ENIGMA. We would like to thank Ettore Aldrovandi, Lev
Borisov, Jean-Louis Colliot-Thélène, Andrew Kresch, Fabio Perroni, Ilya Tyomkin and
Angelo Vistoli for helpful discussions; in particular Aldrovandi for explanations about
group-stacks and reference [11], Borisov for pointing out a mistake in a preliminary ver-
sion, Colliot-Thélène for [20], §6, Tyomkin for [9] and Vistoli for useful information about
the classification of gerbes.

1. Notations and background

1.1. Conventions and notations. A scheme will be a separated scheme of finite type
over C. A variety will be a reduced, irreducible scheme. A point will be a C-valued point.
The smooth locus of a variety X will be denoted by Xsm.

We work in the étale topology. For an algebraic stack X, we will write that x is a
point of X or just x A X to mean that x is an object in XðCÞ; we denote by AutðxÞ the auto-
morphism group of the point x. We will say that a morphism between stacks is unique if it
is unique up to a unique 2-arrow. As usual, we denote Gm the sheaf of invertible sections in
OX on the étale site of X.

1.2. Smooth Deligne-Mumford stacks and orbifolds. A Deligne-Mumford stack will
be a separated Deligne-Mumford stack of finite type over C; we will always assume that its
coarse moduli space is a scheme. An orbifold will be a smooth Deligne-Mumford stack with
trivial generic stabilizer. For a smooth Deligne-Mumford stack X, we denote by eX or just
e the natural morphism from X to its coarse moduli space X , which is a variety with finite
quotient singularities.

Let i : U! X be an open embedding of irreducible smooth Deligne-Mumford stacks
with complement of codimension at least 2. We have that:

� The natural map i� : PicðXÞ ! PicðUÞ is an isomorphism.

� For any line bundle L A PicðXÞ, the natural morphism i� : H 0ðX;LÞ ! H 0ðU; i�LÞ
is also an isomorphism.

The inertia stack, denoted by IðXÞ, is defined to be the fibered product
IðXÞ :¼ X�X�X X. A point of IðXÞ is a pair ðx; gÞ with x A X and g A AutðxÞ. The inertia
stack of a smooth Deligne-Mumford stack is smooth but di¤erent components will in
general have di¤erent dimensions. The natural morphism IðXÞ ! X is representable,
unramified, proper and a relative group scheme. The identity section gives an irreducible
component canonically isomorphic to X; all other components are called twisted sectors.
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A smooth Deligne-Mumford stack of dimension d is an orbifold if and only if all the
twisted sectors have dimensione d � 1, and is canonical if and only if all twisted sectors
have dimensione d � 2.

Remark 1.1 (sheaves on global quotients). According to [33], Appendix, a coherent
sheaf on a Deligne-Mumford stack ½Z=G� is a G-equivariant sheaf on Z, i.e., the data of a
coherent sheaf LZ on Z and for every g A G an isomorphism jg : LZ ! g�LZ such that
jgh ¼ h�jg � jh.

Notice that if Z is a subvariety of Cn of codimension higher or equal than two then
an invertible sheaf on ½Z=G� is the structure sheaf OZ and a one dimensional representa-
tion of G, i.e., w : G ! C�. A global section of such an invertible sheaf on ½Z=G� is a w-
equivariant global section of OZ.

We end this subsection with a proposition extending to stacks a property of separated
schemes. We will prove it in Appendix A.

Proposition 1.2. Let X and Y be two Deligne-Mumford stacks. Assume that X is

normal and Y is separated. Let i : U ,! X be a dominant open immersion of the Deligne-

Mumford stack U. If F ;G : X! Y are two morphisms of stacks such that there exits a

2-arrow F � i)
b

G � i then there exists a unique 2-arrow a : F ) G such that a � idi ¼ b.

The previous proposition is well known for X a reduced scheme and Y a separated
scheme. Nevertheless, if X is not a normal stack we have the following counter-example:
Let Y be Bm2. Let X be a rational curve with one node. Let F1 : X! Y (resp. F2) be a stack
morphism given by a non-trivial (resp. trivial) double cover of X. Putting U ¼ Xnfnodeg,
the proposition is false.

1.3. Root constructions. For this subsection we refer to the paper of Cadman [12]
(see also [2], Appendix B). In this part X will be a Deligne-Mumford stack over C (it is
enough to assume that X is Artin.)

1.3.a. Root of an invertible sheaf. This part follows closely [2], Appendix B. Let L

be an invertible sheaf on the Deligne-Mumford stack X. Let b be a positive integer. We
denote by

ffiffiffiffiffiffiffiffiffiffi
L=Xb

p
the following fiber product

ffiffiffiffiffiffiffiffiffiffi
L=Xb

p ���! BC�???y
???y5b

X �����!L
BC�

r

where 5b : BC� ! BC� sends an invertible sheaf M over a scheme S to Mnb. More ex-
plicitly, an object of

ffiffiffiffiffiffiffiffiffiffi
L=Xb

p
over f : S ! X is a couple ðM; jÞ where M is an invertible

sheaf M on the scheme S and j : Mnb !@ f �L is an isomorphism. The arrows are defined
in an obvious way.

The morphism
ffiffiffiffiffiffiffiffiffiffi
L=Xb

p
! BC� corresponds to an invertible sheaf, denoted by L1=b in

[8], on
ffiffiffiffiffiffiffiffiffiffi
L=Xb

p
whose b-th power is isomorphic to the pullback of L.
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The stack
ffiffiffiffiffiffiffiffiffiffi
L=Xb

p
is a mb-banded gerbe over X (see the second paragraph of Subsec-

tion 6.1 below). The Kummer exact sequence

1! mb ! Gm !
5b

Gm ! 1

induces the boundary morphism q : H 1
étðX;GmÞ ! H 2

étðX; mbÞ. The cohomology class of the
mb-banded gerbe

ffiffiffiffiffiffiffiffiffiffi
L=Xb

p
in H 2

étðX; mbÞ is the image by q of the class ½L� A H 1
étðX;GmÞ.

The gerbe is trivial if and only if the invertible sheaf L has a b-th root in PicðXÞ. More
generally, the gerbe

ffiffiffiffiffiffiffiffiffiffi
L=Xb

p
is isomorphic, as a mb-banded gerbe, to

ffiffiffiffiffiffiffiffiffiffiffiffi
L 0=Xb

p
if and only if

½L� ¼ ½L 0� in PicðXÞ=b PicðXÞ. We have the following morphism of short exact sequences:

0 ���! Z ���������!�b
Z �������! Z=bZ ���! 0???y
???y

����
0 ���! PicðXÞ ���! Picð

ffiffiffiffiffiffiffiffiffiffi
L=Xb

p
Þ ���! Z=bZ ���! 0

ð1:3Þ

where the first and second vertical morphisms are defined by 1 7! L and 1 7! L1=b, respec-
tively.

1.3.b. Roots of e¤ective Cartier divisors. In the articles [12] and [2], the authors de-
fine the notion of root of an invertible sheaf with a section on an algebraic stack: here, we
only consider roots of e¤ective Cartier divisors on a smooth algebraic stack, since this is
what we will use.

Let n be a positive integer. Consider the quotient stack ½An=ðC�Þn� where the action
of ðC�Þn is given multiplication coordinates by coordinates. Notice that ½An=ðC�Þn� is the
moduli stack of n line bundles with n global sections. Let a :¼ ða1; . . . ; anÞ A ðN>0Þn be an
n-tuple. Denote by 5a : ½An=ðC�Þn� ! ½An=ðC�Þn� the stack morphism defined by sending
xi 7! xai

i and li 7! lai

i where xi (resp. li) are coordinates of An (resp. ðC�Þn).

Let X be a smooth algebraic stack. Let D :¼ ðD1; . . . ;DnÞ be n e¤ective Cartier divi-
sors. The a-th root of ðX;DÞ is the fiber product

ffiffiffiffiffiffiffiffiffiffiffi
D=Xa

p ���! ½An=ðC�Þn�

p

???y
???y5a

X �����!D ½An=ðC�Þn�:

r

The morphism
ffiffiffiffiffiffiffiffiffiffiffi
D=Xa

p
! ½An=ðC�Þn� corresponds to the e¤ective Cartier divisors

~DD :¼ ð ~DD1; . . . ; ~DDnÞ, where ~DDi is the reduced closed substack p�1ðDiÞred. More explicitly, an
object of

ffiffiffiffiffiffiffiffiffiffiffi
D=Xa

p
over a scheme S is a couple

�
f ; ð ~DD1; . . . ; ~DDnÞ

�
where f : S ! X is a mor-

phism and for any i, Di is an e¤ective divisor on S such that ai
~DDi ¼ f �Di.

We have the following properties:

(1) The fiber product of
ffiffiffiffiffiffiffiffiffiffiffiffi
Di=X

ai
p

over X is isomorphic to
ffiffiffiffiffiffiffiffiffiffiffi
D=Xa

p
(cf. [12], Remark

2.2.5).
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(2) The canonical morphism
ffiffiffiffiffiffiffiffiffiffiffi
D=Xa

p
! X is an isomorphism over Xn

S
i

Di.

(3) If X is smooth, each Di is smooth and the Di have simple normal crossing thenffiffiffiffiffiffiffiffiffiffiffi
D=Xa

p
is smooth (cf. Section 2.1 of [8]) and ~DDi have simple normal crossing.

(4) We have the following morphism of short exact sequences (cf. [12], Corollary
3.1.2)

0 ���! Zn ��������!�a
Zn �������! Qn

i¼1

Z=aiZ ���! 0???y
???y

����
0 ���! PicðXÞ ���!p� Picð

ffiffiffiffiffiffiffiffiffiffiffi
D=Xa

p
Þ ���!q Qn

i¼1

Z=aiZ ���! 0

ð1:4Þ

where the first and second vertical morphisms are defined by ei 7! OðDiÞ and ei 7! Oð ~DDiÞ,
respectively. Every invertible sheaf L A Picð

ffiffiffiffiffiffiffiffiffiffiffi
D=Xa

p
Þ can be written in a unique way as

LG p�M n
Qn
i¼1

Oðki
~DDiÞ where M A PicðXÞ and 0e ki < ai; the morphism q maps L to

ðk1; . . . ; knÞ.

We finish this section with the following observation. Let D1 and D2 be two e¤ective
Cartier divisors on X such that D1 XD2 3j. The stacks

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1 WD2=X

a
p

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD1;D2Þ=Xða; aÞ

p
are not isomorphic. Indeed, the stabilizer group at any point in the preimage of x A D1 XD2

in
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1 WD2=X

a
p

(resp.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD1;D2Þ=Xða; aÞ

p
) is ma (resp. ma � ma).

1.4. Rigidification. In this subsection, we sum up some results on the rigidification
of an irreducible d-dimensional smooth Deligne-Mumford stack X. Intuitively, the rigidifi-
cation of X by a central subgroup G of the generic stabilizer is constructed as follows: first,
one constructs a prestack where the objects are the same and the automorphism groups of
each object x are the quotient AutXðxÞ=G; then the rigidification X(G is the stackification
of this prestack. For the most general construction we refer to [3], Appendix A (see also [1],
Section 5.1, [32] and [2], Appendix C).

We consider the union I genðXÞH IðXÞ of all d-dimensional components of IðXÞ; it is
a subsheaf of groups of IðXÞ over X which is called the generic stabilizer. Most of the time
in this article, we will rigidify by the generic stabilizer. In this case, we write Xrig in order to
mean X( I genðXÞ and call it the rigidification.

The rigidification r : X! Xrig has the following properties:

(1) The coarse moduli space of Xrig is the coarse moduli space of X.

(2) Xrig is an orbifold.

(3) If X is an orbifold then Xrig is X.

(4) The morphism r makes X into a gerbe over Xrig.

We refer to [1], Theorem 5.1.5(2), for the proof of the following proposition.
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Proposition 1.5 (universal property of the rigidification). Let X be a smooth Deligne-

Mumford stack. Let Y be an orbifold. Let f : X! Y be a dominant stack morphism.

Then there exists g : Xrig ! Y and a 2-morphism a : g � r) f such that the following is 2-

commutative:

X ���!r Xrig???ybg

Y:

 ���
���

f

If there exists g 0 : Xrig ! Y and a 2-morphism a 0 : g 0 � r) f satisfying the same property

then there exists a unique g : g 0 ) g such that a � ðg � idrÞ ¼ a 0.

1.5. Diagonalizable group schemes. In this short subsection, we recall some results
on diagonalizable groups.

Definition 1.6. A group scheme G over SpecC will be called diagonalizable if it is
isomorphic to the product of a torus and a finite abelian group.

We use multiplicative notation for diagonalizable group. For any diagonalizable
group G, its character group G4 :¼ HomðG;C�Þ is a finitely generated abelian group (or
coherent Z-module). The duality contravariant functor G 7! G4 induces an equivalence
of categories from diagonalizable to coherent Z-module. Its inverse functor is given by
F 7! GF :¼ HomðF ;C�Þ. Both G 7! G4 and F 7! GF are contravariant and exact.

1.6. Toric varieties. We recall some results on toric varieties that can be found in
[17] (see also [15]). The principal construction used in this paper is the description of toric
varieties as global quotients found by Cox (see [13]).

