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Our aim in this lecture is to explain the proof of a recent Theorem obtained in
collaboration with R. Carles (see [?]). It is the opportunity to explain the context,
to stress the important results of the theory and give references to the students.

We are concerned with the solutions of a semi-classical nonlinear Schrödinger
equation

(0.1)

 iε∂tψ
ε +

ε2

2
∆ψε = V (x)ψε + Λ εα|ψε|2σψε, (t, x) ∈ R+ ×Rd,

ψε|t=0 = ψε0

with initial data which are wave packets

ψε0(x) = ε−d/4a

(
x− x0√

ε

)
ei(x−x0)·ξ0/ε, a ∈ S(Rd).

More precisely, we are interested in finding asymptotics for the solution ψε when ε
goes to 0. We suppose Λ ∈ R+, σ < 2

d−2 for d > 3 so that, by the results of [?],
there exists a unique global solution in L2(Rd) ∩ F(L2(Rd)) under the condition
that the potential V is at most of quadratic growth (see assumption ?? for precise
statement). Note that the reading of reference [?] is a good way to learn technics
about existence results for nonlinear Schrödinger equation. We will also explain
the relevances of the hypothesis about σ (see Remark ??) and precise choices of
α ∈ R+ will be made (see Section 2.1).

In Section 1, we describe the class of wave packets that we will consider and
study their basic properties. Section 2 is devoted to derive and analyze an ansatz
that we will prove in Section 3 to be an approximated solution to (??). There
appears a critical index αc:

• for α > αc, the ansatz is the same than in the linear regime Λ = 0,
• for α = αc, there appears nonlinear effects.

We focus in Section 3 on the critical regime α = αc and prove the main Theorem
of this talk thanks to Strichartz estimates.

Notation. For two positive numbers aε and bε, the notation aε . bε means that
there exists C > 0 independent of ε such that for all ε ∈]0, 1], aε 6 C bε.
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1. Wave packets

1.1. Definition. Let (x0, ξ0) ∈ R2d and consider the operator

T εx0,ξ0
: L2(Rd)→ L2(Rd)

a 7→ ε−d/4a

(
x− x0√

ε

)
e
i
ε ξ0·(x−x0)

The operator T εx0,ξ0
is a unitary operator of L2(Rd), its adjoint satisfies

∀f ∈ L2(Rd), ∀X ∈ Rd, (T εx0,ξ0)∗f(X) = εd/4f(x0 +
√
εX)e−

i√
ε
ξ0·X .

Note also that we have

ε−d/2F
(
T εx0,ξ0a

)(ξ
ε

)
= ε−d/4F(a)

(
ξ − ξ0√

ε

)
e−

i
εx0·ξ.

We consider the functions T εx0,ξ0
a for a ∈ S(Rd) that we call wave packets. These

wave packets have similar features in configuration space variables (the variable x)
and in momenta variables (the Fourier variable ξ/ε). There exists more refined
version of these wave packets introduced by G. Hagedorn in [?].

With p ∈ C∞0 (R2d), we associate the pseudodifferential semiclassical operator
p(x, εD) which is defined with classical quantization by

p(x, εD)f(x) = (2πε)−d
∫

e
i
ε ξ·(x−y)p(x, ξ)f(y)dy dξ, ∀f ∈ S(Rd).

The main interest of these wave packets relies on the following proposition.

Proposition 1.1. If a ∈ S(Rd) and p ∈ C∞0 (R2d), then

(T εx0,ξ0)∗p(x, εD)T εx0,ξ0a = p(x0, ξ0)a+
√
ε dx,ξp(x0, ξ0)(X,D)a(1.1)

+
ε

2
d2
x,ξp(x0, ξ0)(X,D) · (X,D)a+O(ε3/2)

in L2(Rd).

Proof. The proof relies on Taylor formula. We have

(T εx0,ξ0)∗p(x, εD)T εx0,ξ0a(X)

= (2πε)−de−
i√
ε
X·ξ0

∫
p(x0 +

√
εX, ξ)e

i
ε ξ·(x0+

√
εX−y)e

i
ε ξ0·(y−x0)a

(
y − x0√

ε

)
dydξ.

