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Abstract. The aim of these lectures is to discuss different PDEs technics related with a
Schrödinger equation describing the dynamics of an electron in a crystal in presence of impu-
rities. Because the size of the cells of the crystal are supposed to be very small comparatively
with the macroscopic scale, it is a multi-scale problem with periodic aspects. We shall use
semi-classical measures (also called Wigner measures) to take care of the multi-scale features,
and Bloch theory to deal with the periodicity. These notions will be explained and used for
calculating the density of probability of presence of the electron in the limit where the size of
the cells is much smaller than the macroscopic one. The material of these notes is larger than
what will be treated during the lectures.
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1. Introduction

This lecture is devoted to the analysis of the Schrödinger equation

(1.1)

 i∂tψ
ε(t, x) +

1

2
∆xψ

ε(t, x)− 1

ε2
Vper

(x
ε

)
ψε(t, x)− V (t, x)ψε(t, x) = 0,

ψε|t=0 = ψε0.

where (ψε0)ε>0 is a bounded family in L2(Rd) with ‖ψε0‖L2(Rd) = 1, Vper a Zd-periodic potential
that we will suppose smooth, V (t, ·) a time-dependent exterior potential that will be supposed
to be in L∞(R, C1(Rd)), in the sense that for all t ∈ R, V (t, ·) ∈ C1(Rd) and has bounded
first derivatives, uniformly in time. The parameter ε is the so-called semi-classical parameter,
ε � 1, because of the scaling of the problem that we will discuss in the next section, and we
are interested in the description as ε goes to 0 of the densities |ψε(t, x)|2dx which gives the
probability of finding the particle at time t and position x. We will consider quadratic functions
of ψε(t) involving more general observables.

The first section of this introduction is devoted to the motivations leading to using this equa-
tion for describing the dynamics of an electron in a crystal, in presence of an external potential.
The second subsection will explain the basic ideas of Effective mass Theory, that we will imple-
ment in simplified situations, exhibiting some of the main ideas of the lecture. We will finish by
presenting the result that we are going to prove and the schedule of the lecture.

This lecture is issued from works with Victor Chabu and Fabricio Macia (see [22, 23, 24]),
from which a large part of the material is taken. The presentation of the different notions treated
in this text is also highly impacted by collaborations with Caroline Lasser and Fabricio Macia,
independently and, more recently, simultaneously. They will recognize their influence. It is an
opportunity to thank them for these collaborations that have been, and still are, a source of
major mathematical satisfaction.

1.1. The dynamics of an electron in a crystal. The dynamics of an electron in a crystal in
the presence of impurities is described by a wave function Ψ(t′, x′) that solves the Schrödinger
equation:

(1.2)

 i~∂t′Ψ(t′, x′) +
~2

2m
∆x′Ψ(t′, x′)− eQper (x′) Ψ(t′, x′)− eQext(t

′, x′)Ψ(t′, x′) = 0,

Ψ|t′=0 = Ψ0, (t′, x′) ∈ R× Rd.

The potential Qper is periodic with respect to some lattice in Rd and describes the interactions
between the electron and the crystal. The external potential Qext takes into account the effects
of impurities on the otherwise perfect crystal. Here ~ denotes the Planck constant, e is the charge
of the electron and m its mass. In many cases of physical interest, the ratio between the mean
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spacing of the lattice and the characteristic length scale of variation of Qext is very small. We
shall denote that ratio by ε and consider the limit ε→ 0.

Following [61], one observes that there are two scales in the problem:
• the quantum scale characterized by the typical length λ of the lattice,
• the macroscopic scale whose typical length we shall denote by L.

With these length scales are associated time scales: the quantum time scale characterized by the
typical time τ and and the macroscopic time scale characterized by the typical time T which are
related to the length scale by

τ =
mλ2

~
, T =

mL2

~
.

Strictly speaking, we should consider the Planck constant h in macroscopic units and define T
as T = mL2

h . We have implicitly assumed that ~/h is a constant, that we have set to 1.

