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ABSTRACT. The aim of these lectures is to discuss different PDEs technics related with a
Schrédinger equation describing the dynamics of an electron in a crystal in presence of impu-
rities. Because the size of the cells of the crystal are supposed to be very small comparatively
with the macroscopic scale, it is a multi-scale problem with periodic aspects. We shall use
semi-classical measures (also called Wigner measures) to take care of the multi-scale features,
and Bloch theory to deal with the periodicity. These notions will be explained and used for
calculating the density of probability of presence of the electron in the limit where the size of
the cells is much smaller than the macroscopic one. The material of these notes is larger than
what will be treated during the lectures.
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1. INTRODUCTION

This lecture is devoted to the analysis of the Schrédinger equation
1 1
0067 (8, ) + 5805 (4,2) = 5 Vour (2) ¥5(t,2) = V(E2)o(t,2) = 0,

Ve =0 = ¥§.

where (¢§)->0 is a bounded family in L?(R%) with [|1)§]|r2ra) = 1, Vper a Z%-periodic potential
that we will suppose smooth, V(¢,-) a time-dependent exterior potential that will be supposed
to be in L>®(R, C'(R?)), in the sense that for all + € R, V(¢,-) € C'(R?) and has bounded
first derivatives, uniformly in time. The parameter € is the so-called semi-classical parameter,
€ < 1, because of the scaling of the problem that we will discuss in the next section, and we
are interested in the description as ¢ goes to 0 of the densities |¢°(¢,2)|?dx which gives the
probability of finding the particle at time ¢ and position . We will consider quadratic functions
of 1°(t) involving more general observables.

(1.1)

The first section of this introduction is devoted to the motivations leading to using this equa-
tion for describing the dynamics of an electron in a crystal, in presence of an external potential.
The second subsection will explain the basic ideas of Effective mass Theory, that we will imple-
ment in simplified situations, exhibiting some of the main ideas of the lecture. We will finish by
presenting the result that we are going to prove and the schedule of the lecture.

This lecture is issued from works with Victor Chabu and Fabricio Macia (see [22] 23], 24]),
from which a large part of the material is taken. The presentation of the different notions treated
in this text is also highly impacted by collaborations with Caroline Lasser and Fabricio Macia,
independently and, more recently, simultaneously. They will recognize their influence. It is an
opportunity to thank them for these collaborations that have been, and still are, a source of
major mathematical satisfaction.

1.1. The dynamics of an electron in a crystal. The dynamics of an electron in a crystal in
the presence of impurities is described by a wave function W(¢',z’) that solves the Schrédinger
equation:

2
(1.2) ihop W (t', x') + ;—mAzr\Il(t’,x’) —eQper (T) (', 2") — € Qe (', ")V (¢, 2) = 0,

\If|t/=0 = \Ifo, (t/7l'/) eR x Rd.

The potential Qper is periodic with respect to some lattice in R¢ and describes the interactions
between the electron and the crystal. The external potential Qeyt takes into account the effects
of impurities on the otherwise perfect crystal. Here /i denotes the Planck constant, e is the charge
of the electron and m its mass. In many cases of physical interest, the ratio between the mean
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spacing of the lattice and the characteristic length scale of variation of Qeyt is very small. We
shall denote that ratio by € and consider the limit ¢ — 0.

Following [61], one observes that there are two scales in the problem:

e the quantum scale characterized by the typical length A of the lattice,
e the macroscopic scale whose typical length we shall denote by L.

With these length scales are associated time scales: the quantum time scale characterized by the
typical time 7 and and the macroscopic time scale characterized by the typical time 7" which are
related to the length scale by
2 2
oM p_mk
h h
Strictly speaking, we should consider the Planck constant h in macroscopic units and define T

as T = mTLQ We have implicitly assumed that A/h is a constant, that we have set to 1.

Since the periodic potential acts on the quantum scale, we rescale it as

mA? '
erer(ml) = ?Vper <>\> 5

and we rescale the external potential that acts at macroscopic scale as

L? t a2
ex t/ "= L er | 7> 5 | -
€ Q t( y L ) T2 Vp (Tv L )

The meaning of these new scales consists in saying that a free electron under the influence of

Qper Will travel a distance of length A in the time unit 7 and, similarly, a free electron under the
influence of Qext(t) will travel a distance of length L in the time unit 7.

We shall reformulate our problem in terms of the variables

)= (7.5 ),

that are usually called the slow variables. The so-called fast variables

= (55).

will of course play a role in the analysis. They are linked with the slow ones by

A [T
= dt=¢? ith e=—=/=<1.
T =¢cy an €%s with ¢ 7 T<<

Since the wave function is normalized in L*(R?) (||¥||z2(ray = 1), we choose the new unknown
VS (t,x) = L™V (¢ 2') = L=Y20(Tt, Lx).
Lemma 1.1. Setting ¢§(z) = L~%2Wy(Lx), the family ¢°(t,z) satisfies (T.1]).

Proof
We just have to perform carefully the computation.

ihd (t,x) = T L™Y%hd, ¥ (T't, L x)
h2
=T L 2 (—mAx/\I/(Tt, Lz)+eQper(2)¥(Tt,Lx)+eQext(Tt,Lx)V(Tt, La:))

h*T TmM? 2

5 L & mL e
= e )+ TV () 1)+ TV 020002
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Dividing the equation by A, we obtain

O (4.2) = —% - LA (10) + T Vi (Lx>+"mv;xt<t,x>w<t,x>.

2 hr? A Th
Since € = % and 2% — ”;é =1, we have
TmX  m) T 1
A2 AT T g2

and we obtain
0 (1) = 3 Az (1,2) + 5 Vher () 05 (02) + Vese 1,20 (1,),
which concludes the proof of the Lemma.

In the following, we shall consider equation (1.1} with [[¢)§||;>@e) = 1 and we shall assume
that the potential Ve, is periodic with respect to a fixed lattice in R?, which, for the sake of
simplicity will be assumed to be Z¢. We shall focus on the description of the density

(1.3) nf(dt,dx) = [¢°(t, x)|*dxdt,

which gives the probability of finding the electron at time ¢ in the position x. More precisely, we
are interested in the computation of time averages of quadratic functions of ¥*(¢, x), that is, in
describing the limit as ¢ goes to 0 of quantities of the form

7/ (dt,dz), T >0, ac C>X(RY).

1.2. Effective Mass Theory. Effective Mass Theory consists in showing that, under suitable
assumptions on the initial data (1§)e>0, the solutions of can be approximated for small
values of € by those of a simpler Schrédinger equation, called the effective mass equation, which
is for example of the form:

(1.4) i0(t, ) + %B Vo - Voot ) — Vot 2)(t, ) = 0.

Above, B is a d x d matrix called the effective mass tensor. It is an experimentally accessible
quantity that can be used to study the effect of the impurities on the dynamics of the electrons.
Both the question of finding those initial conditions for which the corresponding solutions of
converge (in a suitable sense) to solutions of the effective mass equation and that of clarifying the
dependence of B on the sequence of initial data have been extensively studied in the literature
[111, [671 [3, [39, [9] and the recent review [16] and the references therein.

The equation (|1.4)) is an approximation of the equation (|1.1)) in the sense that the limit as a
distribution of the measure n(t,x) is |¢(t, z)|?dzdt, at least in time average, or, equivalently,
that for all a € C2°(R?) and T > 0,

—// £(dt,dr) — — // z)|o(t, z)|*dadt.
Rd E—)O

One has to notice that the effective mass equation is independent of the small parameter and,
thus is easiest to treat, in particular numerically. When replacing the original equation by (1.4 .,
one can say that one has solved the question of the oscillations of size = of the function ¢* (¢, ).

Dealing with the limit € — 0 can be expressed in mathematical terms as looking for weak-*
accumulation points of the sequence of densities |/ (¢,x)|?, that we are going to study through
the notion of time-dependent Wigner distributions. Wigner measures’ approach is indeed a good
way to handle this question: it allows to treat quite general initial data and to give a new insight
on the status of the function ¢(¢, ) satisfying the Effective mass equation.
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A typical example of this sort of results has been obtained in [3] for data that we will call well-
prepared initial data. We describe below a weaker result that is a consequence of the work [3].
For this, we need some notations.

(1) With ¢ € R?, we associate the operator P(£) with domain H?(T?) c L?(T4)

(15) P(&) = 3l + Dy 4 Vo), y €T,

where T4 = R4\ Z4 is a flat torus.
We will see in Section 3| that this operator is essentially self-adjoint on L?(T%) with domain
H?(T%), and has a compact resolvent, hence a non-decreasing sequence of eigenvalues counted
with their multiplicities, which are called Bloch energies or band functions
01(8) < 02(8) < -+ < 0 (§) — +00,
and an orthonormal basis of eigenfunctions (¢n(-,£)), ey~ called Bloch waves or Bloch modes,
satisfying

(16) P(f)@n(af) = Qn(g)wn(vf)v V§ € Rd7 Vn € N*.

(ii) The initial data (1§).>o is said well-prepared if there exist n € N*, & € R? and vy €
S(R9) such that

(1.7) ¥i(@) = 970, (2,6 ) vo(a).

Theorem 1.2. [3] Let T > 0. Assume (¢¥§)c>0 satisfies (1.7) with & a critical point of & —
on(&). Assume that the eigenvalue 0,(§) is separated from the rest of the spectrum of P(§) for €
in a neighborhood of &. Then the solution of (1.1) satisfies

P (t,2) = et e @y, (2 6) or(r2)
and v¢(t) converges weakly in L?((0,T), H(R?)) to the solution v(t) of the equation
(1 8) 10w = —%dQQn(ﬁo)Vx “Vev+ Vext(ta 33)”,
’ U‘t:O = 0.

The equation is a typical example of an effective equation since it is e-independent. It
involves the eigenfunctions and the eigenmodes of the operator P(£). In particular, starting from
a data proportional to ¢, (%, fg), the solution is proportional to ¢, (f, fg) and the coefficient of
proportionality evolve in an autonomous manner involving the Bloch mode g, (§).

We point out that the importance of the assumption that & is a critical point of g, will be
made clear in the next chapters. Let us now discuss the role of the operator P(§). The existence
of two scales in the problem suggests to look for (¢°(t)).0 of the form

v¥(ta) =U* (to,2), (to) eRxRY,

where the function U® = U¢(t,z,y) is defined on R x R? x T%. Formally, if (U%(t)).>0 satisfies
ie20,U(t,x,y) = P(eD)U*(t,x,y) + 2V (t,2)U%(t, x,y),
U€|t20 = UOEa

with U§(z, £) = 9§, then (t,2) — U® (t,x, %) solves ([L.1). Here, the opeartor P(eD) acts as a
Fourier multiplier in the variable ¢:

(1.9)

P(eD)US(t, 2, y) = (27) ¢ / €= P(eg)US (1, 2!, y)dar' dE.
Rd
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Of course, there are several choices possible for realizing Ug(xz, £) = 9§. For example, one can
take

Ug’l(myy) =Y5(x)1yere, (z,y) € R x T¢.
In the case of well-prepared initial data satisfying ([L.7)), it looks appropriate to choose
Uso(z,y) = e= %0, (y,&o)vo(x), (z,y) € RY x T

These choices will generate two functions Uj(t,x,y), j = 1,2, that are different functions of
R? x T¢. However, by unicity of the solution of (I.1]), they satisfy

Ut (t,gc, g) —Us (t,x, g) , (t,z) e R x R

Let us now prove Theorem in the simple case V¢ (t,z) = 0. The next chapters will give
the elements for proving the general case.

Proof
We first write the equation satisfied by U®(¢,,y) where we denote by f the Fourier transform
with respect to the variable x:

F& = [ fl@e ®"dz, ¢€RY feSRY).

Rd
We have
i220,0°(t,&,y) = P)U*(1,£,y),
{ Uli—o(€,y) = o (5 - %D) ©on(0,Y)-

For ¢ € N*, let us denote by II,,(§) the eigenprojector on the n-th mode of P(£) and by IT (&)
the orthogonal projector (IT (§) = Id — I1,(&)). We have

Us(t,6,y) = Us(t,&,9) + US (1,€,y), UL(t,Ey) =, (6)U (€, y), (t,z,y) € RxRY x T4
Besides, for £ € {n, L}, (Aj(t))s>o solves
i20,U5 (t,€,y) = (L P)(e€)Uf (t, €, y)

with

Uglimo(&,y) = To (f - i_0> e (e€)en (8o, v)

= o (g - 5;) (H[(go) +5/01 <§ - 5;) VeI, (go + s¢ (5 - ?)) d8> ©n(0,9)

where we have used that II,, is a smooth function (this comes from the assumption on the mode
0n, as we shall see in Section . Assuming for example that vy is compactly supported, we
obtain in L2(R? x T%)

€

O¢ iz (£, 4) = SenBio <s - 50) onlCory) + 0().

When ¢ =1, this implies U5 (t) = O(g) in L?(R? x T%).
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When ¢ = n, using TL,(§)P(€) = 0,(6)TL,(€), we obtain UL (t,&,y) = e~ =2 CO1Tz(0,¢,y),
whence

Us(t,x,y) = (2m) ™7 / ol en O (0, ¢, ) de

Rd

_ (27T)7d e%ﬁomw"(go’y)/ ) ei(f—%)'(r—m/)—E%Qn(sf)tvo(xl)dgdx/
R2

= (Qﬂ)*d eﬁfom(pn(go,y)/ ) eif-(z—z/)—E%Qn(fo+55)tvo(xl)dé»dx/
R2

Writing 0, (60 + 2€) = 0n(0) + Sd20n(60)¢ - € + 3G(E)[€,€, ] for G°(€) a smooth bounded
3-tensor, we obtain

v (t) = (2m) ¢ / o6 (=)= §den (E0)E € t+ite G (OEE.E y (1) deda,
R2d
whence the result.

Remark 1.3. In the case where Vg, (&) # 0, the non-stationary phase theorem gives the conver-
gence to 0 of (v°(t))e>o0-

1.3. Our aim. Our aim in this lecture is to provide a similar description for more general initial
data, without assumptions on its form as we had on the well-prepared data of (1.7). However,
we will relax our exigency by only asking for a description of the limits of quadratic quantities
such as

b b -
/ (@) [4° (¢, 2)|Pdxdt or / / o(c6) % (1,€)Pdedr.
a JRA a R4

To unify the position and impulsion (or frequency, or also Fourier) point of view, we shall
consider the Wigner transform of the family (¢°(¢))e>0 and replace the analysis of the densities

|4 (t, 2)|*dxdt or E_d|’(7)2(t, ¢/¢)|?dédt by the one of the distribution on R x R2¢ given by
wE(t, 3, €) = (2me) / VE (b + 20/ 205 (1 3 — ev/2)eE dudt.
Rd

Note that, formally, the marginals of w® (¢, z, £) give the position and impulsion densities. Things
will be made rigorous in Section [2} We are going to prove the following result, in the case d = 1.

Theorem 1.4. Consider for each n € N the sets of critical values of the Bloch modes

Assume (V§) is bounded in HE(R) for some s > 1/2. Assume Viyer is smooth and that t —
Vert(t, ) is bounded in L>(R,CY(R)). Then, there exists a subsequence (§')ec,>0, Such that
€ge—+> 0 and for every a < b and every ¢ € C>°(R?) the following holds:

—+00

b b
1) Jim / /R Ol et dwdedt = Y / /R b, )" (t, ) Pt

neN* £cA,

where, for every n € N* and € € A,,, wén) solves the Schrodinger equation:

(1.12) i (t, ) = —%aggn(g)agng”) (t,2) + Vexe (£, 2)0 " (¢, 2),

with initial datum:

¢én)|t:0 is the weak limit in L*(R) of the sequence e w8 (I, (e Dy ) (¢5* & Lyer)) )y -
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Moreover, for all ¢ € C°(R),

b b
) g [ @l eoPd= Y 3 [ [ @il ) s

neN* £€A,

Note that some of the accumulation points of efﬁgwﬂn(Eng)( o ® 1yer) may just be 0. For
example, when Vo, = 0, only the first Bloch energy o1 has critical points and they are precisely
Ay = 27Z. Besides, the associated projector II; (§) coincides with the orthogonal projection onto

Ce™*¥ whenever ¢ € (k—, k+7) and k € 27Z. Therefore IT; (2€) (45" (€)1yer) = 1(_x.m) ()85 (€)

and effe%ml—h(&DI)( o¢ ® 1yer) weakly converges to zero when k # 0. As a consequence, in
this elementary case Vper = 0, Theorem says nothing but that the weak limits of |¢°(t,z)[?
are equal to [10(t,x)|* where 1/°(¢, x) solves with initial data v, the weak limit of (¢§) in
L?(R).

If the data is well-prepared, one recovers the result of Theorem

In higher dimension, the result is more complicated to state. We will discuss it in the last
section.

This result relies on a semi-classical analysis of the problem and the use of the Bloch-Floquet
theory. The aim of the lecture is to explain these tools (Sections [2| and [3| respectively) and to
implement them for analyzing the solutions of equation (Section [d). We will see that this
requires the introduction of a two-scale analysis, and thus the introduction of a refined notion
of two-scale Wigner transform (Section . In the conclusive Section |§|, we will be able to prove
Theorem and we will discuss the higher dimension case.
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2. THE SEMI-CLASSICAL APPROACH

In this chapter, we introduce Wigner transforms in Section We will use their tight link
with semi-classical pseudodifferential operators, of which we shall describe the properties that
will be useful for our purpose in Section[2.:2] Wigner measures are defined in Section 2.3} together
with the analysis of their main properties.

2.1. Wigner function.

2.1.1. Definitions. The Wigner function W¢[f] of a function f € L?(R?) is the function defined
on R2%:

(2.1) Welf](x,€) = (2m) /

Rd

eV (x — %v) f (x + %v) dv.

It also writes
We[f](z, &) = (2me)~@ /Rd esvEf (x - %) f (x + %) dv.

It has been introduced by Wigner [7I] at the beginning of the 20th century. Let us derive a first
set of basic properties.

Proposition 2.1 (Wigner distributions). For f € S(RY), its Wigner function satisfies the
following properties:
(1) We[f] € S(RY x RY) and for all N € N, there exists Cy > 0

OV WU <Ox swp [a (€00 fllzz, (@:6) € B,
(2) WeIf) € L2(RY x R and W[l guee = (2me) 4 12200,

(3) (We[f], Welgl) 2 (raxray = (21€) "4 |[(f, 9) p2ay |-
(4) The marginals of We[f] on x or £ give the position or momentum densities of f respec-

tively :
—~ <§>
€

1 2

(2me)d

/ Welf](x, £)dE = | ()2, / We L], €)da =
R4 Rd

In particular,

WE ), ) dude = | 117 -
R2d
(5) We[f] is real-valued but in general not positive.

Note that it is proved in [4I], 66] that W¢[f] is nonnegative if and only if f is Gaussian (the
article [41I] concerns the dimension 1, while [66] holds in any dimension).

Ezample 2.2. Consider zy = (z9,&) € R?*? and

— igg-(z—2 T — o d
£2, (@) = e/ et o>f( . zeR-
Ve

Then,

WE[ 50](x’€) :€7d Wl[f] (5_50 £_£0> )

VNG
Proof

1. We observe that the transformation acts on ff by the measure preserving change of coordi-
nates (z,v) — (z+ %v, T — %U) followed by a partial Fourier transform with respect to v. Hence,
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if f is a Schwartz function, then the Wigner distribution W¢[f], too.
2. Square integrability of W¢[f] can be seen as in 1. For calculating the norm, let (z,&) € R??,

(Wef)(=, &)

= (2m)~H /de / (x - %) i (:E + %) f <a: + 521/) f (m - 62”/) =) qydy

Therefore, after integration in £, we obtain
5 2 _ —d _ E 2 E 2
Lo oras= ot [ |r(e=eg)[ |7 (o+e5)[ an
We deduce
WL s = @r) [ 1F @P 1S (@ o) dode = () ey [ 1F (@) do

R2d
= (2me) ™| f11 12 ma)-

One then extends the result by density of Schwartz functions in L?(R?).

