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Dendrites and branching points

A Julia set JP ⊂ C is a dendrite if JP is connected, locally
connected, with connected complement.
If z ∈ JP , then ν(z) is the number of components of
JP \ {z}.
A point z ∈ JP is a branching point if ν(z) ≥ 3.

Theorem (Thurston 1985)
If P has degree 2, every branching point is (pre)periodic or
(pre)critical.

Theorem (Kiwi 2002)
If P has degree d and z is neither (pre)periodic nor (pre)critical,
then ν(z) ≤ d.
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Examples of dendrites

Definition
A polynomial P : C→ C is strictly postcritically finite if every
(finite) critical point is preperiodic to a repelling cycle.

The Julia sets of z2 + i and z3 + 3
√

3z2 + 27z/4
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Similarity between the Mandelbrot set and Julia sets
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Similarity between Julia sets and the Mandelbrot set
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Existence of wandering branching points

Theorem (Blokh 2005)
If a cubic polynomial has a branching point which is neither
(pre)periodic nor (pre)critical, then the two critical points are
recurrent one to each other.

Theorem (Blokh-Oversteegen 2008)
There exist cubic polynomials with a branching point which is
neither (pre)periodic nor (pre)critical.
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Admissible polynomials

Definition
A cubic polynomial Q is admissible if it has two distinct critical
points ω and ω′, two distinct repelling fixed points α and β and a
branching point γ, such that

1 γ is precritical to ω, ω is precritical to ω′, ω′ is prefixed to α,
2 γ separates β, β′ and β′′ in JQ, with Q−1(β) = {β, β′, β′′};
3 other technical assumptions.
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Key Proposition

For an admissible polynomial Q, we denote by γQ the
branching point separating β, β′ and β′′ and by jQ ≥ 0 the
least integer j such that Q◦j(γQ) is a critical point.

Proposition
Assume Q is an admissible polynomial. Then, there is a
sequence {Pm} of admissible polynomials which converges to
Q, such that {γPm} converges to γQ and jPm > jQ for all m.
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Constructing the sequence {Pm}

An admissible polynomial Q has (k , `)-configuration if
Q◦k (ω) = ω′ and Q◦`(ω′) = α.
Assume (ξ−m)m≥0 is a backward orbit for Q satisfying

. . . 7→ ξ−m−1 7→ ξ−m 7→ . . . 7→ ξ−1 7→ ξ0 = ω and
ξ−m → α as m→ +∞.

Let ξ−m : U → C be maps following holomorphically the
precritical orbit on a neighborhood of Q.
The polynomials Pm have (m + `, k + `)-configuration with
distinct critical points ωm and ω′m satisfying:

ωm
P◦`

m−→ ζm = ξ−m(Pm)
P◦m

m−→ ω′m = ξ0(Pm)
P◦k+`

m−→ αm = Pm(αm).

If ζm separates αm and βm, then the branching point γm is
precritical.
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Convergence of Carathéodory loops

Lemma
Let {Pm} be a sequence of admissible polynomials which
converges to an admissible polynomial Q. Then, the sequence
of Carathéodory loops of JPm converges uniformly to the
Carathéodory loop of JQ.
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The sequence {Qn}
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The sequence {Qn}; zoom near the branching point
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The sequence {Qn}; zoom near the branching point
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The sequence {Qn}; zoom near the branching point
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Wandering components of Julia sets

X. Buff Wandering branching point