The change of variables ξ = ξ0 +
√
εζ and y = x0 +

√
εY gives

(T εx0,ξ0)∗p(x, εD)T εx0,ξ0a(X) = (2π)−d
∫
p(x0 +

√
εX, ξ0 +

√
εζ)eiζ·(X−Y )a(Y )dY dζ.

We perform a Taylor expansion of p(x0 +
√
εX, ξ0 +

√
εζ)

p(x0 +
√
εX, ξ0 +

√
εζ) = p(x0, ξ0) +

√
ε dpx,ξ(x0, ξ0)(X, ζ)

+ε d2
x,ξp(x0, ξ0)(X, ζ) · (X, ζ) +DT3(x0, ξ0,

√
εX,
√
εζ)

where

DT3(x0, ξ0,
√
εX,
√
εζ) =

ε3/2

2

∫ 1

0

d3
x,ξp(x0 + s

√
εX, ξ0 + s

√
εζ)(1− s)2[X, ζ]3ds.
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In view of

(2π)−d
∫
Xa(Y )eiζ·(X−Y )dY dζ = Xa(X),

(2π)−d
∫
ζa(Y )eiζ·(X−Y )dY dζ = Da(X),

we obtain the three first terms of (??). It remains to check that the remainder is
small in L2(Rd). We write∫
DT3(x0, ξ0,

√
εX,
√
εζ)a(Y )eiζ·(X−Y )dY dζ =

∫
DT3(x0, ξ0,

√
εX,
√
εζ)â(ζ)eiζ·Xdζ

= ε3/2
∑

|α|+|β|=3

cα,β

∫ 1

0

Iα,β(X, s)ds

where cα,β are real numbers and

Iα,β(X, s) =
∫
∂αx ∂

β
ξ p(x0 +

√
εsX, ξ0 +

√
εsζ)Xαζβ â(ζ)eiζ·XdζdX.

By integration by parts, we obtain for γ ∈ Nd,

|XγIα,β(X)| =
∣∣∣∣∫ ∂γζ

(
ζβ∂αx ∂

β
ξ p(x0 +

√
εsX, ξ0 +

√
εsζ)â(ζ)

)
eiXζdζ

∣∣∣∣
. sup

|κ|6|γ|
‖∂βζ â(ζ)‖L1 .

�

1.2. Wave packets and P.D.E.s. As a consequence, if we consider a semiclassical
evolution equation of pseudodifferential type

(1.2)
{
iε∂tψ

ε = p(x, εD)ψε,
ψε|t=0 = T εx0,ξ0

a, a ∈ S(Rd),

one can look for solutions of the form

ψε(t, x) = T εx(t),ξ(t)a
ε(t, ·)

where x(t), ξ(t) ∈ Rd and aε(t, .) have to be determined with x(0) = x0, ξ(0) = ξ0
and aε(0, ·) = a(·).

A simple computation gives

(T εx(t),ξ(t))
∗ (iε∂t − p(x, εD))T εx(t),ξ(t) = ξ(t) · ẋ(t)− p(x(t), ξ(t))

+
√
ε
(
ẋ(t) ·D − ξ̇(t) ·X − dx,ξp(x(t), ξ(t)) · (X,D)

)
+ε
(
i∂t − d2p(x(t), ξ(t))(X,D) · (X,D)

)
+O(ε3/2)

in L(L2(Rd)). As a consequence, it is natural to choose the trajectories (x(t), ξ(t))
such that {

ẋ(t) = ∇ξp(x(t), ξ(t)), x(0) = x0,

ξ̇(t) = −∇xp(x(t), ξ(t)), ξ(0) = ξ0,

and the function aε(t, x) of the form

aε(t,X) = e
i
εS(t,x)b(t,X) with S(t) =

∫ t

0

(ξ(s) · ẋ(s)− p(x(s), ξ(s))) ds
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and b solution to {
i∂tb = d2p(x(t), ξ(t))(X,D) · (X,D)b,
b|t=0 = a.

The curves (x(t), ξ(t)) are called the classical trajectories or Hamiltonain
curves of the function p(x, ξ) and the function S(t) is the classical action.