3. is essentially the same calculation as in 2.

4. is straightforward.

5. Real-valuedness comes from changing v to —v in the integral. For non-positivity, we take f
odd, that is, f(z) = —f(—x), and evaluate in the origin, W=[f](0,0) = —(me) || f|| L2 (ra)-

2.1.2. Wigner transform as a distribution. The action of the Wigner distribution on smooth
compactly supported function can be simply expressed in terms of pseudodifferential operators.
We have

(2.2 W) = [ | e W (7)o )deds = (£.0p-(@)f) e

for f € L*(RY) and a € C°(R??), where

(2.3) Vf e SR, op.(a)f(z)=(2me)”* /de a(3(x +y),&)er Y f(y)dy de.

The properties of the semi-classical pseudodifferential operators then induce properties of the
Wigner distribution. The more important ones are the following.

Proposition 2.3 (Wigner distributions). The Wigner distributions satisfy the following prop-
erties:

(1) For all f € L*(R%), the map from C°(R? x R?) to C,
a— (W[f],a)

1s a distribution of finite order.

(2) If (f%)es0 is a bounded sequence in L*(R?) then (W¢[f¢])es0 is a bounded sequence of
tempered distributions in S'(R% x R4, CVN*N),

(3) If (f%)es0 is a bounded sequence in L2(R?), then every limit point of (We[f%])eso is a
positive measure on R? x R®.

The distributional interpretation of Wigner transforms in terms of pseudodifferential operators
is a powerful tool and in the two last points of Proposition lay the foundation for the section
about Wigner measures. Proposition [2.3]is proved at the end of Section [2.2
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2.1.3. Wigner function of a pair of functions. One sometimes extends the definition of Wigner
transform to pairs of functions f,g € L%(R%) by setting

Welf gl €)= e [ 7 (o= ) g (o4 ) v,
Rd 2 2
with the straightforward properties listed in the next statement.

Proposition 2.4. (1) For all f € L*(RY), We[f, f] = WeI[f].

(2) For all f,g € L*(RY), We[g, f] = We[f, g] and

Wa[fa g}(‘rvé-) d(Edf = (97 f)L2(]Rd)~

RZd
(3) For all f17f27gl7926L2(Rd)7
(2.4) (W [f1, g1, WL f2, g2) ooy = (27€) ™ (f1, F2) gy (920 91) 12 gy -

(4) For all (f,g) € (L?(R%))? and a € C°(R?%),
(Welf,gl,a) = (9,0p(a) f) L2 (ray = (0P (@)g, f) 2 (pay -

Proof
1, 2 and 4 come from the definition.
For 3, one writes

(WE [fla 91]7 we [fQ, 92])L2(R2d)

= 2re) 2 [ i Do+ Phala— P+ §) SO dvde’ dod
R

= @)™ | Fule = 5)orlet ) fale — §)7a(r+ ) dvd

= (27T5)_d (fla fQ)LQ(Rd) (92;91)L2(Rd) .

Example 2.5. We consider two functions fi, fo € L?(R?%) and two points in the phase space
z1 = (21,&) and 23 = (x2,&). Denote Q = %, P= % Let
xr — iL’j

zgj (x) — 57% e%Ej'(‘T*Ij)fj ( ﬁ
Then, the joint Wigner function satisfies for all (x,¢) € R4,
Welfz,, f2,1(@,€)

Lig(p_ L I Cig (g2 Z x
= WeeHE ) - o, 3R o - 1)) (L, R

>, reRY j=1,2.

_ eé(ﬁl*&)'(I*Q) WE[f1, fl <I\£Q, \ﬁ(f — P)>

_ g—deé(fl—&)'(gﬁ_Q) Wl[fh f] ('T_\/EQ7 g;;) .

2.2. Semi-classical calculus. Let a € C2°(R??) and ¢ €]0, 1] a small parameter. Recall we in-
troduced the semi-classical pseudodifferential operator of symbol a as the operator op,(a) defined

on S(R?) by equation (2.3)), namely
op.(a)f(z) = (2me) ¢ /de a(%(m + y),f)eég'(xfy)f(y)dy d¢, f e S(RY.

Note that there exists other choices of quantization.
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The integral in is convergent because f is rapidly decreasing. For symbols a = a(x, &)
that are polynomials in z and ¢, the integral defining op_(a)f still exists for f € S(R?), since
f € S(R?) can compensate the polynomial growth. This property and those of the Fourier
transform calls for a generalisation of the notation op,(a) to polynomial functions and one talks
of op.(z) to denote the operator of multiplication with z, and of op_(£) for the differentiation
operator —ied,,. In particular, one has the following example.

Ezample 2.6. We have op_(z-£) = 3 (op.() - op.(§) + op.(§) - op.(z)). Indeed, for all f € S(R?),

op. (& - €)f() = (2me) /

Rd

(z+y) - €S/ f(y) dedy

SIS

— (2me) /]R (0 =iy D)@Y (y) dedy
= 5 (2 (=i0:) f(x) — i0, - (xf(x))) .
Besides, if ¢ € C°°(R?), then for 1 < j, ¢ < d,
0p. (c(w)§;) = = c(@)y, + -0s,c(x),

i€
—0

2
5 OPe (&0z,¢(x) — &0e, c(x)) + %&fj”c(x).

op.(c(x)&&) = —e20y, (c(2)0s,7) +

2.2.1. Action on L*(R?). Let us now investigate how one can extend the action of op_(a) to
square integrable functions. The kernel (z,y) — k-(x,y) of the semi-classical pseudodifferential
operator op_(a) is given by

o) = (2me) ! [ e a(le +y).)de

(2.5) = e % (3(@+y) 2(z—y))
where

ka(X,v) = (271)_d/ eV (X, €) de.

R4
The function x4 (z,-) is the inverse Fourier transform of ¢ — a(x, &), we write

(2.6) Ka(Z,v) = ]-'ngva (z,v).

The function (z,v) — k4 (z,v) is compactly supported in x and Schwartz class in v. Note that
the link between a and k, also writes

(2.7) a(xz, &) = / e Vg, (2, v)dv.
Rd
The precise structure of the kernel of this operator calls for using the next Proposition.

Proposition 2.7. Let P¢ be an operator of kernel k.(x,y) of the form

K (w,y) = e n(5(z +y), L@ —y))
and such that K satisfies / sup |k(X,v)| dv < +00. Then, the operator P¢ is uniformly bounded
in L*(RY) and e

1P ey < / sup |w(X, )| dv.
X€ER4
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Proof
For f € L?(R?), we have

|P? f(z)] < &~ / sup [k (X, 228 | |£()\dy.
XeRd

Set g°(z) = e~ ¥ sup xcpa |kE (X,2)

, then ¢g¢ € L'(RY) and

165 s ety = / sup (X, v)| du.
XeRd
We obtain by use of Young’s convolution inequality for p=1and ¢ =r = 2,
1P° fll2ay < lg° * fllzmey < lg°[lLr@ayll fll2@ay < 1 fllz2(ra (/ sup. k(X U)|d71) .
XeR
Note that the Young’s convolution inequality is straightforward for this choice of indices.

As a consequence of Proposition we obtain the boundedness in £(L?(R?)) of pseudodif-
ferential operators. Indeed, for k = k, as in (2.6)), we have

/ sup |kq(z,v)|dvo < C sup sup Haga(x, et ey
zER? BeN? zeRd
|B1<d+1

with C' = [(v)~9"1dv. In the following, we set

(2.8) Ny(a):= sup sup ||8§Ba(x, e ey
BeN? zeR?
181<d+1

We observe that the norm Ny(a) is controlled by Schwartz semi-norms: there exists a constant
cq depending only on d such that

(2.9) Ny(a) <eq sup sup [(1+4 |€|)d+18§a(ac,§) .
BeN? zeRd
IB1<d+1

The result is the following.

Theorem 2.8. There exists a constant ¢ > 0 which depends only on d such that for all a €
O (R*),

(2.10) ||0p€(a)||£(L2(Rd)) < ¢ Ny(a)
Let us define the e-Fourier transform:
(2.11) Vfe S(RY), VEERT, FE(f)(E) = (2776)_d/2/ o1 f(2)da
Rd

Then, if a(x, ) = a(—¢&, z), one has
(2.12) (f,0p.(a)g) 2 (ray = (2m) " (F*(f), 0P (@) FF(9)) p2(ray»  fr9 € L2(RY).
Therefore, one can get an estimate similar to (2.10)) where the roles of x and £ are exchanged:

Hopa(a)HE(L?(]Rd)) = ||0pa(Q)HL‘(L2(]Rd))~
which yields the estimate
(2.13) llop.(a)llz(2meyy < ¢ sup  sup Haga(',f)HLl(Rd)-
B

cN? ¢eRd
|B]<d+1
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Remark 2.9. Observe that the estimates (2.10)) makes possible to define bounded semi-classical
pseudodifferential operators with a symbol a which has few regularity in z, as long as a is
measurable, compactly supported and that 8? a is integrable for all 3 € N¢ such that |3] < d+1.
And similarly, we can exchange the role of z and ¢ by estimate )

The estimate the most used in the literature is the one obtained by Calderén and Vaillancourt
in [21].
Theorem 2.10 (Calderén-Vaillancourt Theorem). There exists N € N* and C' > 0 such that
for all a € C(R??),
I o
(2.14) ||Op5(a)||L(L2(Rd)) <C Z €2 sup |07 al
a€N2d || <d+2 ReIxRe

2.2.2. The adjoint and the composition of semi-classical pseudodifferential operators. We intro-
duce the notation for the Poisson bracket of two functions. For f,g € C'(R%), we set

(2'15) {fvg}:vff'va:g_vwf'vﬁ.ﬁ

This notation extends to matrix-valued functions, paying attention to the non-commutativity of
the product on the set of matrices.

Proposition 2.11. Let a,b € C(R2%), then in L(L*(R?)),

(2.16) op.(a)" = op.(@),
(2.17) op.(a)op.(b) = op.(ab) + - op. ({a.0}) + O (7).
(2.18) fop-(a).0p.(0)] = ~op.({a,b}) + O (")

We are not going to prove this proposition but another one, with less complicated symbols
but low regularity.

2.2.3. Pseudodifferential calculus with low regularity. With the observation in mind, one
can perform some symbolic calculus with low regularity in the &-variable. The reader will find
applications where this calculus is used in [34] and [32]. We focus on Lipschitz regularity and
consider the set Lip(R?) of continuous functions f such that

3Ly >0, Va,y €RY, |f(2) = f(y)| < Lyle —y).
Lemma 2.12. (1) Suppose ¢ € Lip(R%), and a € C2°(R??). Then, in L(L?(RY))

op.(a o) = op.(a)o(x) + O (eL,Na((1 + A¢)a))

op.(0a) = o(x)op.(a) + O (eL,Na((1 4+ A¢)a)).

(2) Suppose o € C1(RY) with Vo € Lip(R?), and a € C*(R??). Then, in L(L*(R?))
[0p-(a). 0(2)] = Zop.(Vea- Vo(x)) + O(* Ly, Na(Aca)).
Note that the observation of :
ope(a) = (F*) op.(a)F°,  a(,§) := a(=¢, x),

induces that properties proved for ¢ = o(x) have their analogue for o = o(£).

Proof
Point 1. We consider R® := op_(a ¢) — op,.(a)o(x). We have

w2 [ (L) jw . vr e s@ieh)
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where r¢(x,v) := ]-'gla(x, v)(o(x) — o(xz — ev)). By Proposition ,
1R eqwaqea < @) [ sup (o )lde,
R4 zeR4
By hypothesis, we can find L, > 0 such that
lo(z) — o(z — ev)| < Lyelv|, V(z,v) € supp]—'gla.

Therefore, using [v]| 7 a(x, v)| < (1+[v]*)|F¢  alz, v)| = | F¢  alz, v) [ +[F (- Aga) (x, v)], we
deduce
[R5\l £ (L2 (ray) < €Caly(Na(a) + Na(Aga)).

Point 2. We observe that the kernel of R := [op_(a), o(x)] — Sop,(Vea- Vo), is of the form ([2.5)
with

7 (z,v) = ]-'gla(w,v) (o(z) — o(x —ev)) — %fglv,fa(v,x) -Vo(z)
= F:a(z,v) (o) — o

= 20(x, v)}"{la(x, v)

(x —ev) —ev-Vo(z))

with |6(z,v)| < Ly,|v|?. Then, we conclude as before using |U\2]-'gla = —]-'glAga.

2.2.4. Weak Garding inequality. Garding inequality gives an answer to the question of the link
between the positivity of the symbol a and the positivity of the operator op.(a). We prove here
a weak version of the Garding inequality.

Proposition 2.13 (Weak Garding inequality). Let a € C°(R2?) such that a > 0. Then, for all
§ > 0, there exists Cs > 0 such that for all f € L?(R?),

(2.19) (F.0P-(@)F) oty > = (0 + Cs2) | fBaays VS € L2(RY),

Remark 2.14. This estimate can be ameliorated into: if @ > 0, there exists a constant C, > 0
such that

(f,op.(a)f) = —Cuel fllz2, Vf € L*(RY)

Besides, with the assumptions of Proposition one can prove the Fefferman-Phong inequality
(cf. [73] for a detailed proof):

3C >0, VfeL*RY), (f,op.(a)f)r2pa) = —Ce|fl 2 (ma).
However, the easiest version of Proposition is enough for our purpose.

Proof

We associate with a a function y € C>°(R?9) such that y = 1 on the support of a and we set for
some A > 0 to be fixed later

1/2

bs(x,€) = x(x,€)(a(z,§) + AJ)
The function bs is in C°(R2?) and satisfies
bs(x,€)* = a(x,€) + A x*(x, §).
Therefore, using {bs, bs} = 0, the symbolic calculus gives in £(L?(R%)),
op, (bs)*0p. (bs) = op(a) + Adop. (x*(2,£)) + O(c?).

Let us now choose A so that we have

Mlop. (X (@, )l 2 (p2®ay) < 1,
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then, for all f € L2(R?),
0 < flop.(bs) fII* = (£, 0pc(bs)"0pc (b8) f) 2 ey
= (fa Opg(a)f)Lz(Rd) + A0 (fa OpE(XZ(,T, 6))f)L2(Rd) +0 <€2||f|‘%2(Rd))

< (f,00: (@) gaqaey + 8113 sgme) + O (1 B ) -

whence the result.

2.2.5. Proof of Proposition[2.3 Points 1. and 2. are a consequence of (2.10)) and (2.2).
For Point 3, we observe that Garding inequality of Proposition 2.13]implies that every accumula-

tion point of (W¢[f]) in S’(R? x RY) is a positive distribution and therefore, a positive measure
on R? x R?, as detailed in the proof of the next Theorem [2.15]

2.3. Wigner measures.

2.3.1. Definition. In this section, we continue with the observation of Point 3 in Proposition [2.3
and analyze the properties of the weak limits of the Wigner transform.

Theorem 2.15. Let (f%).s0 be a bounded family in L?(R?). There exists a sequence (£,)nen
which tends to 0 when n goes to +00 and a positive measure p on R*? such that

(2.20) Va € C°(R*), (£, 0p.,(@)f*") 2 ey n_?’m/ a(z, &) p(dz, df).
R2d

Moreover u(R??) < 4o0.

Any measure p € M (R??) satisfying (2.20]) for some sequence (g,)nen is called Wigner
measure or semi-classical measure of the family (f€).s0. A given family (f¢)c>¢ may have
several Wigner measures.

The use of Wigner measures developed in the 90s, in particular with the articles [49] by Pierre-
Louis Lions, Thierry Paul and [36] by Patrick Gérard, Eric Leichtnam (see also [34] and [37]).
They first appear in [38] in the frame of the analysis of sequences of eigenfunctions of a Laplace
Beltrami operator on a compact manifold (see also [6] and [7] for similar problematic on the
torus).

Proof
Since the quantity Ic(a) = (f*,0p.(a)f®)2ga) is uniformly bounded in ¢, for a given function
a € C°(R??), one can find an extracted convergent subsequence I, ,(a). Considering a dense
countable subset of C>°(R?4) and using a diagonal extraction process, one builds a sequence ¢,
for which I, (a) has a limit for all a € C2°(R??). The map which sends a on the limit I(a) of the
sequence I, (a) is a linear form on C°(R??). Tt defines a distribution and Garding inequality
shows that this distribution is positive.

It remains to prove that I satisfies a measure estimate. We consider a nonincreasing function
X € C°([0,400)) such that 0 < x <1, x(u) =0 for u > 2 and x(u) =1 for 0 < u < 1. We set
XR =X (E) Then, we deduce from

(f€7 Ops(XR(xQ + 62))f8)L2(Rd) <C

that I(xr(z? + £€?)) < +oo and is uniformly bounded in R. Moreover, the function R +
I(xr(z? + £%)) is nondecreasing and we can set

10) = lim _I(xn(a® +€2))
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Then, the positivity of I yields
Ya € C(R?*), I(|lal| g r2ay — a) >0,
which implies the measure’s type control that we were seeking:
Ya € C®(R*)), I(a) <C llall oo (r2a)-
Therefore, the linear form I defines a positive finite measure p on R2<.
2.3.2. Ezxamples. Let us compute the Wigner measures associated with some exemplary families.
Ezample 2.16. Let x¢,& € R? and p € L2(R?).
(1) Concentration. Let u®(z) = e~%%¢ (%), then (u®)e>0 has a unique Wigner measure
pu(de, d€) = (2m) ™ 8z, () ® |B(€)|dE.
(2) Oscillation. Let v®(x) = @(x)e €/, then (v°).5¢ has a unique Wigner measure

po(dz, d€) = |p(z)*dx @ 6¢, (€).

Note that the e-Fourier transform transforms an oscillation in position into a concentration
in impulsion, and conversely

Feuf(€) = e—%fm'f]—'lw(g) and F°v® = 5_%}"14,0 (5 _660) .

The Wigner measure of a family (f¢).>o provides information about the strong convergence
of this family. In example (1) above, it is the point z¢ of the configuration space that is the
obstruction to the strong convergence of u® to 0 in the sense that if zy is not on the support
of ¢ € C*(R?), then (¢, u®) 12(ray goes to 0 as e goes to 0. Similarly, for the oscillation family
(v%)eso of example (2), it is the point & of the momentum space that is the obstruction and
(¢, u%) 2 (ray Will go to 0 if & is not in the support of the .

Another important class consists in Coherent states.

Ezxample 2.17. Let o € (0,1), 8 > 0 and
w5 =42 (5 ;a&)) eiv€o/e”
then (u®?).~¢ has a unique Wigner measure
Oz () @ 0, (§) if B=1

Pop(T,§) = 0z () ®p(&) if B<1
0 if 3>1

Notice that when 8 > 1, the family (ui ﬁ)5>0 is not e-oscillating and its Wigner measures at

the scale € do not capture its mass. The coherent states for which a = % and 8 = 1 are called
wave packets.

The WKB states are often used in semi-classical analysis (see [20]).

Ezample 2.18. Let S € C2(RY) and ¢°(z) = e:5@p(z), then (¢°).»0 has a unique Wigner
measure

ps(z,8) = |o(z)dz @ dys ) (€).-
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Proof
We have for a € S(R??),

(9%, 0pP-(a)9°) p2(ray = ]-'gla(X, v)es (EX+e3)=5(X—e3))5 (X + 5%) @ (X - 5%) dXdv
R2d
and the result follows from Lebesgue dominated convergence Theorem.

Actually, the proof shows that the result extends to functions S for which there exists a
function V.S € L>°(R9) such that

Vo0 € RY, L(S(x) — S(a + tv) — VS(a) - v
t t—0

When VS # 0 almost everywhere, one deduces from the result on the measure that WKB states
with phase of low regularity goes weakly to 0 in L2.

