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Ce cours s’inspire beaucoup de l’excellent livre américain [DF04] mais aussi de mes bibles
françaises [RDO82, AF87, Voe02].

Pour vous déplacer dans le fichier pdf, veuillez cliquer sur la table des matières ou sur les
numéros des théorèmes, propositions....



Chapitre 1

La catégorie des anneaux

En mathématiques, en particulier en algèbre, on travaille dans des catégories.
En algèbre linéaire, vous avez vu la catégorie des espaces vectoriels sur un corps commu-

tatif donné K dont les objets sont les espaces vectoriels et les morphismes, les applications
linéaires.

Au premier semestre, vous avez aussi vu la catégorie des espaces topologiques dont les
objets sont les espaces topologiques et les morphismes, les applications continues.

Nous allons commencer par revoir la catégorie des groupes déjà définie dans le cours de
groupes au premier semestre. Les objets de cette catégorie sont les groupes et les morphismes
sont les morphismes de groupes. Puis nous définissons la catégorie des anneaux.

Ce chapitre est survolé dans la Vidéo de la classe à distance du Lundi 13 Janvier 2026,
partie 2.

1. Les objets

Definition 1.1. [RDO82, 1.5.1.1◦ Définition] Soit E un ensemble. On appelle loi de
composition interne, toute application ⋆ : E × E → E, (x, y) 7→ x ⋆ y. Le couple (E, ⋆) est
appelé magma.

Definition 1.2. Soit (E, ⋆) un magma. On dit que (E, ⋆) est un monoïde si la loi de
composition interne ⋆ est associative et unitaire.

Propriété 1.3. [RDO82, 1.5.1.3◦ Théorème] Soit (E, ⋆) un monoide.
1) Tout élément neutre e est unique.
2) Supposons que a admet un inverse a−1 à gauche. Alors pour tout x et y ∈ E, a⋆x = a⋆y

implique x = y. (On dit que a est régulier à gauche).
3) Si a admet un inverse à droite et un inverse à gauche. Alors cet inverse à droite est

égale à cet inverse à gauche. En particulier, si a admet un inverse alors il est unique.

Exercice 1
Démontrer la propriété.

Definition 1.4. Soit (G, ⋆) un monoïde. On dit que (G, ⋆) est un groupe si tout élément
admet un inverse.

Lorsque la loi de composition interne ⋆ est commutative, il est courant de la noter + et
de l’appeler addition. L’élément neutre sera noté 0G ou 0 et appelé élément nul. L’inverse
d’un élément x pour le groupe commutatif (A, +) sera appelé opposé et noté −x.

Sinon souvent, la loi de composition interne est noté × et est appelé multiplication.
L’élément neutre est noté 1G ou 1 et appelé élément unité.

Definition 1.5. Soit (G, ×) un groupe noté multiplicativement. Soit x ∈ G. Soit n ∈ Z.
On appelle puissance n-ièmes de x notée xn : x0 := 1G. Si n > 0 alors xn := x × · · · × x. Si
n < 0 alors xn := (x−1)−n. Dans le cas d’un groupe (G, +) noté additivement, xn est noté
nx. Donc 0x := 0G. Si n > 0 alors nx := x + · · · + x. Si n < 0 alors nx := (−n)(−x).
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6 1. LA CATÉGORIE DES ANNEAUX

Propriété 1.6. Pour tout p, q ∈ Z, i) xp × xq = xp+q et ii) (xp)q = xpq. En notation
additive, i) px + qx = (p + q)x et ii) (pq)x = q(px).

Definition 1.7. [RDO82, 3.1.1◦ Définition] Soit A un ensemble muni de deux lois de
compositions internes + et ×. On dit que (A, +, ×) est un anneau si

(A, +) est un groupe commutatif.
(A, ×) est un monoïde. et
distributivité : pour tout a, b et c ∈ A,

a × (b + c) = a × b + a × c

et
(b + c) × a = b × a + c × a.

Dans un anneau A, la loi du groupe commutatif est noté additivement et la loi du monoïde
est noté multiplicativement, même si souvent elle sera aussi commutative.

La multiplication de deux éléments x × y sera simplement noté xy.
L’exemple le plus important d’anneau est Z. Par contre N n’est pas un anneau.

Propriété 1.8. Soit (G, ⋆) un monoïde. Soient x et y ∈ G. si x et y sont inversibles
alors le produit x ⋆ y est inversible d’inverse (x ⋆ y)−1 = y−1 ⋆ x−1. Et l’ensemble des éléments
inversibles de G est un groupe. En particulier, soit A un anneau, l’ensemble des éléments
inversibles est un groupe noté A⋆.

