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Chapitre 1

La catégorie des anneaux

En mathématiques, en particulier en algebre, on travaille dans des catégories.

En algebre linéaire, vous avez vu la catégorie des espaces vectoriels sur un corps commu-
tatif donné K dont les objets sont les espaces vectoriels et les morphismes, les applications
linéaires.

Au premier semestre, vous avez aussi vu la catégorie des espaces topologiques dont les
objets sont les espaces topologiques et les morphismes, les applications continues.

Nous allons commencer par revoir la catégorie des groupes déja définie dans le cours de
groupes au premier semestre. Les objets de cette catégorie sont les groupes et les morphismes
sont les morphismes de groupes. Puis nous définissons la catégorie des anneaux.

Ce chapitre est survolé dans la Vidéo de la classe a distance du Lundi 13 Janvier 2026,
partie 2.

1. Les objets

DEerINITION 1.1. [RDOS82| 1.5.1.1° Définition] Soit E un ensemble. On appelle loi de
composition interne, toute application x : ' x E — E. (z,y) — = xy. Le couple (E,*) est
appelé magma.

DEFINITION 1.2. Soit (E, ) un magma. On dit que (F,*) est un monoide si la loi de
composition interne % est associative et unitaire.

PRrROPRIETE 1.3. [RDO82| 1.5.1.3° Théoréme] Soit (E,*) un monoide.

1) Tout élément neutre e est unique.

2) Supposons que a admet un inverse a~* & gauche. Alors pour tout z et y € E, axx = axy
implique = = y. (On dit que a est régulier & gauche).

3) Si a admet un inverse a droite et un inverse a gauche. Alors cet inverse a droite est
égale a cet inverse a gauche. En particulier, si a admet un inverse alors il est unique.

Exercice 1
Démontrer la propriété.

DEFINITION 1.4. Soit (G, ) un monoide. On dit que (G, x) est un groupe si tout élément
admet un inverse.

Lorsque la loi de composition interne x est commutative, il est courant de la noter + et
de l'appeler addition. L’élément neutre sera noté Og ou 0 et appelé élément nul. L’inverse
d’un élément x pour le groupe commutatif (A, +) sera appelé opposé et noté —zx.

Sinon souvent, la loi de composition interne est noté x et est appelé multiplication.
L’élément neutre est noté 14 ou 1 et appelé élément unité.

DEFINITION 1.5. Soit (G, x) un groupe noté multiplicativement. Soit z € G. Soit n € Z.
On appelle puissance n-iémes de x notée 2" : 2° :== 1g. Sin > 0 alors 2" == o x --- x x. Si
n < 0 alors 2" := (x~1)™". Dans le cas d'un groupe (G, +) noté additivement, " est noté

nx. Donc 0x := 0g. Sin > 0 alors nx :=x +--- + . Sin < 0 alors nx := (—n)(—x).
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PROPRIETE 1.6. Pour tout p, ¢ € Z, i) P x 9 = 2P et ii) (2P)? = 2P?. En notation
additive, 1) pz + gr = (p + q)x et ii) (pq)zr = q(px).

DErFINITION 1.7. [RDO82| 3.1.1° Définition| Soit A un ensemble muni de deux lois de
compositions internes + et x. On dit que (A, +, X) est un anneau si

(A, +) est un groupe commutatif.

(A, x) est un monoide. et

distributivité : pour tout a, b et ¢ € A,

ax(b+c)=axb+axc

et
(b+c)xa=bxa+cxXa.

Dans un anneau A, la loi du groupe commutatif est noté additivement et la loi du monoide
est noté multiplicativement, méme si souvent elle sera aussi commutative.

La multiplication de deux éléments x X y sera simplement noté xy.

L’exemple le plus important d’anneau est Z. Par contre N n’est pas un anneau.

PROPRIETE 1.8. Soit (G, %) un monoide. Soient x et y € G. si x et y sont inversibles
alors le produit zxy est inversible d’'inverse (zxy)~! = y~ ' x2~!. Et 'ensemble des éléments
inversibles de G est un groupe. En particulier, soit A un anneau, ’ensemble des éléments
inversibles est un groupe noté A*.