2.3.3. Wigner measures and e-oscillation. One can wonder how using Wigner measures may
help to calculate the weak limits of energy densities, since the measures are obtained by testing
against smooth, compactly supported functions a. In particular, the symbols a are compactly
supported in the Fourier variable £, while the limits that we wanted to compute do not present
cut-off in frequencies. This question is solved via the notion of e-oscillation which allows to
link the Wigner measures with the accumulation points of the energy density, provided that the
family of functions under investigation is e-oscillating.

Definition 2.19. A family (f¢).s0 in L2(RY) is e-oscillating if

(2.21) limsup /
=0 JIg|>R/e

Remark 2.20. If a family (f¢).s0 in L%(R%) has a HS norm uniformly bounded for some s > 0:
3C > 0, ||<€D>sf6||L2(Rd) <C,

then, using that 1.p|>r < R~2%(2D)?*, one obtains that this family is e-oscillating. Indeed,

/£>R/6

The families of Example are e-oscillating. We verify this claim for the concentration
family (u®)cso. Indeed, for any R > 0,

/|€>R/a |ﬂ€(§)|2 d e /5>R/8 /Rd /Rd
- /§|>R /Rd /Rd ZE'(%y)d(%y,f)

—/ o()Pde — .
[EI>R

R—+o00

F©)| e, — o,

~ 2
P ds = (Ueiznf® 1) o ey

SR*QS (<€D>28f€ fs)L2 R4) <C2R72s —5 0.

R—+o00

(22’ d(w, )

Proposition 2.21 ([34, 36, 37]). If u € M (R? x R?) is an accumulation point of (We[f%])es0
along some subsequence (€,)nen, and if the measure |f (z)|*dx converges weakly towards a
measure v € M, (RY) then

(2.22) [ ntedey <
Rd
Equality holds in if and only if (f€)e>0 is e-oscillating.
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Proof
We use the function xp = x (55) where x € C°(R, [0,1]) is compactly supported in {|¢] < 2}.

For R > 0 and ¢ € C°(R?), ¢ > 0, we have
[ el @z = (17 0lL = xw) (€aD) 1) + (7 oxn (60 D) S5

Besides,

Jim (7 (D) £) = [ pla)(€/Rutda, de
RZd
and, in view of
(f o1 = xr) (€nD) f) = /Rd @(@)|(1 = xr)(en D) f*" (x)dz
+(Xr (enD) f (1 = xr) (€2 D) f")
> (xr(enD/R) f, (1 — xr) (€nD) f),
we have

e(x)xr(§)(1 — xr(E))u(dz, dS).

lim (/" ¢(1 - xg) (enD) f) > / )

n——+oo

We deduce that for all R > 0,
timint [ o)l @)Pde > [ p@na@n(dede) + [ o@xa© - xn©)uldz ).
n—-+oo d R2d R2d

Using Fatou lemma, we have

fimint [ ple)xn(n(dnde) > [ | pla) fimink xu(©uldr.de) = [ plohutds.do)

R—+oc0
Moreover
liminf p(z)xr(§) (1 — xr(E))u(dz, d§) > 0.
—++00 Jr2d
Therefore,
fimint [ o) @Pde > [ potdr.ds)
n—-+oo d R2d

One notices that the e-oscillation property implies that for x as before,

limsup (¢ (1 — xr (enD)) f, f*) — 0.
n—+00 R—+o00
We then get the result by letting n and then R go to +oo in the equality

/Rd e@)|f (z)Pde = (f",oxr (D) )+ (fT, 0 (1 — xR (enD)) f)
(fom,0p., (@(x)xr (€) f7,) + (fT o(x) (1 — xR (€uD)) f)

+ O(en).
2.3.4. Wigner measures of vector-valued families and orthogonality. Suppose now that (f€)c>o
is a bounded sequence in L?(R%,C"); then one can consider the N by N matrix

We[fe)(x, &) = (WEIf5, ££1(2, O))<ijen, @€ €RL

The family (W¢[f¢]).>¢ is a distribution acting on matrix-valued Schwartz functions via

(0, WeLf]) = / Trow(ale, W) (r, €))drde, o € SE,CVY).
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Its accumulation points are called semi-classical or Wigner measures of the sequence (f€).>o0.
The coefficients (4; j)1<i,j<n of this matrix-valued distribution are measures. Indeed, the diag-
onal ones are positive measures, as Wigner measures of the sequences (ff).>o, the coordinates
functions of (f¢)es>0. Moreover, denoting by &, the subsequence (f*¢)sen giving the semi-classical

measure p, one has

(223)  VaeCRRM),  lim (0p.(a)fE £5') poia) = /R al@, O)pi (da, de),

Therefore, the distributions j; ; are express as linear combination of Wigner measures of linear
combination of the (f5)i1<;j<n, and thus are Radon measures.

In other words, p takes values in the set of Hermitian positive semi-definite matrices: the
elements f;; are positive (scalar) Radon measures and that p; ; is absolutely continuous with
respect to both p;; and p; ;. The latter condition implies that p; ; = 0 as soon as p;; and p;
are mutually singular. In particular:

(2.24) pii Ly = Ya€CER™),  lim (op.(a)f", [') 0.

L2(R9) —
Remark 2.22. One can generalize the above study to a more general setting by considering
L? families from R? into some Hilbert space . One then defines pseudodifferential operators
with symbol a(z,£) which are compact operators on H and semi-classical measures are positive
elements of the dual to C>° (R4, K(H)), that is elements of C2° (R, £1 (H)), where K(#) denotes
the set of compact operators on H, £!(H) the set of trace class operators on H and Ei (H) the
subset of its positive elements.

The above description has important consequences when passing to the limit in bilinear quan-
tities depending on two families.

Lemma 2.23 (Orthogonality lemma). Let (f€)cs0 and (g%)eso be two bounded families in
L2(RY). We assume that each of them has only one Wigner measure that we denote by Ly
and iy respectively. Assume g L g, then for all a € C°(R??), (f¢,0p.(a)g®) —(>)0.

e—

Moreover, if the families are e-oscillating, then for all ¢ € C°(R9), / o(x)g° (x) fe(x)dx — 0.
Rd E—>

In that situation, one says that the families (f¢)e>0 and (¢°)eso are orthogonal families.

This sort of result is at the origine of the emergence of the concept of microlocal defect
measures, also called H-measures, which are the non semi-classical version of Wigner measures.
They were introduced independently and simultaneously in [35] and [68] and allow generalizations
of div-curl Lemma in the context of homogeneization.

Proof

One cousiders the vector valued family W€ = (¢, ¢°) and one of its Wigner measures i, which is
a 2 x 2 matrix with diagonal elements py and pg. The off-diagonal elements of u are absolutely
continuous with respect to s and gy and thus are 0 if py L pg. This implies the first statement
of the Lemma. The second one comes by combining the previous result with e-oscillation.

2.4. Wigner measures and time-dependent families. We now study time-dependent fam-
ilies, such as the family (¥°(t))z0 of solutions to the Schrédinger equation (L.I)). The modifica-
tions required in order to adapt the theory to this context are rather straightforward. Suppose
now that (¢°).~¢ is bounded in L*°(R;; L?(RY)) and define the time-dependent Wigner trans-
form Wi.(t) as

el vye (t, T — %}) e (t,x + i]) dv

235) Wi =W e = [ 7) @

Rd
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Proposition 2.24. Any accumulation point pi of the family (Wi, )eo in S'(R xR2%) is a positive
Radon measure ji on R x R* of the form p(dt,dz,d¢) = pt(dz,d¢) @ dt.

Such a measure ptdt is called Wigner measure or semi-classical measure of the time-dependent
family (¢¥°)cs0.

Proof
Estimates (2.10) (or (2.14) ) implies that for every 6§ € L!(R) and every a € C2°(R??),
(2.26) ‘// a(z, )Wi. (t, 2, &)dx dE dt| < Cal|¢° |7 (g, r2@ay 101l L1 ®)Na(a).

This ensures that (W) is bounded in &'(R x R*?). Moreover, any accumulation point j of this
sequence is a positive Radon measure on R x R2¢. It follows from that the projection
of u onto the t-variable is absolutely continuous with respect to the Lebesgue measure on R.
Therefore, we conclude using the disintegration theorem (see Theorem 9.1 in [I] or Section 2.5
of |2]) the existence of a measurable map from ¢ € R to positive, finite, matrix-valued Radon
measures ;' on R2¢ such that

p(dt, dz,d¢) = p(dx, d€)dt

Summing up, for every sequence (g/)sen going to 0 as £ goes to +o0o such that (Wi’éz) converges
in the sense of distributions the following holds: for all # € L'(R) and a € C°(R?%),
(2.27) / O(t)ae, W, (1w, e d dt — 0(t)a(z, €)' (dx, dE)dt.
R2d R2d

If the sequence (°¢(t,)) is in addition e-oscillating for almost every t € R, the projections of
the measures u’ on the ¢-variable are the limits of the energy densities: for every 0 € L'(R),

¢ S C()(Rd),

(2.28) //Rd x) [ (t, x) |2da: — / /Rd (da, d€) dt

Remark 2.25. Time-dependent analogues of , also hold after replacing p; ; by /Jﬁyj
and averaging in the t-variable.
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3. FLOQUET-BLOCH THEORY

In this section, we consider the operator on L?(T¢) defined by

P(&) = 5 16+ Dy 4 Vyuly), €€ R

In the next sections, we focus on the spectral analysis of the operator P(¢) for £ € R? (Sec-
tion [3.1)). It turns out that much more can be said in dimension 1 (see Section [3.2)) than in
higher dimension. We discuss regularity issues in Section [3.3

3.1. Spectral analysis of the operator P(¢). One associates with the lattice Z? its dual
lattice 2nZ%. The centered fundamental domain of 27Z% is called the Brillouin zone:

B=[-mx[.
Note that if ¢ € R, there exists a unique decomposition
E=n+2nk, keZ® and neB.

The operator P(¢) has the important property that, for k € Z? and ¢ € R? the operator
P (& + 2nk) is unitarily equivalent to P(£). More precisely, one has

(3.1) P(€ + 27k) = =27 k) p(£)e?2™k) e e R, Yk € 79,
Therefore, we can restrict our analysis to £ € B.

For ¢ € R?, we shall denote by Py(€) the operator Py(£) = | D, + £|? acting on the space

LT =S fly) = > exe®™, > el < +o00

kezd kezd

Both P(¢) and Py(€) have ¢é-independent domain H?(T9) ¢ L?(T%) where for s > 0 the spaces
H*(T?) are defined by

HY(T) =S fy) = Y ene®™™ Y, (k) |ex]” < +o0

keZa keZa

It is also interesting to link the operator Py (&) with the operator —A® | which consists in the
Laplace operator on the cube C = [0, 1]¢ with boundary conditions

fly+0) =ef(y), Oufly+10) =—=0,f(y)e* Y(y,{) € dC x Z such that y + £ € HC.
This operator is unitarily equivalent to Py(£) by the map which associates to any function
f € L?(T?) the function f¢ of L?(C) defined by
(3.2) vy € [0,1)% fe(y) = fy)e™™.
One has || fe| L2(0,114) = | fllL2(rey and [[AfellLz(0,12) = 1Po(€) fllz2 (14
Theorem 3.1. Assume that the operator Ve is smooth. Then, for all § € B, the operator P(&)

1s self-adjoint and its spectrum is bounded from below. Besides it has a compact resolvent, thus
a non-decreasing sequence of eigenvalues

01(6) < 02(6) €+ < 0p() € -+ — +o00,
and there exists an orthonormal basis of L*(T?) consisting of eigenfunctions (on(-,€)),en of
P(¢):

on(- &) € HA(TY), P(&)on(y,€) = 0n(&)pn(y, &), forye T
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Remark 3.2. If the potential Ve, is in LP(T¢) with

p=2if d=1,2,3, p>2 if d=4 or p:g if d>5,

then Theorem holds (see [47] and Appendix IA]). This includes 3d potentials developing
Coulombian singularity in a point, Vper(y) ~ close to some 3 = yo, agp > 0 and yo € T?.

\yyl

Definition 3.3. The functions defined on R?, ¢ +— p,(£) are called Bloch energies or Bloch
modes and the functions on T¢ x R? defined by (y, &) — ¢, (y, &) are called Bloch waves.

Remark 3.4. The property (3.1) yields that the Bloch energies o, (§) are 2rZ9-periodic functions
whereas the Bloch waves satisfy

on(y, &+ 2mk) = e_i%k'y@n(yvf), for every k € Z°.
The Bloch modes have a MinMax characterization (see Appendix |C])

1
(33) 01(6) = i (3100, + ey + (s i)
and, for n € N\ {1},
_ : 1 2
B el = T S 1( 1By + O lzagra) + (Voer f)L2(Td)

One defines the crossing sets of two distinct Bloch energies as the sets;
(35) En,n’ = {5 € Rd : Qn(f) = Qn’(f)}» n, n' € N*v On 7é On/’-

It is proved in [72] that the Bloch energies g, are continuous and piecewise analytic functions of
¢ € R?, and that the Bloch waves ,, can be chosen in such a way there exists a subset Z of the
Brillouin zone B of zero Lebesgue measure such that each ¢, is analytic in £ € B\ Z. However,
in the following, we shall only use the Lipschitz regularity of the Bloch modes, together with the
smoothness of the Bloch modes and of their associated eigenprojectors outside the crossing sets.
These properties are proved in Sections (for d = 1) and Section (in general);

Let us prove Theorem [3.1]

Proof

We first observe that Py (€) is self-adjoint with domain H?(T%), spectrum {3 (¢ + 2kx|?, k € Z}
and eigenvectors y +— €2 Moreover, Vye, being bounded, the Kato-Rellich criterium is
satisfied (see [48] and Appendix : there exists a constant C' = [[V||oc(4), such that for all
a € (0,1) and all £ € RY,

Ve H* (T, |Vierfllrzeray < Cllflnzcray + allPo(€) fll p2(ray-
Therefore P(£) = Py(€) + V Bper is self-adjoint with domain H?(T?).

The second step consists in observing that the operator (Py(£) — i)~ is compact as the limit
of finite rank operators in the strong topology.
To close the proof, we choose 1 large enough so that the operator Vpe,(Po(€)+iu) ! has a norm

strictly smaller than 1. As a consequence, the operator (1 + Vper (Po(§) + ip) ™) is invertible and
we can write

(P(&) + i)™ = (Po(€) + i) ™" (1 + Vper(Po(€) + i) ™) ™"

We conclude by observing that the (Py(£) + ip) " is compact and (1 + Vper (Po(§) + iu)_l)_1 is
bounded, thus their composition is compact. In view of Appendix [B] the spectral properties of
the operator P(&) follow.
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3.2. One dimensional Bloch modes and Bloch waves. When d = 1, the equation satisfied
by the eigenfunctions of the operator P(§) are second order differential equations, which allow
us to simplify the analysis. The material of this section mainly comes from the books [53, [62] or
the articles [46), 54, 33] among others for additional details. Let us consider ¢ € L?(T), ¢ solves
P(£)¢ = Mo for some &, \ € R if and only if f(y, \) := e®Y¢(y) is a solution to the ODE

(36) SO+ Vo) f(.X) =My ), yER
satisfying the quasi-periodicity conditions derived from
(3.7) F(1,0) =€ f£(0,)) and 9, f(1,\) = ed,f(0,\).
Given A € R, the solutions of are linear combinations of two solutions f1(y,A) and fa(y, \)
satisfying
f1(0,2) =0, £2(0,A) =1, f2(0,A) = 9, f1(0,A) = 0.

Define the matrix

A AN N
Mx(y) := ( ay}l(y,)\) 8y2f2(y,>\) >

Lemma 3.5. There exists a solution to (3.6) satisfying (3.7) if and only
(3.8) A(X) :=Tr My (1) = 2cosé&.

Proof
Any solution f to (3.6) is of the form f = afi + bfs with a = f(0,A) and b = 9, f(0,A). The
condition (3.7]) implies

afi(1, ) +bfa(1,\) = ae’®,
ady f1(1,A) + b, f2(1, \) = be’®,
which means that *(a,b) is an eigenvector of My (1) for the eigenvalue e’s. Moreover, since

det My (y) = 1 for every y, A\ € R, the other eigenvalue should be e~%. We deduce that e €
SpM,(1) if and only if

Tr My (1) = e + e = 2cos.

It can be shown that solutions to depend analytically on A, and that moreover, A
extends to an entire function of order 1/2. The real solutions to equations A(\) = +2 form
infinite increasing sequences (ali) that tend to infinity. More precisely, the following facts hold
(the reader may find helpful to consult [54, Figure 1, p. 145] or [62] Section XIII.16]) (note also
that complete study of A()\) in one dimension is found in [52] and some figures in [24]):

e The sequences (a;°) are intertwined and one has:
(3.9) ai <ay <ay; <aj <aj <az -,

e Let be Ir,_1 = (a;_l,ai_l) and Iy, = (a;l-,a;ri). Then I; has non-empty interior and
A\, is strictly decreasing for i odd and strictly increasing for ¢ even.
o If af = af,, for some i € N, o € {+,—} then A'(af) = 0.
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A(N)

These properties have important implications on the behavior of Bloch energies. For every
n € N the following hold.

(1) The n'" Bloch energy is the solution to A, (0n(£)) = 2cos&.

(2) on is 2nZ-periodic (we knew this already), and moreover

Qn(g):Qn(27_§>7 VEER

(3) ©On|[o,x] is strictly increasing if n is odd (resp. strictly decreasing if n is even) and analytic
in the interior of the interval. If it is differentiable at & = 0,7 then necessarily o/,(§) =0
and g, is analytic around that point.

(4) A crossing can happen only at two consecutive Bloch energies. Let n € N be such that

Ypi={eR : 0n(§) = 0nt1(§)} #
then ¥, = 7Z\ 27Z if n is odd, ¥,, = 27Z if n is even. Moreover
(3.10) Al(on(£)) =0, Ve,

In addition, critical points of Bloch energies in the one dimensional case are never degenerate
nor can occur at a crossing point, as stated in the next lemma.

Lemma 3.6. The set of critical points of any Bloch energy o, is contained in wZ and all the
critical points are non-degenerate. Moreover, the crossing set 3, associated with two consecutive
Bloch modes o, and g,,+1 does not contain any critical points of the Bloch energies o, and op1.

Proof
The first assertion on the critical points is property (3) above, whereas the second follows from
differentiating twice equation (3.8]) and evaluating at a critical point £ = k7, k € Z to get:

A (gn(km)) ey (k) = 2 (=1)"*.

This relation also shows that A’(\) cannot vanish at A = g, (kr). Together with (3.10]) this
shows that a critical point cannot be a crossing point.

Remark 3.7. In the free case (Vyer = 0) there is only a Bloch band of infinite multiplicity. More
generally, it has been proved in [I5] that the absence of spectral gap is equivalent to the periodic
potential Ve, being constant.

3.3. Regularity of Bloch modes and waves.
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3.3.1. Lipschitz properties of the Bloch modes. Using MinMax formula (3.3 and (3.4]), we prove
the Lipschitz regularity of the Bloch modes (0 (&))nen-

Proposition 3.8. For all n € N, there exists a constant C,, such that

vagl € Bv |Qn(§) - Qn(fl)l < Cn|£ - £/|
Therefore, the functions £ — 0,(§) are Lipschitz continuous.

Remark 3.9. Recall that it is proved in [(2] that the Bloch energies g, are continuous and
piecewise analytic functions of £ € R%.

Proof
We associate with P(§) the positive quadratic form

1
Qe(f) = 5Dy + N7z zay + Voerf £)r2cray + K| f 72 (pay-

where K is chosen such that for all £ € B, the spectrum of P(§) is included in | — K + 1, +o0].
Note that the Proposition is equivalent to proving the Lipschitz property of the functions
An(§) = on() + K + 1.
which we are going to do now. We observe first that for £, &' € B and f € L?(T?), we have
1

()=l = 5 [ (D) + €T = Dy )+ € 1)) dy

d 2
= 2ZR6<(£j—§§) (f,Dyjf—@;@f) )
j=1 L2(T?)