We fix a torus T , and denote by M ¼ T4 the lattice of characters and by
N :¼ HomðM;ZÞ the lattice of one-parameter subgroups. A toric variety X with torus T

corresponds to a fan SðXÞ, or just S, in NQ :¼ NnZ Q, which we will always assume to be
simplicial.

Let r1; . . . ; rn be the one-dimensional cones, called rays, of S. For any ray ri, denote
by vi the unique generator of ri XN. For any i in f1; . . . ; ng, we denote by Di the irreduc-
ible T-invariant Weil divisor defined by the ray ri. The free abelian group of T-invariant
Weil divisor is denoted by L.

Let i : M ! L be the morphism that sends m 7!
Pn

i¼1

mðviÞ. If the rays span NQ (which

is not a strong assumption2)), the morphism i is injective, and fits into an exact sequence in
CohðZÞ

0!M !i L! A! 0;ð1:7Þ

2) Indeed, if the rays do not span NQ then X is isomorphic to the product of a torus and a toric variety ~XX
whose rays span ~NNQ.
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where A is the class group of X (i.e., the Chow group A1ðXÞ). We deduce that the short
exact sequence of diagonalizable groups

1! GA ! GL ! T ! 1:ð1:8Þ

Let ZSHCn be the GL ¼ ðC�Þn-invariant open subset defined as ZS :¼
S
s AS

Zs, where

Zs :¼ fx j xi 3 0 if ri B sg. The induced action of GA on ZS has finite stabilizers (by the
simpliciality assumption) and X is the geometric quotient ZS=GA, with torus ðC�Þn=GA

(see [13], Theorem 2.1). For any i A f1; . . . ; ng, the T-invariant Weil divisor Di HX is the
geometric quotient

ðfxi ¼ 0gXZSÞ=GA:ð1:9Þ

If X is smooth then the natural morphism L! PicðXÞ given by ei 7! OX ðDiÞ is sur-
jective and has kernel M; in other words, it induces a natural isomorphism A! PicðXÞ.

If X is a d-dimensional toric variety, we will write X 0 for the union of the orbits
of dimensionf d � 1; in other words, X 0 is the toric variety associated to the fan
Se1 :¼ fs A S j dim se 1g. The toric variety X 0 is always smooth and the toric divisors
D0

r are smooth, disjoint, and homogeneous under the T-action (with stabilizer the one-
dimensional subgroup which is the image of r).

1.7. Picard stacks and action of a Picard stack. Deligne defined Picard stacks in [7],
Exposé XVIII, as stacks analogous to sheaves of abelian groups. For the reader’s conve-
nience, we collect here a sketch of the definition and the main properties we need; details
can be found in [7], Exposé XVIII, and also in [26], Section 14.

Here we summarize the definition of a Picard stack. For the details we refer to Defi-
nition B.1.

Definition 1.10. Let G be a stack over a base scheme S. A Picard stack G over S is
given by the following set of data:

� a multiplication stack morphism m : G� G! G, also denoted by

mðg1; g2Þ ¼ g1 � g2;

� an associativity 2-arrow ðg1 � g2Þ � g3 ) g1 � ðg2 � g3Þ;

� a commutativity 2-arrow g1 � g2 ) g2 � g1.

These data satisfy some compatibility relations, which we list in B.1.

The definition implies that there also exists an identity e : S ! G and an inverse
i : G! G with the obvious properties; in particular, a 2-arrow e : ðe � gÞ ) g.

Definition 1.11 (see [7], Section 1.4.6). Let G, G 0 be two Picard stacks. A morphism

of Picard stacks F : G! G 0 is a morphism of stacks and a 2-arrow a such that for any two
objects g1, g2 in G, we have

Fðg1 � g2Þ )
a

Fðg1Þ � Fðg2Þ:
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Again we refer to Appendix B for the list of compatibilities satisfied by a. The Picard
stacks over S form a category where the objects are Picard stacks and morphisms are
equivalence classes of morphisms of Picard stacks.

Remark 1.12. To any complex G� :¼ ½G�1 ! G0� of sheaves of abelian groups, we
can associate a Picard stack G. In this paper, G� will be a complex of diagonalizable groups
and the associated Picard stack is the quotient stack ½G�1=G0�.

Proposition 1.13 (see [7], Proposition 1.4.15). The functor that associates to a length

1 complex of sheaves of abelian groups a Picard stack induces an equivalence of categories

between the derived category, denoted by D½�1;0�ðS;ZÞ, of length 1 complexes of sheaves of

abelian groups and the category of Picard stacks.

In particular, if G is any sheaf of abelian groups on the base scheme S, the quotient
½S=G�, i.e. the gerbe BG, is naturally a Picard stack.

We finish this section with a sketch of the definition of an action of a Picard stack
on a stack. This is a generalization of the action of a group scheme on a stack defined by
Romagny in [32]. We refer to Definition B.12 for the details.

Definition 1.14 (action of a Picard stack). Let G be a Picard stack. Denote by e the
neutral section and by � the corresponding 2-arrow. Let X be a stack. An action of G on X
is the following data:

� a stack morphism a : G�X! X, also denoted by aðg; xÞ ¼ g� x;

� a 2-arrow e� x) x;

� an associativity 2-arrow ðg1 � g2Þ � x) g1 � ðg2 � xÞ.

These data satisfy some compatibility relations, which we list in Appendix B.

2. Deligne-Mumford tori

In this section we define Deligne-Mumford tori which will play the role of the torus
for a toric variety.

We start with a technical lemma.

Lemma 2.1. Let f : A0 ! A1 be a morphism of finitely generated abelian groups such

that ker f is free. In the derived category of complexes of finitely generated abelian groups

of length 1, the complex ½A0 ! A1� is isomorphic to ½ker f!0 coker f�.

Proof. We have a morphism of complexes

½A0 !f A1� ! ½A0=A0
tor !

~ff
A1=A0

tor�

induced by the quotient morphisms. As ker f is free, we deduce after a diagram chasing that
this morphism is a quasi-isomorphism of complexes. In the derived category, we replace
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A1=A0
tor with a projective resolution ½Zl !Q Zdþl�. Then the mapping cone of the morphism

of complexes ½0! A0=A0
tor� ! ½Q : Zl ! Zdþl� is ½½ ~ffQ� : A0=A0

tor � Zl ! Zdþl� which is

quasi-isomorphic to ½A0=A0
tor !

~ff
A1=A0

tor�. A morphism of free abelian groups f is quasi-
isomorphic to the complex ½ker f !0 coker f � and this finishes the proof. r

The reader who is familiar with the article [10] has probably recognized part of the
construction of the stack associated to a stacky fan.

Remark 2.2. Let f : A0 ! A1 be a morphism of finitely generated abelian groups as
in the above lemma. Applying the contravariant functor Homð�;C�Þ of Section 1.5 to the

complex A0 ! A1, we get a length 1 complex of diagonalizable groups ½GA1 !
Gf

GA0 �. Ac-
cording to Remark 1.12, the associated Picard stack ½GA0=GA1 � is a Deligne-Mumford stack
if and only if the cokernel of f is finite.

Example 2.3. Let w0; . . . ;wn be in N>0. Let f : Znþ1 ! Z that sends ða0; . . . ; anÞ toP
wiai. We have that ker f ¼ Zn and coker f ¼ Z=dZ where d :¼ gcdðw0; . . . ;wnÞ. Hence,

the associated Picard stack is ðC�Þn �Bmd .

Definition 2.4. A Deligne-Mumford torus is a Picard stack over SpecC which is
obtained as a quotient ½GA0=GA1 �, where f : A0 ! A1 is a morphism of finitely generated
abelian groups such that ker f is free and coker f is finite.

Let G be a finite abelian group. Notice that BG is a Deligne-Mumford torus. Recall
that by Proposition 1.13, T �BG has a natural structure of Picard stack.

Definition 2.5. A short exact sequence of Picard S-stacks is the sequence of mor-
phisms of Picard S-stacks associated to a distinguished triangle in D½�1;0�ðSÞ.

Proposition 2.6. Any Deligne-Mumford torus T is isomorphic as Picard stack to

T �BG where T is a torus and G is a finite abelian group.

Proof. Let T ¼ ½GA0=GA1 � with f : A0 ! A1 as above. The distinguished triangle

½ker Gf ! 0� ! ½GA1 !
Gf

GA0 � ! ½0! coker Gf� in the derived category D½�1;0�ðSpecCÞ in-
duces an exact sequence of Picard stacks 1! BG !T! T ! 1 where T :¼ GA0=GA1 .
Proposition 1.13 and Lemma 2.1 imply that there is a non-canonical isomorphism of Picard
stacks T1BG � T . r

Note that the scheme T in the previous proof is the coarse moduli space of T.

3. Definition of toric Deligne-Mumford stacks

Definition 3.1. A smooth toric Deligne-Mumford stack is a smooth separated
Deligne-Mumford stack X together with an open immersion of a Deligne-Mumford torus
i : T ,! X with dense image such that the action of T on itself extends to an action
a : T�X! X.

As in this paper all toric Deligne-Mumford stacks are smooth, we will write toric
Deligne-Mumford stack instead of smooth toric Deligne-Mumford stack. We will see later
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in Theorem 7.24 that our definition a posteriori coincides with that in [10] via stacky fans.
It seems natural to define a toric Deligne-Mumford stack by replacing smooth with normal
in the above definition. All the definitions and results in this section apply also in this case,
with the exception of Proposition 3.6 and Lemma 3.8. Ilya Tyomkin is currently working
on this. A toric orbifold is a toric Deligne-Mumford stack with generically trivial stabilizer.
A toric Deligne-Mumford stack is a toric orbifold if and only if its Deligne-Mumford torus
is an ordinary torus. Hence, the notion of toric orbifold is the same as the one used in [22],
Theorem 1.3.

Remark 3.2. (1) Separatedness of X and Proposition 1.2 imply that the action of T
on X is uniquely determined by i.

(2) Notice that we have assumed in Section 1.2 that the coarse moduli space is a
scheme. Without this assumption, if the coarse moduli space X of a toric Deligne-Mumford
stack is a smooth and complete algebraic space then the main theorem of Bialynicki-Birula
in [9] implies that X is a scheme. We don’t know whether such an assumption is necessary
in general.

(3) A toric variety admits a structure of toric Deligne-Mumford stack if and only if it
is smooth.

Proposition 3.3. Let X be a smooth Deligne-Mumford stack together with an open

dense immersion of a Deligne-Mumford torus i : T ,! X such that the action of T on itself

extends to a stack morphism a : T�X! X. Then the stack morphism a induces naturally

an action of T on X.

Proof. We will define a 2-arrow h : a � ðe; idXÞ ) idX and a 2-arrow

s : a � ðm; idXÞ ) a � ðidX; aÞ

such that they verify conditions (1) and (2) of Definition B.12. We will only prove the
existence of h because the existence of s and the relations (1) and (2) follow with a similar
argument.

Denote by e : SpecC!T the neutral element of T and by m : T�T!T the
multiplication on T. Denote by e the 2-arrow m � ðe; idTÞ ) idT. As the stack mor-
phism a extends m, we have a 2-arrow a : a � ðidT; iÞ ) i �m. Denote by b the 2-arrow
ðe; idXÞ � i) ðidT; iÞ � ðe; idTÞ. Consider the two stack morphisms:

T X X:i

idX

a�ðe; idXÞ

Applying Proposition 1.2 with the composition of the following 2-arrows

a � ðe; idXÞ � i ¼¼¼¼)
ida�b

a � ðidT; iÞ � ðe; idTÞ ¼¼¼¼)
a�idðe; idTÞ

i �m � ðe; idTÞ ¼¼¼¼)
idi�e

i � idT ¼ idX � i;

we deduce the existence of h : a � ðe; idXÞ ) idX. r
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Definition 3.4. Let X (resp. X 0) be a toric Deligne-Mumford stack with Deligne-
Mumford torus T (resp. T 0). A morphism of toric Deligne-Mumford stacks F : X! X 0 is
a morphism of stacks between X and X 0 which extends a morphism of Deligne-Mumford
tori T!T 0:

Remark 3.5. The extended morphism F in the previous definition is unique by Pro-
position 1.2. Moreover the definition of morphism between Picard stacks and Proposition
1.2 provide us the following 2-cartesian diagram:

X�T ���!ðF ;F jTÞ
X 0 �T 0

a

???y
???ya 0

X ��������!F
X 0:

r

Proposition 3.6. Let X be a toric Deligne-Mumford stack with Deligne-Mumford

torus T. Let X (resp. T) be the coarse moduli space of X (resp. T). Then X has a structure

of simplicial toric variety with torus T where the open dense immersion i : T ,! X and the

action a : T � X ! X is induced respectively by i : T ,! X and a : T�X! X.

Proof. The morphisms i and a induce morphisms on the coarse moduli spaces
i : T ! X and a : T � X ! X , by the universal property of the coarse moduli space. It is
immediate to verify that i is an open embedding with dense image and a is an action, ex-
tending the action of T on itself. On the other hand, since X is the coarse moduli space of
X, it is a normal separated variety with finite quotient singularities. Therefore X is a toric
variety, and it is simplicial by [21], §7.6, p. 121 (see also [15], Theorem 3.1, p. 28). r

Remark 3.7 (divisor multiplicities). According to [26], Corollary 5.6.1, the structure
morphism e : X! X induces a bijection on reduced closed substacks. For each
i ¼ 1; . . . ; n, denote by Di HX the reduced closed substack with support e�1ðDiÞ.
Since Di XXsm is a Cartier divisor, there exists a unique positive integer ai such that
e�1ðDi XXsmÞ ¼ ai

�
Di X e�1ðXsmÞ

�
. We call a ¼ ða1; . . . ; anÞ the divisor multiplicities of X.