Par exemple, soit E un ensemble. Alors EE l’ensemble des applications de E dans E
est un monoïde pour ◦ la composition des applications. D’après la propriété, l’ensemble des
bijections de E dans E appelées permutation forment un groupe appelé le groupe symetrique
de E. Plus généralement, soit C une categorie. Soit E un objet de C. Alors l’ensemble des
morphismes de E dans E (appelé endomorphisme de E), noté HomC(E, E) est un monoide et
l’ensemble des isomorphismes de E dans E (appelé automorphisme de E), noté IsoC(E, E),
est un groupe.

Definition 1.9. Soit K un anneau. On dit que K est un corps si K⋆ = K − {0}.

Proposition 1.10. Soit K un anneau. Alors K est un corps ssi K n’est pas l’anneau
trivial et si tout élément non nul est inversible pour la multiplication.

L’anneau Z n’est pas un corps. Vous connaissez les corps Q, R et C.
Dans un anneau, nous avons les règles de calcul suivante.

Propriété 1.11. [RDO82, 3.1.2.2◦ Théorème] Soit A un anneau. Alors pour tout a ∈ A,
i) 0a = a0 = 0 (On dit que 0 est un élément absorbant)
ii) pour tout a et b ∈ A, (−a)b = a(−b) = −(ab). En particulier (−1)a = −a.
iii) pour tout n ∈ Z, pour tout a et b ∈ A, (na)b = a(nb) = n(ab). En particulier

na = (n1A)a.

Exercice 2
Démontrer la propriété.
Un ensemble réduit à un seul élément est clairement un anneau, appelé anneau nul ou

trivial où 1 = 0. Réciproquement,

Exercice 3
Montrer si 1 = 0 dans un anneau A alors A est l’anneau nul.
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Exercice 4
Considérons un ensemble A à deux éléments. Montrer qu’il existe au plus une seule façon

de construire une table d’addition et une table de multiplication sur A qui lui donne une
structure d’anneau.

Exercice 5
Considérons un ensemble A à trois éléments. Montrer qu’il existe au plus une seule façon

de construire une table d’addition et une table de multiplication sur A qui lui donne une
structure d’anneau.

Proposition 1.12. Soit A un anneau. Soit a ∈ A. Les conditions suivantes sont équiva-
lentes.

i) pour tout x et y ∈ A, ax = ay implique x = y. (On dit que a est régulier à gauche).
ii) pour tout b ∈ A (ab = 0 implique b = 0).
iii) pour tout x et y ∈ A, xa = ya implique x = y. (On dit que a est régulier à droite).
Démonstration. Supposons i). Alors en prenant x = b et y = 0, comme a0 = 0 on

obtient ii).
Supposons ii). Soient x et y ∈ A tel que ax = ay. Alors ax − ay = a(x − y) = 0. Donc

par ii), x − y = 0, i. e. x = y.
Pour montrer que ii) et iii) sont équivalents, il suffit de considérer l’anneau opposé où la

multiplication est effectuée dans l’ordre opposé. □

Donc un élément a n’est pas régulier si il existe b ̸= 0 tel que ab = 0. Souvent, dans
la littérature, les éléments non nuls pas réguliers sont appelés diviseurs de zéro. Mais nous
n’adopterons pas cette terminologie qui porte à confusion avec la définition 2.6 de diviseur
d’un élément.

Definition 1.13. Soit A un anneau. On dit que A est intègre si A n’est pas l’anneau
trivial et si pour tout a, b ∈ A (ab = 0 implique a = 0 ou b = 0).

Proposition 1.14. Un anneau est intègre ssi il est non trivial et tous les éléments non
nuls sont réguliers.

Comme tout élément inversible est régulier, on obtient
Proposition 1.15. Tout corps K est un anneau intègre.
Réciproquement
Proposition 1.16. Tout anneau fini intègre est un corps.
Démonstration. Soit A un anneau intègre. On suppose que A est de cardinal fini. Soit

a un élément non nul de A. Comme a est régulier à gauche, l’application A → A, x 7→ ax
est injective donc aussi surjective. Donc il existe x ∈ A tel que ax = 1. Donc a admet x pour
inverse à droite.

De même, comme a est régulier à droite, il existe z ∈ A tel que ya = 1. Donc a admet z
pour inverse à gauche.