Therefore, there exists a constant C' > 0 such that for all £,¢" € B and for all f € L%(T?),

(3.11) Qc(7) = Qe ()] < €l = €1 (I Baqem + 5(Qe(0) + Qe 1))

We are going to use the Min-Max characterization of the eigenvalues (see (3.3) and (3.4)). Let M
be a subset of H(T?) of dimension n. We deduce from (3.11), that for any f € M, || f||z2(re) = 1
and f € HY(T?),
1
Qe (f) < Qe(f) + ClE = (1 + 5(Qe(f) + Qe ()))-
We deduce

min max Qe (f) < (1+ClE—¢]) max Qe(f)+ClE—¢,

dimM=n, MCH(T4) feM, ||f||=1 feM, ||Ifll=1

and

Qe (f)

min max
dimM=n, MCH(T?) feM, | fl=1

<(1+CiE=¢1) max ~ Q¢(f) +ClE = &'

min
dimM=n, MCH(T?) feM, | f|l=1
Therefore, we obtain the first relation:
(3.12) An(€) = A (€) < ClE = €1(1 + Xn(€))-
We now fix o > 0 and we assume |£ — £’'| < a, then
(€)= (14 Ca),(§) < ClE = ¢

which writes

(14 Ca)(An() = An(§)) < CIE =&+ Carn(E).
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‘We deduce the second relation

Ml€) = Mnl€) < Tl — €14 5
Exchanging the roles of £ and &', we obtain
(3.13) An(§) = () < ClE = &'+ Carn(6).
Combining and (3.13), we obtain

[An(€) = An(§)] < ClE = €'+ Carn(§).

Let us now fix £ € B and consider > 0, we choose a such that Ca(1l + A\,(§)) < n. Then if
€ — &' < a, we have |\, (&) — A (€')] < n. We deduce that the function ), is continuous in
any point { of the compact B. Thus, this function is bounded on B. Let A, = supgep An(§),

equation (3.12) implies that for all £,& € B,
An(§) = Mn(€) <O+ AL)[E ¢,

CO[ /\n(gl) < C|£ - €/| + OO‘/\n(gl)

which yields
A (€) = A€ < C(1+ Ay =€),
by exchanging the roles of £ and £’. As a conclusion, £ — A, (&) is Lipschitz.

3.3.2. Smoothness of the Bloch modes and associated eigenprojectors outside the crossing sets.
We consider here the eigenprojector on a Bloch mode isolated from the remainder of the spectrum.
Denote by Sp P(§) the spectrum of P(£), we suppose that there exists ng € N, an open subset
U C B and 69 > 0 such that

(3.14) d (0ny(€),5p P(&) \ {en,(§)}) = do, VE€U.

We choose &, € U and work in a neighborhood B(&y,r) of £, where we are going to prove the
smoothness of the eigenprojectors and eigenvalues. Choosing r small enough, we deduce from the
continuity of the map g, on the compact B(&y,r) that there exists a contour C' of the complex
plane which delimitates an open set 2 C C such that

{one(§), £ €U} CQ and QN Sp P(§) = {en, (&), £ €U}, V& € B(&o, 7).

Then, we apply the residue formula to the resolvent

R(z,6) = (2= P(€) ™" =Y _(z = 0a(©) M (- ) pn (-, ).

neN

We obtain
1
(315) IL,y(6) = 5 § Bl €)dz, Y€ € Bléon).
™ Jo
Besides, we have
(3.16) vz € C, (2= P(€) Mleesy <05
One deduces the following proposition.

Proposition 3.10. Let ng € N, U an open subset of B and dg such that (3.14]) holds. Then, the
function & — I, (§) is smooth in U, and therefore is of constant rank.

Corollary 3.11. Assume that the eigenmodes g, (§) is isolated from the remainder of the spec-
trum, then the function op,(¢) = (RKIL,, (£))"" tr (I, (&) P(€)) is smooth.

Proposition 3.12. If they exist, the derivatives of IL,, satisfy the following properties :
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(1) They are off-diagonal operators with respect to P(€): V€ € R, Vk € {1,---d},

aﬁk I, (€) = Z (Hn (E)afk o (€) My, (f) + 1y, (5) 8§k p, (g) I, (g)) :

neN

(2) They are bounded operators on Sobolev spaces: for all s € R,

(3.17) ACo >0, VEERY, Vje{l,---,d}, [|0g,I,, < Cy.

(&) Hc(Hs(Td),HS“(Td))

Proof
Point 1 comes from the derivation of I1,,,(£)? = IL,,, (¢). Indeed, the later relation yields

Hno (g)aﬁk H’no (5) + 8§k Hﬂo (6) Hno (6) = 851« Hno (6)

We multiply the left-hand side of the above equality by I, (£) with n # ng. Then, we multiply
the right-hand side by II,,/(§) with n’ # ng. THis gives

15, (€)9g, g (E)1Lnr (§) = 0,

whence the above decomposition.

The second relation comes from the observation that since Ve, is smooth (and thus have
bounded derivatives), for z € C, (z— P(£))~* maps H*(T?) into H*"2(T%). Moreover d¢, P(§) =
& + Dy, mas H*(T?) into H*~*(T%).

3.3.3. Singularities of the Bloch modes at crossing points. We are interested here in the properties
of the Bloch modes close to the sets 3, v (see (3.5)). We assume that these sets are union of
closed connected submanifolds of R¢.

We will use the geometric notion of the normal bundle to a manifold. If 3, , is a manifold,
its tangent bundle 7', , is defined by its fiber above o € 3, ,, which is the tangent space
T,%, n at o to X, /. The normal bundle N%,, ,,» to X, v has fiber N,%,, ,» = Tng/Tan,n/.
If moreover X, s is a closed connected manifold, the geodesic coordinates give a mapping from
a tubular neighborhood U of %,, ,,/ into %, ,,/

oy /:§€U+—>OE ,(S)EET,””/

n,n n,n

such that for all € U, £ —ox_ ,(§) € Ny@)Xnn-

n,n

We consider crossings between two successive Bloch modes g, and g,,11.

Definition 3.13. Let n € N*. We say that the crossings of the set X,, ,,+1 are conic if and only
if there exists a neighborhood U of ¥, ;,41 such that g, and p,4+1 are of multiplicity 1 outside
Ynn+1 in U and there exists ¢ > 0 such that for all (o,n) € NX,, 11,

|ont1(o+n) = enl(o +n)| = cln].

Conical crossings are in some sense generic in view of the next Lemma which gives a normal
form for the expression of two Bloch modes g,,(§) and g,,+1(&) close to the crossing set 3, p41.

Lemma 3.14. Let 0g be a point in the crossing set X, 1 of two consecutive Bloch energies o,
and op11 having neighborhood U with the following properties:

(i) Ty nt1 NU is a smooth manifold.
(ii) The multiplicities of or, on+1 are constant on each connected component of U\ £, pt1.
(iii) There exists 09 > 0 such that for all £ € U,

d({en(§), 0n+1(§)},Sp P(€) \ {0;(§), 0;(§) = 0n(§) or 0j(§) = on+1(£)}) = do.
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Then, there exist Q C U, a neighborhood of og that is 2nZ%-invariant, two functions A, € C>(£2)
and g, € C*® (UEGQ ({5} X Ny +1(5)En7n+1>), and a function m € L (U) which is constant
on each connected component of U such that for all &£ € Q\ Xy, 11,

0n(&) = An(&) — gn(&, € — 0% nt1 €),
anJrl(f) = An(f) + m(f)gn(S,ﬁ — 0%, nt1 (6))

Moreover,

(1) If the crossing set Xy 41 is conical in U, then for all § € U, the map Nyeyon — gn(&,n)
is homogeneous of degree 1 and g, (o,n) # 0 when (o,n) € No, withn # 0,

(2) If none of the points of ¥,,.n11 are conical crossings in U, then there exists 6,, € C™(R?)
such that g, (&,n) = [n|?0,(€), which implies that 0,, on+1 € CH(RY),

(3) If the multiplicities of on, 0n+1 are equal on U \ ¥y, 41 then m = 1.

(4) Ifd=1 and 0 € 7Z\ 2Z, then VA, (o) F ¢'(w) #0 or w = £1.

Remark 3.15. Note that in case (2), the function 6,, can be zero on X,, ,41.

Proof

We denote by j_(£),j+(€) the functions valued in N and constant on connected component
of U\ ¥, nt1 such that for all § € U\ E, 11 0n—j+1(§) = 0n(§) for 1 < j < j_(§) and
On+5(&) = on41(§) for 1 < j < 54 (§). We denote by II(&) the projector on

Fe = Ker(P(§) = on(§)) © Ker(P(§) — on41(8))-

By the assumption (iii) on U, the pair {0,(£), 0n+1(€)} is isolated from the remainder of the
spectrum of P(£) when ¢ € U, this implies that the map U¢ + TI(¢) € L(L?(T?)) is analytic
and the function dim F¢ is constant for £ € U. We denote by ¢y this constant and we have
by = j_(§) + j+(&) for all £ € U\ £, n11. Moreover, ¢,(€) and g,41(§) are the two only
eigenvalues of the operator I1(€) P(£)II(€) which maps F; onto Fy for any & € R%.

Let us first show that it is possible to find 2 C U, with oy € Q2 and construct, for every £ € €,
an orthonormal basis (¢;(&,-))1<j<¢, of Fe such that the maps £ — ¢;(,-) are analytic for all
j€{1,---Lo}. To see this, consider (¢;(00,))i<i<s,, & basis of F,,. Chose a neighborhood 2 of
oo small enough to ensure that the vectors

H(f)@j(am ')7 JE {17 s 760}
form a rank ¢y family. Then apply the standard Schmidt orthonormalization process to this
family.

Let A(§), & € Q, be the matrix of the operator II(£) P(&)II(E) in the basis we just constructed.
This is a ¢y x £y analytic matrix that we can write

A(§) = An(§Id + Ao (§)

with A\, () := éTrCzoA(Q and Ap(€) analytic and trace-free. Moreover, A(£) is diagonalizable
and has only two eigenvalues ¢, (£) and g,+1(£) that we write
0n(&) = A () = 9(&),  on+1(§) = An(§) + m(£)g(§),

with ¢g(¢) > 0 and where, for £ € Q\ X, 5,41, m(&) is the ratio between the multiplicities of g,, (&)
and On+1 (f)a

-
mie) = J+(&)

and m is constant in the connected component of U \ ¥, 5 41.
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The functions —g(&) and m(§)g(€) are the two eigenvalues of Ag(§). Therefore, they are

homogeneous function of degree 1 of the coefficients of Ag(§) = (a;,;(§))1<i,j<e,: We write g(§) =
021

G(Ap(€)) where G is a homogeneous function on R~z . Here, we have considered that a £y x £,

trace-free Hermitian matrix is a function of ¢y — 1 real-valued diagonal coeflicients and of w

complex-valued coefficients (those under the diagonal being the conjugate of those above the

: Lo(Lo—1) _ 421
diagonal), and we have observed that (fo — 1) + 25— = 25—.

By the definition of the crossing set, Ag(§) = 0 if and only if £ € o,,. Since the map & — Ay(&)
is analytic, it vanishes on ¥,, ,; at finite order ¢ € N and the crossing set is conical if and only
if ¢ = 1 for all points of o,,. Therefore, in case (1), there exists a smooth tensor T*-!(¢) such
that

Ao(&) = TN O[E — 05,0 (O],
with
Vo € Epnt1NQ, VN € NoXy g \ {0}, Te‘“l(a)n # Oceo xto -
We deduce that

9(&) = gn(&,€ — 0x,,,,(€)), with g,(&n) =G (T*(&) In])

where g, is homogeneous of degree 1 in the variable 7. Besides, if none of the crossing points are
conical, we write Ag(£) = T%2(¢)[¢ — o5 (6)]? with T*-2(¢) a smooth tensor, which allows
to prove Point (2) with

On(€) = 1€ = 05, (I ?G(T*(E)E — 00, ().
Since Point (3) is obvious, it remains to examine the case d = 1. At a crossing point o = k,

k € Z, we have m(o) = 1. Moreover, the function g, can be written in a simple manner: there
exists a_, a4 € R such that

n,n+1

gn(n) = a-nlyco + apnlyso, oz = g'(n)linso.
Let n < 0, then ¢, (c + 1) = X, (0 +n) — a—. and ¢//(c + 1) has a limit when 7 go to 0~.
Differentiating twice (3.8)), we obtain
A(gn(o +n))eh(o +n) + A" (on(0 +m)eh (0 +n) = 2(=1)
Letting n go to O™, we obtain
A"(on(0)) (X, (o) — =) # 0.
Arguing similarly with g, (c+n with n > 0, we deduce A, (¢)—ay # 0. Therefore, X, (0)—g'(w) #

0 for w € {—1,+1}. Considering now the Bloch mode g,+1, we obtain in the same manner
X (o) + ¢'(w) # 0 for w € {—1,+1}, which finishes the proof.
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4. WIGNER MEASURES AND BLOCH MODES
We resume with the family (¢°(t)).>0 solution to (L.1)). We look for the solution as
W@wﬁﬂﬁmugy(L@eRxRﬂ
with (U#(t))e>0 solution to equation in L2(R? x T?) and
U§ (2, 2) = vi(@).
Using the spectral resolution of the operator P(£) we write

Us(t,z,y) = Zg@ny,sD (t,x),
neN

with
; dwd
Un(t,z) = / Puly, €D )US (L, 2, y)dy = / / By VU= (1, w0, )i (e T
Td T¢ JRIxRE (2m)4
We deduce a (formal) representation formula for the solution of the equation (1.1J):

(4.1) (k) = Y wilta), Vi) = ea (S.eDs) Uilt,).

neN

We work under the assumption that (1§).~¢ is uniformly bounded in Hz2(R?) for some s > %
and we choose

(4.2) Us(z,y) = ¥5(2)1a(y), (z,y) € R? x T

The formula (4.1) implies that the solutions of (1.1)) can be decomposed as a countable su-
perposition of waves whose dependence on the fast variable is given by a Bloch wave, whereas
the profile UZ describing the dependence on the slow variable is given by a time-evolution whose
dispersion relation involves Bloch energies. Several questions then are in order:

(i) Are the families (¢/5).~o bounded in L?(R%) ?
(ii) Is the series converging and in which space ?
(iii) Is the function (¢)°)c>0o e-oscillating so that a semi-classical analysis is adapted ?

Answering those questions is the subject of that chapter. A key point is the understanding of
the restriction operator L defined on functions F on R¢ x T% by

(ﬁm@yzp@é)
Of course, to define LF', the function F' needs to enjoy enough Sobolev regularity, which moti-

vates the introduction of adapted functional spaces on R? x T¢.

4.1. The functional framework and the restriction operator. Recall that via the decom-
position in Fourier series in the second variable, any function U € L2(RZ x ’H‘Z) can be written

as:
y) = > Up(2)e®™Y with |U||32gaxray = Y 1Ukll72(ma-
kezd kezd
We denote by HZ(RY x T9), for s > 0, the Sobolev space consisting of those functions U €
L?(R?% x T9) such that there exists g9, C > 0 for which we have

(4.3) Ve € (0,0), 1Ul%:@exre) = Z/ (1+ |€] + k)" [ Tx(€)Pdé < €,

kezd

where [/];(f) :/ e LU (x)da.
Rd
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Note that the data (U§)e>o defined in with (1§)e>0 uniformly bounded in H(R?), then is
uniformly bounded in H?(R¢ x T?). As we shall see below, it turns out that L¢ acts continuously
from L*(R?, H*(T?)) to L*(R?) provided s > 4. Moreover, the equation satisfied by
(U%(t))e>0 can be solved easily in spaces H2(R? x T4) in order to get Sobolev regularity in the
variable y. Since HS(R?xT9) c L%(R?, H*(T4)), which is also adequate for treating e-oscillations
(see (2) of the statement below), we will use these spaces.

The following results are proved in [23] (Sections 6.1 and 6.2) and in [24] (Section 2).

Proposition 4.1. Assume s > %,

(1) There exists C > 0 such that, for every F € L*(R?, H*(T4)), uniformly in € > 0,
(4.4) L5 F |l 2ray < ClIF || L2 ®e, s (1))

Moreover if € = o(€) is 2nZ%-periodic, then L° commutes with o(sD,).
(2) If (U%)eso is a bounded family in L?(R%; H*(T$)) and satisfies the estimate:

(4.5) limsup ||1‘EDI‘>RUE||L2(Rd;Hs(Td)) — 0,
e—0t R—00

then the sequence (LEU® ).~ is bounded in L*(R?) and e-oscillating (see Deﬁm’tz’on.
(3) Assume Voyy € L®°(R, CH(RY)) with V,Vexy € L= (R x R?) and suppose that the potential
Vier 8 such that the operator P(eD) with domain H*(T) is self-adjoint. Then, there
exists Cs > 0 such that for everyt € R, ¢ > 0 and U5 € H2(R? x T?), the solution U*(t)

of (1.9) satisfies
(4.6) U= (2 rexray < UGl raxray + Caeltl,

Note that in Point 3, it is enough to assume that the operator P(¢), with domain H?(T¢9),
is self-adjoint for all £ € B, which is possible with less restrictive assumptions on Ve, than
smoothness (see Remark .

Proof

Point 1 comes from the Sobolev embedding H*(T%) ¢ L>(T%): we use the Fourier resolution of
F and write for z € R? and y € T?,

F(z,y) = Z F(z)e* ™k,

kezd
Then, by Cauchy-Schwartz inequality
: !
[F(z,y)l < | Y |1F@)P (k) D (ke
keZd kezd

Since s > 4, we have >, ;. (k) "% < ¢y < +00 and we deduce

z S
2Py = [ 1P D <o [ 3 PR 0 de = col P s oy
kezd
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whence the result. Moreover,

0(eD)(L7F)(x) = Y 0(eDy) (eQi“k-sz) (z)

keza

= ei“’““g(sDz — 2km) Fy(x)
keza

— eziwk'xg(sDz)Fk(a:)
keza

For Point 2, we take § > 0, since s > d/2, there exists N5 > 0 such that

> k[T <%

[k|>Ns
Define
vl = Y Ui(a)e™E,
[k|<Ns
Then,

ILEU® — v5|l 2 rey < ONUS| L2(Ra; s (14))-

Therefore, it suffices to show that for any 6 > 0 the sequence (v5) is e-oscillating. The Fourier

transform of v§ is:

~ —~ 21k

v§(€) = £ - .

0= % G- 2

[k|<Ns
Therefore,
111D, 1> RVS | L2 (Re) < Z 11jep, +2rk|>RUE | L2 (Ra)-
|[k|<Ns

If R > Ry for Ry > 0 large enough, one has 1x(- + 27k) < 1 /5 for every |k| < N;. This allows
us to conclude that for R > Ry:

e, > mV5l2@ay < Y 11epaisr2Uil2@ey < Caslllien, > r/2Us | L2rasme(ray)
[k|<Ns

and the conclusion follows.

The proof of Point 3 uses that modulo the addition of a positive constant to equation ([1.1)),
we may assume that P(eD,) is a non-negative operator (this will modify the solutions only by
a constant phase in time). In that case there exists constants eg, ¢ > 0 such that:

(4.7) MUl gs@axray < || (€De)" Ullp2(raxray + |P(eD2)*2U || 2 (raray < c|U || s ra x4y,

for every U € L2(R? x T9) and 0 < € < 9. Moreover, P(¢D,)* and (¢D,)* commutes with P(g)
while

I[P(eDy)*2,V (t, 2)]U%|| 12 (raxra) < €CO<SgP 1||P(5Dx)%U€”L2(Rd><Td)

and a similar estimate holds for [(eD,)*, V (¢,2)]U®. We then conclude by a recursive argument
and energy estimate.
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4.2. Decomposition of the Wigner transform on Bloch modes. We focus on the families
(Y (t))eso- They satisfy

(4.8) WS (t, @) == LEPS, US(t,2) = on (g,sDx) /

» Pn(y,eDL)US(t, 2, y)dy,

where we define for j € N* the operator

@9 PyWlaw) =g eDy) [
Since [P(EDx)s/z,P;j] = [(eD.)", P;.] =0, if follows from (4.7) that there exists ¢; > 0 such

that for all W € HZ(R? x T9),

i (2,eD)W (2, 2)dz, YW € L*(T? x R?).
d

1Pg, Wl msraxray < erl|W | ms raxray,

and, more generally, that every W € H2(R?xT?) can be expressed in the topology of H2(RYxT%)
as:
W=y PW
neN*
As a corollary of Proposition we have the following result.