Par exemple, soit £ un ensemble. Alors E¥ '’ensemble des applications de F dans E
est un monoide pour o la composition des applications. D’apres la propriété, I’ensemble des
bijections de E dans F appelées permutation forment un groupe appelé le groupe symetrique
de E. Plus généralement, soit C une categorie. Soit £ un objet de C. Alors ’ensemble des
morphismes de F dans E (appelé endomorphisme de E), noté Home(F, E) est un monoide et
I’ensemble des isomorphismes de E dans E (appelé automorphisme de E), noté Isoc(F, E),
est un groupe.

DEFINITION 1.9. Soit K un anneau. On dit que K est un corps si K* = K — {0}.

PROPOSITION 1.10. Soit K un anneau. Alors K est un corps ssi K n’est pas l'anneau
trivial et si tout élément non nul est inversible pour la multiplication.

L’anneau Z n’est pas un corps. Vous connaissez les corps Q, R et C.
Dans un anneau, nous avons les regles de calcul suivante.

PROPRIETE 1.11. [RDO82] 3.1.2.2° Théoréme] Soit A un anneau. Alors pour tout a € A,

i) 0a = a0 = 0 (On dit que 0 est un élément absorbant)

ii) pour tout a et b € A, (—a)b = a(—b) = —(ab). En particulier (—1)a = —a.

iii) pour tout n € Z, pour tout a et b € A, (na)b = a(nb) = n(ab). En particulier
na = (nla)a.

Exercice 2

Démontrer la propriété.
Un ensemble réduit a un seul élément est clairement un anneau, appelé anneau nul ou
trivial ou 1 = 0. Réciproquement,

Exercice 3

Montrer si 1 = 0 dans un anneau A alors A est I’anneau nul.
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Exercice 4

Considérons un ensemble A a deux éléments. Montrer qu’il existe au plus une seule fagon
de construire une table d’addition et une table de multiplication sur A qui lui donne une
structure d’anneau.

Exercice 5

Considérons un ensemble A a trois éléments. Montrer qu’il existe au plus une seule fagon
de construire une table d’addition et une table de multiplication sur A qui lui donne une
structure d’anneau.

PROPOSITION 1.12. Soit A un anneau. Soit a € A. Les conditions suivantes sont équiva-
lentes.

i) pour tout x et y € A, ax = ay implique x = y. (On dit que a est régulier a gauche).

ii) pour tout b € A (ab =0 implique b =0).

i11) pour tout x et y € A, ra = ya implique x = y. (On dit que a est régulier a droite).

DEMONSTRATION. Supposons i). Alors en prenant * = b et y = 0, comme a0 = 0 on
obtient ii).

Supposons ii). Soient z et y € A tel que axr = ay. Alors ax — ay = a(z — y) = 0. Donc
parii), z —y =0,i. e. 2z = y.

Pour montrer que ii) et iii) sont équivalents, il suffit de considérer I’anneau opposé ou la
multiplication est effectuée dans ’ordre opposé. 0

Donc un élément a n’est pas régulier si il existe b # 0 tel que ab = 0. Souvent, dans
la littérature, les éléments non nuls pas réguliers sont appelés diviseurs de zéro. Mais nous
n’adopterons pas cette terminologie qui porte a confusion avec la définition de diviseur
d’un élément.

DEFINITION 1.13. Soit A un anneau. On dit que A est integre si A n’est pas 'anneau
trivial et si pour tout a, b € A (ab = 0 implique a = 0 ou b = 0).

PROPOSITION 1.14. Un anneau est intégre ssi il est non trivial et tous les éléments non
nuls sont réquliers.

Comme tout élément inversible est régulier, on obtient
PROPOSITION 1.15. Tout corps K est un anneau intégre.
Réciproquement

PROPOSITION 1.16. Tout anneau fini intégre est un corps.

DEMONSTRATION. Soit A un anneau intégre. On suppose que A est de cardinal fini. Soit
a un élément non nul de A. Comme a est régulier a gauche, application A — A, x — ax
est injective donc aussi surjective. Donc il existe x € A tel que ax = 1. Donc a admet x pour
inverse a droite.

De méme, comme a est régulier a droite, il existe z € A tel que ya = 1. Donc a admet z
pour inverse a gauche.

Comme a est inversible a gauche et a droite, a est inversible d’apres Propriete iii). O

2. Les morphismes

DEFINITION 1.17. Soit (F,x) et (E’,*) deux magmas. Soit f : E — E’ une application.
On dit que f est un morphisme de magmas si pour tout z, y € E, f(zxy) = f(x)x f(y).