Then, the function

(1.3) ψεapp = e
i
εS(t)T εx(t),ξ(t)b(t)

is a natural ansatz. Of course, there is something to prove according to the as-
sumptions than one makes on the symbol p. In the next subsection, we justify
such an asymptotic in the case of the linear semi-classical Schrödinger equation
(equation (??) with Λ = 0). This equation is particularly relevant in quantum
mechanics and the fact that ε is small implies that its solutions ψε oscillate rapidly.
For this reason, it is difficult to perform numerics on the semi-classical equation.
However, the computation of ψεapp given by (??) is made by solving ε-independent
ode’s or pde’s, which is much more easy from a numerical point of view. Therefore,
these wave packets allow to construct approximated solutions of the semi-classical
Schrödinger equation. Note that there exists more sophisticated families of wave
packets, such as Hagedorn’s wave packets; the interested reader can refer to [?].

1.3. Application to the linear Schrödinger equation. The equation

iε∂tψ
ε +

ε2

2
∆ψε = V (x)ψε

is of the form studied in the previous section with

p(x, ξ) =
|ξ|2

2
+ V (x).

Assumption 1.2. From now on, we suppose that V is smooth and at most qua-
dratic:

∀γ ∈ Nd, |γ| > 2, ∃Cγ > 0, ∀x ∈ Rd, |∂γV (x)| 6 Cγ .

The classical trajectories satisfy{
ẋ(t) = ξ(t),
ξ̇(t) = −∇V (x(t)).

Because of the assumption on the potential V , these trajectories grow at most
exponentially (see the book [?]) .

Lemma 1.3. There exist C0, C1 > 0 such that

∀t ∈ R+, |x(t)|+ |ξ(t)| 6 C0 eC1t.

Proof. We observe that
ẍ(t) +∇V (x(t)) = 0.

Multiply this equation by ẋ(t),
d

dt

(
(ẋ)2 + V (x(t))

)
= 0,

and notice that in view of Assumption ??, V (x) . (1 + |x|2)1/2:

ẋ(t) . 〈x(t)〉 ,
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and the estimate follows. �

The classical action is

S(t) =
∫ t

0

(
1
2
|ξ(s)|2 − V (x(s))

)
ds.

The profile equation becomes{
∂tb+ 1

2∆b = 1
2V
′′(x(t))X ·Xb

b|t=0 = a.

We refer to [?] for a proof of the existence of solutions to the profile equation.
Besides, by multiplying the equation by x and by differentiating it, one obtains
a closed system on Xb and ∇Xb and by a recursive argument, one can prove the
following result

Lemma 1.4. For all k ∈ N, there exists constants ck and Ck such that

∀α, β ∈ Nd, |α|+ |β| = k,
∥∥∥Xα∂βXb(t, ·)

∥∥∥
L2
6 Ckeckt.

The estimates of these two Lemma are sharp: the special case V ′′(x(t)) = −Id
shows it. For references on the properties of classical trajectories, the reader can
refer to the book [?] and for the existence of solution of the profile equation to [?].

We can now state the result in the linear case. Note that many authors have
worked on this subject and we will note refer to any special one.

Theorem 1.5. There exists two constants c and C such that

∀t ∈ R,
∥∥∥ψε(t)− e

i
εS(t)T εx(t),ξ(t)b(t, ·)

∥∥∥
L2(Rd)

6
√
εC ect.

The approximation of ψε by

(1.4) φεlin = e
i
εS(t)T εx(t),ξ(t)b(t, ·)

holds until times of order Log
(

1
ε

)
which is called the Ehrenfest time.

Proof. The proof of the Theorem relies on an energy estimate. The function

wε = ψε − φεlin

satisfies wε(0) = 0 and

iε∂tw
ε +

ε2

2
∆wε − V (x)wε

= −ε3/2e
i
εS(t)T εx(t),ξ(t)

∫ 1

0

V (3)(x(t) +
√
εsX)[X,X,X]b(t,X)(1− s)2ds.

This implies
d

dt
‖wε(t)‖L2 .

√
ε‖X3b(t, ·)‖L2 .

√
εeCt.

�
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2. Nonlinear Schrödinger equation

2.1. The ansatz and the critical exponant. We now consider the nonlinear
Schrödinger equation (??) (Λ > 0) and we argue similarly than in the linear case.
We observe that for a ∈ S(Rd),∣∣∣T εx(t),ξ(t)a∣∣∣2σ T εx(t),ξ(t)a = ε−dσ/2 T εx(t),ξ(t)

(
|a|2σa

)
.