Corollary 4.2. Assume Vo € L°(R,C1(R?)) with V,Vex, € L°(R x R?) and suppose that the
potential Vie, is such that the operator P(eD) with domain H?(T?) is self-adjoint. Assume (1§)
is uniformly bounded in H(R?) for some s > d/2. Then, for everyt € R, we have the following
properties

(i) The series s uniformly convergent

DG

n>N

— 0.
N—o00

(4.10) limsup

e—0t

L2(R4)
(ii) The family (¢V=(t))eso is e-oscillating, locally uniformly in time, i.e. for all T € R,

limsup sup ||1epj>r¥°(t)|lL2@®e) — 0.
e—0+ t€[0,T) R—o0
(iii) Any Wigner measure ¢t of (1°(t))eso writes
gt = Z /’Lf’t’nw
n,n’€N*

where the signed measures /‘im’ are joint Wigner measures of the pair (Y5, (t), ¥5, (t))e>o0,
n,n’ € N*, and the convergence of the series being understood in the weak-x topology of

the space of Radon measures on R*?,
(iv) For all n € N*, the family 5 (t) satisfies

(4.11) 005, = 0n(eD)YS + 2 f5 (1),
with
(412) fit.a) = ou (£.:2D.) [ @ eDo) Vet 000 (.7,

This corollary motivates the analysis of the Wigner measures associated with the families
(YE(t))e>0, n € N*, that will be performed in the next section and will allow to obtain a complete
description of the weak-limits of the density measure |1 (¢, z)|? (as stated in Theorem |1.4{ when
d=1).

Proof
(i) The boundedness in HZ(T? x R?) of the operator P, and the boundedness of L¢ from H? (T x
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R?) to L2(R?) for s > d/2 imply that (4.1} holds in L?(R?). Besides, in view of (4.6)), (4.4),
for proving (4.10). it is enough to show that if (V).5¢ is a bounded family in H?(R? x T¢),
s > d/2, we have, for d/2 <r < s,

limsu P Ve — 0.
s%O*p Z on N—oo
n>N Hr (RAXT?)
Remark [£.7] implies that we only have to prove
(4.13)
2 2
limsup || Y P(eD,)"/*P5, V* + limsup || > (eD,)" P V© — 0.
e=0" [, SN L2 (R4 xT4) e=0% >N L2 (R4 xT4) N=roo

We thus focus on proving (4.13)).
Let us consider the series )

ilar). In view of (4.9),

P(eD,)P5, V(2. y) = pu(y2Ds)0n(Ds) /

SN P(eDm)T/szjn Ve (the proof for ) \(eD)" Pg V© is sim-

Dn(2,eD)VE(x, 2)dz,
d

This implies
2
D PeDa)""F; V*
n>N

2
= HP(er)T/QP; Ve .
L2(RixTd) n>N T NLEREXTY)

We decompose V¢ in Fourier series and write VE(z,y) = Y. cza V7 (2)e*™ ¥, whence

JEL
P(gDa:)P;,LVE(xay) = @n(yaEDw) Z Qn(EDa:) (/ (pn(zngw)e%ﬂ-j'de) ‘/f(.’lj)
jezd t
and by functional calculus
P(EDw)r/QPf," Ve(x,y) = only,eDy) Z dn(eDy, j)V} ()
jezd
with

e = anter” ([

‘We use three observations.
(1) First, if & > 0 is fixed, there exists Jy such that

fimsup 37 [ (1 Je€ + 5P IV (O <

N
e20T >0

Dz, €D$)e2i”j'zdz>

d

To see this note that:

> /d(l + |61 + 517V (OPdE < (14 o) * Ve e (maxrays

13> Jo 7 B
due to the definition of the HZ-norm (4.3). Since (V)50 is uniformly bounded in
HE(R?), the claim follows.

(2) Second, given ¢ > 0 and Jy € N, one can find R = R(d, Jy) > 0 such that,

ey 3 [ (e IV € <

+
e—0 15]<Jo
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This follows from the estimate:
[ e+ P ITRQPAE < (L BV s ey
leg|>R
and again from the fact that (V®).~g is uniformly bounded in H2(R? x T9).
(3) Third, given Jo, R > 0,

Dn(R,Jp) := sup sup Z \dn (€, 5)]2 — 0.
li1<Jo [EI<R 1S N—=roo

To see why this holds note that, for j € Z%, the map

(1.14) e 3 Idale ) = [Py

neN*

€ (0,00)

L2(T4)

is a non-negative continuous function. The claim then follows from Dini’s theorem, which
ensures that for every R > 0, j € Z? one has:

N2
sup |dn (&, 4)]" — 0.
| |§R7§V N—oo

We now use these observations to treat the series whose terms are

|Penayes ve|| N N CH R AGIES
* LARIXTY) £t Jpa B J
J

LPTL
Fix § > 0, and consider Jy given by Point (1) and R = R(d, Jy) given by Point (2). Decompose

the sum of integrals in three terms
BYIED SN SN Ol B oy IS
R €ISR | jj<g, JIsE>R 15T, /R
< (L+ €7+ |51

jez? 1< Jo
We start by analyzing the third term. Note that

D lda(&)® = Hp(g)r/zezmj.

2

neN* L2(T4) B
Therefore,
limsup > > / | (2€, 5) PV (€)[dg <limsup > / > lda(e, §)PIVE (€)1Pde
=0t SN > Jo Y RY e=0* 1557, YRY nenv

< ¢ limsup ) /Rd(l + |e€* + 1)1V (©)1Pde < ero,

+
e=0 [31>Jo

using observation (1).
The second term is analyzed using observation (2):

limsup 3= 3 /lEORdn@s,j)FW;(s)Fds

"
=0T SN |j1<Jo

<ctimsip S0 [ (1 g+ [TV < e
e—0+ 1i1<Jo |e&|>R
Observation (3) ensures that

3 / (26, )PV ()P < Doy (R, Jo) V112 g no
n>N [j<Jo 7 1EEISR
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As a consequence of this analysis:

limsup limsup Z Z /
Rd

N—+o0o e—0t

/ EE)T/ngn(z e€)e 20752 ]y |V5( )\2d§ < 2¢,9.
Td

Since § is arbitrary, the result follows.
(ii) By Point 2 of Proposition it is enough to prove that for all 7" > 0,

(415) limsup sup 1o w0 (0) s uancrsy — 0.
e—0t t€[0,T] R—o

Because of the choice of U = 9§ ® 11« and of Remark we have
limsup H1|5D‘>RU§HH55(R¢1XTL1) — 0.
e—0+ R—o0
We set Ug(t,x) = x(eD/R)U*(t) where xy € C>(R?) is such that 0 < x < 1, x(¢) =1 for [¢] > 2
and x(&) = 0 for |£| < 1. The family U} solves
(4.16) ie20,Us = P(eD)Ug + 2Vt (t, 2) U + 2[x(eD/R), Vs (t, )| U®

1
with initial data Ug(0) = x(eD/R)U*(0). Besides, the Using operator g[ X(eD/R), Vot (t, )] is
uniformly bounded in £(L?(R?)) with respect to € and R, which yields
10RO 2@ xray < [UR(0)] L2 @axTa) + O(€)

and gives the result for s = 0. We then assume s € N* and consider the operators P(¢D)*/? and
(eD)*. We are going to prove that uniformly with respect to R,

e DY Ur ()|l L2@extey < [{eD) UR(0)|| L2 @exte) + O8),
1P(eD)*2Ug(t) | p2@axray < [[P(ED)* U5 (0)l| 2 (gaxra) + O(e)-
The families (eD)*U%(t) and P(eD)*/2U%(t) satisty an equation similar to (4.16). One observes

that the families of operators

(D) [X(D/R), Vesa(t,2))(D) ™ and ~P(eD)**[\(eD/R), Vet 2)] P(=D) /2

1
are uniformly bounded in £(L?(R¢ x T%)). And so is the operator g[<€D>s, Vet (t, 2)](eD)* L.

These two properties allow to use a recursive argument on s, which gives the expected result for
values of s which are in N. One then extends the result to any s by interpolation.

(iii) We proceed to a first extraction to have

(4.17) / [ OOt W )t e g — / Ya(z, €)¢" (dx, de )dt

de
and we keep denoting by ¢ the resulting subsequence. We put

?\f = (¢§’ e 7"/}]8V> € C(Rt; LQ(Rg’ (CN))
and we are left with a vector-valued family as in Section 2:3.4] Any accumulation point of
(We[T% (¢)]) obtained along some subsequence (€¢)sen is a time-dependent family of positive
matrix-valued Radon measures p4;,. By diagonal extraction, we can find a sequence (£/)sen such

that (W= [P%(¢)])e>0 converge for every N € N*. We denote by (ply) nen+ their respective limits
and we have for every n,n’ < N < N’ one has:

(u?\/)n,n’ = (M?V')n,n’ = /-thn'v

where p!, ., is obtained through (4.19). This shows that we can find a sequence (e/)een as
claimed.
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Define now V¢ := 22[21 ¥¢. One has that for a € C2°(R??) and t € R,
/ a(z, YW ™= (1)](t, x, ) dx d€ = / a(x, §)Trenvxn (QWHUK](E, 2,€)) du dE,
R2d R2d

where @ is the N x N matrix whose all entries are equal to one. Therefore, (W¢¢[pN:¢¢(¢)]) ey
converges to the semi-classical measure given, for a.e. t € R, by

=D wha
1<n,n'<N
Finally, (i) implies that for every § € L'(R),
timsup [ 00) |67 (1) — 0 (1) Byt 0
f—00 R N—oo

which in turn guarantees that ¢* =33, cn. 117, 0

(iv) The result comes from the observation that since g, (&) is 2mZ%-periodic, L* commutes
with o(¢D,) (cf. point 1 of Proposition [4.1}

4.3. Semi-classical analysis of Bloch components. By the definition of (¢%(¢))c>0 per-
formed in equation (4.1]), we deduce from the equation (1.9) that for all n € N*, we have the
pseudodifferential equation
{ 205, (t, ) = 0n(eDy )5 (8, x) + 2 f5(t,2),  (t,2) € R x RY,
1/}2(07 .’t) = ©¥n (%a €DI) f’]rd W(ya EDx)’l/JS(IL')dy,

with f2 given by (4.12)). By Proposition (1), for all T > 0, the family (f¢(¢))c>0 is bounded
in the space L*°([0,T], L?(R%)).

Our aim is to obtain information about the measures uf, ,, satisfying for all 6 € LY(R),
a € O(R2),

(4.19) / O(t)a(z, WS Y2 g2 (¢ o, €)du de dt —» / 0(t)a(x, &)ty ./ (dz, d€))dt,
R JR2d L—oo Jp JRr2d

(4.18)

Proposition 4.3. Suppose Vper is smooth and Veyx, € Cl(Rd) with VVey bounded, consider
(¥§)e>0 a bounded family in HE(R?) for some s > d/2. For anyn,n’ € N*, let (v5) and (5,) be
defined by and let /L2L7n/ be given by , Let Q C R? be open and invariant by translations
by 21Z%. Then the following hold.
(1) If Vo, € Lip(R?) on Q and Veon|a # 0, then ufm(Rd x Q) =0 for almost every t € R.
(2) Letd > 0 and suppose that Q C {€ € R : |0n(&) — 0w (£)| > 6}, then [pl, , [(R? x Q) =0
for almost every t € R.

This result shows that ufz’n can only charge the set of critical points of o,, or the sets where g,
has a conical crossing with another Bloch energy (i.e. where g, ceases to be C11(R%)). It also
shows that X, ,v is the only region where the measures !, ,,, can be non-zero. The analysis of
these measures will be performed in the following sections by means of a two-scale analysis.

The proof of this proposition uses the calculus of semi-classical pseudodifferential operators
with low regularity of Lemma and the following result.

Lemma 4.4. Let Q C R? and &, : R x Q — R? x Q a flow satisfying: for every compact
K C R x Q such that K contains no stationary points of ® there exist constants o, 3 > 0 such
that:

als| = 8 < |@s(z, )| < als|+ 8, V(z,¢) € K.
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Let pu be a finite, positive Radon measure on R? x Q that is invariant by the flow ®,. Then p is
supported on the set of stationary points of ®.

Proof

It suffices to show that u(K) = 0 for every compact set K C R? x Q as in the statement of
the lemma. By the assumption made on ®,, it is possible to find s — 400 such that ®,, (K),
k € N, are mutually disjoint. The invariance property of p implies that p(®,, (K)) = p(K) and
therefore, for every N > 0:

N
H (U (I)Sk(K)> = NH(K)
k=1
Since p is finite, we must have p(K) = 0.

Proof
For proving Point 1, we write

- d € £ € €

252%(1% (t)a ODP¢ (a)wn (t)LQ(]Rd) = (wn (t)a [Ope (a)7 Qn(EDa:)]z/}n(t)Lz(Rd) + 0(62)'
By Lemma [2.12] (2), we deduce

d

—e - (Un (1), 0p()r, (t) L2 (rey = (Y7 (8), 0P (Ve on - Voa)yy (t) 12 (may + O(e)-

Therefore, for every § € C°(R) and a € C°(R? x Q),
[ 05000 (Veon - Ta)i (Ot —30.
By (4.19), this implies that, for almost every ¢ € R,
[ Veou(©) - Vaale Ol dn,d6) =0,
RaxQ

or equivalently that the measure p!, ,1gayq is invariant by the flow (z,€) — (z 4+ sVon(§),€).
Since the measure M%,n is positive and finite, necessarily it is identically 0, thanks to the
Lemma [£.4

For proving Point 2, we write
d
(4.20) iEQ% (1 (t), opc (@)t (£)) 2 (a)
= (U5(t), (ew (eDz)op.(a) = op.(a)0n(eDa)) s (1)) pazay + 2R (1),

where |R°(t)| < C||fi(¢, -)HQLZ(Rd) is locally uniformly bounded in ¢ € R for every ¢ > 0. By
Lemma (1), the following holds with respect to the £(L?(R%)) norm:

0/ (eDy)op,(a) — op.(a)on(eDy) = op. ((0n — on)a) + O(e).
This identity together with integration by parts transforms (4.20)) into

g € 82 € £
[ 010 (500 00w = 02)a0 5 ()t = T [ 010) (6500005 () e e + O,
Taking limits € — 0, which is possible by Remark we obtain

[ [ o0(ew(©) = en(@at O (. de)a = 0
R JR2d
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By density, this relation holds for all a € C°(R9 x Q), in particular for @ = (0, — 0n/) "'a. This
shows that, as we wanted to prove

Vo € C°(R), Va € C(R? x Q), / 0(t)a(x, &)ty o (da, d€)dt = 0.
R JR2d
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5. TwO-SCALE WIGNER ANALYSIS

We develop in this section a two scale method for analyzing more precisely the concentration of
a family on a point of the phase space. The two-scale Wigner measures (or two-scale semi-classical
measures) that we describe here, have been first introduced in [29], 57, 60] (see also [30] B1]).
The use of two-microlocal semiclassical measures for dispersive equations was initiated in [50],
in the context of the Schrédinger equation on the torus. We restrict ourselves to the analysis of
concentration on submanifolds of the space of impulsion (the & variable).

5.1. Two-scale Wigner measures.

5.1.1. Two-scale observables. We extend the phase space T*RY := R% x (Rd)z with a new variable

n e R4, where R4 is the compactification of R? obtained by adding a sphere S~! at infinity. The
test functions associated with this extended phase space are functions a € A where A is defined
as follows.

Definition 5.1. The function a € COO(T*Rig X ]R‘f]) belongs to the set A of two-scale observables
if it satisfies the two following properties:

1) There exists a compact K C T*R? such that, for all n € R?, the map (z,&) — a(x, &,
Ui Ui
is a smooth function compactly supported in K;
(2) There exists a smooth function a. defined on T*R? x S*! and Ry > 0 such that, if

|T]| > ROa then a(x7£an) = %o(xafﬂ?/‘?ﬂ)
In other words, Point 2 means that, in the set {|n| > Ry}, a coincides with a function a, that
is homogeneous of degree 0 in 7. The data of a € A, defines a smooth function a., on R?4 x §4-1
—d
and a function @ on R?¢ x R obtained by setting

(5.1) a(z,&n) =alz,&n) if |n] <+oo and a(z,§,n) = aco(z,§,w) if n=oow, we s
If a € A, the compact K of Point 1 of Definition [5.1]is called the support of the symbol a.

The set A is a subspace of C>°(R3?) and of the space of smooth bounded functions with
bounded derivatives. Indeed, for any k € N,

8/3

z,§,m

sup sup a(x, &, n)‘ < +oo0.

BEN3 (z,6,n)ER34

‘We shall consider the semi-norm
(5.2) Ny(a) := sup  sup 108a(-, & )l L1 ga

§meR? |B<d+1
that appear in (2.13).

5.1.2. Quantization of two-scale observables and two-scale Wigner transforms. We introduce first
here a two-scale quantization associated with a point & of the space of the impulsions. We denote
by e, for k € (0,1], the second scale of observation. The two-scale Wigner transform acts on
two-scale observables a € A according to

(53) Wiepll 0 = (o (atwe 552 ) )
L2 ()

EH

One then defines the two-scale semi-classical pseudodifferential operator

opl5=* () := op. (a (x,é, - 50)) , acA

Eli

and one has

&, = {€=¢o}
WiiZeny 1, a) (f, opts; (a)f>L2(Rd)’ Va € A.
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The latter formula shows the zoom effect obtained by adding this new variable 7. Indeed,
when || < R for some R > 0, one restricts the domain of a to points (z, ) that are at a distance
smaller than Re” from the set {¢ = £r}). When |n| > R is large, one considers larger domains,
namely rings {Re" < |£ — | < M} where the constant M is related with the compact K in
which a takes his values. The fact that || can go to 400 allows to investigate all the directions
and to visit all the compact K.

In the following, we shall use the operator of multiplication by the phase e téow

Proposition 5.2. Let a € A, we have the following properties.

(1) Suppose that the compact K associated to a by Point 1 of Deﬁmtion does not contain
&o. Then, there exists g > 0 such that for all e € (0, ),

Opi?:fo}(a) = op, (aoo (ac,f, g : §2|)> .

(2) The family of operators (opgﬁ:&’}(a)) . is a bounded family in L(L?(RY)) satisfying
e>

(5.4) oplSH(a) = e¥0 " opi- (alw, & + 7€, §)) e F 0.
(3) There exists C > 0 such that for all f € S(RY)
(Wse, 1)) < CIAIE: Na(a),
where the semi-norm de is defined in (5.2)).
(4) If (f%)e>0 is a bounded family in L?(R®), the functionals

a = <W{€§’ZEO}[fE], a)

are linear maps on A that are continuous uniformly in € for the semi norm Ny.

Proof

Point 1. The first part of the proposition comes from the observation that for such compact K,
there exists g9 > 0 such that all € € (0,¢), |£ — &| > Roe", where Ry is associated to a by Point
2 of Definition [5.1} Therefore,

§—&\ §—%o
O R Gl =)

Point 2 comes from an explicit calculus.

and the result follows.

Points 3 and 4 are consequences of Point 2.