Comme a est inversible à gauche et à droite, a est inversible d’après Propriete 1.3 iii). □

2. Les morphismes

Definition 1.17. Soit (E, ⋆) et (E ′, ⋆) deux magmas. Soit f : E → E ′ une application.
On dit que f est un morphisme de magmas si pour tout x, y ∈ E, f(x ⋆ y) = f(x) ⋆ f(y).

Definition 1.18. Soit (E, ⋆) et (E ′, ⋆) deux monoïdes. Soit f : E → E ′ une application.
On dit que f est un morphisme de monoïdes si pour tout x, y ∈ E, f(x ⋆ y) = f(x) ⋆ f(y) et
si f(e) = e′.
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Definition 1.19. Soit (G, ×) et (G′, ×) deux groupes notés multiplicativement. Soit
f : G → G′ une application. On dit que f est un morphisme de groupes si tout x, y ∈ E,
f(xy) = f(x)f(y), si f(1G) = 1G′ et si pour tout x ∈ G, f(x−1) = f(x)−1.

Proposition 1.20. Soit (G, ×) et (G′, ×) deux groupes. Soit f : G → G′ un morphisme
de magmas. Alors f est nécessairement un morphisme de groupes et pour tout n ∈ Z, pour
tout x ∈ G, f(xn) = (f(x))n.

Démonstration. f(1G)f(1G) = f(1G1G) = f(1G) = f(1G)1G′ . Donc d’après la pro-
priété 1.3 2), f(1G) = 1G′ .

f(x)f(x−1) = f(xx−1) = f(1G) = 1′
G. Donc f(x−1) = f(x)−1.

f(x0) = f(1G) = 1G′ = f(x)0. Supposons que n > 0. Par récurrence, si f(xn) = f(x)n

alors f(xn+1) = f(xnx) = f(x)nf(x) = f(x)n+1. f(x−n) = f((x−1)n) = (f(x−1))n =
((f(x))−1)n = (f(x))−n. □

Definition 1.21. Soit A et B deux anneaux. Soit f : A → B une application. On
dit que f est un morphisme d’anneaux si f est à la fois un morphisme de groupes pour
l’addition et un morphisme de monoïdes pour la multiplication : i.e pour tout x, y ∈ A,
f(x + y) = f(x) + f(y), f(xy) = f(x)f(y) et f(1) = 1.

La condition f(1) = 1 est nécessaire sinon l’application constamment nulle marche. Voir
aussi l’exercice 8

Propriété 1.22. i) Tout morphisme d’anneaux f : A → B induit par restriction un
morphisme de groupes du groupe des inversibles de A, A⋆, vers le groupe des inversibles de
B, B⋆.

ii) En particulier, tout morphisme d’anneaux f : K → A d’un corps K dans un anneau A
non trivial est injectif.

.

Exercice 6
Démontrer la propriété précédente.

3. Anneaux produits

Definition 1.23. [RDO82, 3.1.5] Soit (Ai, +, ×)i∈I une famille d’anneaux. Alors A le
produit d’ensembles Πi∈IAi est un anneau appele anneau produit où l’addition et la multi-
plication sont définis composantes par composantes : soit a = (ai)i∈A et b = (bi)i∈A. Alors
a + b = (ai + bi)i∈A et a × b = (ai × bi)i∈A. 0A = (0Ai

)i∈A. 1A = (1Ai
)i∈A.

Remarquons [RDO82, 3.1.5] que le produit d’au moins deux anneaux non trivials n’est
jamais intègre. En effet (0, 1) × (1, 0) = (1 × 0, 0 × 1) = (0, 0).

Dans le cas particulier de la famille constante, on obtient que AI , l’ensemble des applica-
tions d’un ensemble I vers un anneau A est un anneau.[RDO82, 4.2.2.1◦ Exemple b)].

4. les sous-objets

Soit E un ensemble. Soit A une partie de E. On appelle inclusion de A dans E, l’appli-
cation injective de A dans E qui à tout élément de A associe ce même élément vu comme
élément de E.

Definition 1.24. Soit G un groupe. Soit H une partie de G. On dit que H est un
sous-groupe de G si H est un groupe tel que l’inclusion de H dans G soit un morphisme de
groupes.

Les deux propositions suivantes sont très utile pour montrer qu’un ensemble est un groupe.
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Proposition 1.25. Soit (G, ⋆) un groupe. Soit H une partie de G. Alors H est un sous-
groupe de G ssi

H est non vide,
pour tout x, y ∈ H, x ⋆ y ∈ H (On dit que H est stable pour ⋆) et
pour tout x ∈ H, x−1 ∈ H (On dit que H est stable pour passage à l’inverse).

