
Université d’Angers 2024-25
L2 Math-DL ME-DL MI Module : Diagonalisation P9

Seconde Chance : Vendredi 20 Juin 2025, 14h-16h30. Tiers-Temps 14h-17h20

Aucun document, aucun appareil électronique n’est autorisé (téléphone, calculatrice, ...).
Le nombre total de points est 20.

Exercice 1 : Projection, symétrie Total de la partie 1 : 6 pts
Soit

M = 1
2


1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1

 ∈ M2(R).

Soit f l’endomorphisme associé à M relativement à la base canonique de R4.
(a) (2 points) L’application f est-elle une projection ? une symétrie ?
(b) (2 points) Déterminer les éléments caractéristiques de f . On donnera pour chacun

de ces ensembles un système d’équations cartésiennes et une base. On les note I et
J .

(c) (1 point) Vérifier que ces deux espaces I et J sont supplémentaires dans R4 : c’est
à dire I ⊕ J = R4.

(d) (1 point) Donner la matrice B de f dans une base constituée de vecteurs d’une
base de I et de vecteurs d’une base de J .

Indication : On pourra faire les questions dans le désordre et chercher les sous-espaces
propres de f .

Solution: Si f est une projection ou une symétrie, les valeurs propres sont 0, 1 et
−1. Cherchons ker f , ker(f − idR4) et ker(f + idR4).

x
y
z
t

 ∈ ker f ⇔


x + y + z + t = 0 (L1)
x − y − z + t = 0 (L2)
x − y + z − t = 0 (L3)
x + y − z − t = 0 (L4)

(L1) + (L2) + (L3) + (L4) donne 4x = 0. (L1) + (L2) donne 2x + 2t = 0. (L2) + (L3)
donne 2x − 2y = 0. Donc x = y = z = t = 0. Donc ker f = {0}. Donc f n’est pas
une projection.


x
y
z
t

 ∈ ker(f − idR4) ⇔


x + y + z + t = 2x
x − y − z + t = 2y
x − y + z − t = 2z
x + y − z − t = 2t

⇔




−x + y + z + t = 0 (L1
x − 3y − z + t = 0 (L2)
x − y − z − t = 0 (L3)
x + y − z − 3t = 0 (L4)

⇔


x − y − z − t = 0 (L3)

− 2y + 2t = 0 (L2) − (L3)
4y − 4t = 0 (L4) − (L3)

⇔
{

x = z + 2t
y = t

z = 1 et t = 0 donne v1 =


1
0
1
0

. z = 0 et t = 1 donne v2 =


2
1
0
1

.

Soit


x
y
z
t

 ∈ ker(f − idR4) Alors


x
y
z
t

 =


z + 2t

t
z
t

 =


z
0
z
0

+


2t
t
0
t

 = zv1 + tv2.

Donc la famille v1, v2 est une famille génératrice de ker(f − idR4). Clairement cette
famille est libre. Donc
la famille v1, v2 est une base de ker(f − 2idR4). Donc ker(f − idR4) est de dimension
2. 

x
y
z
t

 ∈ ker(f + idR4) ⇔


x + y + z + t = −2x
x − y − z + t = −2y
x − y + z − t = −2z
x + y − z − t = −2t

⇔


3x + y + z + t = 0 (L1)
x + y − z + t = 0 (L2)
x − y + 3z − t = 0 (L3)
x + y − z + t = 0 (L4)

⇔


x + y − z + t = 0 (L2)

− 2y + 4z − 2t = 0 (L1) − 3(L2)
− 2y + 4z − 2t = 0 (L3) − (L2)

En divisant par −2, l’equation en double,

⇔
{

x + z = 0 (L2 − L′)
y − 2z + t = 0 (L′) ⇔

{
x = −z
y = 2z − t

z = 1 et t = 0 donne v3 =


−1
2
1
0

. z = 0 et t = 1 donne v4 =


0

−1
0
1

.

Page 2



Soit


x
y
z
t

 ∈ ker(f + idR4) Alors


x
y
z
t

 =


−z

2z − t
z
t

 =


−z
2z
z
0

+


0

−t
0
t

 = zv1 + tv2.

