TP 1: Initiation à Scilab - Théorèmes limites

Activité 1 : Initiation à Scilab

Scilab est un logiciel de calcul scientifique développé par l'INRIA et appliqué en particulier au calcul numérique matriciel. Scilab est téléchargeable gratuitement à l'adresse suivante :

http://www.scilab.org/fr/

Il peut être installé sur les principaux systèmes d'exploitation existants, Windows, Linux ... Des manuels en français sont disponibles sur le web, par exemple :

http://ljk.imag.fr/membres/Bernard.Ycart http://www.iecn.u-nancy.fr/~pincon/

Vous disposez d'une aide en ligne à l'aide de la fonction help.

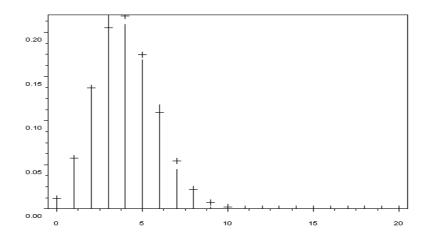
1. Générer des nombres aléatoires

- rand(n,p) génére une matrice $n \times p$ de nombres distribués suivant la loi uniforme sur [0;1].
- Construire un vecteur de 5, 50 et 500 nombres aléatoires suivant la loi uniforme sur [0;1].
- Calculer pour chaque vecteur obtenu la moyenne et la variance.
- Utiliser la fonction *grand* pour construire des vecteurs de nombres distribués suivant la loi normale de paramètres $\mu = 2$ et $\sigma^2 = 2$

2. Représentation graphique pour une variable discrète

• Représenter graphiquement la loi de probabilité de la loi binomiale de paramètres n et p et une simulation sur un échantillon de N nombre.

```
function sim_bin(N,n,p)
X = grand(N,1,"bin",n,p)
F=tabul(X) // tableau des effectifs
F(:,2)=F(:,2)/N
cadre=[-0.5 0 20.5 max(max(F(:,2)),max(binomial(0.2,20)))]
plot2d3(F(:,1),F(:,2),rect=cadre)
plot2d(0:n,binomial(p,n),style=[-1],rect=cadre)
endfunction
```



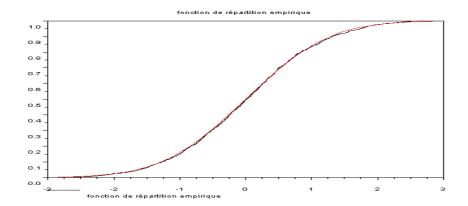
3. Représentation graphique pour une variable continue

• Construire la fonction de densité de la loi normale de paramètres $\mu = 2$ et $\sigma^2 = 4$

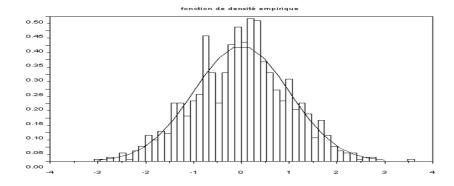
```
function normale(N,m,s2)
x=linspace(m-3*sqrt(s2),m+3*sqrt(s2),100)
y=exp(-(x-m)^2/(2*s2))/sqrt(2*%pi*s2)
plot2d(x,y)
xtitle(«fonction de densité de la loi normale mu='m' et s^2='s2'»)
endfunction
```

• Construire la fonction de répartition empirique de la loi normale centrée réduite avec N nombres aléatoires et superposer la fonction exacte.

```
function sim_Fnor(N,m,s2) x= grand(1,N,'nor',0,1) // simulation de N nombres x=-sort(-x) // Nombres dans l'ordre croissant plot2d(x,cumsum(x*0+1)/length(x),leg='F empirique') t=linspace(min(x),max(x),100) y=cdfnor('PQ',t,t*0,t*0+1) // Valeur exacte de F(x) plot2d(t,y,5) endfunction
```



• Construire une fonction sim_nor(N,m,s2) représentant à l'aide d'un histogramme la fonction de densité empirique de la loi normale simulée avec N nombres. Superposer la fonction exacte.

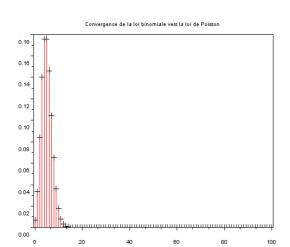


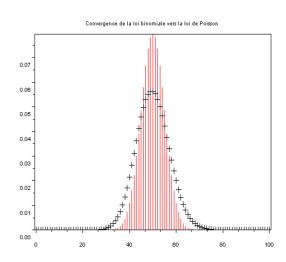
■ En statistiques, on utilise souvent des effectifs de l'ordre de 30 nombres pour vérifier la normalité d'une distribution. Simuler plusieurs fois la loi normale avec 30 nombres aléatoires. Qu'observe-t-on?