Let X be a toric Deligne-Mumford stack with Deligne-Mumford torus T ¼ T �BG.
By Appendix B, we have that BG acts on X. Proposition B.15 implies that we have an étale
morphism j : G �X! I genðXÞ.

Lemma 3.8. Let X be a toric Deligne-Mumford stack with Deligne-Mumford torus

T ¼ T �BG. The morphism j : G �X! I genðXÞ is an isomorphism.

Proof. As the stack X is separated, we have that the natural morphism IðXÞ ! X
is proper. As the projection G �X! X is a proper morphism, the morphism j is also a
proper morphism. Its image contains the substack IðTÞ ¼ I genðTÞ which is open and
dense in I genðXÞ. We deduce that the morphism j is birational. As the morphism j is étale,
it is quasi-finite (cf. [19], Exposé I, §3). The morphism j is proper hence closed and as its
image contains the open dense torus, j is surjective. The morphism j is a representable,
birational, surjective and quasi-finite morphism to the smooth Deligne-Mumford stack X.
The stacky Zariski’s main theorem C.1 finishes the proof. r
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4. Canonical toric Deligne-Mumford stacks

In §4.1 we define the canonical smooth Deligne-Mumford stack associated to a
variety with finite quotient singularities and we show that a canonical smooth Deligne-
Mumford stack satisfies a universal property (Theorem 4.6). This should be well known,
but we include it for the reader’s convenience.

In §4.2, we characterize the canonical toric Deligne-Mumford stack via its coarse
moduli space.

4.1. Canonical smooth Deligne-Mumford stacks. In this subsection, we do not as-
sume that smooth Deligne-Mumford stacks are toric. First, we define canonical smooth
Deligne-Mumford stacks and then we prove their universal property.

We recall a classical result.

Lemma 4.1. Let S be a smooth variety, and T be an a‰ne scheme. Let S 0HS be an

open subvariety such that the complement has codimension at least 2 in S. Let f : S 0 ! T be

a morphism. Then the morphism f extends uniquely to a morphism S ! T .

Proof. The morphism f corresponds to an algebra homomorphism

K½T � ! GðS 0;OS 0 Þ:

Since the complement has codimension 2, the restriction map GðS;OSÞ ! GðS 0;OS 0 Þ is an
isomorphism. r

Definition 4.2. (1) A dominant morphism f : V !W of irreducible varieties is
called codimension preserving if, for any irreducible closed subvariety Z of W and every
irreducible component ZV of f �1ðZÞ, one has codimV ZV ¼ codimW Z.

(2) A dominant morphism of orbifolds is called codimension preserving if the induced
morphism on every irreducible component of the coarse moduli spaces is codimension
preserving.

Remark 4.3. For any Deligne-Mumford stack, the structure morphism to the coarse
moduli space is codimension preserving. Every flat morphism and in particular every
smooth and étale morphism is codimension preserving. A composition of codimension
preserving morphisms is codimension preserving.

Definition 4.4. Let X be an irreducible d-dimensional smooth Deligne-Mumford
stack. Let e : X! X be the structure morphism to the coarse moduli space. The Deligne-
Mumford stack X will be called canonical if the locus where e is not an isomorphism has
dimensione d � 2.

Remark 4.5. Let X be a smooth canonical stack

(1) The locus where the structure map to the coarse moduli space e : X! X is an
isomorphism is precisely e�1ðXsmÞ, where Xsm is the smooth locus of X .
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(2) The composition of the following isomorphisms

A1ðX Þ !F A1ðXsmÞ !
F

PicðXsmÞ !
F

Pic
�
e�1ðXsmÞ

�
!F PicðXÞ

is the map sending ½D� to O
�
e�1ðDÞ

�
.

Theorem 4.6 (universal property of canonical smooth Deligne-Mumford stacks). Let

Y be a canonical smooth Deligne-Mumford stack, e : Y! Y the morphism to the coarse

moduli space, and f : X! Y a dominant codimension preserving morphism with X an orbi-

fold. Then there exists a unique, up to a unique 2-arrow, g : X! Y such that the following

diagram is commutative:

X ���!b!g Y???ye

Y :

 ���
���

f

Proof. We first prove uniqueness. Any two morphisms g, g making the diagram
commute must agree on the open dense subscheme f �1ðYsmÞ. Put i : f �1ðYsmÞ ,! X. Since
Y is assumed to be separated, by Proposition 1.2, there exists a unique a : g! g such that
a � idi ¼ id.

By uniqueness, it is enough to prove the result étale locally in Y, so we can assume
that Y ¼ ½V=G� where V is a smooth a‰ne variety and G a finite group acting on V with-
out pseudo-reflections. It is enough to show that there exists an étale surjective morphism
p : U ! X with U a smooth variety and a morphism g : U ! Y such that f � p ¼ e � g.
In fact, g is defined from g by descent, with the appropriate compatibility conditions
being taken care of by the uniqueness part. In this case Y ¼ V=G, and Y0 :¼ V0=G where
V0 HV is the open locus where G acts freely. Let U0 :¼ ð f � pÞ�1ðY0Þ. As ½V0=G� is
isomorphic to Y0, we have a natural morphism U0 ! ½V0=G�. This morphism defines a
principal G-bundle P0 on U0 and a G-equivariant morphism s0 : P0 ! V0.

P0 V0

U0 ½V0=G�

Y ¼ V=G

P V

U �������� � !
ðP; sÞ

½V=G�

Y0 ¼ V0=G

ð4:7Þ

 
���

���
���

 
���

 
���

���
���

 
���

���
���

 ���
����

 ���
����

 ���
����

 ���
���

 
���

���
���

����

 ��
����

����
����

 ����
�

 ��
����

����
����

 ��
����

����
��

f �p
e

������������������!s0

������������������!s

�������!
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Since the UnU0 has codimensionf 2, the principal G-bundle P0 extends uniquely to a
principal G-bundle P over U , and by Lemma 4.1 (since V is a‰ne) the G-equivariant
morphism s0 : P0 ! V0 extends to a morphism s : P! V which is again G-equivariant,
yielding a morphism g : U ! ½V=G�. The construction above is summarized in the 2-
commutative diagram (4.7) where the squares are 2-cartesian. r

Corollary 4.8. Let X (resp. Y) be a canonical smooth Deligne-Mumford stack with

coarse moduli space X (resp. Y ). Let f : X ! Y be an isomorphism. Then there is a unique

isomorphism f : X! Y inducing f .

Proof. It is enough to apply the theorem twice, reversing the role of X and Y. r

Remark 4.9. One can use the corollary to prove the classical fact that every variety
Y with finite quotient singularities is the coarse moduli space of a canonical smooth
Deligne-Mumford stack unique up to rigid isomorphism, which we denote by Ycan (do
it étale locally and then glue). If Y is the geometric quotient Z=G where Z is a smooth
variety and G is a group without pseudo-reflections acting with finite stabilizers, then
Ycan ¼ ½Z=G�. Notice that this is the case of simplicial toric varieties (cf. Section 1.6).

We finish this section with a corollary that will play an important role.

Corollary 4.10. Let X be a smooth Deligne-Mumford stack with coarse moduli space

e : X! X. There is a unique morphism X! Xcan through which e factors.

Proof. Apply the theorem with Y ¼ X , Y ¼ Xcan and f ¼ e. r

4.2. The canonical stack of a simplicial toric variety. In this section, we study the
canonical stack associated to a simplicial toric variety.

The main result of this section is the following theorem.

Theorem 4.11. Let X be a simplicial toric variety with torus T. Its canonical stack

Xcan has a natural structure of toric orbifold such that the action acan : T �Xcan ! Xcan lifts

the action a : T � X ! X .

Proof. Denote by S the fan in N nZ Q of the toric variety X . Without loss of gen-
erality, we can assume that the rays of S generate N nZ Q, so that X ¼ ZS=GA (cf. §1.6).
The subvariety of points where GA acts with non-trivial stabilizers has codimensionf 2.
Remark 4.9 implies that the canonical stack Xcan is isomorphic to ½ZS=GA�. Let
T :¼ ðC�Þn=GA be the torus of the toric variety X . Notice that Tcan ¼ ½ðC�Þn=GA� is open
dense and isomorphic via ejT can to T . Proposition 3.3 and the universal property (see The-
orem 4.6) of the canonical stack imply that the action of T on X lifts to an action of T on
Xcan. r

Remark 4.12. (1) Under the hypothesis of Theorem 4.11, we have that the restric-
tion of the structure morphism e : Xcan ! X to Tcan is an isomorphism with T .

(2) Let X be a canonical toric Deligne-Mumford stack with Deligne-Mumford
torus T ¼ T with coarse moduli space the simplicial toric variety X . Denote by
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SHNQ :¼ N nQ the fan of X . Assume that the rays of S generate NQ. The proof above
shows that X ¼ ½ZS=GA� where GA ¼ Hom

�
A1ðXÞ;C�

�
¼ Hom

�
PicðXÞ;C�

�
(cf. Remark

4.5(2)).

Corollary 4.13. Let X be a canonical toric Deligne-Mumford stack with torus T ¼ T

and coarse moduli space the simplicial toric variety X. Denote SHNQ the fan of X .

(1) The boundary divisor XnT is a simple normal crossing divisor, with irreducible

components, denoted by Di. Moreover, if the rays of S generate NQ, then the divisor Di is

isomorphic to ½Zi=GA� where Zi ¼ fxi ¼ 0gXZS.

(2) The composition morphism L! A1ðX Þ !e
�

PicðXÞ sends ei to OXðDiÞ.

Proof. The first point of the corollary follows from the fact that the inverse image
inside ZS of the torus T ¼ ðC�Þn=GA is ðC�Þn.

The second part of the corollary follows from the exact sequence (1.7) and Remark
4.5(2). r

Remark 4.14. Let X be a canonical toric Deligne-Mumford stack with coarse mod-
uli space X .

(1) Denote by S the fan of X in NQ. If the rays of S span NQ, from the corollary and
the exact sequence (1.7), we have the exact sequence

0!M ! L! PicðXÞ ! 0:

(2) For any i A f1; . . . ; ng, the divisor Di is Cartier. Hence it corresponds to the inver-
tible sheaf OðDiÞ with the canonical section si. Using Remark 1.1, the invertible sheaf
OðDiÞ is associated to the representation GA ! GL ¼ ðC�Þn !

pi
C� where pi is the i-th pro-

jection. Moreover, the canonical section si is the i-th coordinate of ZS.

(3) Let X be a canonical toric Deligne-Mumford stack, then all divisor multiplicities
of X are equal to 1 (for the definition of divisor multiplicity see Remark 3.7).

5. Toric orbifolds

In this section, we only consider toric Deligne-Mumford stacks with trivial generic
stabilizer that is toric orbifolds.

Let X be a smooth Deligne-Mumford stack with coarse moduli space X . By Proposi-
tion 3.6 and Theorem 4.11, the canonical stack Xcan has an induced structure of toric
orbifold. Denote by eX : X! X (resp. eX can : Xcan ! X ) the morphism to the coarse
moduli space. Theorem 4.6 implies that there exists a unique f : X! Xcan such that
eX can � f ¼ eX.

Proposition 5.1. Let X be a toric orbifold with torus T and coarse moduli space X.

The canonical morphism f : X! Xcan is a morphism of toric Deligne-Mumford stacks

where Xcan is endowed with the induced structure of toric orbifold.
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Proof. The universal property of the canonical stack (cf. Theorem 4.6) applied to
id : T ! T implies that f jT : T !Tcan. r

Notice that the morphism f jT : T !Tcan in the proof above is an isomorphism be-
cause X is a toric orbifold.

Denote Dcan :¼ ðDcan
1 ; . . . ;Dcan

n Þ (cf. Section 1.3.b).

Theorem 5.2. (1) Let X be a simplicial toric variety with torus T. Denote by S a fan

of X. For each ray ri of S, choose ai in N>0. Denote a :¼ ða1; . . . ; anÞ A ðN>0Þn. Thenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dcan=Xcana

p
has a unique structure of toric orbifold with torus T such that the canonical

morphism p :
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dcan=Xcana

p
! Xcan is a morphism of toric Deligne-Mumford stacks with

divisor multiplicities a.

(2) Let X be a toric orbifold with coarse moduli space X. Let a :¼ ða1; . . . ; anÞ be its

divisors multiplicities. Then X is naturally isomorphic as toric Deligne-Mumford stack toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dcan=Xcana

p
defined in (1).

Proof. (1) Let Tcan LXcan be the inverse image of T (which is isomorphic to T).
Note that p�1ðTÞL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dcan=Xcana

p
is isomorphic to Tcan by property (2) of Section 1.3.b.

Let j : T !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dcan=Xcana

p
be the dominant open embedding. We need to prove that T

acts on
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dcan=Xcana

p
compatibly with j. We know that T acts on Xcan. To define

T �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dcan=Xcana

p
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dcan=Xcana

p
we use the universal property and the fact that

Dcan LXcan is T-invariant.