Since the periodic potential acts on the quantum scale, we rescale it as

eQper(x
′) =

mλ2

τ2
Vper

(
x′

λ

)
,

and we rescale the external potential that acts at macroscopic scale as

eQext(t
′, x′) =

mL2

T 2
Vper

(
t′

T
,
x′

L

)
.

The meaning of these new scales consists in saying that a free electron under the influence of
Qper will travel a distance of length λ in the time unit τ and, similarly, a free electron under the
influence of Qext(t

′) will travel a distance of length L in the time unit T .

We shall reformulate our problem in terms of the variables

(t, x) =

(
t′

T
,
x′

L

)
,

that are usually called the slow variables. The so-called fast variables

(s, y) =

(
t′

τ
,
x′

λ

)
,

will of course play a role in the analysis. They are linked with the slow ones by

x = εy and t = ε2s with ε =
λ

L
=

√
τ

T
� 1.

Since the wave function is normalized in L2(Rd) (‖Ψ‖L2(Rd) = 1), we choose the new unknown

ψε(t, x) = L−d/2Ψ(t′, x′) = L−d/2Ψ(T t, L x).

Lemma 1.1. Setting ψε0(x) = L−d/2Ψ0(Lx), the family ψε(t, x) satisfies (1.1).

Proof
We just have to perform carefully the computation.

i~∂tψε(t, x) = T L−d/2i~∂tΨ(T t, L x)

= T L−d/2
(
− ~2

2m
∆x′Ψ(T t, L x) + eQper(x)Ψ(T t, L x) + eQext(T t, L x)Ψ(T t, L x)

)
= − ~2T

2mL2
∆xψ

ε(t, x) +
Tmλ2

τ2
Vper

(
L

λ
x

)
ψε(t, x) +

mL2

T
Vext(t, x)ψε(t, x).
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Dividing the equation by ~, we obtain

i∂tψ
ε(t, x) = −1

2
· ~T
mL2

∆xψ
ε(t, x) +

Tmλ2

~τ2
Vper

(
L

λ
x

)
+
mL2

T~
Vext(t, x)ψε(t, x).

Since ε = λ
L and mλ2

~τ = mL2

~T = 1, we have

Tmλ2

~τ2
=
mλ2

~τ
× T

τ
=

1

ε2

and we obtain

i∂tψ
ε(t, x) = −1

2
∆x̃ψ

ε(t, x) +
1

ε2
Vper

(x
ε

)
ψε(t, x) + Vext(t, x)ψε(t, x),

which concludes the proof of the Lemma.

In the following, we shall consider equation (1.1) with ‖ψε0‖L2(Rd) = 1 and we shall assume
that the potential Vper is periodic with respect to a fixed lattice in Rd, which, for the sake of
simplicity will be assumed to be Zd. We shall focus on the description of the density

(1.3) nε(dt, dx) = |ψε(t, x)|2dxdt,
which gives the probability of finding the electron at time t in the position x. More precisely, we
are interested in the computation of time averages of quadratic functions of ψε(t, x), that is, in
describing the limit as ε goes to 0 of quantities of the form

1

T

∫ T

0

a(x)nε(dt, dx), T > 0, a ∈ C∞c (Rd).

1.2. Effective Mass Theory. Effective Mass Theory consists in showing that, under suitable
assumptions on the initial data (ψε0)ε>0, the solutions of (1.1) can be approximated for small
values of ε by those of a simpler Schrödinger equation, called the effective mass equation, which
is for example of the form:

(1.4) i∂tφ(t, x) +
1

2
B∇x · ∇xφ(t, x)− Vext(t, x)φ(t, x) = 0.

Above, B is a d × d matrix called the effective mass tensor. It is an experimentally accessible
quantity that can be used to study the effect of the impurities on the dynamics of the electrons.
Both the question of finding those initial conditions for which the corresponding solutions of (1.1)
converge (in a suitable sense) to solutions of the effective mass equation and that of clarifying the
dependence of B on the sequence of initial data have been extensively studied in the literature
[11, 61, 3, 39, 9] and the recent review [16] and the references therein.