1. Convergence en loi

Nous allons étudier la convergence en loi de la loi de binomiale (p, n) vers la loi de poisson $(\lambda = np)$.

- 1. Rappeler la définition de la convergence en loi.
- 2. Comment démontre-t-on cette convergence?
- 3. Rappeler d'autres convergences en loi classiques.
- 4. Ecrire une fonction bi_poi(p,n) qui compare la loi binomiale (p, n) et la loi de Poisson $(\lambda = np)$. Expliquer l'intérêt de cette convergence.
- 5. Pour rappel, la convergence est satisfaisante pour n>30 et np<5. Vérifier ces conditions à l'aide de la fonction bi poi.

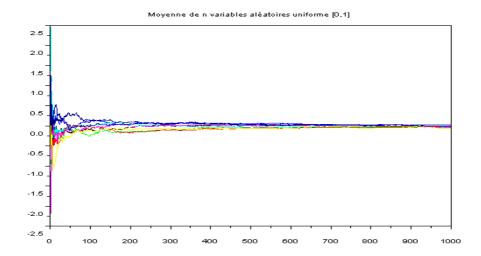




2. Loi forte des grands nombres

- a. Rappeler la loi forte des grands nombres.
- b. Interpréter les résultats obtenus avec la commande suivante :

```
plot2d(cumsum(rand(1,1000))./[1:1000])
puis avec
    plot2d([1:1000], cumsum(grand(1000,10,'nor',0,1),'r')./
    ([1:1000]'*ones(1,10)))
    histplot(100,grand(1,1000,'exp',2))
```

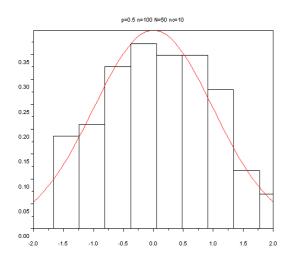


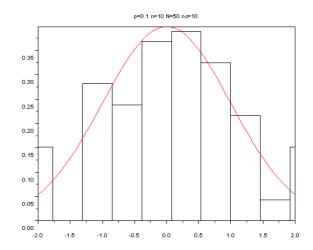
3. Théorème central limit

- a. Rappeler le théorème central limit
- b. Ecrire et interpréter la fonction suivante et analyser les résultats obtenus

```
function tcl(p,n,N,nc)
  xbasc();
  mu=n*p
  s=sqrt(n*p*(1-p))*sqrt(N)
  BIN=grand(N,100,'bin',n,p);
  CR=sum((BIN-mu)/s,'r')
  t=linspace(-2,2,50)
  NOR=exp(-(t)^2/2)/sqrt(2*%pi)
  cadre=[-2 0 2 max(NOR)]
  histplot(nc,CR,rect=cadre)
  plot2d(t,NOR,rect=cadre,style=5)
endfunction
```

c. Construire des fonctions analogues pour vérifier la convergence vers une loi normale pour d'autres lois de probabilité (exponentielle, uniforme...)



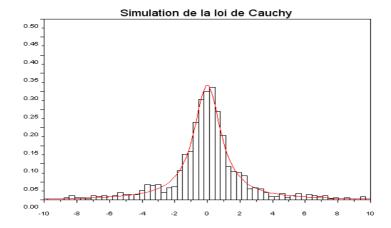


4. Contre exemples

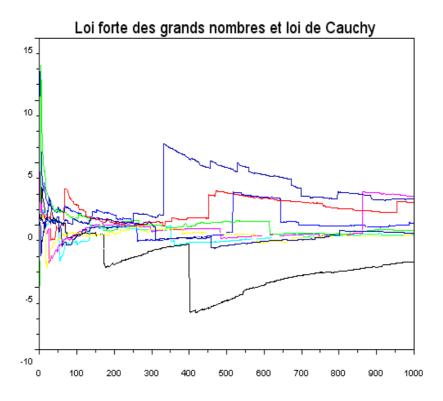
Le rapport de deux v.a. suivant la loi normale centrée réduite suit la loi de Cauchy.

• Construire la fonction cauchy1() simulant cette loi à l'aide de la fonction grand(,,'nor"). Construire ensuite l'histogramme de S nombres simulés et valider la simulation. Il faudra faire attention à la fenêtre utilisée ainsi qu'au nombre de classes. La fonction de densité de la loi de Cauchy est :

$$f(x) = \frac{1}{\pi (1 + x^2)}$$



• Vérifier la loi forte des grands nombres avec la loi de Cauchy ? Expliquer le résultat obtenu



• Construire la fonction tclcauchy (n, N, nc) qui calcule N fois la moyenne de *n* v.a. suivant la loi de Cauchy. Construire ensuite l'histogramme de ces moyenns avec nc classes. La loi de Cauchy vérifie-t-elle le tcl ? Expliquer le résultat obtenu.