(2) For any i A f1; . . . ; ng, denote by Di, Dcan
i , DiðXÞ the divisor corresponding to the

ray ri in respectively X , Xcan and X. Theorem 4.11 implies there exists a unique morphism
f : X! Xcan such that eX can � f ¼ eX. By definition of the divisors multiplicities, for any
ray ri, we have f �1Dcan

i ¼ aiDiðXÞ. The Cartier divisors DðXÞ :¼
�
D1ðXÞ; . . . ;DnðXÞ

�
de-

fine a morphism X! ½An=ðC�Þn� such that the following diagram is 2-commutative:

X ����!DðXÞ ½An=ðC�Þn�???y f

???y5a

Xcan ���!D can

½An=ðC�Þn�

ð5:3Þ

where the morphism5a is defined in Section 1.3.b. By the universal property of fiber prod-
uct, we deduce a unique morphism g : X!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dcan=Xcana

p
such that the following diagram is

strictly commutative:

X ���!g ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dcan=Xcana

p
???yp

Xcan:

 ���
�����

�

f

218 Fantechi, Mann and Nironi, Deligne-Mumford stacks

AUTHOR’S COPY | AUTORENEXEMPLAR 

AUTHOR’S COPY | AUTORENEXEMPLAR 



We will use the Zariski’s main theorem (cf. Theorem C.1) to prove that g is an iso-
morphism. We first notice that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dcan=Xcana

p
is smooth for property (3) in §1.3.b. As, the

restriction of g over Xcan �
S
i; j

Dcan
i XDcan

j is an isomorphism, the morphism g is birational.

Notice that
S
i; j

Dcan
i XDcan

j is a subset of codimensionf 2. The morphism g is proper,

hence closed, so we deduce that g is also surjective because its image contains the dense
torus. Let us show that g is representable and étale. Let S be a scheme. Consider the fol-
lowing 2-cartesian diagram:

Y ��������!g
S???y
???y

X ���!g ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dcan=Xcana

p
:

r

Let U ! Y be an étale atlas of Y. First we observe that the morphism U ! S, denote it by
~gg, must be flat, so that the morphism g is flat too. To verify this we can apply [27], Thm.
23.1, using that both S and U are smooth and the dimension of the fibers of ~gg is constantly
zero. To prove that the dimension of the fibers is zero we just need to observe that both p

and f are quasi-finite, since they are morphisms from a stack to its coarse moduli space,
and f factors through g so that it must be quasi-finite too. We now note that the morphism
U ! S is étale away from a codimensionf 2 subset, so we can apply the theorem of
purity of branch locus (cf. [5], Theorem 6.8, p. 125) and deduce that U ! S is étale, i.e.,
g : Y! S is étale. Without loss of generality we can assume that S is actually an atlas;
we assume that Y is a stack and we prove that it must be actually a scheme. First of all we
observe that it cannot have generically non-trivial stabilizer, since the morphism Y! X is
representable it must induce an injection of the stabilizer at each geometric point [4], but X
is an orbifold so that Y must be an orbifold too. There exists an étale representable map
½V=K� ! Y where V is a smooth variety and K is a finite group. Hence the induced map
V ! S is étale. By the universal property, it factors via the coarse moduli space V=K , and
the map V ! V=K is not injective on tangent vectors unless K is acting freely, hence
V ! V=K cannot be étale unless Y has trivial stabilizers everywhere. We now observe
that the morphism V=K ! S is still birational surjective and quasi-finite, using Zariski’s
main theorem for schemes we can deduce that it is an isomorphism, in particular it is étale
and this implies that V ! V=K must be étale. We conclude that Y is a scheme, i.e., g is
representable and étale. So it is also quasi-finite (cf. [19], Exposé I, §3).

As the morphism g is representable, surjective, birational and quasi-finite, the stacky
Zariski’s main theorem C.1 implies that g is an isomorphism. r

The following corollary is a consequence of property (3) of Section 1.3.b and Theo-
rem 5.2.

Corollary 5.4. Let X be a toric orbifold with coarse moduli space X. The reduced

closed substack XnT is a simple normal crossing divisor.

Remark 5.5. Let X be a toric orbifold with coarse moduli space X . Diagram (1.4)
and Theorem 5.2 imply that we have the following morphism of exact sequences:
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0 ������! Zn ��������!�a
Zn �����! Ln

i¼1

Z=aiZ ���! 0???y
???y

����
0 ���! PicðXcanÞ ���!f � PicðXÞ ���!q Ln

i¼1

Z=aiZ ���! 0

ð5:6Þ

where the vertical morphisms send 1 7! OðDcan
i Þ and 1 7! OðDiÞ.

6. Toric Deligne-Mumford stacks

In this section we will show that each toric Deligne-Mumford stack is isomorphic to a
fibered product of root stacks on its rigidification. To prove this theorem, we will recall in
Section 6.1 the relation between banded gerbes and root constructions. Then we will show
in Theorem 6.11 that any toric Deligne-Mumford stack is an essentially trivial gerbe on its
rigidification. In Section 6.3, we will prove the main result in Theorem 6.25.

6.1. Gerbes and root constructions. First, we recall some general notion on banded
gerbes (gerbes liées). We refer to [18], chapter IV.2, for a complete treatment and to [16],
Section 3, for a shorter reference. Let X be a smooth Deligne-Mumford stack. Let G be an
abelian sheaf of groups3) and G! X a gerbe. For every étale chart U of X and every ob-
ject x A GðUÞ let ax : GjU ! AutUðxÞ be an isomorphism of sheaves of groups such that the
natural compatibilities coming from the fibered structure of the gerbe are satisfied. The col-
lection of these isomorphisms is called a G-banding. A G-banded gerbe is the data of a gerbe
and a G-banding. Two G-banded gerbes are said to be G-equivalent if they are isomorphic
as stacks and the isomorphism makes the two bandings compatible in the natural way. Gir-
aud proved in [18] (Chapter IV, 3.4) that the group H 2

étðX;GÞ classifies equivalence classes
of G-banded gerbes.

Remark 6.1. We anticipate some observations about the banding which will be use-
ful in the following:

(1) The b-th root of a line bundle on X is a gerbe which is banded in a natural way by
the constant sheaf mb; the banding is the canonical isomorphism between the group of auto-
morphisms of any object and mb.

(2) Given G! X a G-banded gerbe, every rigidification of G by a subgroup H of G

inherits a ðG=HÞ-banding from the G-banding of G.

Here we introduce the concept of an essentially trivial gerbe which will play an im-
portant role in this section. The Kummer sequence

1! mb !
i
Gm !

5b
Gm ! 1

3) The non-abelian case has a richer structure but for the sake of simplicity we just skip all these additional

features and refer the interested reader to [18].
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induces the long exact sequence

� � � ! H 1
étðX;GmÞ !

q
H 2

étðX; mbÞ !
i�

H 2ðX;GmÞ ! � � � :ð6:2Þ

Definition 6.3. A mb-banded gerbe in H 2
étðX; mbÞ is essentially trivial if its image by i�

is the trivial gerbe in H 2
étðX;GmÞ.

Remark 6.4. (1) It follows from Section 1.3.a that a mb-banded gerbe is essentially
trivial if and only if it is a b-th root of an invertible sheaf on X.

(2) As the mb-banded gerbe
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LnMnb=X

b
p

is isomorphic to
ffiffiffiffiffiffiffiffiffiffi
L=Xb

p
, we deduce a

bijection between essentially trivial mb-banded gerbes and PicðXÞ=b PicðXÞ.

Lemma 6.5. There is a natural bijection between essentially trivial gerbes in H 2
étðX; mbÞ

and elements in Ext1
�
Z=bZ;PicðXÞ

�
.

Proof. By Remark 6.4(2), it is enough to show that Ext1
�
Z=bZ;PicðXÞ

�
is isomor-

phic to PicðXÞ=b PicðXÞ. This follows from the exact sequence

Hom
�
Z;PicðXÞ

�
!5b

Hom
�
Z;PicðXÞ

�
! Ext1

�
Z=b;PicðXÞ

�
! 0: r

Let G be a finite abelian group. Fix a decomposition G ¼
Ql
j¼1

mbj
. We deduce an iso-

morphism

H 2
étðX;GÞ !

Ll
j¼1

H 2
étðX; mbj

Þ;ð6:6Þ

a 7! ða1; . . . ; alÞ:

Definition 6.7. Let G be a finite abelian group. A G-banded gerbe associated to

a A H 2ðX;GÞ is essentially trivial if there is a decomposition of G ¼
Ql
j¼1

mbj
such that for any

j A f1; . . . ; lg, the mbj
-banded gerbe aj is essentially trivial.

Remark 6.8. Being essentially trivial does not depend on the choice of a decomposi-
tion of G.

Proposition 6.9. Let G be a finite abelian group. Fix a decomposition of G ¼
Ql
j¼1

mbj
.

There are bijections between

�
Essentially trivial gerbes in

Ll
j¼1

H 2
étðX; mbj

Þ
�

$1:1 fFibered products over X of bj-th roots of invertible sheavesg

$1:1
Ql
j¼1

PicðXÞ=bj PicðXÞ $1:1
Ql
j¼1

Ext1
�
Z=bjZ;PicðXÞ

�
:
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Remark 6.10. To be more concrete, let us explicitly describe the last bijection. For
the sake of simplicity, we consider the case j ¼ 1. To the class ½L0� in PicðXÞ=b PicðXÞ, we
associate the extension

0! PicðXÞ ! PicðXÞ �PicðXÞ=b PicðXÞ Z=bZ! Z=bZ! 0

where the fiber product is given by the standard projection PicðXÞ ! PicðXÞ=b PicðXÞ and
the morphism Z=bZ! PicðXÞ that sends the class of 1 to the class ½L0�. The first morphism
in the extension sends the invertible sheaf L to ðLnb; 0Þ.

Let 0! PicðXÞ ! A! Z=b! 0 be an extension. We consider the projective resolu-
tion 0! Z!�b

Z! Z=b! 0. There exists f and ~ff such that the following diagram is a
morphism of short exact sequences:

0 �����! Z �����! Z ���! Z=b ���! 0???y ~ff

???y f

����
0 ���! PicðXÞ ���! A ���! Z=b ���! 0:

The class ½ ~ff ð1Þ� in PicðXÞ=b PicðXÞ is the element that corresponds to the above extension.

Notice that di¤erent liftings f , ~ff lead to di¤erent elements in PicðXÞ with the same class in
PicðXÞ=b PicðXÞ.

The two maps defined above are inverse to each other.

Proof of Proposition 6.9. Most of the proposition is a direct consequence of Remark
6.4 and Lemma 6.5. The only non-trivial fact to prove is that an essentially trivial gerbe

defined by a ¼ ða1; . . . ; alÞ A
Ll
j¼1

H 2
étðX; mbj

Þ is given by a fiber product of the gerbes defined

by the aj’s. Without loss of generality, we can assume that a ¼ ða1; a2Þ; the general case is
proved by induction. The gerbe defined by a1 (resp. a2) is isomorphic to the rigidification
G( mb2

(resp. G( mb1
). Hence we have the following 2-commutative diagram:

G( mb2

G X
����!  ���

�

 ���
�

����!
G( mb1

:

��������!

Remark 6.1(2) implies that G! G( mb1
(resp. G! G( mb2

) is a mb2
-banded gerbe (resp.

mb1
-banded). By the universal property of the fiber product we are given a morphism

G! G( mb1
�X G( mb1

. Two gerbes banded by the same group over the same base X
are either isomorphic as stacks or they have no morphisms at all; this completes the
proof. r
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6.2. Gerbes on toric orbifolds.

Theorem 6.11. Let X be a toric orbifold with torus T. Denote by i : T ,! X the

immersion of the torus. Then the morphism

i� : H 2
étðX;GmÞ ! H 2

étðT ;GmÞ

is injective.

Notice that in the following proof we will use that a toric orbifold is a global quotient
½ZS=GX� where GX :¼ HomZ

�
PicðXÞ;C�

�
. This will be proved in Theorem 7.7 and does

not depend on the results of this subsection.

We first proof some preliminary results.

Lemma 6.12 (Artin). Let S be a smooth quasi-projective variety, S2 LS a closed

subscheme of codimensionf 2. Then the natural map H i
étðS;GmÞ ! H i

étðSnS2;GmÞ is an

isomorphism for all i.

Proof. The statement is obvious if we replace sheaf cohomology with Čech coho-
mology. To prove the lemma, we just apply [6], Corollary 4.2, p. 295 (see also [28], Theo-
rem 2.17, p. 104). r

Lemma 6.13 (Olsson). Let X be an Artin stack and X0 an atlas. Denote by

Xp ¼ X0 �X � � � �X X0. Let F be an abelian sheaf of groups on X and Fp its restriction to

Xp. There is a spectral sequence with E
pq
1 ðXÞ :¼ H

q

étðXp;FpÞ that abuts to H
pþq

ét ðX;FÞ.

Proof. This lemma follows immediately from [30], Corollary 2.7, p. 4 and Theorem
4.7, p. 13. r

Proof of Theorem 6.11. Let X be a toric orbifold with coarse moduli space a simpli-
cial toric variety X . Denote by SHNQ the fan of X . Without lost of generality, we can
assume that the rays of S generate NQ.