The equation (1.4) is an approximation of the equation (1.1) in the sense that the limit as a
distribution of the measure nε(t, x) is |φ(t, x)|2dxdt, at least in time average, or, equivalently,
that for all a ∈ C∞c (Rd) and T > 0,

1

T

∫ T

0

∫
Rd
a(x)nε(dt, dx)−→

ε→0

1

T

∫ T

0

∫
Rd
a(x)|φ(t, x)|2dxdt.

One has to notice that the effective mass equation is independent of the small parameter and,
thus is easiest to treat, in particular numerically. When replacing the original equation by (1.4),
one can say that one has solved the question of the oscillations of size 1

ε of the function ψε(t, x).

Dealing with the limit ε → 0 can be expressed in mathematical terms as looking for weak-?
accumulation points of the sequence of densities |ψε(t, x)|2, that we are going to study through
the notion of time-dependent Wigner distributions. Wigner measures’ approach is indeed a good
way to handle this question: it allows to treat quite general initial data and to give a new insight
on the status of the function φ(t, x) satisfying the Effective mass equation.
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A typical example of this sort of results has been obtained in [3] for data that we will call well-
prepared initial data. We describe below a weaker result that is a consequence of the work [3].
For this, we need some notations.

(i) With ξ ∈ Rd, we associate the operator P (ξ) with domain H2(Td) ⊂ L2(Td)

(1.5) P (ξ) = −1

2
|ξ +Dy|2 + Vper(y), y ∈ Td,

where Td = Rd\Zd is a flat torus.
We will see in Section 3 that this operator is essentially self-adjoint on L2(Td) with domain
H2(Td), and has a compact resolvent, hence a non-decreasing sequence of eigenvalues counted
with their multiplicities, which are called Bloch energies or band functions

%1(ξ) ≤ %2(ξ) ≤ · · · ≤ %n(ξ) −→ +∞,
and an orthonormal basis of eigenfunctions (ϕn(·, ξ))n∈N∗ called Bloch waves or Bloch modes,
satisfying

(1.6) P (ξ)ϕn(·, ξ) = %n(ξ)ϕn(·, ξ), ∀ξ ∈ Rd, ∀n ∈ N∗.

(ii) The initial data (ψε0)ε>0 is said well-prepared if there exist n ∈ N∗, ξ0 ∈ Rd and v0 ∈
S(Rd) such that

(1.7) ψε0(x) = e
i
ε ξ0·xϕn

(x
ε
, ξ0

)
v0(x).

Theorem 1.2. [3] Let T > 0. Assume (ψε0)ε>0 satisfies (1.7) with ξ0 a critical point of ξ 7→
%n(ξ). Assume that the eigenvalue %n(ξ) is separated from the rest of the spectrum of P (ξ) for ξ
in a neighborhood of ξ0. Then the solution of (1.1) satisfies

ψε(t, x) = e
i
ε ξ0·x−

i
ε2
%n(ξ0)tϕn

(x
ε
, ξ0

)
vε(t, x)

and vε(t) converges weakly in L2((0, T ), H1(Rd)) to the solution v(t) of the equation

(1.8)
{
i∂tv = − 1

2d
2%n(ξ0)∇x · ∇x v + Vext(t, x)v,

v|t=0 = v0.