Therefore, if we look for a solution of (??) of the form

ψε(t) = e
i
εS(t)T εx(t),ξ(t)u

ε(t, ·),

the function uε(t,X) must satisfy{
i∂tu

ε + 1
2∆uε = 1

2V
′′(x(t)X ·Xuε + εα−

dσ
2 −1|uε|2σuε,

uε|t=0 = a.

There appears a critical exponant

αc = 1 +
dσ

2
and one can prove the following:

• If α > αc, the function ψε(t) is asymptotic to the function φεlin defined
in (??). The function ψε(t) is said to be linearizable since it is asymptotic
to the solution of the associated linear equation with the same initial data.
• If α = αc, the function ψε(t) is asymptotic to

(2.1) φε = e
i
εS(t)T εx(t),ξ(t)u(t, ·),

where u solves

(2.2)
{
∂tu+ 1

2∆u = 1
2V
′′(x(t))X ·Xu

u|t=0 = a.

The first question which arises is the existence of solutions to (??) and the control
of its momenta (the quantities Xα∂βXu(t,X) for multiindices α, β ∈ Nd). The proof
of the linearizable case is similar to the one performed in the critical case, thus we
will focus on the situation where α = αc. Before stating the main theorem and
proving it, we begin by stating results about the profile equation (??).

2.2. The envelope equation in the critical case. Equations of the form of (??)
have been studied by R. Carles in [?]. Before stating his result, let us introduce a
notation. We define the assumption (Exp)k.

Definition 2.1. Let k ∈ N. We say that the function u satisfies (Exp)k if there
exist constants ck and Ck such that

∀α, β ∈ Nd, |α|+ |β| 6 k,
∥∥∥Xα∂βXu(t, ·)

∥∥∥
L2
6 Ck eckt.

We also introduce the energy space

Σ = {f ∈ L2(Rd), Xf,∇Xf ∈ L2}.
We have the following result.

Theorem 2.2 (Carles 2009, [?]).
• If σ < 2

d−2 for d > 3 and a ∈ Σ, then there exists a unique global solution
to (??), u ∈ C(R,Σ).
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• If σ = d = 1 and a ∈ S(R), then for all k ∈ N, (Exp)k is satisfied.

We point out that, according to [?], the second part of the Theorem is also true
if V ′′(x(t)) is diagonal with negative eigenvalues or if t 7→ V ′′(x(t)) is compactly
supported. For the moment, the question whether it is true or not in other cases is
an open problem. Such assumptions are not pertinent in our context. Since in the
linear case, we have used (Exp)3, we infer that we will need such an assumption in
the nonlinear case. Therefore, our results will be more pertinent when σ = d = 1
(the one dimensional cubic case); in higher dimension, we will work under the
assumption that we have (Exp)k for k large enough.

3. Analysis of the critical case

We consider the scaled energy space

Σε1 = {f ∈ L2(Rd), ‖xf‖L2 + ‖ε∇f‖L2 < +∞}

equipped with the norm

‖f‖H = ‖f‖L2 + ‖Aε(t)f‖L2 + ‖Bε(t)f‖L2

where

Aε(t) = i
Dx − ξ(t)√

ε
and Bε(t) =

x− x(t)√
ε

.

Our aim is to prove the following Theorem

Theorem 3.1 (Carles - Fermanian 2010, [?]). Let d > 1, σ ∈ N with σ < 2
d−2 if

d > 3.
• If (Exp)4 is satisfied, there exists C > 0 such that

sup
06t6CLog Log( 1

ε )
‖ψε(t)− φε(t)‖H−→

ε→0
0.

• If d = σ = 1,

sup
06t6CLog( 1

ε )
‖ψε(t)− φε(t)‖H−→

ε→0
0.

In the case d = σ = 1, one can prove the approximation on time of order
LogLog

(
1
ε

)
only by use of energy estimates. In order to gain the result for Ehrenfest

time and to treat the other cases, we use Strichartz estimates. Note that the
situation d = σ = 1 is the only situation which is L2 subcritical (σ < 2/d) in the
nonlinear terminology; this explains why the result is better in that case.