DEFINITION 1.18. Soit (F,x) et (E’, x) deux monoides. Soit f : E — E’ une application.
On dit que f est un morphisme de monoides si pour tout x, y € E, f(xxy) = f(z)* f(y) et

si f(e) =¢.
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DEFINITION 1.19. Soit (G, x) et (G', x) deux groupes notés multiplicativement. Soit
f : G — G une application. On dit que f est un morphisme de groupes si tout x, y € E,

flzy) = f(x)f(y), si f(1g) = 1 et si pour tout x € G, f(xz™1) = f(z)L.

PROPOSITION 1.20. Soit (G, x) et (G', x) deuz groupes. Soit f : G — G’ un morphisme
de magmas. Alors f est nécessairement un morphisme de groupes et pour tout n € 7Z, pour

tout x € G, f(a™) = (f(x))™.
DEMONSTRATION. f(lg)f(lg> = f(lglg) = f(lg) = f(lg)lgl. Donc d’aprés la pro-

pI‘iété 2), f(lg) = 1G’-

f(@)f(a™") = fza™!) = f(1g) = 15 Donc f(z™") = f(z)~".

f(2°) = f(1g) = 1¢ = f(x)". Supposons que n > 0. Par récurrence, si f(z") = f(z)"
alors f(2"™) = f(z"z) = f(x)"f(z) = fl@)"" f@@™) = f(@7)") = (f@™))" =
((f(@)=)" = (fl)™ U

DEFINITION 1.21. Soit A et B deux anneaux. Soit f : A — B une application. On
dit que f est un morphisme d’anneaux si f est a la fois un morphisme de groupes pour
I’addition et un morphisme de monoides pour la multiplication : i.e pour tout xz, y € A,

flx+y) = f(x)+ fy), flay) = f(x)f(y) et f(1) =1

La condition f(1) = 1 est nécessaire sinon I'application constamment nulle marche. Voir
aussi I'exercice

PROPRIETE 1.22. i) Tout morphisme d’anneaux f : A — B induit par restriction un
morphisme de groupes du groupe des inversibles de A, A*, vers le groupe des inversibles de
B, B*.

ii) En particulier, tout morphisme d’anneaux f : K — A d’un corps K dans un anneau A
non trivial est injectif.

Exercice 6

Démontrer la propriété précédente.

3. Anneaux produits

DEFINITION 1.23. [RDO82| 3.1.5] Soit (A;, 4+, X );cr une famille d’anneaux. Alors A le
produit d’ensembles II;c;A; est un anneau appele anneau produit ou 'addition et la multi-
plication sont définis composantes par composantes : soit a = (a;);ca €t b = (b;)ica. Alors
a+b= (Cli + bi)ieA et axb= (CLi X bi)ieA- OA = (OAi)iEA- 1A = (1A¢)i€A-

Remarquons [RDO82| 3.1.5] que le produit d’au moins deux anneaux non trivials n’est
jamais integre. En effet (0,1) x (1,0) = (1 x 0,0 x 1) = (0,0).

Dans le cas particulier de la famille constante, on obtient que A, ’ensemble des applica-
tions d’un ensemble I vers un anneau A est un anneau.[RDO82| 4.2.2.1° Exemple b)].

4. les sous-objets

Soit E un ensemble. Soit A une partie de E. On appelle inclusion de A dans F, appli-
cation injective de A dans E qui a tout élément de A associe ce méme élément vu comme
élément de E.

DEFINITION 1.24. Soit G un groupe. Soit H une partie de G. On dit que H est un
sous-groupe de G si H est un groupe tel que I'inclusion de H dans G soit un morphisme de
groupes.

Les deux propositions suivantes sont tres utile pour montrer qu’un ensemble est un groupe.
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PROPOSITION 1.25. Soit (G, ) un groupe. Soit H une partie de G. Alors H est un sous-
groupe de G ssi

H est non vide,

pour tout x, y € H, txy € H (On dit que H est stable pour x) et

pour tout v € H, x=* € H (On dit que H est stable pour passage a l'inverse).