The equation (1.8) is a typical example of an effective equation since it is ε-independent. It
involves the eigenfunctions and the eigenmodes of the operator P (ξ). In particular, starting from
a data proportional to ϕn

(
x
ε , ξ0

)
, the solution is proportional to ϕn

(
x
ε , ξ0

)
and the coefficient of

proportionality evolve in an autonomous manner involving the Bloch mode %n(ξ).
We point out that the importance of the assumption that ξ0 is a critical point of %n will be

made clear in the next chapters. Let us now discuss the role of the operator P (ξ). The existence
of two scales in the problem suggests to look for (ψε(t))ε>0 of the form

ψε(t, x) = Uε
(
t, x,

x

ε

)
, (t, x) ∈ R× Rd,

where the function Uε = Uε(t, x, y) is defined on R× Rd × Td. Formally, if (Uε(t))ε>0 satisfies

(1.9)
{
iε2∂tU

ε(t, x, y) = P (εD)Uε(t, x, y) + ε2V (t, x)Uε(t, x, y),
Uε|t=0 = Uε0 ,

with Uε0 (x, xε ) = ψε0, then (t, x) 7→ Uε
(
t, x, xε

)
solves (1.1). Here, the opeartor P (εD) acts as a

Fourier multiplier in the variable ξ:

P (εD)Uε(t, x, y) = (2π)−d
∫
Rd

eiξ·(x−x
′)P (εξ)Uε(t, x′, y)dx′dξ.
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Of course, there are several choices possible for realizing Uε0 (x, xε ) = ψε0. For example, one can
take

Uε0,1(x, y) = ψε0(x)1y∈Td , (x, y) ∈ Rd × Td.

In the case of well-prepared initial data satisfying (1.7), it looks appropriate to choose

Uε0,2(x, y) = e
i
ε ξ0·xϕn(y, ξ0)v0(x), (x, y) ∈ Rd × Td.

These choices will generate two functions Uεj (t, x, y), j = 1, 2, that are different functions of
Rd × Td. However, by unicity of the solution of (1.1), they satisfy

Uε1

(
t, x,

x

ε

)
= Uε2

(
t, x,

x

ε

)
, (t, x) ∈ R× Rd.

Let us now prove Theorem 1.2 in the simple case Vext(t, x) = 0. The next chapters will give
the elements for proving the general case.

Proof
We first write the equation satisfied by Ûε(t, ξ, y) where we denote by f̂ the Fourier transform
with respect to the variable x:

f̂(ξ) =

∫
Rd
f(x)e−iξ·xdx, ξ ∈ Rd, f ∈ S(Rd).

We have {
iε2∂tÛ

ε(t, ξ, y) = P (εξ)Ûε(t, ξ, y),

Ûε|t=0(ξ, y) = v̂0

(
ξ − ξ0

ε

)
ϕn(ξ0, y).

For ` ∈ N∗, let us denote by Πn(ξ) the eigenprojector on the n-th mode of P (ξ) and by Π⊥(ξ)
the orthogonal projector (Π⊥(ξ) = Id−Πn(ξ)). We have

Ûε(t, ξ, y) = Ûεn(t, ξ, y) + Ûε⊥(t, ξ, y), Ûεn(t, ξ, y) = Πn(εξ)Ûε(t, ξ, y), (t, x, y) ∈ R× Rd × Td.

Besides, for ` ∈ {n,⊥}, (Ûε` (t))ε>0 solves

iε2∂tÛ
ε
` (t, ξ, y) = (Π`P )(εξ)Ûε` (t, ξ, y)

with

Ûε` |t=0(ξ, y) = v̂0

(
ξ − ξ0

ε

)
Π`(εξ)ϕn(ξ0, y)

= v̂0

(
ξ − ξ0

ε

)(
Π`(ξ0) + ε

∫ 1

0

(
ξ − ξ0

ε

)
· ∇ξΠ`

(
ξ0 + sε

(
ξ − ξ0

ε

))
ds

)
ϕn(ξ0, y)

where we have used that Πn is a smooth function (this comes from the assumption on the mode
%n, as we shall see in Section 3). Assuming for example that v̂0 is compactly supported, we
obtain in L2(Rd × Td)

Ûε` |t=0(ξ, y) = δ`,nv̂0

(
ξ − ξ0

ε

)
ϕn(ξ0, y) +O(ε).