Remark 5.3. Equation shows a fundamental difference between the case x € (0,1) and x = 1.
Indeed, when x € (0,1) and a € C°(R3?), the operator opi,&f&’}(a) is unitarily equivalent to the
operator op.1-« (a(z, & + €7, £)) that coincides (at leading order) with a semi-classical operator
of the same style than those studied in the preceding chapters, but for the scale ¢!=*. Indeed
one has

(5.5) opei-x (a(x,§0 + "¢, ) = 0pai- (a(x, §o,§)) + O(E"R),

where |n| < R on the support of a. This comes from a Taylor estimate: there exists a constant
C > 0 such that

1
Na(a(w,§ +"¢,€) — a(w,80,€)) < "Ny (/ @ - Vga(z, & + E”sé,é)dS) <CRe"
0
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However, if kK = 1, equation (5.4)) becomes

opl (@) = ¥ opy (a(r &y + <€, €)) e,
and relates the operator opii:&’}(a) with the operator op; (a(x, &, £)) which is no longer a semi-

classical operator.

5.1.3. Two-scale Wigner measures. We now pass to the limit on the two-scale Wigner transform

of a bounded family in L2(R?). We focus here on the scale x = 1 and we omit the index 1 in the

notation opg:g”} )

Theorem 5.4. Let (f¥).-0 be a bounded family in L*(R?), there exists a sequence (g¢)een which
tends to 0 when £ goes to +00 and a positive measure Vo, 0N Ri‘f& x S¥1 such that for all a € A,

(fée’opiizfo}(a)f€[> aoo(x7£07n)yoo(d£v d’?) + (f7 aW(x7£07 Dx)f)LZ(Rd)

5—50) de. d
+ /R e (x,f, o) (e, de).

where p is a Wigner measure of the family (f%)eso for the scale (e¢)een and f a weak limit in
L2(R%) of the family (e_éw'&’f“)

—
L2(R4) £—+0c0 Jpd wgd—1

neN’
The term (f,a" (z, &, Dx)f)LQ(Rd) writes
<f7 aW(.'L'7 §0a Dz)f)LZ(Rd) = TI'(G/W(.’IT, 607 Dw)Mf)

where M is the orthogonal projector on the subspace Vect(f) of L?(R%). It will be more
convenient to use the operator M.

Definition 5.5. We call the pair (v, My) a two-scale Wigner measure, or two-scale semi-
classical measure, associated with the concentration of (f€).~o on the vector space {£€ = &}.

We set for a € A,
1) = (F,0pl= @) %) o
Consider a function y € C2°(R%, [0,1]) such that x = 1 in a neighborhood of 0 and set for a € A,
(@&m = alw &) (1-x(52)),
(5.6) 0B = alem) (- x () x (52).
an@,&n) = (e &y (B)x (52).

Then, we have a = ar + af‘ +a’ and

limsup limsup limsup I¢(af) = / aso (z, &0, n)v(dE, dn),
6—0 R—+oo £—+o0 Rd xSd—1

limsup limsup limsup I°(ag) = (f, aV (x, &, Da:)f)LQ(Rd) ,
0—0 R—+o00 £—+o0
£§—%

1€ — &ol

limsup limsup limsup I¢(a®) = / oo (z,f, ) w(dx, df),
{€#& I xR

5—0 R—+4oo £—+o00

We obtain a description of the semi-classical measure above & = &

gy = (@) (7@ P+ [ vlan).

d—1
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The knowledge of the two-scale Wigner measures determine p above &j.
Example 5.6. Let ¢ € S(RY), &,m0 € R, 8> 0 and consider the family
ig(gg—eP
uj(@) = p(z)es™Com=m) g e RY

Then, the pair (z/ég), fs) describing the concentration of (uj)e>0 on {{ = §o} is given by

v =0 and fz=0¢ if 8>1,
v =0 and fa(z) = e @m0p(x) it g=1,

l/ég)(x,n) = 5#0‘00 (n) @ |p(z*dz and fz=0 if B<1.
n0o
In the three cases, the semi-classical measure is u(z, &) = d¢, (§) ® |p(z)]*dz.

Remark 5.7. (1) As for the standard Wigner measures, the definition of two-scale Wigner
measures can be extended to vector-valued families and to time-dependent ones.
(2) The notion can also be extended to the concentration of families on submanifolds of the
cotangent space of the form R? x M (see [23]).

Let us now prove Theorem

Proof
We use the decomposition a = ag + af + a® of (5.6). We first observe that if y is a semiclassical
measure of (f¢).s¢ for a subsequence that we denote £y, £ € N. Then, we have

§—&o
|€ — &ol

; ee opté=8o}(49) fee
6t (Fropd @) L [ (06 £2 8 ) uldeas)

{——+o00

Moreover, by (5.5)

(r2,0pf ar)s?) | = (7 0p(an(e. 60, O)FF) | +O(Re)

L2(R) L2(RY)

with fa = e_éfo"”fg. Since the operator op; (ar(w, &, &)) = a¥ (z,&, D) is a compact operator,
independent of ¢, if f is a weak limit in L?(R?) of f¢ for the subsequence &¢, one has

(7 opsan(a &0, NF") | = (falf (2,60, Da) ) oy

L2(R4) £—+00
We deduce

(5.8) limsup (f‘” , opif:&’} (a)f‘”)

{— 400

w
L2(R4) R—>—+>OO (fva ("Evé-OvDI)f)LZ(Rd)'
Finally, we consider the symbol a® that is supported in the zone R > |n|. We consider the
quantity

Jen(@) = (1, 0py (a™(2. & + 26,9)F7)

We are interested in the limit where € goes to 0 first and then R goes to +oco. This quantity
is uniformly bounded in ¢ > 0 and R > 1. Besides, for all a € A, J. g(a) = J: r(ax) as soon
as R is large enough. We then deduce by a diagonal extraction argument that one can find two

sequences e¢ — Oand Ry , — 400, and a linear form I defined on C*°(R? x R4 x S¢~1), such
{—+00 ——+00

that for all a € A,

L2(Rd)

Jeo, R (a) é_:;o J(as0)-
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It remains to prove that ao. + J(ao) is @ measure, which will define v1),—. For this, we
prove that as — J(aso) is a positive distribution. Let us start with the distribution argument:
we observe that there exists a constant C' > 0 such that for all a € A,

J8131Re (a) < C]\Nfd(aRz)v

and we deduce from Ng(af) = Ny(aso) that J(as) < Ng(ass). Therefore an, — J(aoo) is
— 00

n
a distribution. To prove the positivity, we observe that the operators a — op, (a*(x, & + €€, €)
satisfy a semi-classical calculus in the parameters ¢ and 1/R. Indeed, we have the following
observations: for all a,a1,as € Ay

(1) Opl(a’R(xa 50 + 565 5)* = 0Py (aR(xa 50 + 86? g))a
(i) in £(L?(R)),

Opl(aﬁ(mago + 5575) © 0Py (a§($7€0 + 6676))

= op; ((a1a2) (2, & +2£,€)) + O (6 + ]1%)

Therefore, one has the following Géarding inequality
(iii) if @ > 0, then for all § > 0 there exists Cs > 0 such that for all f € L?(R?),

2
(f, Opl(aR(x’é'O +€£7£)f)L2(Rd) > — (5 + C& <5 + ]1%> ) ||f||L2

One can then conclude to the positivity of the map ao — J(as), whence it defines a positive
measure on R2¢ x S¥=1, that we denote by v, such that, after extraction of subsequences Ry, ¢/,
we have

; ) {&€=¢o}(,Re Ee)
(5:9) lgilif <f RO LQ(Rd)m-/RdXS"—l

Putting together (5.7)), (5.8)) and (5.9) concludes the proof.

aoo(x07 57 n)VOO (d&, d77)

Let us conclude this paragraph by a comment about the case « € (0, 1), for which one has the
following Theorem.

Theorem 5.8. Let (f).>0 be a bounded family in L*(RY), there exists a sequence (e¢)een which
tends to 0 when n goes to +oo and a positive measure v on RE x R4, such that for all a € A,

(f”,0p§f§§“}(a)f”) —>/R _a(z, &, n)v(dx, dn)

£—+00 JRrdxRd

§—&o
oo b 9 d 7d )
* /R2d\{§=§o} ¢ (m ¢ 1€ — §o|) plde, dt)

where 1 is a Wigner measure of the family (f¢)eso for the scale (g¢)pen.

Thus illustrates the criticality of the concentration at semi-classical scale, as already mentioned
in Remark [5.3] in the case k = 1 some quantum effects remain.

5.2. Concentration of Bloch components on critical points. We resume with the families
(W& (t))e>o satisfying the equation (4.11)). We denote by A,, the set of critical points of the Bloch
mode g,,.

(5.10) A, = {5 S Rd \ Un’#nzn,n’ : VQn(f) = 0}
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According to the analysis of Chapter 3.2] when d = 1, A,, consists in isolated non degenerate
critical points. Our aim in this section is to compute the two-scale Wigner measures associated
with the concentration of (¢ (t)).>0 on such a point.

We fix n > 0 such that g, is isolated from the remainder of the spectrum in an open subset
Q of R? (as in (3.14)). Note that © can be chosen so that it does not contain any crossing
point of %, ,,». Therefore, by Proposition any semi-classical measure of (¢ (t)).>0 satisfies

H%lseﬂ = M;lgeﬂm/\w
The equation (4.11]) writes
120405 (t, ) = 0p (eD)YE (t, ) + €2 Vst (t, 2)UE (t, ) + €25 (t, )

with r¢(¢,x) = Lf[Vext (t, ), 1L, (e D)]U% (¢, z, -), uniformly bounded in L?(R¢). Moreover, since in
Q, the map & — I1,,(£) is smooth, for all € C.(2) and t € R, (e D)r¢(t) = O(e). Observing that
any microlocal symbol a = a(z, ¢) with support in R? x 2 satisfies op_(a) = op_(a)f(eD)+O(e"),
in £(L?(R%) for any function 6 € C.(Q) such that § = 1 on the support of a, and for any N € N,
we deduce that for all a € A with support in R? x Q, and uniformly for ¢ € [0, 7], T > 0,

oplé=%t(a)re(t) = O(e) in L2(RY).

The strategy being independent of the dimension of the space, we state the result in any
dimension, assuming that A, contains an isolated point £, and we focus on this point.

Theorem 5.9 ([23]). Let n > 0 such that o, is isolated from the remainder of the spectrum in
an open subset Q of R? (as in ([3.14)), assume that QN A,, = {£,}. Then, any pair (vt, M) of

two-microlocal items associated with the concentration of (Y5 (t))e>0 above &, satisfies:
(1) The operator M, is the orthogonal projection of L?(R?) along the function wg) (t) which
solves the Schriodinger equation (1.12)), namely
o (n 1 n n
100 (t,0) = S8 0n() D - Dt (8,2) + Ve (1, )9 (1, ),

with initial data wé:)(O) which is a weak limit of (e_éf"“”LEHn(6Dm)(¢8(x)1yeqr))

(2) The measure v},

e>0
is invariant by the flow ¢,

6% (z,w) = (z+ sd%op(0)w,w),
which implies by Lemma that, if &, is a non degenerate critical point, then vl = 0.

Note that the operator M! satisfies the von Neumann equation

1

(5.11) i0,M!, = 3
Besides, the map ¢ — M¢ is continuous.

Theorem [5.9] has the following consequence when d = 1.

[dggn(§>Dz : D:r + ‘/Yezxt(tyx)a M%] .

Corollary 5.10. Assume d =1 and let &, be a critical point of o0,. Then, in
(@, O)Leen = 8¢, (€) @ U (¢, 2)de

where wg) (t) solves (1.12)), with & = &,.

Proof
The proof consists in two parts corresponding to the two zones defined by the scale € around &,.
We consider a pair (v}, M!) and we denote by & the subsequence associated with them.
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Part 1: Analysis at finite distance. For computing M , we analyze for a € C°(RY x  x R?)
the time evolution of the quantity <W&:£n}[w2(t)],a>, as defined in (5.3), and omitting the
mention of kK = 1. We have

(612) S (Wiee lWi)a) = 5 (vi0), [opl=6) (@), 00(eD)] 51))

2 (70, [0l (@), Ve 1,2)] 7)) +0(€),

Since p,, is smooth in {2, we can use the standard symbolic calculus for Weyl quantization and
we obtain that in £(L?(R?))

1 _ 1 _
—5 |opf5H @), 0a(eD)| = Z0pETEH (Vo (€) - Vi) + O(e).

Besides, by Taylor formula and by use of Vg, (£,) = 0, we have
(5.13) Von(§) = dz@n(gn) (§—=&n) +B(E)(E—6&) - (E—6n),

where £ — B(€) is a smooth matrix-valued map. This yields

1 90u(©) Vaea (x,s,§5”> b(:c,é,ff")
£ £

e
with

At this stage of the proof, we see that % <W{€5:5n}[¢i(t)], a> is uniformly bounded in €. Thus

using a suitable version of Ascoli’s theorem and a standard diagonal extraction argument, we can
find a sequence () such that the limit exists for all a € C2°(R¢ x Q x R?) and all time ¢ € [0, 7]
(for some T > 0 fixed) with a limit that is a continuous map in time. The transport equation
that we are now going to prove shall guarantee the independence of the limit from 7" > 0 and
imply the characterization of MY . Moreover, the continuity of ¢ — MY, implies that at ¢ = 0,

M? has to coincide with the projector on a weak limit of (e’égn'zLEHn(5Dx)(¢6(x)1y611~))
e>0

It remains to prove the transport equation (5.11)). We rewrite (5.12)) as

o (Wieenli(0).0) = (45000015 005 0)

1 _
= (1), [opl=EHa), Ve (t:)| 4°(1)) + O(e),
and pass to the limit. We obtain
d
ﬁTrm(Rd) (" (x, &, De)ML) = Trp2gay (b7 (2,&, D2)MY)
+ TrL2(]Rd) ([aW(I’ gna Dr)a ‘/téxt(ta Z)]MZ) .

Moreover

bW (2,80, Dy) = opy (40, (60)€ - Vea(z, &, 8)) = % [d*0,Dy - Dy,a" (x,€,Dy)] -
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We deduce, using the cyclicity of the trace

d
%TrL?(Rd) (aw(l', &n, DI)MY;)

1
= TrL2(Rd) <|:(J,W({ZZ,£”7DI), idzgan Dy + V;ext(tvx):| MZ)

1
= TrL2(Rd’) (aw(xzfnv Dx) |:2d29nD:c Dy + %xt(ta x)sz:l) )

whence the equation (5.11)).

Part 2: Analysis at infinity. Let a € A with support in R? x Q x R?. We use a cut-off
function y € C*(R%,[0,1]) identically equal to 1 close to 0, and we set (as in (5.6))

aB(z,€m) = alz.E.m) X (5‘55") (1-x (1))

We introduce the symbol

bl (s, z,&,m) = af (a: + sdzgn(5>|;’|,5,n) .

We have b? € A and

<b‘}§)°°(s’x’€7w) = G0 © ¢Z($>§7w)x (6 _(Sgn) .
Our aim is to prove that for § € C°(R) and s € R,

. . . € € R,0 _
llrgljgp %Tiuog ll?jgp /R 0() (We—e, 3 [tn (1)], b0 )dt = 0.
We observe

d R f_fn o R 2 g_fn g_fn L2 g_fn
T e Gl = e K= 5
Since szn(g)(g —&n) = in(f) + O(|§ - £n|2)a we have

d —&n —Sn
ot (5.6 555 = V0u(© - Vaek (.06 555 ) 4 on(eg)

with .
C?(saffaf,ﬂ) = beg(s»%f,ﬂ)

and 7° such that for all o € N9, (z,¢) s 9%7¢(x, &) is bounded uniformly in € and R. Note that
regarding c£, we have

Co

Re’

in particular Nd(céR) = O(1/(Re). Let us now conclude the proof. We first write, uniformly in
€ (0,1), R€[1,+0) and s € R

0 on=e) (0 ) wi0)
(vioptes (L)) wity .

- (wf;(t), [0n(eD), 0p{=) (cf(5)]) wzm) +0(6).

2
c L2(R)

(5.14) Ya,3e€N¢, 3C, >0, VR>1, ¥,e€(0,1), ||270%E| 1~ <
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Then, taking into account equation (4.11]), we deduce that uniformly in e € (0,1), R € [1,400)
and s € R

(vsoente=e (k) ) vim) | = =g (550000155 (o) v510)

— e (50, 0pEE (e (5)) F2(0)) , o+ (F2000,0pEE) (efi() 1)
+0(8) 4+ O(e).

L2(R%)

L2(R4)
The estimate (5.14]) gives ||op{5 &l (cf(9)) lz(z2®ey) = O (Z5)- Therefore, for any § € C2°(R),

we have
Lo (vs@eptes (Gofw)viw) | ar=o0(g) 0@ +00)

which concludes the proof.

5.3. Concentration above crossing points. In this section, we analyze the semi-classical
measure of (¢¥Z(t))e>0 above crossing points. Here again, we work in any dimension under the
assumption that crossing points are isolated points of the space of impulsions, which is the case
when d = 1. We also assume that for all n € N*, the multiplicity of the Bloch energy g, is
one, except at crossing points, where it is two. This implies that a global labeling of the band
functions exists such that X, ,,» # () implies |n — n/| = 1. We write

(5.15) S i=Ypni1, nEN

We additionally assume that in an open set Q, we have ¥, NQ = {0, } and we aim at calculating
the two-microlocal semi-classical measures associated with the concentration of (¢5(t)).>0 above
oy. All these assumptions are satisfied when d = 1.

Finally, we assume that the crossing is conical above the point ¢,, in the sense that there exists
an homogeneous function of degree 1, g,, such that

VEE€Q, (ont1 — 0n)(&) = gn(€ —om).
We set
M(E) = 3 (0011(€) + 04(6)).
We recall that when d = 1, VA, (0,,) £ gn(w) # 0 for w € {—1,+1} (see Lemma [3.14] (4)).

Theorem 5.11. Assume Vg, (w) # VA, (0,) for all w € S¥=1. Then, with the preceding as-
sumptions, any pair (7%, Tt) of two-microlocal semi-classical measures associated with the con-
centration of (VS (t))eso on {& = o,} is (0,0) dt-almost everywhere.

If moreover Vg, (w) # =V, (0,) for allw € S*1. Then, any pair (71, T% 1) of two-microlocal
semi-classical measures associated with the concentration of the family (151 (t))es0 on {{ = o, }
is also (0,0) dt-almost everywhere.

Corollary 5.12. When d = 1, the assumptions of Theorem [5.11] are satisfied and, assuming
that Q0 does not contain any critical points of g, and o,41 (which is always possible), we have

H;,nlfeﬂ = N§L+1,n+1 leco =0, whence uf%n_H leco =0 as well
Proof

Here again, we prove Theorem [5.11] in two steps: first we focus on the part of the two-scale
Wigner measure that comes from infinity, then we concentrate on the part at finite distance.
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Part 1: The two-scale Wigner measure at infinity. Let a € A supported in R% x  x R¢
and x € C®(R4,[0,1]) x € C$°(R4,[0,1]) identically equal to 1 close to 0. We set for R,§ > 0

(as in (5.6))
E - gn
ol = ot (£552) (1-x ()
Then, in view of equation (4.18)),
- d € g - g =0 £
(516) ey (Wil [0 0] @) =< (43(0), o= (af), o0 (cD)WE(1)) + O(e).
Using the homogeneity of g,,, we write
Qn(ED) = )‘n(gD) - gn(‘gD - Un) = )\n(ED) - Eopiézon}(gn)'
Therefore, we have
et [opi’f:""}(a?),gn(fl))} = opl=T (VA - Veafl) — [opigz""}(&?),opigz""}(gn)} +0(e).
We apply Lemma and we obtain
et [oplE=" (@l 0a(eD)] = 0pLE=T (VA = Vign) - V) + O(e) + O(R™) +0(5).

Let 8 € C°(R), equation (5.16) gives, passing to the limits e — 0, then R — +oo, and finally
0—0

/ 0(t)(VAn(0) = Vgn(w)) - Vaaos (2, 0,w)dy! (x,0,w) = 0.
RxRdxSd—1
This implies that the measure 7%, (z, o,w) is invariant by the flow
(z,0,w) = (x + s(VA,(0) = Vg (w)), 0, w).
As a consequence, by Lemma [4.4] % is supported on {V\,(0) — V,gn (0, w) = 0}.