Démonstration. Comme H est non vide, il existe x ∈ H. Par stabilité par passage à
l’inverse x−1 ∈ H. Par stabilité pour ⋆, e = xx−1 ∈ H. Comme e est un élément neutre dans
G, c’est aussi un élément neutre dans H. Comme ⋆ est associatif dans G, la restriction de
⋆ dans H est aussi associative. L’inclusion de H dans G est clairement un morphisme de
magmas. □

Proposition 1.26. [RDO82, 1.6.2](Transmission des propriétés) Soit (G, ⋆) un mo-
noïde. Soit f : (G, ⋆) → (G′, ⋆) un morphisme de magmas. Alors la partie f(G) est stable
pour ⋆ et est un monoïde pour la loi induite.

Pour tout x inversible dans G, f(x) est inversible dans le monoide f(G) d’inverse f(x)−1 =
f(x−1). En particulier si G est un groupe alors f(G) est un groupe.

Démonstration. Soit y et y′ ∈ f(G) alors il existe x et x′ ∈ G tel que y = f(x) et
y′ = f(x′). Donc y ⋆ y′ = f(x) ⋆ f(x′) = f(x ⋆ x′) ∈ f(G).

Soit e un élément neutre pour G. Alors pour y ∈ f(G), il existe x ∈ G tel que y = f(x).
Donc f(e) ⋆ y = f(e) ⋆ f(x) = f(e ⋆ x) = f(x) = y. Donc f(e) est un élément neutre pour
f(G).

Supposons que ⋆ est associative dans G. Soit a, b et c ∈ f(G). Alors il existe x, y et z ∈ G
tels que a = f(x), b = f(y) et c = f(z). Donc

(a ⋆ b) ⋆ c = (f(x) ⋆ f(y)) ⋆ f(z) = f(x ⋆ y) ⋆ f(z) = f((x ⋆ y) ⋆ z)

De même

a ⋆ (b ⋆ c) = f(x) ⋆ (f(y) ⋆ f(z)) = f(x) ⋆ f(y ⋆ z) == f(x ⋆ (y ⋆ z))

Comme (x ⋆ y) ⋆ z = x ⋆ (y ⋆ z) alors (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c).
f(x)f(x−1) = f(xx−1) = f(e). Donc f(x−1) = f(x)−1. □

Corollaire 1.27. L’image de tout sous-groupe par un morphisme de groupes est un
sous-groupe : Soit f : (G, ⋆) → (G′, ⋆) un morphisme de groupes. Soit H un sous-groupe de
G. Alors f(G) est un sous-groupe de G′. En particulier, Im f est un sous-groupe de G′.

Démonstration. Montrons d’abord le corollaire pour Im f . D’après la proposition pré-
cédente, Im f = f(G) est un groupe telle que l’inclusion de f(G) dans G′ soit un morphisme
de magmas.

Dans le cas général, considérons la restriction de f à H, f|H : H → G′ qui est un clairement
un morphisme de groupes. Donc Im f|H = f(H) est un sous-groupe de G′. □

Definition 1.28. Soit A un anneau. Soit B une partie de A. On dit que B est un
sous-anneau de A si B est un anneau tel que l’inclusion de B dans A soit un morphisme
d’anneaux.

Proposition 1.29. Soit A un anneau. Soit B une partie de A. Alors B est un sous-
anneau de A ssi

1 ∈ B,
pour tout x, y ∈ B, x + y ∈ B (On dit que B est stable pour l’addition),
pour tout x ∈ B, −x ∈ B (On dit que B est stable par passage à l’opposée), et
pour tout x, y ∈ B, xy ∈ B. (On dit que B est stable pour la multiplication).
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Definition 1.30. Soit A un anneau. On appelle centre de A, noté Z(A), l’ensemble des
éléments de A commutant avec tous les autres éléments : a ∈ Z(A) ssi pour tout x ∈ A,
ax = xa.

Exercice 7
Montrer que le centre de A est un sous-anneau de A.

Exercice 8
Soit A et B deux anneaux.
1. Soit f : A → B une application additive et multiplicative i.e pour tout x, y ∈ A,

f(x + y) = f(x) + f(y), et f(xy) = f(x)f(y). Montrer que si f(1) est régulier ou
appartient à l’image de f alors f(1) = 1. En particulier si B est intégré et si f n’est
pas constamment nulle alors f est un morphisme d’anneaux.

2. Soit i1 : A ↪→ A × B l’application définie par i1(a) = (a, 0) appelé inclusion dans le
premier facteur. Montrer que i1 est additive et multiplicative et que pourtant i1(1A) ̸=
1A×B si B n’est pas l’anneau trivial.