Donc la famille v3, v4 est une famille génératrice de ker(f + idR4). Clairement cette
famille est libre. Donc
la famille v3, v4 est une base de ker(f + idR4). Donc ker(f + idR4) est de dimension 2.
Les sous-espaces propres ker(f − idR4) et ker(f + idR4) sont en somme directe. Donc

dim (ker(f − idR4) ⊕ ker(f + idR4)) = dim ker(f−idR4)+dim ker(f+idR4) = 2+2 = 4 = dimR4

Donc
ker(f − idR4) ⊕ ker(f + idR4) = R4

Posons I = ker(f − idR4) et J = ker(f + idR4). f est la symétrie par rapport à I de
direction J . La matrice de f dans la base v1, v2, v3 et v4 est

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .

Exercice 2 : Diagonalisation Total de la partie 2 : 7 pts
(a) (5 points) Donner l’ensemble des suites un et vn vérifiant pour tout n ∈ N

(S)
{

un+1 = un + 4vn

vn+1 = 2un + 3vn

Indication : Pour diagonaliser la matrice A ∈ M2(R) donnée par

A =
(

1 4
2 3

)
∈ M2(R),

on pourra remarquer que v1 =
(

1
1

)
est une vecteur propre.
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Solution: Considérons la suite de vecteurs Xn : R → R2 défini par Xn =
(

un

vn

)
.

Soit A =
(

1 4
2 3

)
. Les suites un et vn vérifient (S) si et seulement pour tout tout

n ∈ N, Xn+1 = AXn. Par récurrence immédiate
Xn = AnX0.

Calculons la puissance n-ième de la matrice, An, pour tout n ≥ 0. La matrice
A est une partie d’une matrice plus compliquée diagonalisée en cours. On fait
la même méthode.
Soit f l’endomorphisme associé à A relativement à la base canonique (e1, e2) de
R2.

Soit v1 =
(

1
1

)
. f (v1) = C1 + C2 = 5v1. Donc v1 est un vecteur propre et 5 est

valeur propre

χf (X) =
∣∣∣∣∣X − 1 −4

−2 X − 3

∣∣∣∣∣ = (X − 1)(X − 3) − (−2)(−4)

= X2 − X − 3X + 3 − 8 = X2 − 4X − 5 = (X + 1)(X − 5).
Cherchons ker(f + idR2).(

x
y

)
∈ ker(f + idR2) ⇔

{
3x − 3y = −x
−x + 5y = −y

⇔ 2x + 4y = 0 ⇔ x + 2y = 0

Soient v2 =
(

2
−1

)
. f (v2) = C1 − C2 = 2v1. Donc v2 est un vecteur propre.

β′ = (v⃗1, v⃗2) est une famille libre donc une base de R2 formée de vecteurs propres
de f .

Soit P la matrice de passage de β à β′. Alors P =
(

1 2
1 −1

)
et P −1 =

1
3

(
1 2
1 −1

)
.

On a f(v⃗1) = 5v⃗1 et f(v⃗2) = −v⃗1. Donc la matrice de f dans la base β′ est

D = P −1AP =
(

5 0
0 −1

)
.

Donc comme An est la matrice de fn dans la base canonique β et Dn la matrice
de fn dans la base canonique β′, ou parce que P −1AnP = (P −1An−1P )(P −1AP ) =
· · · = (P −1AP )n, on a

Dn = P −1AnP =
(

5n 0
0 (−1)n

)
.
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Donc An = (PDn)P −1 =
(

5n 2(−1)n

5n −(−1)n

)
P −1. Donc pour tout n ∈ N, An =

1
3

(
5n + 2(−1)n 2 × 5n − 2(−1)n

5n − (−1)n 2 × 5n + (−1)n

)
. On vérifie pour n = 0 et n = 1 que notre

formule donne bien I2 et A.
Donc {

3un = (5n + 2(−1)n)u0 + (2 × 5n − 2(−1)n)v0
3vn = (5n − (−1)n)u0 + (2 × 5n + (−1)n)v0

(b) (2 points) Donner l’ensemble des suites un et vn vérifiant pour tout n ∈ N

(S)
{

un+1 = −un + 4vn

vn+1 = 2un + vn

Indication : pour calculer Bn, la puissance n-ième de la matrice, B ∈ M2(R) donnée
par

B =
(

−1 4
2 1

)
∈ M2(R),

on pourra remarquer que B = A − 2I2.