Part 2: The two-scaled semiclassical measures coming from finite distance. We now
choose § € C*(R), a € C° (R4 x Q x RY). Arguing as in (5.16)), we observe

/R 6(t) (45(1), [ob (a2). € 0 (D)5 () = Oe).

Using that a is compactly supported in the variable n and taking advantage of the homogeneity
of g, we obtain in £(L?(R%)),
1 _ . — = =0
E[Opg*”"}(a)wn(&Dz)} = i0pl=TH (VAL (&) - Vaa) — [opl=7 (a), 0pL=77 (9)] + O(e).
Passing to the limit € — 0, we obtain

0= /Re(t)Tm(Rd) ((iVA(0n) - Vea™ (2,00, Dy) — [@" (2,04, Dy), g(D,)])TL) dt = 0
= / O(t)Tr 2 (ra) ([a" (2,00, Dy), VAn(0s) - Dy — g(D,)ITY) dt

R
= [ 80T (@ (2,00, D2) [FAulow) - D — (D), TL]) .
R
We deduce that for almost all ¢t € R,
[V/\n(on) - D, — g(Dx),FZ] =0.

Recall that the operator I'!, is a rank one projector of L2(R?), T'*, = |1, (t)) {1, (t)|. We deduce
that there exists a measurable function ¢ — ¢(t) € C such that

(VAn(on) - Dy — g(D2))vs, (t) = c(t)to, ().
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Therefore the L2-function ¢ + Jg\n(t,f) is supported on the set {VA,(0,) - &€ — g(&) = ¢(t)}.
Since VA, (0n,) — g(§) # 0 for £ # 0, this set is a hypersurface and thus is of Lebesgue measure
0. We deduce d)ﬁ,n =0, dt ® dz-almost everywhere, whence I'* = 0, dt-almost everywhere.
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6. CONCLUSION

In this conclusive chapter, we comment how the material displayed till now allow to prove the
Theorem [I.4] which was our objective. Then, we discuss the multidimensional case.

6.1. Effective Mass Theory in 1d. We are now able to prove Theorem . By Corollary

(ii), the family (¢°(t))eso is e-oscillating. Thus, (1.13) is a consequence of (1.11). For prov-
ing ((1.11]), we have to determine the semi-classical measures ¢! of (¢°(t))eso-

By Corollary (iil), we have
(6.1) = Z [ty s
n,n’/eN*

where yu, ,,, are joint measures of the pair (45, (t), ¥, (t))e>o0, solutions to (4.11]). Moreover, if A,
is the set of critical points of the Bloch modes p,, and %, , the set of crossing points between
on and p,,/, by Proposition for n € N*,

Mfz,n(xaf) = 1561‘{71”;7”(1"5)’ An = An ) U Zmn’a
n'#n

and for n’ #n
M;,n’ (1’, 6) = 156271,71,/ lu’fz,n’ ($7 6)
By Lemma A, C 7Z and ¥,, = 7Z\ A,,, in particular, both sets consist in isolated points.
The two-microlocal analysis of the concentration of the pair (15 (¢), 9%, (t))e>0 above this point

give via Corollaries and

pho(@,6) = 3" be, () @ [0 (t,2)Pde, by, =0, nyn' €N, n#£n/,
EeN,

with wén) solution to ([1.12]). This terminates the proof.

6.2. What happens in higher dimension ? In higher dimension, the precise structure of
the sets of critical points and of crossing points are rather open problems. One could have
degenerate critical points and manifolds of critical points instead of isolated points. One could
also have intersections between Bloch modes on critical points. One then has to exhibit a set
of reasonable assumptions, allowing to perform a two-scale semi-classical analysis. Indeed, the
approach of Chapter [5| can be extended to analyze the concentration of bounded families in
L?(R4) on manifolds. This strategy is developed in [24]. We shortly describe the assumptions
made therein and the adaptation to make for obtaining a complete description of the semi-
classical measure of the solution (1°(t)).> of the Schrédinger equation (L.1]).

6.2.1. Assumptions on the sets of critical and crossing points. Regarding the set of critical points
of the Bloch modes, the following assumption is introduced in [23].

H1 For n € N*, we assume that d2p,, is of constant maximal rank over each connected
component of A,,.

This assumption has the advantage to be generic. It consists in saying that for all £ € A,,,
Rank d?p,,(¢) = codim A,,

or equivalently Kerd?p, (&) = T¢A,. It implies in particular that each connected component
X C A, is a closed submanifold of R? which will give a good setting to perform a two-scale
semi-classical analysis above A,,.

Regarding the crossing sets between Bloch modes, different sets of assumptions offer a com-
fortable framework. The assumptions H2 and H3 below are introduced in [24].
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H2 For n € N*, the multiplicity of the Bloch energy o, is one, except at crossing points,
where it is two. This implies that a global labeling of the band functions exists such that
Ypn # 0 implies |n —n'| = 1.

Hypothesis H2 is generic, as follows from the variational characterization of the Bloch modes
(see and ) As stated, it prevents from having simultaneous crossings of more than two
Bloch energies, and higher multiplicities (both scenarii are non-generic). In particular, one can
use the normal forms of Lemma We introduce moreover a geometric assumption

H3 For n € N*, we assume that the crossing set ¥,, is a smooth closed submanifold of R?.
Moreover, the crossing is of conic type in the sense of Definition [3.13]and for all o € X,,,
1N € NgX,, with n #£ 0,

1
§v£(9n+1 + Qn)(a) + Vngn((’, 7’) 7£ 0.

Assuming H2 and H3 implies that the crossings involve only two modes g,, and g,1 and that
the crossing set 3, (see ) is a manifold. Because of the periodicity of the Bloch modes, it
is thus the union of connected, closed embedded submanifold of (R%)*, which allows the use of a
two-microlocal approach on each of these connected components.

We point out that the assumption H3 may fail and there could be crossings above critical
points. Such a situation has been studied in [24], showing that some mass may be trapped above
these non conical crossing sets, leading to the presence of non-zero terms uﬁm, in (6.1) with

n#n'.

6.2.2. Effective Mass Theory in dimension d > 2. The main difference in dimension d > 2
is the nature of the two-scale Wigner measures involved in the description of the process. For
stating the result, we need to introduce other geometric objects associated with a submanifold X
of (R4)*. We define its cotangent bundle as the union of all cotangent spaces to X

(6.2) T*X :={(¢,2) € X xR : 2 € T X},

each fibre T¢ X is the dual space of the tangent space Tz X. We shall denote by M. (T*X) the set

of non-negative Radon measures on 7% X. We observe that every point € R? can be uniquely
written as

r=v+2z where veTgX and z € N X.

Then, given a function ¢ € L°°(R?) and a point (&,v) € T*X, we denote by mf(f,v) the
operator acting on L?(N¢X) by multiplication by ¢(v + -). We shall denote by £(L?(N¢X)) the
set of bounded operators acting on L?(N¢X) and by £} (L?(NeX)) the set of operators that are
non-negative and trace-class. When X = A,, and assumption H2 holds, we will consider the
operator d?p,(§)D, - D, acting on N¢A,, for any & € A,,.

Theorem 6.1. [24] Assume H1, H2 and H3 are satisfied for all n € N* and consider (¢°)c>0
a family of solutions to equation with an initial data (Y§)e>o that is uniformly bounded
in H:(RY) for some s > . Then, there exist a subsequence (V3')ien of the initial data, a
sequence of non negative measures (Vp)nen on T*A,,, and a sequence of measurable non negative
trace-class operators (M, )nen

M, : TgAn(§7U) = Mn(éav) € ‘C}r(L2(N£An))> T\rLz(NgAn)Mn(§>v) =1,
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both depending only on (V5)een, such that for every a < b and every ¢ € Co(R?) one has

(6.3) lim //¢ Ve (t, x)|*dedt

{—+o00

- Z/ _ Trrz(nea,,) (mg"(f,v)be(g,v)) vp(d€, dv)dt

neNv e
where t — M, (&,v) € C(R, LL(L*(NeAy)) solves the von Neumann equation

iOM(6,0) = 5 d0n(§)D. - D.+miy (§,0) . ML(E,v)]
MO = M,,.

recall that mA" &, v) (resp. min &,v)) denotes the operator acting on L2(NeAy) by multipli-
¢ Vex ¢
cation by $(v+ ) (resp. Vexi(v+-))).

Theorem [I.4] is a consequence of Theorem [6.1] in the case where critical sets A,, consist in
isolated points. As Theorem Theorem tells that conical crossings do not trap energy. We
emphasize that (M, )nen+ and (v, )nen+ are associated with the initial data. They are two-scale
Wigner measures associated with the concentration of (¢§).~0 on the manifolds A,,.

The main difference with the case of the concentration on a point of Rd relies on the structure
of the two-scale Wigner measures describing the concentration at finite dlstance with respect to
the second scale €. Indeed, if A, = {¢ = &,}, Te, A = {0} and N¢, A, = R% Thus, the measure
v, reduces to a scalar and the trace-class operator M,, only depends on &,, it is no longer a
function. Theorem states that in that special case, one can prove that M, is a projector.

As a final conclusive remark, one can mention that, regarding the semi-classical analysis of
equation , the main issue consists in the understanding of the behavior of the Bloch modes
in dimension d > 1, which is a problem at the intersection between spectral theory and geometry.
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APPENDIX A. KATO-RELLICH’S THEOREM

Kato-Rellich’s Theorem offers a way to prove that an operator is self-adjoint by a comparison
argument. The reader can refer to [48] or other books about Functional Analysis.

Theorem A.1. Let A be a self-adjoint operator on its domain D(A) and B a symmetric operator
on D(A). Let us assume that there exists 0 < o < 1 and C > 0 such that

Vv € D(4), |Bv| < afAv[| + Cflvll.
Then the operator A + B is self-adjoint on D(A).

As an example, we consider the Hilbert space L?([0,1]%) and the operator —A(), which
consists in the Laplace operator on the cube C' = [0, 1]¢ with boundary conditions

fly+0) = f(y), Onfly+4€) = —0,f(y)e’* V(y,£) € OC x Z¢ such that y + £ € OC.

As mentioned in Section this operator is unitarily equivalent to Py(§) and is self-adjoint.
Let us consider potentials Ve, that are Zd—periodic and the operator —A© 4 Voer(z). We
make the assumption:

p=2if d=1,2,3,
(A1) Vier € LP(T?), with{ p>2 if d=4
p=%if d>5

Theorem A.2. Assume that Vi,er satisfies Assumptions . Then, the operator —A&) +Voer ()
is self-adjoint for all € € R?, and its spectrum is bounded from below. Besides it has a compact
resolvent.

The result comes from the application of Theorem to the operators A := —A®) and
B := Vyer, the next Lemma shows that the hypothesis of Theorem [A.T] are satisfied.

Lemma A.3. Let Vyer satisfying Assumptions then for all € > O there exists a constant
Ce: > 0 such that,

1Voer fll 20,170y < EllAFIl 20,114 + Cell fllp2 (o130, Vi € H?(J0,1]%),

[ Wl Py
[0,1)¢

<e /[ TPy + Col g, Y5 € H0.AE).

A potential satisfying this type of property is said to be infinitesimally bounded with respect to
the Laplacian. Note that the result is trivial if Vje:(y) is bounded. Let us now prove Lemma
when d = 1,2, 3.

Proof

Assume d = 1,2,3 and Vper € L?(T?). Consider y € C*(R?) such that 0 < x <1, x = 1
on [0,1]? and supp(x) C [-1,2]¢. We associate with any f € H?(]0,1[?) the function f, = xf
which is in H2(R?), and thus in L>°(R%) since 2 > d/2. Note that Vje, can be extended to R?
by periodicity.

Voer fllz2(0,112) < [[Voer fxllL2(ra)
< [ fxllzoe ey [[Voer L1214l 2 (ma)
< CdfoHLw(le)||Vper||L2([o,1]d)7
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The constant Cy; depends on the numbers of cells which are included in [—1,2]? and next to
[0,1]%. We then uses the inverse Fourier transform to evaluate || fy || ga):

P e NG

We choose § € ] g, 2[ and use Cauchy-Schwartz inequality to write

Udimeo < o0 ([ ) ([ asierrimiora)

For all € > 0, we can find C. > 0 such that

vEERY (147 <e(1+[¢")* + Ce.
Therefore, we have
ell(1 = A) fyllez ey + Cell fxll2 me)
ellAfxllL2ray + (Ce + )l fxll L2 (ray

13/l o ety

Besides, by the properties of ¥,
1Al L2ey < NAfllL2o,114) + 20V £l 20,04 I VXN 2Ry + 1AX L2 ey | £1] 22 (R4

which gives the result.

APPENDIX B. COMPACT OPERATORS AND OPERATORS WITH COMPACT RESOLVENT

We close this elements of spectral theory with a few words about compact operators, that are
used in this book. Recall that A € L£(H) is said to be a compact operator if for any bounded
family (fn)nen of HY, the sequence (Af,) has a limit point. Compact operators enjoy lots of
properties. In particular, the structure of their spectrum is very rigid. The next Theorem is
classic and proved in any book of functional analysis.

Theorem B.1. Assume H is of infinite dimension. Let A be a compact self-adjoint operator,
then its spectrum consists in isolated eigenvalues of finite multiplicity, (An)nen, which admits
the only limit point 0. Moreover, there exists an orthonormal basis (on)nen of H consisting of
eigenvectors of A.

As a consequence of this result, we have the following description of the spectrum of self-adjoint
operators with compact resolvent.

Proposition B.2. Let A : D(A) — H a self-adjoint operator the resolvent of which, (Ay)~*
is compact for some A € C. Then, there exists an orthonormal basis (pn)neny and a sequence
(0n)nen € RY such that 0, — +oo and
n——+00
Apn = 0npn, Yn €N.

Proof
By hypothesis, there exists (¢, )nen and (Ap),€ N with A, _>—+> 0 such that
(A - )‘)713071 = An‘pna vn € N.
Besides, A\, # 0. Then, a simple computation gives ¢,, = A 1(4 — \)p,, whence
App = AT+ D,

We thus obtain the result with o, = A + A1, The fact that o, € R for all n € N comes from
the self-adjointness of A.
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APPENDIX C. MIN-MAX FORMULA

We give here a MinMax characterization of the eigenvalues g,,(£) of the operators P(§). This
comes from the links between self-adjoint operator and quadratic forms. We associate with P(&)
the positive quadratic form

1
Qc(F) = 1Dy + O FL2wa) + Voerf Hracay + KNI FlIZ2pa)-

where K is chosen such that for all £ € B, the spectrum of P(§) is included in | — K + 1, +o0].
The quadratic form Q¢ is associated with the operator P(§) + K, in the sense that for all f in
the domain of P(&) (which is included in the domain of Q)

Qc(h) = ((P&) + KV, ) ey

The domain of the quadratic form Q¢ is H(T%) and Q¢ is coercive since
Qe(f) = Ifl2(ray, Vf € L*(T%)

and thus defines a norm f — /Q¢(f) on HY(T9). The form Q¢ and the operator P(¢) + K
are linked by Riesz-Friedrichs theorem: A; = P() + K is the unique self-adjoint operator with
domain D(A¢) C D(Q¢) and such that (A f, f) = Qe(f) for all f € D(A¢). This is another way
to define P(§) as A¢ — K where A¢ is the self adjoint operator associated with the form Q.

Proposition C.1. The family of eigenvalues (0, (§))nen are given by the Courant-Fischer for-
mula (also called Min-Maz formula),

(C.1) M) =0+ K= Hrj{hiill Qe(f),

and, forn € N\ {1},
(02) )\n(g) = Qn(€> +K = min max QE(f)

dimM=n, MCHY(T4) feM, ||f|l=1

Note that the real numbers ), (£) are non negative for all ¢ € R9.

Proof
Let us prove the Courant-Fischer formula. Recall that for any f € L?(T¢) such that

= MO en().
neN
Therefore, since the )\n(f) are non negative, one gets that if || f||2(p¢) = 1, one has
) = M(€) Y (Fen(E) = M(€) = Qe(e1(9)),
neN

which proves (C.1)
For proving (C.2), we consider the sets M,, = Vect (p1(§), - , pn(&)) for n € N*. We first deduce

Qe(f) < Qe(f) = ().

min max
dimM=n, MCHY(T4) feM, ||f|l=1 fe Mn7 HfII 1
Let us now consider a vector space M C L?(T¢) of dimension n. Since dim M,,_; =n — 1,
dmMNM;- |, =dimM —dimMNM, ;>n—(n—1)=1

and M N M- #0. Let f € M N M-, with [lfllL2(rey = 1, then f has only components on
©p(§) for p > n and

= MO @) = Aa(€) D HF () = An(9).

p>n p>n
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Therefore, for any vector space M C L?(T9) of dimension n
max — Qe(f) = An(§)

feM, |Ifll=1

and we obtain

min max
dimM=n, MCH(T4) feM, ||f|]l=1

which concludes the proof of (C.2).

Qe(f) = An(8),
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APPENDIX D. PROBLEMS

In this section, we present three questions related with the topics of the lecture.

D.1. Problem 1 — Super-adiabatic projectors. We discuss here the construction of supera-
diabatic projectors. These operators realize approximate projectors at any order in € and allow
to diagonalize an operator, eigenspace by eigenspace, if all the eigenvalues are of constant multi-
plicity, or by blocks of eigenspaces corresponding to eigenvalues that are separated from the rest
of the spectrum. This assumption of separation is at the core of the adiabatic approach: the fact
that the eigenvalues are separated by a fixed gap, induces that frontier between the eigenspaces
is impassable, or adiabatic from the ancient Greek ’adiabatos=impassable’.

We consider two Hilbert spaces A et B satisfying the continuous embedding A C B and the
symbol classes

S(R*, L(A,B)) = {H € C™(R**, L(A,B)) Vo € N** 3C > 0: ||0°H | z(a.8) < Ca}-

These operator valued symbols may depend on €. One then requires that the estimates are
uniform in e. Even though this class is not an algebra, one has composition rules and a Calderén-
Vaillancourt theorem.

We consider a self-adjoint symbol H that admits an asymptotic expansion
H=Hy+¢cH +¢?Hy + ...
We consider a orthogonal projector Il that commues with H, i.e. satisfying
7 =Ty, I =TIy and [Ho, o] = 0.

This projector satisfies the adiabaticity assumption (AA) if and only if

(AA) The spectrum of IIoHplly and the spectrum HéHOHOL are uniformly separated in X =
(z,8).

The aim is to prove the following Theorem

Theorem D.1. Let H € S(R?? L(A,B)) be an operator-valued symbol. There exists operator-
valued symbols

=Tl +ell; + &y + ---, 1T € S(R*, L(A)) N SR>, L£(B))
such that
OpP, (H)Ops (H) = Op, (H) + O(EOO> ) OP¢ (H)* = OP¢ (H) )
and
[Ops(H)v Ops(H)] = 0(500) s

where O(e*) has to be understood in the sense of asymptotic series.

Theorem [D.] is classical in the literature since the 90-s and the statement we give here
follows old lines of ideas. Nenciu developed adiabatic theory for spectral subsets [58] [59] and the
construction of superadiabatic projectors dates to the end of the 90s with [12] which was inspired
by the paper [28], and [I4] [13]. The monographs [69] and [56] give detailed accounts of more
recent approaches to adiabaticity in the frame of molecular dynamics (see also the book [69]).
One can also find such a construction in Section 14.4 of the latest edition of [26] (2021). The
interest for adiabatic result is still active (see [17, 18] [19]).

The proof of Theorem follows a series of steps.
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Question 0. Preliminaries - resolution of the Sylvester problem. We shall use the following result
called a Sylvester problem (see [8 [63]).