When ` =⊥, this implies Uε⊥(t) = O(ε) in L2(Rd × Td).
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When ` = n, using Πn(ξ)P (ξ) = %n(ξ)Πn(ξ), we obtain Ûεn(t, ξ, y) = e−
i
ε2
%n(εξ)tÛεn(0, ξ, y),

whence

Uεn(t, x, y) = (2π)−d
∫
Rd

eiξ·x−
i
ε2
%n(εξ)tÛεn(0, ξ, y)dξ

= (2π)−d e
i
ε ξ0·xϕn(ξ0, y)

∫
R2d

ei(ξ−
ξ0
ε )·(x−x′)− i

ε2
%n(εξ)tv0(x′)dξdx′

= (2π)−d e
i
ε ξ0·xϕn(ξ0, y)

∫
R2d

eiξ·(x−x
′)− i

ε2
%n(ξ0+εξ)tv0(x′)dξdx′

Writing %n(ξ0 + εξ) = %n(ξ0) + ε2

2 d
2%n(ξ0)ξ · ξ + ε3Gε(ξ)[ξ, ξ, ξ] for Gε(ξ) a smooth bounded

3-tensor, we obtain

vε(t) = (2π)−d
∫
R2d

eiξ·(x−x
′)− i

2d
2%n(ξ0)ξ·ξ t+itεGε(ξ)[ξ,ξ,ξ]v0(x′)dξdx′,

whence the result.

Remark 1.3. In the case where ∇%n(ξ0) 6= 0, the non-stationary phase theorem gives the conver-
gence to 0 of (vε(t))ε>0.

1.3. Our aim. Our aim in this lecture is to provide a similar description for more general initial
data, without assumptions on its form as we had on the well-prepared data of (1.7). However,
we will relax our exigency by only asking for a description of the limits of quadratic quantities
such as ∫ b

a

∫
Rd
φ(x)|ψε(t, x)|2dxdt or

∫ b

a

∫
Rd
φ(εξ)|ψ̂ε(t, ξ)|2dξdt.

To unify the position and impulsion (or frequency, or also Fourier) point of view, we shall
consider the Wigner transform of the family (ψε(t))ε>0 and replace the analysis of the densities
|ψε(t, x)|2dxdt or ε−d|ψ̂ε(t, ξ/ε)|2dξdt by the one of the distribution on R× R2d given by

wε(t, x, ξ) = (2πε)−d
∫
Rd
ψε(t, x+ εv/2)ψ

ε
(t, x− εv/2)eiv·ξdvdt.

Note that, formally, the marginals of wε(t, x, ξ) give the position and impulsion densities. Things
will be made rigorous in Section 2. We are going to prove the following result, in the case d = 1.

Theorem 1.4. Consider for each n ∈ N the sets of critical values of the Bloch modes

(1.10) Λn := {ξ, ∇%n(ξ) = 0}.

Assume (ψε0) is bounded in Hs
ε (R) for some s > 1/2. Assume Vper is smooth and that t 7→

Vext(t, x) is bounded in L∞(R, C1(R)). Then, there exists a subsequence (ψε`0 )ε`>0, such that
ε` −→
`→+∞

0 and for every a < b and every φ ∈ C∞c (R2) the following holds:

lim
`→∞

∫ b

a

∫
R2

φ(x, ξ)wε`(t, x, ξ)dxdξdt =
∑
n∈N∗

∑
ξ∈Λn

∫ b

a

∫
R
φ(x, ξ)|ψ(n)

ξ (t, x)|2dxdt(1.11)

where, for every n ∈ N∗ and ξ ∈ Λn, ψ
(n)
ξ solves the Schrödinger equation:

(1.12) i∂tψ
(n)
ξ (t, x) = −1

2
∂2
ξ%n(ξ)∂2

xψ
(n)
ξ (t, x) + Vext(t, x)ψ

(n)
ξ (t, x),

with initial datum:
ψ

(n)
ξ |t=0 is the weak limit in L2(R) of the sequence e

− i
ε`
ξx

(Πn(εDx)(ψε`0 ⊗ 1y∈T))|y= x
ε
.
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Moreover, for all φ ∈ C∞c (R),

(1.13) lim
`→∞

∫ b

a

∫
R
φ(x)|ψε`(t, x)|2dxdt =

∑
n∈N∗

∑
ξ∈Λn

∫ b

a

∫
R
φ(x)|ψ(n)

ξ (t, x)|2dxdt

Note that some of the accumulation points of e
− i
ε`
ξx

Πn(εDx)(ψε`0 ⊗ 1y∈T) may just be 0. For
example, when Vper = 0, only the first Bloch energy %1 has critical points and they are precisely
Λ1 = 2πZ. Besides, the associated projector Π1(ξ) coincides with the orthogonal projection onto
Ceiky whenever ξ ∈ (k−π, k+π) and k ∈ 2πZ. Therefore Π1(εξ)(ψ̂ε`0 (ξ)1y∈T) = 1(−π,π)(εξ)ψ̂

ε`
0 (ξ)

and e
− i
ε`

2πkx
Π1(εDx)(ψε`0 ⊗ 1y∈T) weakly converges to zero when k 6= 0. As a consequence, in

this elementary case Vper = 0, Theorem 1.4 says nothing but that the weak limits of |ψε(t, x)|2
are equal to |ψ0(t, x)|2 where ψ0(t, x) solves (1.1) with initial data ψ0

0 , the weak limit of (ψε0) in
L2(R).

If the data is well-prepared, one recovers the result of Theorem 1.2.
In higher dimension, the result is more complicated to state. We will discuss it in the last

section.
This result relies on a semi-classical analysis of the problem and the use of the Bloch-Floquet

theory. The aim of the lecture is to explain these tools (Sections 2 and 3 respectively) and to
implement them for analyzing the solutions of equation (1.1) (Section 4). We will see that this
requires the introduction of a two-scale analysis, and thus the introduction of a refined notion
of two-scale Wigner transform (Section 5). In the conclusive Section 6, we will be able to prove
Theorem 1.4 and we will discuss the higher dimension case.
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2. The semi-classical approach

In this chapter, we introduce Wigner transforms in Section 2.1. We will use their tight link
with semi-classical pseudodifferential operators, of which we shall describe the properties that
will be useful for our purpose in Section 2.2. Wigner measures are defined in Section 2.3, together
with the analysis of their main properties.

2.1. Wigner function.

2.1.1. Definitions. The Wigner function W ε[f ] of a function f ∈ L2(Rd) is the function defined
on R2d:

(2.1) W ε[f ](x, ξ) = (2π)−d
∫
Rd

eiv·ξf
(
x− ε

2
v
)
f
(
x+

ε

2
v
)
dv.

It also writes

W ε[f ](x, ξ) = (2πε)−d
∫
Rd

e
i
ε v·ξf

(
x− v

2

)
f
(
x+

v

2

)
dv.

It has been introduced by Wigner [71] at the beginning of the 20th century. Let us derive a first
set of basic properties.

Proposition 2.1 (Wigner distributions). For f ∈ S(Rd), its Wigner function satisfies the
following properties:

(1) W ε[f ] ∈ S(Rd × Rd) and for all N ∈ N, there exists CN > 0

〈ξ〉N 〈x〉N |W ε[f ](x, ξ)| ≤ CN sup
|α|,|β|≤N

‖xα(ε∂x)βf‖L2 , (x, ξ) ∈ R2d.

(2) W ε[f ] ∈ L2(Rd × Rd) and ‖W ε[f ]‖L2(R2d) = (2πε)−
d
2 ‖f‖2L2(Rd).