Solution: Première méthode : Soit g l’endomorphisme associé à B relativement
à la base canonique (e1, e2) de R2. Alors g = f − 2idR3 . Soit v est un vecteur
propre de f associé à la valeur propre λ. Alors f(v) = λv. Donc g(v) = f(v) −
2v = λv − 2v = (λ − 2)v. Donc v est un vecteur propre de g associé à la valeur
propre λ − 2. Soit (v1, v2) la base de vecteurs propres de f trouvée à la question
précédente associés respectivement aux valeurs propres 5 et 1. Alors (v1, v2) est
une base de vecteurs propres de g associés respectivement aux valeurs propres
3 et −3.
Donc dans les calculs du (a), en remplaçant 5n par 3n et (−1)n par (−3)n on
obtient pour tout n ∈ N,{

3un = (3n + 2(−3)n)u0 + (2 × 3n − 2(−3)n)v0
3vn = (3n − (−3)n)u0 + (3n + (−3)n)v0

Seconde méthode : D’après le binôme de Newton

Bn =
n∑

k=0

(
n

k

)
Ak [(−2)I2]n−k =

n∑
k=0

(
n

k

)
(−2)n−kAk.

Comme ∑n
k=0

(
n
k

)
(−2)n−kλk = (λ − 2)n et d’après la formule pour Ak donné par

(a),
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Bn = 1
3

(
(5 − 2)n + 2(−1 − 2)n 2 × (5 − 2)n − 2(−1 − 2)n

(5 − 2)n − (−1 − 2)(−3)n 2 × (5 − 2)n + (−1 − 2)n

)

= 1
3

(
3n + 2(−3)n 2 × 3n − 2(−3)n

3n − (−3)n 2 × 3n + (−3)n

)
.

Exercice 3 : Somme directe et suites récurrentes Total de la partie 3 : 7 pts
Soit A et B ∈ Mk(R) deux matrices carrées de taille k à coefficients réels tels que
AB = BA et tels que A − B soit une matrice inversible.
On considère les deux relations de récurrence simple, Xn+1 = AXn et Xn+1 = BXn.
Soit H l’ensemble des suites X = (Xn)n∈N de vecteurs de Rk vérifiant Xn+1 = AXn

pour tout n ∈ N. Soit G l’ensemble des suites X = (Xn)n∈N de vecteurs de Rk vérifiant
Xn+1 = BXn pour tout n ∈ N.
On considère la relation de récurrence double

Xn+2 = (A + B)Xn+1 − ABXn.

Soit F l’ensemble des suites X = (Xn)n∈N de vecteurs de Rk vérifiant Xn+2 = (A +
B)Xn+1 − ABXn pour tout n ∈ N.
(a) (1 point) Dans le cas où k = 1, donner F , G et H : c’est à dire donner les suites

réelles xn vérifiant xn+1 = Axn, xn+1 = Bxn et xn+2 = (A+B)xn+1 −ABxn lorsque
A et B sont deux réels distincts.

Solution: H est l’ensemble des suites réelles de la forme xn = CAn où C
constante réelle. G est l’ensemble des suites réelles de la forme xn = DBn où D
constante réelle. La relation de récurrence double xn+2 = (A + B)xn+1 − ABxn

à pour polynôme caractéristique λ2 − (A + B)λ + AB = (λ − A)(λ − B) qui a
deux racines distinctes A et B car par hypothèse A − B ̸= 0. D’après le cours,
F , l’ensemble des solutions de cette équation est l’ensemble des suites réelles de
la forme x(t) = CAn + DBn où C et D sont deux constantes réelles.