By Theorem 5.2 in the case of orbifolds and Lemma 7.1, we have that X ¼ ½ZS=GX�
where GX :¼ HomZ

�
PicðXÞ;C�

�
. Denote by n the number of rays of the fan S. Put

Z2 :¼
�

z A ZSHCn j Ei A f1; . . . ; ng;
Q
j3i

zj ¼ 0

�

the union of T-orbits in ZS of codimensionf 2. The closed subscheme Z2 of ZS is of codi-
mension 2. Hence the quotient stack ½ðZSnZ2Þ=GX� is a closed substack of codimension 2 of
X. For any i A f1; . . . ; ng, put

Ui :¼ fz A ZSHCn j Ej A f1; . . . ; ngnfig; zj 3 0g:

We have that Ui is isomorphic to A1 � ðC�Þn�1 and that the natural morphism

‘
i A f1;...;ng

Ui ! ZSnZ2
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is étale and surjective. We deduce that
‘

i A f1;...;ng
½Ui=GX� ! ½ðZSnZÞ=GX� is étale and surjec-

tive. Put X0 :¼
‘

i A f1;...;ng
Ui. The natural morphism X0 ! ½ðZSnZ2Þ=GX� is an étale atlas.

Denote Xp ¼ X0 �X � � � �X X0. From Lemma 6.13 we have a spectral sequence
E

pq
1 ðXÞ :¼ H

q

étðXp;GmjXp
Þ abutting to H

pþq

ét

�
½ðZSnZ2Þ=GX�;Gm

�
. Using this spectral se-

quence and Lemma 6.12 we obtain that the natural morphism

H i
étðX;GmÞ ¼ H i

ét

�
½ðZSnZ2Þ=GX�;Gm

�

is an isomorphism for i ¼ ð0; 1; 2Þ. Finally, the theorem follows from Lemmas 6.14 and
6.15. r

Lemma 6.14. We have the following morphism of short exact sequences:

0 ���! E20
4 ðXÞ ���! H 2

étðX;GmÞ ���! E02
2 ðXÞ ���! 0???ya

???y j �

???yb

0 ���! E20
4 ðTÞ ���! H 2

étðT;GmÞ ���! E02
2 ðTÞ ���! 0:

Lemma 6.15. The vertical maps a : E20
4 ðXÞ ! E20

4 ðTÞ and b : E02
2 ðXÞ ! E02

2 ðTÞ
are injective.

Proof of Lemma 6.14. To prove the lemma, we are just interested in E
pq
y ðXÞ for

pþ q ¼ 2. We start by proving that we have

0! E20
y ðXÞ ! H 2

étðX;GmÞ ! E02
y ðXÞ ! 0:ð6:16Þ

Hilbert’s Theorem 90 (cf. [28], Proposition 4.9) implies that

H 1
étðXp;GmÞ ¼ H 1

ZariskiðXp;O
�
Xp
Þ ¼ PicðXpÞ:

Using the notation of the proof of Theorem 6.11, for any ray i A f1; . . . ; ng, we have that
½Ui=GX� is isomorphic to ½A1=mai

� � ðC�Þn�1 where ai is the multiplicity along the divisor Di

(cf. Remark 3.7). Hence, we have that Xp ¼
‘

i0;...; ip A f1;...;ng
Ui0���ip where

Ui0���ip ¼
Ui0 � mpþ1

a0
if i0 ¼ � � � ¼ ip;

T otherwise:

�

Hence, for any p we have that E
p1
1 ðXÞ ¼ E

p1
y ðXÞ ¼ H 1

étðXp;GmÞ ¼ 0. We deduce the exact
sequence (6.16).

We now show that E20
y ðXÞ ¼ E20

4 ðXÞ and E02
y ðXÞ ¼ E02

2 ðXÞ.
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In Figures 1 and 2, the circled terms mean that they will stay constant that is they are
equal to E

pq
y ðXÞ. We deduce that E20

y ðXÞ ¼ E20
2 ðXÞ and E02

y ðXÞ ¼ E02
4 ðXÞ.

The same argument for T proves the lemma. r

Proof of Lemma 6.15. First, we show that the morphism a : E20
4 ðXÞ ! E20

4 ðTÞ is
injective. From Figures 1 and 2, we have that

E20
4 ðXÞ ¼ ker

�
d3 : E20

2 ðXÞ ! E03
2 ðXÞ

�
;ð6:17Þ

E20
4 ðTÞ ¼ ker

�
d3 : E20

2 ðTÞ ! E03
2 ðTÞ

�
:ð6:18Þ

Moreover, we have that

E20
2 ðXÞ ¼ ker

�
d1 : H 2

étðX0;GmÞ ! H 2
étðX1;GmÞ

�
;ð6:19Þ

E20
2 ðTÞ ¼ ker

�
d1 : H 2

étðT0;GmÞ ! H 2
étðT1;GmÞ

�
:ð6:20Þ

Recall that Ui FA1 � ðC�Þn�1 and T0 ¼ ðC�Þn. By Grothendieck’s Exposés on the Brauer
group [20], §6, p. 133, we have the following long exact sequence:

� � � ! H 2
X0�T0

ðX0;GmÞ ! H 2
étðX0;GmÞ ! H 2

étðT0;GmÞ ! � � � :ð6:21Þ

Figure 1. Terms E
pq
1 ðXÞ and E

pq
2 ðXÞ

Figure 2. Terms E
pq
3 ðXÞ and E

pq
4 ðXÞ
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Moreover, we have that:

� The spectral sequence F
pq

2 :¼ H p
�
ðX0nT0Þ;H q

ðX0nT0ÞðX0;GmÞ
�

converges to
HðX0nT0ÞðX0;GmÞ.

� H 0
ðX0nT0ÞðX0;GmÞ ¼ H 2

ðX0nT0ÞðX0;GmÞ ¼ 0 and H 1
ðX0nT0ÞðX0;GmÞ ¼ Z.

This implies that F 20
2 ¼ F 02

2 ¼ 0. As X0nT0 ¼ ðC�Þn�1, we have that

F 11
2 ¼ H 1ðX0nT0;ZÞ ¼ 0:

The spectral sequence F
pq

2 implies H 2
ðX0nT0ÞðX0;GmÞ ¼ 0. Hence, sequence (6.21) and

equalities (6.17), (6.18), (6.19) and (6.20), imply that a is injective.

Let us prove that b : E02
2 ðXÞ ! E02

2 ðTÞ is injective. Recall that E02
2 ðXÞ ¼ ker d2=Im d1

and E02
2 ðTÞ ¼ ker ~dd2=Im ~dd1. We have the following commutative diagram:

H 0ðX1;GmÞ ���!d1
H 0ðX2;GmÞ ���!d2

H 0ðX3;GmÞ

 
�� L

 
�� L

 
�� L

H 0ðT1;GmÞ ���!~dd1
H 0ðT2;GmÞ ���!~dd2

H 0ðT3;GmÞ:

As Tii 0 ,! Uii 0 is open and dense, the vertical maps are injective. Notice that these maps
are isomorphisms except on Uii and Uiii. Let ~yy A H 0ðTii;GmÞ such that there exists
x A H 0ðUiii;GmÞ that lifts ~dd1ð~yyÞ, i.e., we have the following diagram:

x���!

~yy ���! ~dd1ð~yyÞ:

The morphism ~dd2jTii
: H 0ðTii;GmÞ ! H 0ðTiii;GmÞ is defined, for any ~yy A H 0ðTii;GmÞ and

any t; g; h A Tiii ¼ Ti � mai
� mai

, by

~dd2jTii
ð~yyÞðt; g; hÞ ¼ ~yyðht; gÞ~yyðt; hÞ=~yyðt; ghÞ:

The divisor UinTi is a principal divisor associate to the rational function j. For any g A mai
,

the function ~yy is rational on Uiijg ¼ Ui � fgg. Hence there exists a unique nðgÞ in N� such
that ~yyjnðgÞ is a regular function on Ui � fgg. As ~yyðht; gÞ~yyðt; hÞ=~yyðt; ghÞ is a regular func-
tion, we deduce that jnðgÞþnðhÞ�nðghÞ ¼ 1. Hence, the function n : mai

! Z is a group homo-
morphism, therefore nðgÞ ¼ 1 for every g. We deduce that ~yy is a regular function on Ui

which implies that the morphism b : E02
2 ðXÞ ! E02

2 ðTÞ is injective. r

6.3. Characterization of a toric Deligne-Mumford stack as a gerbe over its rigidifica-

tion. Let X be a toric Deligne-Mumford stack with Deligne-Mumford torus T isomor-
phic to T � BG and coarse moduli space X . Denote by Xrig the rigidification of X (cf. Sec-
tion 1.4) which is by definition an orbifold with coarse moduli space X . The universal
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property of the rigidification and of the canonical stack (see Proposition 1.5 and Corollary
4.10) imply that we have the following strictly commutative diagram:

X ����!r
Xrig

f

???y
Xcan:

ð6:22Þ
 ���

��
f rig

Section 1.4 and Lemma 3.8 imply that we can define X(G.

Lemma 6.23. Let X be a toric Deligne-Mumford stack with Deligne-Mumford torus

T isomorphic to T � BG.

(1) The orbifold Xrig is canonically isomorphic to X(G.

(2) There is a unique structure of toric orbifold on Xrig with torus T such that the mor-

phism r : X! Xrig is a morphism of toric Deligne-Mumford stacks induced by T! T .

Remark 6.24. Let X be a toric Deligne-Mumford stack with Deligne-Mumford
torus T isomorphic to T � G and coarse moduli space X .

(1) Proposition 5.1 implies that the morphism f rig : Xrig ! Xcan is a morphism of
toric Deligne-Mumford stacks. Hence we deduce that the commutative diagram (6.22) is
a commutative diagram of morphisms of toric Deligne-Mumford stacks.

(2) Let H be a subgroup of G. The stack X(H is a toric Deligne-Mumford stack
with Deligne-Mumford torus isomorphic to T(H FT �BðG=HÞ. Moreover, the natural
morphisms X! X(H and X(H ! X(G are morphisms of toric Deligne-Mumford
stacks.

(3) Note that we did not use the non-canonical isomorphism T1T �BG but only
the short exact sequence of Picard stacks 1! BG !T! T ! 1.

Proof of Lemma 6.23. (1) As T(G is isomorphic to the scheme T which is open and
dense in X(G, the stack X(G is an orbifold which is canonically isomorphic to Xrig.

(2) The morphisms i : T ,! X and a : T�X! X induce morphisms on the rigid-
ifications irig : T(G FT ! Xrig and arig : T �Xrig ! Xrig, by the universal property of
the rigidification (see Proposition 1.5). It is immediate to verify that arig is an action, ex-
tending the action of T on itself. As r�1ðTÞ is isomorphic to T, we deduce that this is the
only toric structure on Xrig which is compatible with the morphism r. r

Since the morphism r : X! Xrig is étale, the divisor multiplicities of X and Xrig are
the same.

Theorem 6.25. (1) Let Y be a toric orbifold with Deligne-Mumford torus T. Let

X! Y be an essentially trivial G-gerbe. Then X has a unique structure of toric Deligne-

Mumford stack with Deligne-Mumford torus isomorphic to T �BG such that the morphism

X! Y is a morphism of toric Deligne-Mumford stacks.
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(2) Conversely, let X be a toric Deligne-Mumford stack with Deligne-Mumford torus

TFT �BG. Then X! Xrig is an essentially trivial G-gerbe.

Proof. (1) The inverse image of T in X, denoted by T, is open dense. The restric-
tion of the essentially trivial G-banded gerbe X! Y to T is the essentially trivial G-banded
gerbe T! T . Remark 6.4(1) implies that the gerbe T! T is trivial. The action of T on
Y induces by pullback an action of T on X. This is the only structure of toric Deligne-
Mumford stack on X compatible with the morphism X! Y.

(2) Denote by a A H 2
étðX

rig;GÞ the G-banded gerbe X! Xrig. By Proposition 2.6,
the restriction of a on the Deligne-Mumford torus T is the trivial G-banded gerbe in

H 2
étðT ;GÞ. Fix a cyclic decomposition of G ¼

Ql
j¼1

mbj
. By the isomorphism (6.6), the class a

is sent to ða1; . . . ; alÞ A
Ll
j¼1

H 2
étðX

rig; mbj
Þ. We have that for any j A f1; . . . ; lg, the class of

aj restricts to the trivial class in H 2
étðT ; mbj

Þ. Theorem 6.11 states the injectivity of i� in the
following diagram:

H 1
étðX

rig;GmÞ ����!
ffiffiffiffiffiffiffiffiffi
�=X rig

bj
p

H 2
étðX

rig; mbj
Þ ����! H 2

étðX
rig;GmÞ???y

???y
 
�� Li�

1 ���������! H 2
étðT ; mbj

Þ ����! H 2
étðT ;GmÞ:

A simple diagram chasing finishes the proof. r

Corollary 6.26. Let X be a toric Deligne-Mumford stack with Deligne-Mumford

torus T isomorphic to T �BG.

(1) Given G ¼
Ql
j¼1

mbj
. There exists Lj in PicðXrigÞ such that X is isomorphic as G-

banded gerbe over Xrig to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1=X

rigb1

q
�X rig � � � �X rig

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ll=X

rigbl

q
:

Moreover, the classes ð½L1�; . . . ; ½Ll�Þ in
Ql
j¼1

PicðXrigÞ=bj PicðXrigÞ are unique.