En particulier le produit de deux anneaux n’est jamais un corps si un des deux anneaux
est non trivial.

Cette exercice montre qu’il n’est pas facile d’étendre un corps. Nous connaissons les
extensions de corps Q ⊂ R ⊂ C.

5. Les entiers modulo n : Z/nZ

Dans cette section, nous allons introduire l’anneau des entiers modulo n, Z/nZ. Soit n
un entier naturel supérieur ou égal à 2. On définit sur Z la relation de congruence modulo
n par a est congru à b modulo n si n divise (b − a) ssi il existe k ∈ Z tel que b = a + kn.
Notation a ≡ b (mod n).

Cette relation est une relation d’équivalence. Pour tout a ∈ Z, notons par a, la classe
d’équivalence de a. Alors a est la partie de Z donné par

a = {a, a ± n, a ± 2n, a ± 3n....}

L’ensemble des classes d’équivalence est l’ensemble quotient Z/nZ.
Si a ≡ a′ (mod n) et b ≡ b′ (mod n) alors a + b ≡ a′ + b′ (mod n). Donc a + b dépends

que de a et de b.
Donc on peut définir l’opération + sur Z/nZ par a + b := a + b.
La surjection canonique q : (Z, +) → (Z/nZ, +) définie par q(a) = a est un morphisme

de magmas. Comme (Z, +) est un groupe abélien, d’après la proposition 1.26, (Z/nZ, +) est
aussi un groupe abélien.

Si a ≡ a′ (mod n) et b ≡ b′ (mod n) alors ab ≡ a′b′ (mod n). Donc on peut définir
l’opération × sur Z/nZ par a × b := a × b.

La surjection canonique q : (Z, ×) → (Z/nZ, ×) est un morphisme de magmas. Comme
(Z, ×) est un monoïde abélien, d’après la proposition 1.26, (Z/nZ, +) est aussi un monoïde
abélien.

Comme la surjection canonique q : (Z, +, ×) → (Z/nZ, +, ×) est à la fois un morphisme de
groupes pour l’addition et un morphisme de monoïdes pour la multiplication, la distributivité
dans l’anneau (Z, +, ×) implique la distributivité dans (Z/nZ, +, ×) qui est donc aussi un
anneau. Nous avons donc prouvé

Théorème 1.31. L’ensemble quotient Z/nZ est un anneau commutatif tel que la surjec-
tion canonique q : (Z, +, ×) → (Z/nZ, +, ×) soit un morphisme d’anneaux.
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Proposition 1.32. Soit a ∈ Z. Alors a est un élément inversible de l’anneau Z/nZ ssi
a est premier avec n. En particulier Z/nZ est un corps ssi n est un nombre premier.

Démonstration. a est un élément inversible ssi il existe u ∈ Z tel que a × u = 1 dans
Z/nZ ssi il existe u ∈ Z tel que au ≡ 1 (mod n) ssi il existe u ∈ Z et k ∈ Z tel que au = 1−kn
ssi a est premier avec n d’après l’identité de Bezout. □

L’algorithme d’Euclide pour calculer le pgcd donne les entiers u et k tel que au + kn = 1.
La classe u est l’inverse multiplicatif de a. Par exemple, calculons l’inverse de 17 modulo 60.
60 = 17 × 3 + 9, 17 = 9 × 1 + 8, 9 = 8 × 1 + 1. Donc le pgcd de 17 et 60 est bien 1. Donc en
partant de la fin, 1 = 9−8 = 9− (17−9) = 2∗9−17 = 2∗ (60−17×3)−17 = 2∗60−7∗17.
Donc −7 = 53 est l’inverse multiplicatif de 17 dans Z/60Z.

DummitFoote Foot page 11

6. Caractéristique d’un anneau

Definition 1.33. Soit (G, ×) un groupe noté multiplicativement. Soit x un élément de
G. Par définition, l’ordre de x est le plus entier naturel n strictement positif tel que xn = 1.
Si il n’en existe pas, on dit que x est d’ordre infini.

Soit φ : (Z, +) → (G, ×) l’unique morphisme de groupes tel que φ(1) = x. D’après la
proposition 1.20, pour tout n ∈ Z, φ(n) = xn. Alors ker φ sous-groupe de Z est forcément de
la forme aZ où a ∈ N. Si x est d’ordre infini, alors ker φ = {0} et donc a = 0 et φ est injectif.
Si x est d’ordre n alors a = n et ker φ = nZ.