DEMONSTRATION. Comme H est non vide, il existe x € H. Par stabilité par passage a
I'inverse 2! € H. Par stabilité pour x, e = xz~! € H. Comme e est un élément neutre dans
G, c’est aussi un élément neutre dans H. Comme * est associatif dans G, la restriction de
* dans H est aussi associative. L’inclusion de H dans G est clairement un morphisme de
magmas. U

ProrosiTION 1.26. [RDO82, 1.6.2](Transmission des propriétés) Soit (G,*) un mo-
noide. Soit f : (G,*) — (G',*) un morphisme de magmas. Alors la partie f(G) est stable
pour x et est un monoide pour la loi induite.

Pour tout x inversible dans G, f(x) est inversible dans le monoide f(G) d’inverse f(x)™' =
f(xz™Y). En particulier si G est un groupe alors f(G) est un groupe.

DEMONSTRATION. Soit y et ¢’ € f(G) alors il existe z et 2’ € G tel que y = f(x) et
y' = f(@'). Donc yxy' = f(z)x f(a') = f(xx2') € f(G).

Soit e un élément neutre pour G. Alors pour y € f(G), il existe z € G tel que y = f(x).
Donc f(e) xy = f(e) x f(x) = f(exx) = f(z) = y. Donc f(e) est un élément neutre pour
f(G).

Supposons que * est associative dans G. Soit a, b et ¢ € f(G). Alors il existe z, y et z € G
tels que a = f(z), b= f(y) et ¢ = f(z). Donc

(axb)xc=(f(x)* f(y) * f(2) = flexy) x f(2) = f((xxy) x2)

De méme

ax(bxc) = f(x)* (fly)x [(2)) = [(@) * flyxz) == [z x (y*2))
Comme (zxy) *z=x* (y*z) alors (axb) xc=ax* (bxc).

F(2)f(x1) = flaw) = f(e). Done f(z~1) = f(z) . O

COROLLAIRE 1.27. L’image de tout sous-groupe par un morphisme de groupes est un
sous-groupe : Soit f : (G,x) — (G',x) un morphisme de groupes. Soit H un sous-groupe de
G. Alors f(G) est un sous-groupe de G'. En particulier, Im f est un sous-groupe de G'.

DEMONSTRATION. Montrons d’abord le corollaire pour Im f. D’aprés la proposition pré-
cédente, Im f = f(G) est un groupe telle que I'inclusion de f(G) dans G’ soit un morphisme
de magmas.

Dans le cas général, considérons la restriction de f & H, fijiz : H — G’ qui est un clairement
un morphisme de groupes. Donc Im fijz = f(H) est un sous-groupe de G, O

DEFINITION 1.28. Soit A un anneau. Soit B une partie de A. On dit que B est un
sous-anneau de A si B est un anneau tel que 'inclusion de B dans A soit un morphisme
d’anneaux.

PROPOSITION 1.29. Soit A un anneau. Soit B une partie de A. Alors B est un sous-
anneau de A ssi

1e B,

pour tout x, y € B, x +y € B (On dit que B est stable pour l'addition),

pour tout x € B, —x € B (On dit que B est stable par passage a l'opposée), et

pour tout x, y € B, xy € B. (On dit que B est stable pour la multiplication).
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DEFINITION 1.30. Soit A un anneau. On appelle centre de A, noté Z(A), I'ensemble des
éléments de A commutant avec tous les autres éléments : a € Z(A) ssi pour tout x € A,
ar = xa.

Exercice 7

Montrer que le centre de A est un sous-anneau de A.

Exercice 8

Soit A et B deux anneaux.

1. Soit f : A — B une application additive et multiplicative i.e pour tout =, y € A,
flx+y) = f(x) + f(y), et f(zy) = f(z)f(y). Montrer que si f(1) est régulier ou
appartient a I'image de f alors f(1) = 1. En particulier si B est intégré et si f n’est
pas constamment nulle alors f est un morphisme d’anneaux.

2. Soit i; : A < A x B l'application définie par i;(a) = (a,0) appelé inclusion dans le
premier facteur. Montrer que i; est additive et multiplicative et que pourtant i1(14) #
laxp si B n’est pas 'anneau trivial.

En particulier le produit de deux anneaux n’est jamais un corps si un des deux anneaux
est non trivial.

Cette exercice montre qu’il n’est pas facile d’étendre un corps. Nous connaissons les
extensions de corps Q C R C C.