(2) The reduced closed substack XnT is a simple normal crossing divisor.

The first part of the corollary is very similar to [31], Proposition 2.5.

Remark 6.27. Let X be a toric Deligne-Mumford stack with Deligne-Mumford

torus T isomorphic to T �BG and G ¼
Ql
j¼1

mbj
. Diagram (1.3) and the corollary above

imply that we have the following morphism of short exact sequences:
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0 �����! Zl ��������!�b
Zl ���! Ll

j¼1

Z=bjZ ���! 0???y
???y

����
0 ���! PicðXrigÞ ���!r�

PicðXÞ ���! Ll
j¼1

Z=bjZ ���! 0

ð6:28Þ

where the vertical morphisms sends ej 7! Lj and ej 7! L
1=bj

j .

Proof of Corollary 6.26. Theorem 6.25(2) implies that X! Xrig is an essentially
trivial G-banded gerbe. The first statement follows from Proposition 6.9.

By Corollary 5.4, we have that the reduced closed substack XrignTrig is a simple nor-
mal crossing divisor. As the morphism X! Xrig is étale, we deduce the second statement
of the corollary. r

7. Toric Deligne-Mumford stacks versus stacky fans

In this section, we will show that the toric Deligne-Mumford stacks that we have
defined correspond exactly with those of [10].

In the first subsection, we show that our toric Deligne-Mumford stacks with a span-
ning condition are global quotients. The second subsection makes the correspondence with
the article of [10].

7.1. Toric Deligne-Mumford stacks as global quotients. Let Z be a subvariety in Cn

of codimension equal or higher than two. Let G be an abelian group scheme over C that
acts on Z such that ½Z=G� is a Deligne-Mumford stack. According to Remark 1.1, a line
bundle on ½Z=G� is given by a character w of G. Hence the data of an invertible sheaf L with
a global section s on ½Z=G� give a morphism of groupoids between ½Z=G� and ½A1=C��.
Explicitly, this morphism is given by ðs; wÞ : Z � G ! A1 � C� and s : Z ! A1.

In the following lemma, we use a slightly more general notion of a root of Cartier
divisors that is a root of invertible sheaves with global sections. All the properties of Section
1.3.b are still true (see [12] or [2]).

Lemma 7.1. Let Z be a scheme. Let G be an abelian group scheme over C that acts

on Z such that ½Z=G� is a Deligne-Mumford stack. Let ðL; sÞ :¼
�
ðL1; s1Þ; . . . ; ðLk; skÞ

�
be k invertible sheaves with global sections over the quotient stack ½Z=G�. Denote by

w :¼ ðw1; . . . ; wkÞ the representations associated to the invertible sheaves L. Let

d :¼ ðd1; . . . ; dkÞ be in ðN>0Þk.

(1) We have that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL; sÞ=½Z=G�d

p
is isomorphic to ½ ~ZZ= ~GG� where ~ZZ and ~GG are defined

by the following cartesian diagrams:

~ZZ ���! Ak???y
???y5d

Z ���!s Ak;

~GG ���! Gk
m???yj

???y5d

G ���!w Gk
m:

r r
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The action of ~GG on ~ZZ is given by�
g; ðl1; . . . ; lkÞ �

�
z; ðx1; . . . ; xkÞ

��
¼

�
gz; ðl1x1; . . . ; lkxkÞ

�
for any

�
g; ðl1; . . . ; lkÞ

�
A ~GG and

�
z; ðx1; . . . ; xkÞ

�
A ~ZZ.

(2) We have that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=½Z=G�d

p
is isomorphic to ½Z= ~GG� where ~GG is defined above. The

action of ~GG on Z is given via j.

Proof. It is a straightforward computation on fibered products of groupoids. r

Remark 7.2. (1) We have that ker j is isomorphic to
Qk
i¼1

mdi
. Notice that the action of

~GG on Z in the second part of the proposition above implies that the kernel of j acts trivially

on Z. Hence, ½Z= ~GG� is a
Qk
i¼1

mdi
-banded gerbe over ½Z=G�.

(2) In both cases we have that ~GG A Ext1

�
G;

Qk
i¼1

mdi

	
.

Lemma 7.3. Let A be an abelian group of finite type. Let E in Ext1

�Lk

i¼1

Z=diZ;A

	
. If

we have a morphism of short exact sequences

0 ����! Zk ����!ðd1;...;dkÞ
Zk ����! Lk

i¼1

Z=diZ ����! 0???y
???y

???yo
0 ����! A ����! E ����! Lk

i¼1

Z=diZ ����! 0

then the left square is cocartesian.

Remark 7.4. Diagrams (5.6) and (6.28) imply that we have the following cocartesian
diagrams:

Zl ���������!�b
Zl???y
???y

PicðXÞ ���! Picð
ffiffiffiffiffiffiffiffiffiffi
L=Xb

p
Þ;

Zn ���������!�a
Zn???y
???y

PicðXÞ ���! Picð
ffiffiffiffiffiffiffiffiffiffiffi
D=Xa

p
Þ:

ð7:5Þ

Proof of Lemma 7.3. Denote by P the push-out of Zk ! Zk and Zk ! A. Using the
universal property of co-cartesian diagrams we deduce a morphism f from P to E and the
following morphisms of extensions:

0 �����! Zk �����!�ðd1;...;dkÞ
Zk �����! Lk

i¼1

Z=diZ �����! 0????y
????y

????ya

0 �����! A �����!q
P �����! cokerðqÞ �����! 0����� f

????y
????yb

0 �����! A �����! E �����! Lk

i¼1

Z=diZ �����! 0:
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Notice that the composition b � a is the isomorphism in Lemma 7.3. By simple diagram
chasing, we deduce that f is an isomorphism. r

Remark 7.6. Let X be a toric Deligne-Mumford stack with coarse moduli space X .
Proposition 3.6 implies that X is a simplicial toric variety. Denote by S a fan of X . Assume
that the rays of S generate NQ. As explained in Section 1.6, we have that X is the geometric
quotient ZS=GA where GA :¼ Hom

�
A1ðXÞ;C�

�
. Put GX :¼ Hom

�
PicðXÞ;C�

�
. Notice that

GX rig acts on ZS via the dual (in the sense of Section 1.5) of the morphism Zn ! PicðXrigÞ.
The group GX acts on ZS via the dual of the morphism PicðXrigÞ ! PicðXÞ. Consider the
quotient stack ½ZS=GX�. The quotient stack ½ðC�Þn=GX� is a Deligne-Mumford torus which
is open and dense in ½ZS=GX�. As the natural action of ðC�Þn on ZS extends the action of
ðC�Þn on itself, we deduce a stack morphism a : ½ðC�Þn=GX� � ½ZS=GX� ! ½ZS=GX� that ex-
tends the action of ½ðC�Þn=GX� on itself. Proposition 3.3 implies that the stack morphism a

induces a natural action of the Deligne-Mumford torus on ½ZS=GX� that is ½ZS=GX� is a
toric Deligne-Mumford stack.

Theorem 7.7. Let X be a toric Deligne-Mumford stack with coarse moduli space X.

Denote by S the fan associated to X. Assume that the rays of S generate N nQ. Then X
is naturally isomorphic, as a toric stack, to ½ZS=GX� where GX :¼ Hom

�
PicðXÞ;C�

�
.

Remark 7.8. Removing the spanning condition of the rays gives the following result.
Let X be a toric Deligne-Mumford stack with torus T (isomorphic to T �BG) and with
coarse moduli space the simplicial toric variety X . Denote by SHNQ the fan of X . From
the footnote 2 of Section 1.6, we deduce that the toric variety X is isomorphic to ~XX � ~TT
where ~XX is a simplicial toric variety whose the rays of its fan ~SS span ~NNQ. Notice that the
dimension of ~TT is rkðNQÞ � rkð ~NNQÞ. The previous theorem implies that X is isomorphic, as
toric stacks, to ½Z~SS=G ~XX� � ð ~TT �BGÞ.

Proof of Theorem 7.7. If X is Xcan, the theorem follows from Remark 4.12(2). If X
is Xrig, the theorem follows from the right cocartesian square of diagram (7.5) and Lemma
7.1(1). For a general X, it follows from the left cocartesian square of diagram (7.5) and
Lemma 7.1(2). r

7.2. Toric Deligne-Mumford stacks and stacky fans. First we recall the definition of
a stacky fan from [10].

Definition 7.9. A stacky fan is a triple S :¼ ðN;S; bÞ where N is a finitely generated
abelian group, S is a rational simplicial fan in NQ :¼ N nZ Q with n rays, denoted by
r1; . . . ; rn, and a morphism of groups b : Zn ! N such that:

(1) The rays span NQ.

(2) For any i A f1; . . . ; ng, the element bðeiÞ in NQ is on the ray ri where ðe1; . . . ; enÞ is
the canonical basis of Zn and the natural map N ! NQ sends m 7! m.

Remark 7.10. Let S :¼ ðN;S; bÞ be a stacky fan.

(1) As the rays span NQ, we have that b has finite cokernel.
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(2) For any i A f1; . . . ; ng, denote by vi the unique generator of ri X ðN=NtorÞ
where Ntor is the torsion part part of N. Denote by b rig the composition of b followed
by the quotient morphism N ! N=Ntor. There exists a unique ai A N>0 such that
b rigðeiÞ ¼ aivi. Denote Srig :¼ ðN=Ntor;S; b

rigÞ. There exists a unique group homomor-
phism b can : Zn ! N=Ntor such that we have the following commutative diagram:

Zn ���!b N

diagða1;...;anÞ

????y
????y

Zn ���!b can

N=Ntor:

ð7:11Þ

 ���
���� b rig

Denote Scan :¼ ðN=Ntor;S; b
canÞ.

In [10], Remark 4.5, the authors define the notion of morphism of stacky fans. The
commutative diagram (7.11) provides us the morphisms of stacky fans S! Srig ! Scan.

(3) To the fan S, we can associate canonically the stacky fan Scan.

Construction 7.12 (construction of the Deligne-Mumford stack associated to the
stacky fan S). Now we explain how to associate a Deligne-Mumford stack XðSÞ to a
stacky fan S following [10], Sections 2 and 3. Denote by d the rank of N. Choose a projec-
tive resolution of N with two terms that is

0! Zl !Q Zdþl ! N ! 0:

Choose a map B : Zn ! Zdþl lifting the map b : Zn ! N. Consider the morphism
½BQ� : Znþl ! Zdþl. Denote DGðbÞ :¼ cokerð½BQ��Þ. Denote by b4 : ðZnÞ� ! DGðbÞ the
group morphism that makes the following diagram commute:

ðZnÞ� K������! ðZnþlÞ�???y
DGðbÞ :¼ coker½BQ��:

 ����
���

b4

Let ZS be the quasi-a‰ne variety associated to the fan S (see Section 1.6). Define the
action of GS :¼ HomZ

�
DGðbÞ;C�

�
on ZS as follows. Applying the functor HomZð�;C�Þ

to the morphism b4 : ðZnÞ� ! DGðbÞ, we get a group morphism GS ! ðC�Þn. Via the nat-
ural action of ðC�Þn on Cn, we define an action of GS on ZS. Finally, the stack associated
to the stacky fan S :¼ ðN;S; bÞ is the quotient stack XðSÞ :¼ ½ZS=GS�.

Notation. We will later see that the group GS is isomorphic to

GX :¼ Hom
�
PicðXÞ;C�

�
:

By [10], Proposition 3.2, we have that ½ZS=GS� is a smooth Deligne-Mumford
stack.
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Remark 7.13. In [24], Iwanari defined a smooth toric Artin stack over any scheme
associated to a stacky fan Srig.

Remark 7.14. As it was observed in [10], Section 4, the condition that the rays span
NQ in Definition 7.9 is not natural. Indeed a Deligne-Mumford torus ðC�Þd �BG where G

is a finite abelian group can not be produced as a stack XðSÞ for S a stacky fan with the
condition that the rays span NQ. Nevertheless, it is not really true to say that toric Deligne-
Mumford stacks are a ‘‘generalization’’ of the stacks XðSÞ. Indeed, as for toric variety, we
will see that a toric Deligne-Mumford stack is a product of a XðSÞ by a Deligne-Mumford
torus.

Lemma 7.15. Let S :¼ ðN;S; bÞ be a stacky fan.

(1) The stack XðSÞ is a toric Deligne-Mumford stack.

(2) The stack XðSÞ is a toric orbifold if and only if the finitely generated abelian group

N is free.

(3) The stack XðSÞ is canonical if and only if S ¼ Scan.

Proof. (1) The group morphism GS ! ðC�Þn defined in Construction 7.12 defines
the quotient stack ½ðC�Þn=GS� which is by definition a Deligne-Mumford torus. As the
open dense immersion ðC�Þn ,! ZS is GS-equivariant, we have that the stack morphism
½ðC�Þn=GS� ! ½ZS=GS� is an open dense immersion. Using the same arguments of Remark
7.6, we have that the action of the Deligne-Mumford torus ½ðC�Þn=GS� on itself extends to
an action on ½ZS=GS�. That is XðSÞ is a toric Deligne-Mumford stack.

(2) The stack XðSÞ is a toric orbifold if and only if GS ! ðC�Þn is injective, if and
only if b4 is surjective, if and only if N is free.