Definition 1.34. Soit A un anneau. On appelle caractéristique de A, l’ordre de 1A dans le
groupe additif (A, +) avec la convention que si cet ordre est infini, on dit que la caractéristique
est nulle.

Un anneau est trivial ssi sa caractéristique est égale à 1.

Propriété 1.35. Soit n la caractéristique d’un anneau A.
i) [DF04, 13.1 Proposition 1] Alors pour tout a ∈ A, na = 0.
ii) Soit φ : (Z, +) → (A, +) l’unique morphisme de groupes tel que φ(1) = 1A. Alors φ

est un morphisme d’anneaux de noyau ker φ = {nZ}.

Démonstration. i) Par définition, 0a := 0A donc si n = 0 alors na = 0A. d’après
d’après propriété 1.11 iii),

na = (n1A)a = 0Aa = 0A.

ii) D’après la proposition 1.20, pour tout n ∈ Z, φ(n) = n1A. Pour tout p et q ∈ Z,
d’après le ii) de la propriété 1.6 puis d’après propriété 1.11 iii) avec a = q1A,

φ(pq) = (pq)1A = p(q1A) = (p1A)(q1A) = φ(p)φ(q).

□

Pour tout anneau A, il existe donc un unique morphisme φ d’anneaux de Z dans A.

Exercice 9
i) Montrer que l’image de φ est incluse dans le centre de A. On dit que A est une Z-algèbre.
ii) Montrer que si A est un corps et φ est injectif alors φ s’étend de manière unique en

un morphisme d’anneaux Ψ : Q → A.

Proposition 1.36. [DF04, 13.1 Proposition 1] Si A est un anneau intègre, alors la
caractéristique de A est soit nulle, soit un nombre premier.
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Démonstration. Soit n la caractéristique de A. Supposons que n est non nulle. Alors n
est le plus entier strictement positif tel que n1A = 0. Supposons par l’absurde que n = pq avec
p < n et q < n. D’après la démonstration de iii) de la propriété précédente, n1A = (pq)1A =
(p1A)(q1A) = 0. Donc si A est intègre, alors p1A = 0 ou q1A = 0. Contradiction. □

Corollaire 1.37. [DF04, 13.1 Definition](Sous-corps premier)
Tout corps K contient un corps isomorphe à Q si sa caractéristique est nulle et à Z/pZ

si sa caractéristique p est non nulle.

Démonstration. Soit φ : Z → K l’unique morphisme d’anneaux.
Supposons que la caractéristique soit nulle. Alors ker φ = {0} et φ est injectif. Si K est

un corps, φ s’étend de manière unique en un morphisme d’anneaux Ψ : Q → K d’après
l’exercice 9. D’après la propriété 1.22 ii), Ψ est injectif.

Supposons que la caractéristique p de K est non nulle. Alors φ induit un morphisme
d’anneaux injectifs φ : Z/pZ → A. Supposons maintenant que K est un corps. Alors K est
un anneau intègre. Donc p est un nombre premier. Et donc Z/pZ est un corps. □

Soit φ : K → K′ un morphisme de corps. Alors tout K′-espace vectoriel E peut être vu
par restriction de scalaires comme un espace vectoriel sur K par l’action définie pour tout
a ∈ K, pour tout x ∈ E a ⋆ x := φ(a)ẋ. Par exemple, tout C-espace vectoriel peut-etre vu
commme un R-espace vectoriel.

Théorème 1.38. [DF04, p. 529-30][?, 3.C.1◦ Théorème 1] Tout corps fini admet pour
caractéristique p, un nombre premier et a pour cardinal, une puissance pd où d est un entier
naturel non nul.

Démonstration. Soit K un corps. Alors K est un anneau intègre. Comme K est de
cardinal fini, K ne peut pas contenir Z. Donc la caractéristique de K est un nombre premier et
K contient le corps Z/pZ. Considérons K vue comme espace vectoriel sur Z/pZ par restriction
de scalaire via l’inclusion d’anneaux φ : Z/pZ → K. Comme K est de cardinal fini, K admet
lui-meme comme famille génératrice fini donc est de dimension finie. Soit d la dimension
de K. Alors K est isomorphe (en particulier en bijection) à (Z/pZ)d comme Z/pZ-espace
vectoriels. □

Pour tout nombre premier p et entier naturel non nul d, il existe un corps unique à
isomorphisme près de cardinal pd. On le note Fpd . Nous les construirons dans les chapitres
suivant.