5. Les entiers modulo n : Z/nZ

Dans cette section, nous allons introduire 'anneau des entiers modulo n, Z/nZ. Soit n
un entier naturel supérieur ou égal a 2. On définit sur Z la relation de congruence modulo
n par a est congru & b modulo n si n divise (b — a) ssi il existe k € Z tel que b = a + kn.
Notation a = b (mod n).

Cette relation est une relation d’équivalence. Pour tout a € 7Z, notons par @, la classe
d’équivalence de a. Alors @ est la partie de Z donné par

a={a,atna+2n,a+3n..}

L’ensemble des classes d’équivalence est ’ensemble quotient Z/nZ.

Sia=d (modn)etb=10 (modn)alors a+b=da +¥ (modn). Donc a + b dépends
que de @ et de b.

Donc on peut définir 'opération + sur Z/nZ par @ + b := a + b.

La surjection canonique q : (Z,+) — (Z/nZ,+) définie par ¢(a) = @ est un morphisme
de magmas. Comme (Z, +) est un groupe abélien, d’apres la proposition (Z/nZ,+) est
aussi un groupe abélien.

Sia =d (modn) et b = (modn) alors ab = a'b’ (mod n). Donc on peut définir
I'opération x sur Z/nZ par @ X b :=a X b.

La surjection canonique q : (Z, x) — (Z/nZ, x) est un morphisme de magmas. Comme
(Z, x) est un monoide abélien, d’apres la proposition (Z/nZ,+) est aussi un monoide
abélien.

Comme la surjection canonique q : (Z, +, X) — (Z/nZ, +, x) est a la fois un morphisme de
groupes pour l'addition et un morphisme de monoides pour la multiplication, la distributivité
dans l'anneau (Z, +, x) implique la distributivité dans (Z/nZ,+, x) qui est donc aussi un
anneau. Nous avons donc prouvé

THEOREME 1.31. L’ensemble quotient Z/nZ est un anneau commutatif tel que la surjec-
tion canonique q : (Z,+, xX) — (Z/nZ,+, X) soit un morphisme d’anneauz.
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PROPOSITION 1.32. Soit a € Z. Alors @ est un élément inversible de l'anneau Z/nZ ssi
a est premier avec n. En particulier Z/nZ est un corps ssi n est un nombre premier.

DEMONSTRATION. @ est un élément inversible ssi il existe u € Z tel que @ X © = 1 dans
Z/nZ ssi il existe u € Z tel que au =1 (mod n) ssiil existe u € Z et k € Z tel que au = 1—kn
ssi a est premier avec n d’apres l'identité de Bezout. O

L’algorithme d’Euclide pour calculer le pged donne les entiers w et k tel que au + kn = 1.
La classe w est l'inverse multiplicatif de @. Par exemple, calculons 'inverse de 17 modulo 60.
60=17Tx3+9,17=9x1+4+8,9=8x1+ 1. Donc le pged de 17 et 60 est bien 1. Donc en
partant dela fin, 1 =9—-8=9—(17-9) =2%9—17=2%(60—17x3) —17 = 260 — 7% 17.
Donc —7 = 53 est I'inverse multiplicatif de 17 dans Z/60Z.

DummitFoote Foot page 11

6. Caractéristique d’un anneau

DEFINITION 1.33. Soit (G, X) un groupe noté multiplicativement. Soit z un élément de
G. Par définition, I'ordre de x est le plus entier naturel n strictement positif tel que ™ = 1.
Si il n’en existe pas, on dit que z est d’ordre infini.

Soit ¢ : (Z,+) — (G, x) 'unique morphisme de groupes tel que ¢(1) = x. D’apres la
proposition [1.20] pour tout n € Z, ¢(n) = a". Alors ker ¢ sous-groupe de Z est forcément de
la forme aZ ou a € N. Si x est d’ordre infini, alors ker ¢ = {0} et donc a = 0 et ¢ est injectif.
Si x est d’ordre n alors a = n et ker ¢ = nZ.

DEFINITION 1.34. Soit A un anneau. On appelle caractéristique de A, 'ordre de 14 dans le
groupe additif (A4, +) avec la convention que si cet ordre est infini, on dit que la caractéristique
est nulle.