Theorem D.2 ([8]). Let Ko and K; be two self-adjoint operators such that there exists m > 0
for which o(Ky) C (0,m) and o(K1) C (m,400). Let v be a closed contour in the plane
with winding number one around o(Ky) and zero around o(Ky). Then, for any operator Y the
equation Ko X — XK1 =Y has a unique solution X that can be expressed as

1

2
y
(1) Check that the formula gives a solution to the equation Ko X — XK; =Y.
(2) Assume X satisfies Ko X = XK. Justify why m 'K is invertible and prove
VneN, X =(m 'Ky)"X((m 'K;)™").
educe from the unicity of the solution to the vester problem.
(3) Ded fi (2) th icity of the soluti he Syl probl

(D.1) X = (Ko —2)"'Y(K, — 2)"dz.

Question 1: Initialization. Define the symbol Ry and S; by
op, (Iy)* — op, (Ip) = eop.(Ry), Ry = Rip+eRi1+--.
[OpE(H() + €H1), OPE(HO)] = EOpE(Sl), R, = RI,O + ERl,l + e

(1) Check that the symbolic calculus gives S1 9 = 3 ({Ho, o} — {Ilo, Ho})+ [H1, o). Com-
pute 71 ¢ and check that we have

—Ho[H(), Rlyo]HQ = —H05170H0 and Hé‘[Ho, Rl_ro]H(J)' = —HS‘SLOHS‘ .
(2) Let A be an operator-valued symbol, prove that the symbol
I, = —ToRy o1y + Ty Ry o103 + Mo ATy + Ty A*TI,

is enough to realize op,(Ily + €Il )op. (ITg + €ll;) = op. (Il + €Il;) + O(&?).
(3) Prove that if X = Iy Allg satisfies

(Hollg)X — X (Holl$) =,

with Y = —IIS1 0Ilg, then one also has [op.(Ho + Hi),0p.(Ilp + €ll;)] = O(£?).
(4) Conclude with Sylvester Theorem

Question 8. The recursive construction. Let k > 1. Assume we have constructed Ilg, IIy, ...
and II; so that

(D.2) T I = Ty + R RY, Ty = To + ALy + ...+ hFII,

(D.3) [H ] = kM8, Hig = Ho + hHy + -+ + BV Hy, .

The aim of this question is to construct Il in order to push the recursion one step forward.
(1) Prove that such a Iy has to satisfy

MoIy1 — My Iy = Ryq10 and [Ho, jp1] = Skt

(2) beduce from the first compatibility relation,
Iy, Rk41,0] =0 and RZ+1,0 = Rit10.
(3) Deduce from and , the second compatibility relatyion
~To[Ho, Ryt1,0]Tlo = —ToSk+1,0l0  and g [Ho, Res1,0]g = —IIg Skr1,0p -

(4) Determine TIoITj 11Ty and TI3 1T 1113 in terms of Ryy1 0.
(5) Determine TIyIl; ;I3 by solving a Sylvester problem.
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Question 3. Regularity issues.
(1) Let © be an open subset of R where H and Iy are smooth (resp. analytic) in . Prove
that the symbol II constructed above is smooth (resp. analytic) in €.
(2) Assume there also exists 6 > 0 such that

Vz € Q, dlo(lgH)(2)), (g H)(2))) > 4.

Prove that the symbol II; satisfy: for all j € N and a € N?¢| there exists C, ; > 0 such
that ‘
Vz € Q, [I02TL(2) | am) < Cayyd 172
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D.2. Exercice 1 — Two scale Wigner measures. Let ¢ € S(R?), (20, &, wo) € R x RY x R?
and 8 € (0,1]. We set

_ _ B .
W () = e~ (ﬁ) exp (€> , vz e RY.
(1) Prove that (u®).s¢ is a bounded family in L?(R?).
(2) Compute the Wigner measures of (u%)c>0.

3) Let a € A. We set ac(x,€) = alx,€, 2% ). We choose g = 0, wg # 0. Compute the
Ve
limit of (op,(ac)u®,u®) when e goes to 0 (it will depend on ).

D.3. Problem 2 — Obstruction to smoothing effect. Since the pioneering works of [42] [65]
70}, 25 [43], 10], it is well-known that dispersive-type equations develop some kind of smoothing
effect described by means of smoothing-type estimates. For example, given any § > 0 and any
ball B C R? it is possible to find a constant C' > 0 such that the estimate

)
(D.4) / D22 (= 808) |22yt < Clluo2s gy

holds uniformly for every ug € Cgo(Rd). The result is still true when considering the operator
BV -V where B is an invertible symmetric d x d matrix.

One can wonder what happens if one adds to the operator a potential V (¢, ) and if the matrix
B may slowly vary in terms of the variable £. For example, for € € (0,1] and B a smooth map
from R into the set of symmetric invertible d x d matrix, we consider the operator B(eD)V - V.
One then asks whether an estimate of the form holds for the operator

~

f. = B(eD)V -V + V(t,z).
In that case, setting A\(§) = —B(£)¢ - &, the function

ut(t,z) = et ey,
is the solution of the equation

ie20puf (t, z) = MeDy)u (t, ) + 2V (¢, z)us(t, z), T d
(D.5) { Opu(t,x) = AeDg)us (8, x) + 2V (8 )u(t,2),  (t,x) eRXR

u€|t:0 = Up.
We introduce the following set of assumptions:

Al. V € CO(Ry,C>®(RY)) is bounded, together with all its space derivatives and A € C>°(R%)
is a symbol of order N > 0 (as in [27], Definition 7.5):

Va e N?,  sup [98A(E)] (1+[¢) ™Y < oo
¢eR4

Moreover, the set A of critical points of the function A, A := {¢£ € RY, VA(¢) = 0}, is a
countable set of R%.

The aim of this section if to prove the existence of obstructions to the validity of smoothing-
type estimates in the presence of non-zero critical points of the symbol A, as stated in the next
result..

Theorem D.3. Suppose A1l holds and that A has a non-zero critical point &. Then, given
any 6,5 > 0 and any ball B C R? it is not possible to find a constant C > 0 such that the
estimate (D.4) holds uniformly for every solution u® of of with initial datum uf € CS°(RY).
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Note that this type of behavior is already described in [40]; moreover, smoothing-type esti-
mates outside the critical points of A are presented in [64]. The proof consists in the construction
of a data (uf).>o such that the associated family of solutions (u®(t)).~o violate the dispersion
estimate. The example constructed below is taken from the article [22]. Similar results proved
with similar arguments have been obatined in [51] in a more geometric setting.

Question 1. Semi-classical measures for the solutions of (D.5)). Let (uf(t))e>0 be issued from a
bounded family of initial data (u§)e>o. Let uf(dz,d€) be a semi-classical measure of (uf(t))eso-
Prove that ! is invariant by the flow

®*: (z,8) = (x4 sVA(E),€)

and deduce that it concentrates on A.

Question 2. Two-scale analysis of the solutions of (D.5)) on A. Let £ € A. Consider the time-
averaged two-scale Wigner measures associated with the concentration of (u®).sq on &y at the
scale e. They consist in a measure v*(dz, dw) and a function wug, (t).

(1) 2-scale measure at infinity. Let a € Aq and af as defined in (5.6). Set

155,09 = af (24 o IN0.6522)).

€ — §0|
(a) Prove that for all € C§°(RR;), as e goes to 0, then R to +oo, and finally ¢ to 0,

/ 0(t) (u®(t), 0p (05 (8)u" (1)) o gay dt = o(1).
(b) Let <I>§2) be the flow on R3¢ defined by

P (2,,1) — (@ + 5 V2A(E)

|n|,£7n)~

Prove that in £(L?(R%)),
0. (47(s)) = op? (a7 0 ) + 0(3) + O(R™) + O(e),

(c) Prove that for almost every ¢ € R, the measure ~' is invariant through the flow e

restricted to R? x {¢& = &} x S471.
(2) 2-scale measure at finite distance. Prove that the function wug, solves

{ i0pug, (t,x) = %VZA(SO)DI - Dyug, (t,z) + V(x)ug, (L, z),
Ugo| =0 () = ug (2),

and ug is a weak limit in L?(R?) of (e~ 20 7y5) o when & — 0.
(3) Deduce that any semi-classical measure p of Question 1 satisfies: for almost every t € R,

(D.6) plt,z,€) = > 66, () @ Jug, (¢, )| *da,
SoEA

(4) Prove in addition that if all the points of A are non-degenerate critical points, then
inequality becomes an equality.
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Question 3. Construction of a counter-ezample. Let 6 € C5°(R?) with |6 ,2(ze) = 1 and consider
the sequence of initial data:

u(z) == O(z)e L.

(1) Check that |lug||;2(rey = 1 and that (u§) converges weakly to zero.

(2) Prove that the family wug,(t) of Question 2 for this initial data satisfies
l[ug, ()l L2 ey = 1.

Question 4. Proof of Theorem . Suppose (D.4)) holds for some ¢, s,C > 0 and some ball B.
(1) Prove that the solution of (D.5]) converges strongly in L2((0,4) x B).
(2) Obtain a contradiction from Point (1), Question 3 and and deduce Theorem [D.3
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D.4. Problem 3 — Wave equation in 1d heterogeneous medium. Let us consider the 1d
wave equation

(D.7) Ofus — 0y - (c(2)?0,u%) =0, up—o = uf, Opup—o =g,
where ¢ € C*°(R) has the property
deg, 1 >0, Ve €R, ¢p < c(x) < ¢y.

The function c(x) takes into account the heterogeneity of the medium where the wave u® prop-
agates.

The initial data (u§, u§)e>o is taken so that (u5)->0 and (9,uf)e>0 are uniformly bounded in
L?(R), e-oscillating, and satisfies

(DS) limSBlp ||1\w|>7'ui||2L2(]R) + H1|1\>7C(I)81USH%/2(R) — 0 as 7 — oo.
e—

Moreover, for simplicity, we suppose that (u§).>o has only one Wigner measure pp, and
similarly, that (c(x)0,uf)e>0 has only one Wigner measure pg. We also assume that the pair
(Opu®, c(x)0zuf) has only one joint Wigner measure v. In other words, we assume that the
vector-valued family (u5, 0yu§)e>0 has a unique 2 by 2 matrix-valued Wigner measure that we

write ’Lil v
v Ho

The energy of the wave u®(t) is defined by

E(t) = [|100u® (0)[|72 gy + lle(@) Opu” (8) 72z,

It is conserved along time: E°(t) = E<(0) for all ¢t € R, and we are interested in computing by
means of Wigner measures the weak limits as measures of the energy density

e (t,x)dx == (|0us(t, 2)|* + |c(z)0pus (t, 2)[*) da.

The rays of geometric optics are the Hamiltonian flow of the function (z,§) — £c(x)¢, it is
the curves t — @Y = (¢, pY),

it (x) = £e(gh(x,€)), ¢4 (z, &) = =,
(B-9) {pi &) = T (O (. 6), P, 6) =&,

Note that if ¢(x) = 1, these curves are the rays (x, &) — (x £ tsgn (£),§).

The evolution of the energy density is described in the following statement.

Theorem D.4. Assume po({{ = 0}) = p({{ = 0}) = 0. Then for all ¢ € C5°(R) and for
almost all t € R, one has

[ ) adr | o) (dnt (2, + i (2, 9))

R2
where the measures ', are defined by
(D.10) P (2,6) = (PL).(1d) (@, €)

(D.11) with 1 (x,€) = 5 (12 (2,€) + po(w, ) + 2Re (v(x, €))).
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Question 1. Reduction to a system of Schrédinger equations. We set

v (t,z) = 1 (Opu® £ c(x)0pus (t,x)), (t,xz) € R xR.

V2
(1) Prove

e (t,x)dx = [v5 (¢, 2)Pdx + [v° (¢, 2)Pdx.
(2) Verity the relation

0P (c(@)6) = 5e(@)0s + 5,¢/(2)

and prove that the families (v5 (¢))c>0 satisfy the coupled system of equations
{ ie0yv5 (¢, x) + op,(c(x)€ )v+(t z) = £ () (L, z),
i20yvZ (t, ) — op,(c(2)€)ve (t,x) = F/(2)ve (t,x).
with initial data v (0) = %(ul + ¢0,u5), uniformly bounded in L?(R?), e-oscillating,
and having only one Wigner measure pJ. introduced in (D.11)).

(3) Let T >0, let t, ¢’ € [0,T], a € S(R?*?) supported outside {¢ = 0}, prove that uniformly
on [0,T], one has

d / e
7 (v (t), 0p.(ar)v () = 2Re (v5(t), 0p.(a(z, &) (2))v. (1)) + O(e).
(4) Verify that the flow ®', preserves the quantity ¢(z)¢ and deduce that the function
(2, &) = by(w,€) := as(z,€)¢ (z) (c(2)) !

is Schwartz class.
(5) Using the symbol bs introduced before, prove that, uniformly on [0, 77,

[ Re (019 0meu .0 @) (5)) s = Ot = ).

(6) Deduce from the preceding results that for any ¢,¢ € R we have in the set of distributions
on R x (R\ {0})

WERL(0)](2,€) = (@) Wl (1)) (@, &) + O(elt — 1))
(7) Prove that for all T > 0, there exists a sequence (ej)ren realizing the Wigner measure of
v (t) for all ¢ € [0,7] and this semi-classical measure is given by ply (dz, d€), as defined
in (one will use the conservation of the mass of the semi-classical measure).

Question 2. Proof of Theorem [D.]] for strictly e-oscillating datas. We assume in this question
that uo({€ = 0}) = p1({€ = 0}) = 0 (one then says that the initial data are strictly e-oscillating).

(1) Let 0,¢ € C3°(R), prove that we have

//9 (t,z)drdt — 9( Yl + b, ¢(z) @ 1r(€))dadt,

k—+o00

(2) Deduce Theorem under the assumptlon uwo({£=0}) = ({{=0}) =0.
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D.5. Problem 4 — Wave equation in heterogeneous media, d > 1. We consider the wave
equation

(D.12) 02—V, - (C($)2ku€) =0, upy—o=uy, Opup—g = uj,
where C' = (¢; j)1<ij<da € C°(R?,R¥*9) is valued in the space of symmetric matrices and has
the property
Jeg, 1 >0, Vo € R, ¢oldy < C(z) < 11dy.
The initial data (u§, u)eso is taken so that (u5)e>o and (|D|uf)e>o are uniformly bounded

in L2(R?), c-oscillating, and satisfies . For simplicity, we suppose that the vector-valued
family (u§, V,ug)eso has a unique (d+ 1, d+ 1) matrix-valued Wigner measure that we write by

block (l”:/ ! : ) with p; scalar-valued.
0

We consider the energy density of the wave u°(t), defined by
e (t,x)dx == (|0wus(t,2)]> + |C(2)Vous (t, 2)[2a) da

and we recall the energy conservation :

vt € R, /ee(t,aﬁ)dx:/ea(o,a:)dx.
R R

We consider the rays of geometric optics that are the Hamiltonian flow of the square-root of
the principal symbol of the wave operator, i.e. the function

(z,€) = h(z,§) == |C(z)¢].
When ¢ # 0, one defines the curves ¢ — @ (z,€) = (¢!, p') by
(D 13) { qi(a:) = ngh(qi(x,f),pﬁt(x,f)), qi(m,&) =,
' Pl (2, €) = FVeh(dh (2, 8), 04 (2,€)).  ph(z,§) =& #0.

If C(x) = Idg, these curves are the rays (z,€&) — (v + t%,f).

Since C(z) is invertible and because the function h(z, &) is constant along the curves ®(z, ),
we have

Pi(x,€) #0, VLER, V(x,6) € R x (R\ {0}).
The aim of this problem is to prove the following statements.
Theorem D.5. Assume po({ = 0}) = p1({& = 0}) = 0. Then for all ¢ € CF(R) and for
almost all t € R, one has

[ o)t ande = | o) (@ 0,) + i (,6))

e—0 de
with pl (2,6) = (24)«(ng) (@, ),

o 1 Cl@)  Cx)¢ o C(z)€ »
’“‘i‘2<“1+|0(x>f o1 @e = (|c<x>f ))

Using two-scale Wigner measure will allow to ameliorate the result of Proposition [D.5]and get
rid of the assumptions on the support of the measures pg and pu;.

We consider the two-scale Wigner measures associated with the concentration of (uf).>o and
(u§)es0 on {§ = 0} with respect to the scale . The concentration coming from finite distance is
described by weak limits (ug, u1) of (u§,u$). Then, u®(t, z) has a weak limit u(t, z) for the same
subsequence and u(t, x) is a solution to the wave equation with initial data (ug,uq).

We denote by vy the two-scale Wigner measure associated to the concentration on {§ = 0}
of (u§)e>o coming from infinity, and by vg, v, the two-scale Wigner measure and the two-scale
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joint Wigner measure associated respectively with the vector-valued family (C(x)Vu§)e>o and
the pair (u§,C(z)Vu). We assume for simplicity that these families have only one two-scale
Wigner measures.

Theorem D.6. For all ¢ € C3°(R) and for all t € R, one has

o) (t,a)de — | o) (du! (2.€) + du’ (,€)
Rd E— R2d

2 t t
+ [ o oPder [ o) (@ (o) + vt (z.0)

with, using the flows @'y defined in ,

)= 00000 1= (1 + 165G mieig =2 (e )
o) = @040, A =g (4 g w2 (G 7))

The proof relies on the analysis of the space-time semi-classical measure M (dz, d¢)dt of the
family (U®(t)).>0 defined by

Us(t) := (Ot (1), C(x)Vus(t)) € LOO(Rt,LQ(Rd,(Cd"'l)).

Indeed, we observe
e (t,x)dx = |U*(t,2)|2as1 da.

It is thus natural to consider the Wigner measures of the vector-valued family (U®(t));>o.

Question 1. Equation of U®(t,x).

(1) Denote by Cj(x) the lines of the matrix C'(z) and by ¢; j(x) its coefficients. Prove that
the family (U®(t))e>0 satisfies the system

with
0 Ci(x)-& - Cy(x)-€
Ci(x)- €
Ho(x, 5) - . Opaxa
Ca()- €
and w(z) =' (wi(2), -+, wa(w)), wj (@) = 321 < e g Ok (T).

(2) Using Problem 1, prove that outside {¢ = 0}, any time-averaged semi-classical measure
M of the family (U®(t))e>0 is of the form

M (dx,d¢) = Vi (z,8) @ Vi(z,p', (dv,dE) + V_(z,&) @ V_(z, &)’ (dz, dE),

where pfy and p' are positive Radon measures and

1 [ +1
(D.14) Vi(2,§) = 7 <|g§z;§|> :

(3) Prove Theorem
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Question 2. Two scale analysis above {{ = 0}. We now analyze (uf(¢))c>0 in the zone eR <
|€] < § for 6 going to 0 and R to +oo.

(1) Let a € Ay valued in C?¥*9¢ and set a® = a(z,£,1)x(n/R) with x € C>(R?) with support
outside ¢ = 0 and equal to 1 as |[¢| > 1. Prove that we have

(C(z)Vus, opls=0 (CLR)C(LU)V’LLE)I)(Rd’C[lX ay

_ 1
= (opig_o}(b)|D|uE7 ‘D‘UE)L2(]Rd) +0 (E + R>

for b(x,&,n) = (a(x,ﬁ)C(x)#) . (C(x)#) x(n/R) where the inner product is in R
(2) Deduce that the matrices v*(z, &) are of the form
(D.15) N¥(dz,d€) = Vi (z,w) @ Vi (z,w) (dz,dw) + V_(z,w) ® V_(z,w)’ (dz, dw),

for the vectors Vi defined in (D.14]) and positive measures v/, .

(3) Prove that the measures measures v/, are also some two-scale Wigner measures at infinity

associated to the concentation on {{ = 0} at the scale € of the families

vy = % U(Da/R) (i = opy (IC(2)E|X(E/R)) ), (tx) € R x RY

where x can be chosen smooth, equal to 1 for || > % so that xx = x.
(4) Using the observation

op; (IC(2)é[x(€/R)) = opl=" (IC(2)nIx(n/R))

prove
M1y = (@) @ (lu(t.a)Pao+ [
where N(z,w) is given by (D.15) with v = (®%),0].

N(z, dw)) :
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