(b) (1 point) Montrer que F est un espace vectoriel.

Solution: Montrons que F est un sous-espace vectoriel de l’espace vectoriel
des suites de vecteurs de Rk. La suite nulle vérifie l’équation donc appartient
à F . Soient X = (Xn)n∈N et Y = (Yn)n∈N ∈ F . Soient α et β ∈ R. Alors
Xn+2 = (A + B)Xn+1 − ABXn et Yn+2 = (A + B)Yn+1 − ABYn. Donc

(αX + βY )n+2 = αXn+2 + βYn+2 = (A + B)αXn+1 − ABαXn+

(A + B)βYn+1 − ABβYn = (A + B)(αX + βY )n+1 − AB(αX + βY )n.

Donc (αX + βY ) ∈ F .
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(c) (1 point) Montrer que H et G sont des parties de F .

Solution: Soit X ∈ H. Alors Xn+1 = AXn. Donc Xn+2 = AXn+1 = A(AXn) =
A2Xn. Donc Xn+2 − (A + B)Xn+1 + ABXn = A2Xn − (A + B)AXn + ABXn =
(AB − BA)Xn = 0. Donc X ∈ F . Par symétrie entre A et B, si X ∈ G alors
X ∈ F .

(d) (1 point) Montrer que H et G sont des sous-espaces vectoriels de F .

Solution: Soient X et Y ∈ H. Soient α et β ∈ R. Alors Xn+1 = AXn et
Yn+1 = AYn. Donc

(αX + βY )n+1 = αXn+1 + βYn+1 = αAXn + βAYn = A(αX + βY )n.

Donc αX + βY ∈ H. Donc comme H est une partie de F , H est un sous-espace
vectoriel de F . De même, G est un sous-espace vectoriel de F .

(e) (1 point) Montrer que H ∩ G = {0}.

Solution: Soit X ∈ H ∩ G. Alors Xn+1 = AXn = BXn. Donc (A − B)Xn = 0.
Donc Xn = (A − B)−1(A − B)Xn = (A − B)−1(0) = 0.

(f) (1 point) Montrer que H ⊕ G = F . Indication : on pourra écrire que

Xn = (A − B)−1 (AXn − Xn+1 + Xn+1 − BXn) .

Solution: On a bien

Xn = (A − B)−1 (AXn − Xn+1) + (B − A)−1 (BXn − Xn+1) .

Soit Yn = (A − B)−1 (AXn − Xn+1). Alors pour X ∈ F ,

Yn+1 = (A−B)−1 (AXn+1 − Xn+2) = (A−B)−1 (AXn+1 − (A + B)Xn+1 + ABXn) =

(A − B)−1 (−BXn+1 + BAXn) = (A − B)−1B (−Xn+1 + AXn)

= B(A − B)−1 (AXn − Xn+1) = BYn.

Donc Y ∈ G. Par symétrie Zn = (B − A)−1 (BXn − Xn+1) ∈ F

(g) (1 point) Supposons que A et B sont les deux matrices de l’exercice précédent.
Déduire l’ensemble F .
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Solution: D’après le (a) de l’exercice précédent, les deux suites de vecteurs(
5n + 2(−1)n

5n − (−1)n

)
et
(

2 × 5n − 2(−1)n

2 × 5n + (−1)n

)
forment une base de H.

D’après le (b) de l’exercice précédent, les deux suites de vecteurs
(

3n + 2(−3)n

3n − (−3)n

)

et
(

2 × 3n − 2(−3)n

2 × 3n + (−3)n

)
forment une base de G. Comme H ⊕ G = F , la réunion

d’une base de F et d’une base de H est une base de F . Donc F est l’ensemble
des


3un = (5n + 2(−1)n)C1 + (2 × 5n − 2(−1)n)C2

+ (3n + 2(−3)n)D1 + (2 × 3n − 2(−3)n)D2
3vn = (5n − (−1)n)C1 + (5n + (−1)n)C2

+ (3n − (−3)n)D1 + (3n + (−3)n)D2

où C1, C2, D1 et D2 sont des constantes réelles.
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