Exercice 1

Dans chacun des cas suivants, déterminer si l'application f est linéaire ou non :

- (1) $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par f(x, y, z) = (x + y, y + z, z).
- (2) $f: \mathbb{R}^3 \to \mathbb{R}^2$ définie par $f(x, y, z) = (x + y, z^2)$.
- (3) $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par $f(x, y, z) = (x, y, a), a \in \mathbb{R}$.
- (4) $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par $f(x, y, z) = (x y, \sin x, 0)$.
- (5) $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $f(x, y) = (y, e^{x+y})$.

Exercice 2

Montrer que l'application $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par f(x, y, z) = (x - z, 2x + y + z, -x + y + 2z) est un automorphisme de \mathbb{R}^3 .

Exercice 3

On considère l'application :

$$f: \mathbb{R}^3 \longmapsto \mathbb{R}^2, f(x, y, z) = (x + 2y - z, x - y)$$

- i) Montrer que f est une application linéaire.
- ii) Donner la matrice associée à f lorsqu'on munit \mathbb{R}^3 (resp. \mathbb{R}^2) de sa base canonique e (resp. de sa base canonique e').
- iii) Donner une base de Ker(f).
- iv) Donner une base de Im(f).
- v) Soit $B = \{u_1, u_2, u_3\}$ où $u_1 = (1, 1, 1), u_2 = (2, 1, 0), u_3 = (1, 0, 1)$. Montrer que B est une base de \mathbb{R}^3 , et donner la matrice associée à f lorsqu'on munit \mathbb{R}^3 (resp. \mathbb{R}^2) de la base B (resp. de la base canonique e').
- vi) Soit $B' = \{v_1, v_2\}$ où $v_1 = (1, 1), v_2 = (-2, 1)$. Montrer que B' est une base de \mathbb{R}^2 , et donner la matrice associée à f lorsqu'on munit \mathbb{R}^3 (resp. \mathbb{R}^2) de la base canonique e (resp. de la base B').
- vi) Donner la matrice associée à f lorsqu'on munit \mathbb{R}^3 (resp. \mathbb{R}^2) de la base B (resp. de la base B').

Exercice 4

On considère les applications f et g de \mathbb{R}^3 dans \mathbb{R}^3 définies par :

$$f(x, y, z) = (x + y, y + z, x + z),$$
 $g(x, y, z) = (x + y + z, x - z, y - z).$

- i) Déterminer $f \circ g$ et $g \circ f$. Que constate-t-on?
- ii) A l'aide de produits des matrices $\mathcal{M}_{\mathcal{B}',\mathcal{B}}(f)$ et $\mathcal{M}_{\mathcal{B}',\mathcal{B}}(g)$, retrouver le résultat dérivé ci-dessus.

Exercice 5

Calculer les produits A.B et A.C lorsque

$$A = \begin{pmatrix} 4 & 5 & -1 \\ 2 & 3 & 0 \\ 3 & -2 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 5 \\ 2 & -4 \\ -5 & 1 \end{pmatrix}, C = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 3 & -1 \\ -3 & -2 & 1 \end{pmatrix}$$

Le produit B.A a-t-il un sens? pourquoi?

Exercice 6

Montrer que la matrice suivante est inversible et calculer son inverse :

$$B = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{pmatrix}$$