Un anneau est trivial ssi sa caractéristique est égale a 1.

PROPRIETE 1.35. Soit n la caractéristique d’un anneau A.

i) [DF04] 13.1 Proposition 1] Alors pour tout a € A, na = 0.

ii) Soit ¢ : (Z,4+) — (A, +) l'unique morphisme de groupes tel que (1) = 14. Alors ¢
est un morphisme d’anneaux de noyau ker p = {nZ}.

DEMONSTRATION. i) Par définition, Oa := 04 donc si n = 0 alors na = 04. d’apres
d’apres propriété iii),
na = (nly)a = 04a = 04.

ii) D’apres la proposition [1.20, pour tout n € Z, p(n) = nla. Pour tout p et ¢ € Z,
d’apres le ii) de la propriété puis d’apres propriété iii) avec a = qla,

©(pq) = (pg)1a = p(qla) = (pla)(qla) = w(p)p(q)-

Pour tout anneau A, il existe donc un unique morphisme ¢ d’anneaux de Z dans A.

Exercice 9

i) Montrer que I'image de ¢ est incluse dans le centre de A. On dit que A est une Z-algébre.
ii) Montrer que si A est un corps et ¢ est injectif alors ¢ s’étend de maniére unique en
un morphisme d’anneaux ¥ : Q — A.

PropPoOSITION 1.36. [DF04, 13.1 Proposition 1] Si A est un anneau intégre, alors la
caractéristique de A est soit nulle, soit un nombre premier.
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DEMONSTRATION. Soit n la caractéristique de A. Supposons que n est non nulle. Alors n
est le plus entier strictement positif tel que nl4 = 0. Supposons par ’absurde que n = pq avec
p <netg<mn.Dapres la démonstration de iii) de la propriété précédente, nls = (pg)la =
(pla)(qla) = 0. Donc si A est integre, alors pl4 = 0 ou gl 4 = 0. Contradiction. O

COROLLAIRE 1.37. [DF04 13.1 Definition| (Sous-corps premier)
Tout corps K contient un corps isomorphe a Q si sa caractéristique est nulle et a Z/pZ
st sa caractéristique p est non nulle.

DEMONSTRATION. Soit ¢ : Z — K 'unique morphisme d’anneaux.

Supposons que la caractéristique soit nulle. Alors ker ¢ = {0} et ¢ est injectif. Si K est
un corps, ¢ s’étend de maniere unique en un morphisme d’anneaux ¥ : Q — K d’apres
exercice [9] D’aprés la propriété ii), ¥ est injectif.

Supposons que la caractéristique p de K est non nulle. Alors ¢ induit un morphisme
d’anneaux injectifs @ : Z/pZ — A. Supposons maintenant que K est un corps. Alors K est
un anneau intégre. Donc p est un nombre premier. Et donc Z/pZ est un corps. 0]

Soit ¢ : K — K’ un morphisme de corps. Alors tout K’-espace vectoriel E' peut étre vu
par restriction de scalaires comme un espace vectoriel sur K par 'action définie pour tout
a € K, pour tout x € E axx := p(a)t. Par exemple, tout C-espace vectoriel peut-etre vu
commme un R-espace vectoriel.

THEOREME 1.38. [DF04, p. 529-30][?, 3.C.1° Théoreme 1] Tout corps fini admet pour
caractéristique p, un nombre premier et a pour cardinal, une puissance p® ot d est un entier
naturel non nul.

DEMONSTRATION. Soit K un corps. Alors K est un anneau intégre. Comme K est de
cardinal fini, K ne peut pas contenir Z. Donc la caractéristique de K est un nombre premier et
K contient le corps Z/pZ. Considérons K vue comme espace vectoriel sur Z/pZ par restriction
de scalaire via I'inclusion d’anneaux @ : Z/pZ — K. Comme K est de cardinal fini, K admet
lui-meme comme famille génératrice fini donc est de dimension finie. Soit d la dimension
de K. Alors K est isomorphe (en particulier en bijection) & (Z/pZ)? comme Z/pZ-espace
vectoriels. OJ

Pour tout nombre premier p et entier naturel non nul d, il existe un corps unique a
isomorphisme prés de cardinal p?. On le note F pi. Nous les construirons dans les chapitres
suivant.