(3) Assume that S ¼ Scan. As the coarse moduli space X of XðSÞ is the geometrical
quotient ZS=GA1ðXÞ where GA1ðX Þ :¼ Hom

�
A1ðXÞ;C�

�
, we have that Xcan ¼ ½ZS=GA1ðX Þ�.

Construction 7.12 implies that GS is GA1ðXÞ. Conversely, if S3Scan then either N has tor-
sion (i.e., XðSÞ is a gerbe) or there exists a divisor D associated to a ray such that any ge-
ometric point of D has a non-trivial stabilizer. r

Remark 7.16. Let XðSÞ be a canonical stack (i.e., S ¼ Scan). The proof of the third
statement of Lemma 7.15 implies that DGðb canÞ ¼ Pic

�
XðSÞ

�
.

Theorem 7.17. Let X be a toric orbifold with coarse moduli space X. Denote by S
a fan of X in NQ :¼ N nZ Q. Assume that the rays of S span NQ. Then there is a unique

b : Zn ! N such that the stack associated to the stacky fan ðN;S; bÞ is isomorphic as toric

orbifold to X.

Remark 7.18. An arbitrary toric orbifold is isomorphic to a product XðSÞ � ðC�Þk.

Proof of Theorem 7.17. Denote by a :¼ ða1; . . . ; anÞ the divisor multiplicities of X.
We define the morphism of groups b : Zn ! N by sending ei 7! aivi where vi is the genera-
tor of the semi-group ri XN. Denote by S the stacky fan ðN;S; bÞ.
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Theorem 7.7 states that X is isomorphic to ½ZS=GX�. In order to prove that the two
stacks are isomorphic, we will show that GX is isomorphic to GS such that the two actions
on ZS are compatible. From diagram (7.11), we deduce a morphism of exact sequences:

0 ���! ðZnÞ� �����! ðZnÞ� ���! Ln

i¼1

Z=aiZ ���! 0???y
???y

����
0 ���! PicðXcanÞ ���! DGðbÞ ���! Ln

i¼1

Z=aiZ ���! 0:

The right cocartesian square of diagram (7.5) implies that GS is isomorphic to GX such that
the actions of GS and GX on ZS are compatible.

The uniqueness of b follows from the geometrical interpretation of the divisor multi-
plicities. r

Remark 7.19. (1) The proof shows also that PicðXÞ is isomorphic to DGðbÞ.

(2) Marking a point aivi on the ray ri XN corresponds geometrically to putting a
generic stabilizer mai

on the divisor Di associated to the ray ri.

Proposition 7.20. Let S :¼ ðN;S; bÞ be a stacky fan. There is a unique a in

Ext1
�
Ntor;Pic

�
XðSrigÞ

��
such that the essentially trivial HomðNtor;C

�Þ-banded gerbe over

XðSrigÞ associated to a is isomorphic as banded gerbe to XðSÞ.

Proof. Fix a decomposition N ¼ Zd l
Ll
j¼1

Z=bjZ. It follows from Construction 7.12
that we have the following diagram:

0 0 0x???
x???

x???
0 ���! DGðb rigÞ ���! DGðbÞ ���! Ll

j¼1

Z=bjZ ���! 0

ðb rigÞ4
x???

x???
x???

0 ���! ðZnÞ� ����! ðZnþlÞ� ���! ðZlÞ� ���! 0x??? ½BQ� �
x???

x???�ðb1;...;blÞ

0 ���! ðZdÞ� ����! ðZdþlÞ� ���! ðZlÞ� ���! 0x???
x???

x???
0 0 0:

ð7:21Þ

From Remark 7.19, we have that Pic
�
XðSrigÞ

�
is isomorphic to DGðb rigÞ. The first line

of diagram (7.21) is an element a A Ext1
�
Ntor;Pic

�
XðSrigÞ

��
. By Proposition 6.9, the

element a induces an element ð½L1�; . . . ; ½Ll�Þ A
Ql
j¼1

PicðXrigÞ=bj PicðXrigÞ. The last row of
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the diagram above is a projective resolution of
Ll
j¼1

Z=bj. Hence, we deduce that there exists
a morphism of short exact sequences

0 ���! ðZlÞ� ����!�b ðZlÞ� ���! Ll
j¼1

Z=bjZ ���! 0???y ~ff

???y f

����
0 ���! PicðXrigÞ ���!r�

DGðbÞ ���! Ll
j¼1

Z=bjZ ���! 0:

ð7:22Þ

The morphism ~ff is the same as the choice of L1; . . . ;Ll in PicðXrigÞ in the classes
½L1�; . . . ; ½Ll�. By the left cocartesian square of diagram (7.5), we deduce that GS is isomor-
phic to GX. We conclude that X is isomorphic to XðSÞ. The uniqueness of a follows from
Proposition 6.9. r

Remark 7.23. Denote by X1 and by X2 respectively the stacks associated to
stacky fans ðS;N; b1Þ and ðS;N; b2Þ. The stacks X1 and X2 are isomorphic, as toric
Deligne-Mumford stack, if and only if the extensions defined in diagram (7.21) in
Ext1

�
Ntor;Pic

�
XðSrigÞ

��
are isomorphic.

Theorem 7.24. Let X be a toric Deligne-Mumford stack with coarse moduli space

X. Denote by S a fan of X in NQ. Assume that the rays of S span NQ. There exist N and

b : Zn ! N such that the stack associated to the stacky fan ðN;S; bÞ is isomorphic as toric

Deligne-Mumford stacks to X.

Remark 7.25. Let S be a stacky fan. Corollary 6.26 and the theorem above imply
that XðSÞ is isomorphic to a product of root stacks over its rigidification. This result was
discovered independently by Perroni (cf. [31], Proposition 3.2) and by Jiang and Tseng (cf.
[25], Remark 2.10).

Proof of Theorem 7.24. If X is a toric orbifold then the statement was already
proved in Theorem 7.17.

Let X be a toric Deligne-Mumford stack with Deligne-Mumford torus isomorphic to
T �BG. By Theorem 7.7, we have that X is isomorphic to ½ZS=GX�. By Theorem 7.17,
there exists a unique stacky fan Srig ¼ ðS;Zd ; b rigÞ where d :¼ dimX such that Xrig is iso-
morphic to XðSrigÞ.

There exist ðb1; . . . ; blÞ A ðN>0Þl such that G ¼
Ql
j¼1

mbj
. Put N :¼ Zd l

Ll
j¼1

Z=bjZ.

Corollary 6.26 gives us l invertible sheaves L1; . . . ;Ll on Xrig. For any j, choose

c1j; . . . ; cnj A Z such that Lj ¼
Nn

i¼1

OðDrig
i Þ

cij where D
rig
i is the Cartier divisor associated

to the ray ri. Put

b : Zn ! Zd l
Ll
j¼1

Z=bjZ;

ei 7!
�
b rigðeiÞ; ½ci1�; . . . ; ½cil�

�
;
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where ½cij� is the class of cij modulo bj. It is straightforward to check that X ðSÞ is isomor-
phic to X. r

Remark 7.26. Let X be a toric Deligne-Mumford stack with Deligne-Mumford to-
rus isomorphic to T �BG. The non-uniqueness of N and b comes from three di¤erent
kinds:

(1) the decomposition of G in product of cyclic groups, i.e., G ¼
Ql
j¼1

mbj
,

(2) the choice of the lift for the class ½Lj� A PicðXrigÞ=bj PicðXrigÞ for j ¼ 1; . . . ; l, and

(3) the choice of the decomposition Lj ¼
Nn

i¼1

OðDrig
i Þ

cij (see Example 7.29 for such an
example).

7.3. Examples.

Example 7.27 (weighted projective spaces). Let w0; . . . ;wn be in N>0. Denote
by PðwÞ the quotient stack ½Cnþ1nf0g=C�� where the action of C� is defined by
lðx0; . . . ; xnÞ ¼ ðlw0 x0; . . . ; l

wnxnÞ for any l A C� and any ðx0; . . . ; xnÞ A Cnþ1nf0g. The
stack PðwÞ is a complete toric Deligne-Mumford stack with Deligne-Mumford torus
½ðC�Þnþ1=C��FCn � Bmd where d :¼ gcdðw0; . . . ;wnÞ (cf. Example 2.3).

We have that:

(1) The stack PðwÞ is canonical if and only if for any i A f0; . . . ; ng, we have that
gcdðw0; . . . ; ŵwi; . . . ;wnÞ ¼ 1 (e.g., the weights are well-formed).

(2) The stack PðwÞ is an orbifold if and only if gcdðw0; . . . ;wnÞ ¼ 1.

(3) The Picard group of PðwÞ is cyclic. More precisely, we have

Pic
�
PðwÞ

�
¼ Z if dimPðwÞf 1;

Z=w0Z if PðwÞ ¼ Pðw0Þ:

�

Proposition 7.28. Let X be a complete toric Deligne-Mumford stack of dimension

n such that its Picard group is cyclic. Then there exists unique up to order ðw0; . . . ;wnÞ in

ðN>0Þnþ1
such that X is isomorphic to Pðw0; . . . ;wnÞ.

Proof. Denote by X the coarse moduli space of X. Denote by S a fan of X . If
the Picard group is isomorphic to Z=dZ then Theorem 7.7 implies that X ¼ ½ZS=md � with
ZSHCn. Hence, the fan S has n rays. In this case, X is complete if and only if n ¼ 0. We
deduce that X ¼ Bmd FPðdÞ.

If the Picard group is Z, Theorem 7.7 implies that X ¼ ½ZS=C
�� with ZSHCnþ1.

As X is complete, the fan S is complete. We deduce that ZS ¼ Cnþ1nf0g. The Deligne-
Mumford torus is isomorphic to ½ðC�Þnþ1=C��. The action of C� is given by the morphism
C� ! ðC�Þnþ1 that sends l 7! ðlw0 ; . . . ; lwnÞ with wi A Znf0g. Notice that if the wi’s do not
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have the same sign then X is not separated. If the wi’s are all negative then replacing l by
l�1 induces an isomorphism with a weighted projective space. r

Example 7.29. In this example, we give two isomorphic stacky fans for Pð6; 4Þ
which was considered in [10], Example 3.5. As we have seen in Section 7.2, N and S are
fixed whereas b is not unique. Let N be Z� Z=2. Let S be the fan in NQ ¼ Q where the
cones are 0, Qf0, Qe0. Put

b1 : Z2 ! Z� Z=2; b2 : Z2 ! Z� Z=2;ð7:30Þ

e1 7! ð2; 1Þ; e1 7! ð2; 1Þ;

e2 7! ð�3; 0Þ; e2 7! ð�3; 1Þ:

One can check that the stack associated to ðN;S; b1Þ and ðN;S; b2Þ is Pð6; 4Þ.

Let us explicit the bottom up construction in this case. Its coarse moduli space is P1.
The rigidification of Pð6; 4Þ is Pð3; 2Þ. Denote by x1, x2 the homogeneous coordinates of

P1. We have that Pð3; 2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD1;D2Þ=P1ð2; 3Þ

q
where Di is the Cartier divisor

�
OP1ð1Þ; xi

�
.

We have that OPð3;2ÞðD1Þ ¼ OPð3;2Þð3Þ, OPð3;2ÞðD2Þ ¼ OPð3;2Þð2Þ and p�OP1ð1Þ ¼ OPð3;2Þð6Þ
where p : Pð3; 2Þ ! P1 is the structure morphism. The stack r : Pð6; 4Þ ! Pð3; 2Þ is a m2-
banded gerbe isomorphic to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
OPð3;2Þð1Þ=Pð3; 2Þ2

p
. In Pic

�
Pð3; 2Þ

�
=2 Pic

�
Pð3; 2Þ

�
, the class

of OPð3;2Þð1Þ is also the class of OPð3;2ÞðD1Þ or the class of OPð3;2ÞðD1ÞnOPð3;2ÞðD2Þ. These
di¤erent choices lead to the two isomorphic stacky fans in (7.30).

Example 7.31 (complete toric lines). Here, we explicitly describe all complete toric
orbifolds of dimension 1. Notice that the coarse moduli space of a complete toric line is P1.
Denote by x1, x2 the homogeneous coordinates. Let Di be the Cartier divisor

�
Oð1Þ; xi

�
. Let

a1, a2 in N>0. Denote by d (resp. m) the greatest common divisor (resp. the lowest common

multiple) of a1, a2. The Picard group of the root stack
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD1;D2Þ=P1ða1 ; a2Þ

q
is isomorphic

to Z� ðZ=dZÞ. Notice that it is not a weighted projective space in general. As a global

quotient, the stack
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD1;D2Þ=P1ða1 ; a2Þ

q
is ½ðC2nf0gÞ=ðC� � mdÞ� where the action is given by

C� � md � ðC2nf0gÞ ! ðC2nf0gÞ;
�
ðl; tÞ; ðx1; x2Þ

�
7! ðlm=a1tk2x1; l

m=a2 t�k1x2Þ

where k1, k2 are integers such that
k1

a
þ k2

b
¼ 1

m
.

Appendix A. Uniqueness of morphisms to separated stacks

We prove Proposition 1.2.