Exercice 10
1. Montrer que si un anneau A est de cardinal p, un nombre premier. Alors A est iso-

morphe au Z/pZ. ‘
2. Montrer que si un anneau A est de caractéristique p, un nombre premier. Alors A est

de cardinal, une puissance pd où d est un entier naturel non nul.
3. En déduire que si un anneau A est de cardinal pq, où p et q sont deux nombres

premiers. Alors A est isomorphe au Z/pqZ.

7. Corrigé des exercices

Solution de l’exercice 1
1. Soient e et e′ deux éléments neutres. Alors e⋆e′ = e car e′ élément neutre. et e⋆e′ = e′

car e élément neutre. Par suite, e = e′.
2. Par associativité x = e ⋆ x = a−1 ⋆ a ⋆ x = a−1 ⋆ a ⋆ y = e ⋆ y = y.
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3. Soit x ∈ E un inverse à gauche de a : x ⋆ a = e. Soit y ∈ E un inverse à droite de a :
a ⋆ y = e. Donc x = x ⋆ e = x ⋆ (a ⋆ y) = (x ⋆ a) ⋆ y = e ⋆ y = y.

Solution de l’exercice 2
Vidéo de la classe à distance du Lundi 13 Janvier 2026, partie 1.

Solution de l’exercice 3
Soit a ∈ A. Alors a = a1 = a0 = 0. Donc A = {0}.

Solution de l’exercice 4
Soit 0 l’élément nul et 1 l’élément unité de A. Comme A n’est pas réduit à un seul élément,

d’après l’exercice 3, 1 ̸= 0. Donc A = {0, 1}.
Comme 0 est l’élément nulle 0 + 0 = 0, 1 + 0 = 1 = 0 + 1. Supposons que 1 + 1 = 1 alors

1 + 1 = 1 + 0. Comme 1 est régulier, 1 = 0. Contradiction. Donc 1 + 1 = 1 + 0. D’où la table

d’addition
+ 0 1
0 0 1
1 1 0

.

Comme 1 est l’élément unité 0 × 1 = 0, 1 × 0 = 0 et 1 × 1 = 1. D’après la propriété 1.11

i), 0 × 0 = 0. D’où la table de multiplication
× 0 1
0 0 0
1 0 1

.

On pourra vérifier à la section 5 que cette anneau est Z/2Z et donc existe.

Solution de l’exercice 5
Soit 0 l’élément nul et 1 l’élément unité de A. Comme A n’est pas réduit à un seul

élément,d’après l’exercice 3, 1 ̸= 0. Soit 2 le troisième élément de A.
Pour tout x ̸= 0 et tout y, y + x ̸= y + 0 = y et x + y ̸= 0 + y = y car y est régulier. Donc

2 + 1 est différent de 1 et de 2 donc est égale à 0. De meme, 1 + 2 = 0.
Supposons que 1 + 1 = 0. Première méthode : 2 = 2 + 0 = (2 + 1) + 1 = 0 + 1 = 1.

Contradiction. Seconde méthode : 2 + 1 = 0 = 1 + 1. Donc comme 1 est régulier, 2 = 1.
Donc 1 + 1 = 2. Donc 2 + 2 = 2 + 1 + 1 = 0 + 1 = 1. Comme 0 est l’élement nul, on a

donc la table d’addition

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

.

D’après la propriété 1.11 i), a × 0 = 0 × a = 0 pour tout a ∈ A. Comme 1 est l’élément
unité, a×1 = 1×a = A pour tout a ∈ A. Il reste 2×2 = (1+1)×2 = 1×2+1×2 = 2+2 = 1.
D’où la table de multiplication.

× 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

.

On pourra vérifier à la section 5 que cette anneau est Z/3Z et donc existe.

Solution de l’exercice 6
i) Soit x ∈ A inversible. Alors f(x)f(x−1) = f(xx−1) = f(1) = 1 et f(x−1)f(x) =

f(x−1x) = f(1) = 1. Donc f(x) est inversible d’inverse (f(x))−1 = f(x−1). (Nous avions déjà
fait cette démonstration dans la preuve de la proposition 1.20). Donc f induit par restriction

https://univ-angers.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=d8b9aa96-ba61-4d26-91f2-b3d10088e92f
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un un morphisme de groupes du groupe des inversibles de A vers le groupe des inversibles de
B.

ii) Soit x ̸= 0 ∈ K. Alors f(x)f(x−1) = f(xx−1) = f(1) = 1. Comme A n’est pas l’anneau
trivial, 1 ̸= 0. D’après le i) de la propriété 1.11, f(x)f(x−1) ̸= 0 implique f(x) ̸= 0. Donc
ker f = {0}. Donc f est injectif.