Exercice 10

1. Montrer que si un anneau A est de cardinal p, un nombre premier. Alors A est iso-
morphe au Z/pZ. ¢

2. Montrer que si un anneau A est de caractéristique p, un nombre premier. Alors A est
de cardinal, une puissance p? ol d est un entier naturel non nul.

3. En déduire que si un anneau A est de cardinal pg, ou p et ¢ sont deux nombres
premiers. Alors A est isomorphe au Z/pqZ.

7. Corrigé des exercices

Solution de ’exercice 1

1. Soient e et €' deux éléments neutres. Alors exe’ = e car €’ élément neutre. et exe’ = ¢’
car e élément neutre. Par suite, e = ¢’.

2. Par associativité r =exrx=alxaxr=alxaxy=exy=uy.



7. CORRIGE DES EXERCICES 13

3. Soit x € E un inverse a gauche de a : x xa = e. Soit y € E un inverse a droite de a :
axy=e. Doncx=zxe=xx(axy)=(zxa)xy=exy=y.

Solution de ’exercice 2

Vidéo| de la classe a distance du Lundi 13 Janvier 2026, partie 1.

Solution de I’exercice 3
Soit a € A. Alors a = al = a0 = 0. Donc A = {0}.

Solution de ’exercice 4

Soit 0 I’élément nul et 1 ’élément unité de A. Comme A n’est pas réduit a un seul élément,
d’apres l'exercice 3| 1 # 0. Donc A = {0, 1}.

Comme 0 est 1’élément nulle 04+0=10,14+0=1= 0+ 1. Supposons que 1+ 1 =1 alors
14+1=1+0. Comme 1 est régulier, 1 = 0. Contradiction. Donc 14+ 1 =14 0. D’ou la table

+10]1
d’addition | 0 | 0| 1]
11110
Comme 1 est I'élément unité 0 x 1 =0, 1 x 0 =0et 1 x 1 = 1. D’apres la propriété [I.11
x10]1
i), 0 x 0 = 0. D’ou la table de multiplication| 0 {0 |0 |.
110|1

On pourra vérifier a la section [5| que cette anneau est Z/27Z et donc existe.

Solution de 1’exercice 5

Soit 0 I’élément nul et 1 I’élément unité de A. Comme A n’est pas réduit a un seul
élément,d’apres 'exercice 3], 1 # 0. Soit 2 le troisiéme élément de A.

Pour tout x # O et tout y, y+x #y+0=y et z+y # 0+y =y car y est régulier. Donc
2+ 1 est différent de 1 et de 2 donc est égale a 0. De meme, 1+ 2 = 0.

Supposons que 1 + 1 = 0. Premieére méthode : 2 =2+0=(2+1)+1=0+1= 1.
Contradiction. Seconde méthode : 241 =0 =1+ 1. Donc comme 1 est régulier, 2 = 1.

Donc1+1=2.Donc2+2=2+14+1=0+1=1. Comme 0 est I’élement nul, on a

+1011]2
, . 010|112

donc la table d’addition il ot
2121011

D’apres la propriété [1.11{i), a x 0 = 0 x a = 0 pour tout a € A. Comme 1 est I’élément
unité, ax1=1xa = Apourtouta € A. Tllreste 2x2 = (1+1)x2=1x2+1x2=2+2=1.
D’ou la table de multiplication.

x|0]1]2
0/0[{0(0
1]0]1]27
2 ]0(2]1]
On pourra vérifier a la section [5| que cette anneau est Z/37Z et donc existe.

Solution de I’exercice 6
i) Soit € A inversible. Alors f(z)f(z™!) = f(zz™') = f(1) = 1 et f(z7!)f(z) =
f(z™'z) = f(1) = 1. Donc f(x) est inversible d’inverse (f(z))™* = f(z~!). (Nous avions déja
fait cette démonstration dans la preuve de la proposition |1.20)). Donc f induit par restriction
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un un morphisme de groupes du groupe des inversibles de A vers le groupe des inversibles de
B.

ii) Soit # # 0 € K. Alors f(z)f(z™!) = f(zz™!) = f(1) = 1. Comme A n’est pas 'anneau
trivial, 1 # 0. D’apres le i) de la propriété f(x)f(z™) # 0 implique f(x) # 0. Donc
ker f = {0}. Donc f est injectif.