Proposition A.1. Let X and Y be two Deligne-Mumford stacks. Assume that X is nor-

mal and Y is separated. Let i : U ,! X be a dominant open immersion. If F1;F2 : X! Y are

two morphisms of stacks such that there exits a 2-arrow b : F1 � i) F2 � i then there exists a

unique 2-arrow a : F1 ) F2 such that a � idi ¼ b.
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Proof. Uniqueness: We first assume that X is a scheme, denoted by X , and Y is
a global quotient ½V=G� where G is a separated group scheme. Denote by U the scheme
U, open dense in X . For i in f1; 2g, the morphism Fi is given by an object xi which is a
G-torsor pi : Pi ! X and a G-equivariant morphism Pi ! V . Let a; a 0 : P1 ! P2 be mor-
phisms between the objects x1 and x2 such that ajp�1

1
ðUÞ ¼ a 0jp�1

2
ðUÞ. As G is separated, we

have that pi is separated. We deduce that a ¼ a 0.

Now we prove the uniqueness of the proposition in the case where Y ¼ ½V=G�. Let X

be an étale atlas of X. By the previous point, we deduce that ajX ¼ a 0jX . As MorðF1;F2Þ is
a sheaf on X, we conclude that a ¼ a 0.

For the general case, we reduce to the previous by covering Y by global quotients and
then we use that MorðF1;F2Þ is a sheaf on X.

Existence: It is enough to do it for an étale a‰ne chart of X. By hypothesis, this
chart is a disjoint union of a‰ne irreducible normal varieties. Hence, we can assume that
X is an a‰ne irreducible normal variety, denoted by X . Denote by U the scheme U
open dense in X . The morphism F1 � i : U ! Y, the 2-arrow b and the universal property
of the strict fiber product give a morphism f : U ! U 0. The existence of a is equivalent
to the existence of a morphism h : X aX 0 such that p1 � h ¼ id and h � i ¼ g � f . Denote
by D : Y! Y�Y the diagonal. We can sum up the informations in the following dia-
gram:

U ������!i
X

U 0 ������!g
X 0 ������!p2

Y???y
???yp1

???yD

U ������!i
X ������!ðF1�F2Þ

Y�Y:

r r

 ��
��� f

 �
��

��
bh

id

id

By definition of the separatedness of Y, we have the D is proper. By [26], Lemma 4.2,
we have that D is finite and X 0 is a scheme. We deduce that p1 : X 0 ! X is finite. The
morphism g � f : U ! X 0 is a section of p1. By Lemma A.2, we deduce a morphism
h : X ! X 0 such that h � i ¼ g � f . This completes the proof. r

Lemma A.2. Let X 0 be a scheme and X be an irreducible normal variety. Let

p : X 0 ! X be a finite morphism. Let U ,! X be an open dense immersion. Let s : U ! X 0

be a section of p. Then the section s extends to a section ~ss : X ! X 0.

Proof. Denote by U0 the closure of the sðUÞ in the fiber product U 0 :¼ U �X X 0.
Denote by p : U 0 ! U and q : U 0 ! X 0 the morphisms induced by the fiber product
U 0. Looking at the fractional fields, we deduce that the morphisms s : U ! U0 and
pjU0

: U0 ! U are birational morphisms. Denote by X0 the closure of U0 in X 0. As the
morphism q is an open embedding, we have that qjU0

is dominant. We deduce that
pjX0

: X0 ! X is birational and quasi-finite. As X would be an irreducible normal variety,
the Zariski main theorem implies that pjX0

is an isomorphism. Its inverse is the wanted
section of p. r
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Appendix B. Action of a Picard stack

In this appendix, we recall the definition of a Picard stack. Then we define the action
of a Picard stack on a stack which extends the definition of Romagny in [32]. In [11], De-
finition 6.1, Breen defines the notion of a G-torsor over a stack where G is a Picard stack.
Our definition of the action is actually already included in that definition.

To define the notion of Picard stacks, we do not need the stacks to be algebraic.

Definition B.1 (Picard stacks [7], Exp. XVIII). Let S be a base scheme. A Picard
S-stack G is an S-stack with the following data:

� (multiplication) a morphism of S-stacks:

G�S G!m G;

ðg1; g2Þ 7! g1 � g2;

� (2-associativity) a 2-arrow y implementing the associativity law:

yg1;g2;g3
: ðg1 � g2Þ � g3 ) g1 � ðg2 � g3Þ;ðB:2Þ

� (2-commutativity) a 2-arrow t implementing commutativity:

tg1;g2
: g1 � g2 ) g2 � g1:ðB:3Þ

These data must satisfy the following conditions:

(1) For every chart U and every object g A GðUÞ the map mg : G! G which multi-
plies every object by g and every arrow by idg is an isomorphism of stacks.

(2) (Pentagon relation) For every chart U and 4-tuples of objects gi A GðUÞ, we
have

ðidg1
� yg2;g3;g4

Þ � yg1;g2�g3;g4
� ðyg1;g2;g3

� idg4
Þ ¼ yg1;g2;g3�g4

� yg1�g2;g3;g4
:ðB:4Þ

(3) For every chart U and every object g A GðUÞ, we have tg;g ¼ idg�g.

(4) For every chart U and every objects g1; g2 A GðUÞ, we have tg1;g2
� tg2;g1

¼ idg2�g1
.

(5) (Hexagon relation) For every chart U and every triple of objects g1, g2, g3 in
GðUÞ, we have

yg1;g2;g3
� tg3;g1�g2

� yg3;g1;g2
¼ ðidg1

� tg3;g2
Þ � yg1;g3;g2

� ðtg3;g1
� idg2
Þ:ðB:5Þ

Remark B.6. The pentagon relation establishes the compatibility law between 2-
arrows y when expressing the associativity with 4 objects.

The third condition means that every object strictly commutes with itself.
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The last condition states compatibility between the 2-arrow of associativity and the
2-arrow of commutativity.

Remark B.7. It can be proved, see [7], Exp. XVIII, 1.4.4, that the previous definition
is enough to guarantee the existence of a neutral element in the group stack. More precisely
it is a couple ðe; �Þ where e : S ! G is a section and � : e � e) e. A neutral element is
unique up to a unique isomorphism.

Definition B.8 (morphisms of Picard stacks [7], Exp. XVIII). Let ðG; y; tÞ and
ðH;c; rÞ be two Picard S-stacks. A morphism of Picard S-stacks is a morphism of S-stacks
F : G!H with a 2-arrow fg1;g2

: Fðg1 � g2Þ ) Fðg1Þ � Fðg2Þ for any g1, g2 objects of G
satisfying the following compatibility conditions:

� For every chart U and every couple of objects g1; g2 A GðUÞ we have

rFðg1Þ;Fðg2Þ � fg1;g2
¼ fg2;g1

� Fðtg1;g2
Þ:ðB:9Þ

� For every chart U and every triple of objects g1; g2; g3 A GðUÞ we have

fg1;g2�g3
� ðidFðg1Þ � fg2;g3

Þ � Fðyg1;g2;g3
ÞðB:10Þ

¼ cFðg1Þ;Fðg2Þ;Fðg3Þ � ðfg1;g2
� idFðg3ÞÞ � fg1�g2;g3

:

Remark B.11. (1) It should be observed that the morphism F maps the pentagon
relation (resp. the hexagon relation) for the Picard stack G to the pentagon relation (resp.
the hexagon relation) for H.

(2) Denote by ðeG; �GÞ a neutral element of G and ðeH; �HÞ a neutral element of H.
The couple

�
FðeGÞ;Fð�GÞ � f�1

eG; eG

�
is a neutral element of H. By Remark B.7 there exists a

unique 2-arrow l : FðeGÞ ) eH such that l � Fð�GÞ � f�1
eG; eG
Þ ¼ �H � l2.

(3) It can be useful to notice that given a : g1 ) g2 and b : g3 ) g4 morphisms in
GðUÞ the following identities involving morphisms holds:

Fða � bÞ ¼ f�1
g2;g4
�
�
FðaÞ � FðbÞ

�
� fg1;g3

:

Definition B.12 (action of a Picard stack). Let ðG; t; yÞ be a Picard S-stack. Denote
by e the neutral section and by � the corresponding 2-arrow. Let X be an S-stack. An
action of G on X is the following data:

� a morphism of S-stack:

G�S X!a X;

g; x 7! g� x;

� a 2-arrow h:

hx : e� x) x;

240 Fantechi, Mann and Nironi, Deligne-Mumford stacks

AUTHOR’S COPY | AUTORENEXEMPLAR 

AUTHOR’S COPY | AUTORENEXEMPLAR 



� a 2-arrow s:

sg1;g2;x : ðg1 � g2Þ � x) g1 � ðg2 � xÞ:

These data must satisfy the following conditions:

(1) (Pentagon) For every chart U , every objects g1; g2; g3 A GðUÞ and every object
x A XðUÞ, we have

ðidg1
� sg2;g3;xÞ � sg1;g2�g3;x � ðyg1;g2;g3

� idxÞ ¼ sg1;g2;g3�x � sg1�g2;g3;x:

(2) For any chart U and any object x A XðUÞ, we have

ðide � hxÞ � se; e;x ¼ ð�� idxÞ:

Remark B.13. (1) If the Picard stack is a group-scheme then our definition of the
action is compatible with the one given by Romagny in [32].

(2) Let ðG;m; y; tÞ be a Picard S-stack. The multiplication m defines an action of G
on itself.

Proposition B.14. Let G1 and G2 be two Picard S-stacks. Let F : G1 ! G2 be a

morphism of Picard stacks with the 2-arrow fg1;g2
: Fðg1 � g2Þ ) Fðg1Þ � Fðg2Þ. Let X be an

S-stack with an action of G2 given by ða; h; sÞ. Then the morphism F induces a natural action

of G1 on X.

Proof. The natural action is given by ð~aa; ~hh; ~ssÞ where we put:

� ~aa :¼ a � F .

� For every object x in X, ~hhx :¼
�
hx � ðl� idxÞ

�
where l is the 2-arrow defined in

Remark B.11.

� For every couple ðg1; g2Þ of objects of G1 and every x object of X,
~ssg1;g2;x :¼ sFðg1Þ;Fðg2Þ;x � ðfg1;g2

� idxÞ.

It is straightforward but tedious to check that the triple so defined satisfies all the properties
in Definition B.12. r

We finish this section with a proposition about actions on algebraic stacks. We refer
to [26], Definition 12.1, for the notion of étale site of a Deligne-Mumford stack.

Proposition B.15. Let X be a smooth Deligne-Mumford stack and G a finite abelian

group. An action of BG on X induces a morphism of sheaves of groups j : G �X! I genðXÞ
on the étale site of X. Moreover, as morphism of stacks, j is étale.

Proof. We may assume X to be irreducible and d-dimensional. First we produce
a stack morphism j : X� G ! I genðXÞ and we prove that j is étale. Denote by
e : SpecC! BG the neutral section. Denote by D : X! X�X the diagonal morphism.
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Denote by a : BG �X! X the action. Using the universal property of the fibered prod-
uct, we have the following 2-commutative diagram:

X� G

IðXÞ ���!p1
X

p2

???y
???yD

X ���!D X�X

X�BG

ðB:16Þ r

 
��
�

�����
!

j

p

p

id�e

id�a
id�e

where p : X� G ! X is the projection. The stack morphism j must be unramified since
it is a factor of the étale morphism p : X� G ! X. Since every component of IðXÞ has
dimension at most d, the stack morphism j is actually étale and its image is contained in
I genðXÞ.

Now, it remains to prove that j : X! I genðXÞ is a morphism of sheaves of groups on
the étale site of X. The two upper triangles of diagram (B.16) are strictly commutative since
IðXÞ is the strict fibered product. This implies that j is a morphism of sheaves of sets over
X. Notice that on the étale site, the sheaf IðXÞ is I genðXÞ.

To finish the proof, we need to show that j is a morphism of sheaves of groups. Let us
check the compatibility between the composition law in IðXÞ and the multiplication of G.
This compatibility follows from the existence of a dashed arrow such that the upper square
in the following diagram is strictly commutative:

X� G � G ���������������������������!id�m
X� G

IðXÞ �X IðXÞ ���!c IðXÞ???y
???yp2

IðXÞ ���!p2
X

r

X� G

 
���

���
���

���
���  �

��
�

 ���
��

������
���!

j

p2

j

p2

where the stack morphism c is the composition law of the inertia stack. The external square
of the diagram above is 2-cartesian and the stack morphism id�m : X� G � G ! X� G

is the identity on X and the multiplication in G. By the universal property of the strict fiber
product, we deduce the dashed arrow such that the upper square is strictly commutative.
This ends the proof. r

Appendix C. Stacky version of Zariski’s Main Theorem

Here, we prove a stacky version of Zariski’s Main Theorem. We did not find any ref-
erence in the literature for this version.
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Theorem C.1 (Zariski’s Main Theorem for stacks). Let X, Y be smooth Deligne-

Mumford stacks. Let f : X! Y be a representable, birational, quasi-finite and surjective

morphism. Then f is an isomorphism.

Proof. Let Y ! Y be an étale atlas. Consider the following fiber product:

X ���!f Y???y
???y

X ���!f Y:

r

The morphism f : X ! Y is proper, birational, surjective and quasi-finite between smooth
varieties. Hence, the Zariski Main Theorem (see for example [29], p. 209) implies that f is
an isomorphism. This implies that f : X! Y is an isomorphism. r
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