Solution de l’exercice 7
Pour tout a ∈ A, 1Aa = a = a1A. Donc 1A ∈ Z(A).

Solution de l’exercice 8
1. Supposons que f(1A) est régulier. Nous avons déjà fait cette démonstration pour

montrer qu’un morphisme de magmas entre groupes est un morphisme de groupes :
f(1A)(f(1A) = f(1A × 1A) = f(1A) = f(1A)1B.

Donc comme f(1A) est régulier à gauche, f(1A) = 1B.
Supposons que 1B ∈ Im f . Alors il existe x ∈ A tel que 1B = f(x). Donc f(1A) =

f(1A)1B = f(1A)f(x) = f(1A × x) = f(x) = 1B.
2. i1(1A) = (1A, 0B) ̸= (1A, 1B).

Solution de l’exercice 9
i) D’après la proposition 1.20, pour tout n ∈ Z, φ(n) = n1A. Comme le centre Z(A) est

un sous-anneau de A, 1A ∈ Z(A) et donc aussi n1A ∈ Z(A).
ii) Unicité : Soit Ψ : Q → A un morphisme d’anneaux étendant φ. Soit x ∈ Q. Supposons

que x s’écrive sous la forme x = p/q. Comme q est inversible, d’après la propriété 1.22,
Ψ(q−1) = Ψ(q)−1 = φ(q)−1. Donc Ψ(p/q) = Ψ(p)Ψ(1/q) = φ(p)φ(q)−1.

Existence : Soit x ∈ Q. Supposons que x s’écrive sous la forme x = a/b. Posons Ψ(a/b) =
φ(a)φ(b)−1. Il faut montrer que Ψ(x) est bien définie. Supposons que x = a/b = c/d. Alors
ad = bc. Donc φ(a)φ(d) = φ(b)φ(c). Donc φ(b)−1φ(a) = φ(c)φ(d)−1. D’après i), φ(b)−1φ(a) =
φ(a)φ(b)−1. Donc finalement, on a bien φ(a)φ(b)−1 = φ(c)φ(d)−1.

Soient x = a/b et y = c/d. Alors xy = ac
db

. Donc d’après la propriété 1.8 et i), Ψ(xy) =
φ(ac)φ(db)−1 = φ(a)φ(c)φ(b)−1φ(d)−1 = φ(a)φ(b)−1φ(c)φ(d)−1 = Ψ(x)Ψ(y). De plus Ψ(1/1) =
φ(1)φ(1)−1 = 1A × 1A = 1A. Donc Ψ est un morphisme d’anneaux.

Solution de l’exercice 10
On rappelle que l’ordre d’un groupe divise le cardinal du groupe. En particulier, la ca-

ractéristique d’un anneau divise le cardinal de l’anneau.
1. Si ce cardinal est un nombre premier p, alors la caractéristique de A est donc 1 ou

p. Mais 1 est impossible car l’anneau serait trivial de cardinal 1. L’unique morphisme
d’anneaux Z → A a pour noyau pZ et induit donc un morphisme d’anneaux injectifs
φ : Z/pZ → A. Comme Z/pZ et A ont même cardinal, φ est donc une bijection.

2. Si la caractéristique de A est un nombre premier, alors les mêmes arguments que pour
le Théorème 1.38 montrer que A est cardinal pd.

3. Dans ce cas, la caractéristique de A est p ou q ou pq. Mais si la caractéristique de A
est p ou q, son cardinal est une puissance de nombres premiers d’après 2). Donc la
caractéristique de A est égale à son cardinal et donc A est isomorphe à Z/pqZ.
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8. Livres à télécharger

Pour vous aider, j’ai mis les livres de la bibliographie (à l’exception notable de [LFA77a,
LFA77b] que je n’ai pas trouvé sur Internet) et d’autres livres à télécharger rapidement sur
la page cachée suivante de ma page web

http://www.math.univ-angers.fr/perso/lmenichi/Groupedetravail/
Veuillez ne pas faire de lien sur cette page web. Car cette page illégale ne doit pas être

indexée par google. Merci.
La plupart des livres sont sous le format .djvu. Il faut donc un logiciel de lecture qui lit

le format deja vu. Cliquer pour accéder à la page wikipedia qui explique :
-Si vous êtes sous linux, Evince est sûrement déjà installé.
-Vous pouvez installer par exemple, le logiciel libre DjVuLibre. Si vous êtes sous Windows,

cliquer ici pour télécharger la version pour Windows.
-Sur votre smartphone, à vous de voir.
Vous pouvez télécharger d’autres livres sur le site pirate library genesis.
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