Solution de I’exercice 7
Pour tout a € A, 14a = a =alas. Donc 14 € Z(A).

Solution de ’exercice 8

1. Supposons que f(14) est régulier. Nous avons déja fait cette démonstration pour
montrer qu'un morphisme de magmas entre groupes est un morphisme de groupes :

FAA)(f(La) = f(1a x 1a) = f(La) = f(1a)1p.
Donc comme f(14) est régulier a gauche, f(14) = 15.
Supposons que 1p € Im f. Alors il existe x € A tel que 15 = f(z). Donc f(14) =

fa)lp = f(1a)f(x) = f(la x ) = f(z) = 15.
2 ir(1a) = (14,05) £ (14, 15).

Solution de 1’exercice 9

i) D’aprés la proposition [1.20] pour tout n € Z, ¢(n) = nly. Comme le centre Z(A) est
un sous-anneau de A, 14 € Z(A) et donc aussi nly € Z(A).

ii) Unicité : Soit ¥ : Q — A un morphisme d’anneaux étendant ¢. Soit = € Q. Supposons
que x s’écrive sous la forme x = p/q. Comme ¢ est inversible, d’apres la propriété m,
W(g~") =U(g)~" = ¢(g)~". Donc ¥(p/q) = ¥(p)¥(1/q) = ¢(p)p(q) "

Existence : Soit x € Q. Supposons que x s’écrive sous la forme x = a/b. Posons ¥ (a/b) =
¢(a)p(b)~t. Tl faut montrer que ¥(x) est bien définie. Supposons que = = a/b = ¢/d. Alors
ad = be. Donc p(a)p(d) = p(b)¢(c). Donc (b) ' p(a) = p(c)p(d) . D'apres i), p(b) 'p(a) =
¢(a)e(b)~. Donc finalement, on a bien ¢(a)p(b)™! = ¢(c)p(d)~ .

Soient x = a/b et y = c/d. Alors vy = 9. Donc d’apres la propriété et i), U(zy) =
p(ac)p(db)™ = p(a)p(c)p(b)~o(d) ™ = pla)p(b) Hp(c)p(d) ™ = W(z)P(y). De plus ¥(1/1)
e(1)p(1)"' =14 x 14 = 14. Donc ¥ est un morphisme d’anneaux.

Solution de ’exercice 10

On rappelle que 'ordre d'un groupe divise le cardinal du groupe. En particulier, la ca-
ractéristique d’'un anneau divise le cardinal de ’anneau.

1. Si ce cardinal est un nombre premier p, alors la caractéristique de A est donc 1 ou
p. Mais 1 est impossible car I’anneau serait trivial de cardinal 1. L’unique morphisme
d’anneaux Z — A a pour noyau pZ et induit donc un morphisme d’anneaux injectifs
©:Z/pZ — A. Comme Z/pZ et A ont méme cardinal, ¥ est donc une bijection.

2. Si la caractéristique de A est un nombre premier, alors les mémes arguments que pour
le Théoréme montrer que A est cardinal p?.

3. Dans ce cas, la caractéristique de A est p ou ¢ ou pq. Mais si la caractéristique de A
est p ou ¢, son cardinal est une puissance de nombres premiers d’apres 2). Donc la
caractéristique de A est égale a son cardinal et donc A est isomorphe & Z/pqZ.
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8. Livres a télécharger

Pour vous aider, j’ai mis les livres de la bibliographie (a l’exception notable de [LEA77al,
LFATTb| que je n’ai pas trouvé sur Internet) et d’autres livres a télécharger rapidement sur
la page cachée suivante de ma page web

http://www.math.univ-angers.fr/perso/lmenichi/Groupedetravail/

Veuillez ne pas faire de lien sur cette page web. Car cette page illégale ne doit pas étre
indexée par google. Merci.

La plupart des livres sont sous le format .djvu. Il faut donc un logiciel de lecture qui lit
le format deja vul Cliquer pour accéder a la page wikipedia qui explique :

-Si vous étes sous linux, Evince est stirement déja installé.

-Vous pouvez installer par exemple, le logiciel libre DjVuLibre. Si vous étes sous Windows,
cliquer iici pour télécharger la version pour Windows.

-Sur votre smartphone, a vous de voir.

Vous pouvez télécharger d’autres livres sur le site pirate library genesis.
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