Note also that a nonlinear superposition principle is proved in [?] for initial data
which are the sum of wave packets. This is again a manifestation of the fact that
the critical regime α = αc is weakly nonlinear: the nonlinear effects only modify
the profile of the wave packets and not its trajectory.

3.1. Strichartz estimates. We denote by Hε the semi-classical Schrödinger op-
erator and by Uε(t) its associated propagator:

Hε = −ε
2

2
∆ + V (x), Uε(t) = e−itH

ε

.
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Theorem 3.2 (Fujiwara 1979 and 1980, [?] and [?]). There exists δ0 > 0 indepen-
dent of ε and C such that

∀|t| < δ0, ‖Uε(t)‖L(L1(Rd),L∞(Rd)) 6 C (ε|t|)−d/2.

This dispersive estimate implies Strichartz estimates. One says that an exponant
(q, r) is admissible if it satisfies

(3.1)
2
q

= d

(
1
2
− 1
r

)
:= δ(r)

for 2 6 r < ∞ if d = 2, 2 6 r 6 ∞ if d = 1 and 2 6 r 6 2d
d−2 if d > 2, where p is

the conjugated exponant to p
1
p

+
1
p

= 1.

Corollary 3.3. Consider I an interval of R+, one has the following scaled Strichartz
estimates

‖Uε(t)f‖Lq(I,Lr(Rd)) 6 C(r, I) ε−
1
q ‖f‖L2(Rd)(3.2)∥∥∥∥∫ t

0

Uε(t− s)f(s)ds
∥∥∥∥
Lq1 (I,Lr1 (Rd))

6 C(r1, r2, I) ε−
1
q1
− 1
q2 ‖f‖Lq2 (I,Lr2 (Rd)

where (q, r), (q1, r1) and (q2, r2) are pairs of admissible exponants.

Proof. These Strichartz estimates are derived from the dispersive estimates by the
so-called ‘TT ∗ argument’ (see [?]). We shortly explain this argument. By the
dispersive estimate and by the fact that Uε(t) is a unitary group, we are left with
two estimates

‖Uε(t− s)‖L1(Rd)7→L∞(Rd) 6 C(ε|t− s|)−d/2,
‖Uε(t− s)‖L2(Rd)7→L2(Rd) = 1

for |t− τ | < δ0. Complex interpolation for 2 6 r 6 +∞ gives for |t− s| < δ0

‖Uε(t− s)‖Lr(Rd) 7→Lq(Rd) 6 C(ε|t− s|)−δ(r).

We now consider f ∈ L2(Rd) and g ∈ L2(−]δ0, δ0[×Rd) and we have∣∣∣∣∫
R

(Uε(t)f, g(t))L2(Rd) dt

∣∣∣∣ 6 ‖f‖L2(Rd)

∥∥∥∥∫
R

Uε(−t)g(t)dt
∥∥∥∥
L2(Rd)

.

We observe that∥∥∥∥∫ Uε(−t)g(t)dt
∥∥∥∥2

L2(Rd)

=
∫
R×R

(Uε(−t)g(t), Uε(−s)g(s))L2(Rd) dtds

=
∫
R×R

(g(t), Uε(t− s)g(s))L2(Rd) dtds

6 C

∫
R×R

(ε|t− s|)−δ(r) ‖g(t)‖Lr(Rd)‖g(s)‖Lr(Rd)dt ds

6 Cε−2/q‖g‖2Lq([−δ0,δ0],Lr(Rd))

since δ(r) = 2/q and where we have used Hardy-Littlewood inequality (for q > 2).
In the critical case (q = 2), the above analysis breaks down and we refer to [?].
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Therefore, we have obtained∣∣∣∣∫
R

(Uε(t)f, g(t))L2(Rd) dt

∣∣∣∣ 6 Cε−1/q‖f‖L2(R)‖g‖Lq([−δ0,δ0],Lr(Rd)),

whence
‖Uε(t)f‖Lq([−δ0,δ0]),Lr(Rd) 6 Cε

−1/q‖f‖L2(Rd).

In order to conclude to the proof of (??), we decompose I into small intervals of
length 2δ. �

3.2. Schedule of the proof of Theorem ??. Set wε = ψε−φε, then wε satisfies

iε∂tw
ε +

ε2

2
∆wε − V (x)wε = Lε(t, x) +NLε(t, x)

where Lε is the linear contribution to the remainder (the same one than in the
linear case):

‖Lε(t)‖L2 . ε3/2‖x3u(t)‖L2

and NLε contains the nonlinear terms

NLε(t, x) = εα
(
|φε + wε|2σ(φε + wε)− |φε|2σφε

)
,

|NLε(t, x)| . εα
(
|φε|2σ + |wε|2σ

)
wε.(3.3)

Using Duhamel formula, we have on step time intervals of length τ

wε(t+τ) = Uε(τ)wε(t)+
i

ε

∫ τ

0

Uε(τ −s)Lε(t+s)ds+
i

ε

∫ τ

0

Uε(τ −s)NLε(t+s)ds.

First step: Choosing a Strichartz admissible pair. In order to use a Strichartz
estimate, we choose the pair (q, r)

q =
4σ + 4
dσ

and r = 2σ + 2

This pair has the advantage that it will fit with the use of Hölder estimate in the
nonlinear contribution (??): there exists θ such that

1
q

=
2σ
θ

+
1
q

and
1
r

=
2σ
r

+ 1r

with

θ =
2σ(2σ + 2)

2− (d− 2)σ
.

Remark 3.4. Note that θ > 0 because σ < 2
d−2 .

The advantage of this pair is that all the Lebesgue norm on Rd will be associated
with the same exponant r. Using Strichartz estimate, we obtain for I = [t, t+ τ ]

‖wε‖Lq(I,Lr) . ε−1/q‖wε(t)‖L2 + ε−1−1/q‖Lε‖L1(I,L2)

+ε−1−2/q+α
(
‖φε‖2σLθ(I,Lr) + ‖wε‖2σLθ(I,Lr)

)
‖wε‖Lq(I,Lr).

One sees that it will be important to know something about the Lr norm of φε(t)
(and wε(t)).
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Second step: Estimation of ‖φε(t)‖Lr . We observe that scaled Gagliardo-
Nirenberg inequality

(3.4) ‖f‖Lr 6 C(r)ε−δ(r)/2‖f‖1−δ(r)L2 ‖Aε(t)f‖δ(r)L2

gives

(3.5) ‖φε(t)‖Lr . ε−δ(r)/2eCt.

Third step: A bootstrap argument. It is reasonable to suppose that wε is not
worse than φε. For this reason, we suppose that wε(t) satisfies the same type of
inequality than φε and we prove a priori estimates under this assumption.

Lemma 3.5. As long as ‖wε(t)‖Lr 6 C0ε
−δ(r)/2eC1t, we have for some constant

C,

‖wε‖Lq([0,t],Lr) . ε−1/q‖wε‖L1(L2)eCt + ε1/2−1/q eCt,(3.6)

‖wε‖L∞([0,t],H) . eCt‖wε‖L1([0,t],H) +
√
ε eCt.(3.7)

We refer to Sections 3.2 and Section 4 of [?] for the proof of these estimates.

Fourth step: concluding the proof. Equation (??) and the Gronwall Lemma
gives the result as long as the bootstrap assumption is satisfied:

‖wε‖L∞([0,t],H) .
√
ε eeCt .

To verify this point, one uses again Gagliardo-Nirenberg inequality (??) which gives
in view of (??)

‖wε(t)‖Lr . ε−δ(r)/2
√
ε eeCt . ε−δ(r)/2eCt

for t < LogLog
(

1
ε

)
.

The case d = σ = 1 : In this situation, we have q = 8, r = 4 and θ = 8/3 < 8
and it is possible to find bounds on the L8(L4) norm of the profile u. WE infer the
estimate

‖φε(t)‖L4 . ε−δ(4)

and Lemma ?? becomes

‖wε‖L8([0,t],L4) . ε−1/8‖wε‖L1(L2) + ε1/2−1/8 eCt,

‖wε‖L∞([0,t],H) . ‖wε‖L1([0,t],H) +
√
ε eCt.

Therefore, Gronwall lemma gives ‖wε‖L∞([0,t],H) . eCt. We emphasize that if σ ∈
N, the only case where σ < 2/d is when d = σ = 1 and one can check that θ < q if
and only if σ < 2/d.
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