(3) 〈W ε[f ],W ε[g]〉L2(Rd×Rd) = (2πε)−d |〈f, g〉L2(Rd)|2.
(4) The marginals of W ε[f ] on x or ξ give the position or momentum densities of f respec-

tively :∫
Rd
W ε[f ](x, ξ)dξ = |f(x)|2,

∫
Rd
W ε[f ](x, ξ)dx =

1

(2πε)d

∣∣∣∣f̂ (ξε
)∣∣∣∣2 .

In particular, ∫
R2d

W ε[f ](x, ξ)dxdξ = ‖f‖2L2(Rd).

(5) W ε[f ] is real-valued but in general not positive.

Note that it is proved in [41, 66] that W ε[f ] is nonnegative if and only if f is Gaussian (the
article [41] concerns the dimension 1, while [66] holds in any dimension).

Example 2.2. Consider z0 = (x0, ξ0) ∈ R2d and

fεz0(x) = ε−d/4 e
i
ε ξ0·(x−x0)f

(
x− x0√

ε

)
, x ∈ Rd.

Then,

W ε[fεz0 ](x, ξ) = ε−d W 1[f ]

(
ξ − ξ0√

ε
,
ξ − ξ0√

ε

)
.

Proof
1. We observe that the transformation acts on ff by the measure preserving change of coordi-
nates (x, v) 7→ (x+ 1

2v, x−
1
2v) followed by a partial Fourier transform with respect to v. Hence,
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if f is a Schwartz function, then the Wigner distribution W ε[f ], too.
2. Square integrability of W ε[f ] can be seen as in 1. For calculating the norm, let (x, ξ) ∈ R2d,

|W ε[f ](x, ξ)|2

= (2π)−2d

∫
R2d

f
(
x− εv

2

)
f
(
x+

εv

2

)
f

(
x+

εv′

2

)
f

(
x− εv′

2

)
eiξ·(v−v

′)dvdv′.

Therefore, after integration in ξ, we obtain∫
Rd
|W ε[f ](x, ξ)|2dξ = (2π)−d

∫
Rd

∣∣∣f (x− εv
2

)∣∣∣2 ∣∣∣f (x+ ε
v

2

)∣∣∣2 dv.
We deduce

‖W ε[f ]‖2L2(R2d) = (2πε)−d
∫
R2d

|f (x)|2 |f (x+ v)|2 dvdx = (2πε)−d‖f‖2L2(Rd)

∫
R2d

|f (x)|2 dx

= (2πε)−d‖f‖4L2(Rd).

One then extends the result by density of Schwartz functions in L2(Rd).
3. is essentially the same calculation as in 2.
4. is straightforward.
5. Real-valuedness comes from changing v to −v in the integral. For non-positivity, we take f
odd, that is, f(x) = −f(−x), and evaluate in the origin, W ε[f ](0, 0) = −(πε)−d‖f‖L2(Rd).

2.1.2. Wigner transform as a distribution. The action of the Wigner distribution on smooth
compactly supported function can be simply expressed in terms of pseudodifferential operators.
We have

(2.2) 〈W ε[f ], a〉 =

∫
R2d

a(x, ξ)W ε[f ](x, ξ)dxdξ = (f, opε(a)f)L2(Rd)

for f ∈ L2(Rd) and a ∈ C∞c (R2d), where

(2.3) ∀f ∈ S(Rd), opε(a)f(x) = (2πε)−d
∫
R2d

a
(

1
2 (x+ y), ξ

)
e
i
ε ξ·(x−y)f(y)dy dξ.

The properties of the semi-classical pseudodifferential operators then induce properties of the
Wigner distribution. The more important ones are the following.

Proposition 2.3 (Wigner distributions). The Wigner distributions satisfy the following prop-
erties:

(1) For all f ∈ L2(Rd), the map from C∞c (Rd × Rd) to C,

a 7→ 〈W ε[f ], a〉

is a distribution of finite order.
(2) If (fε)ε>0 is a bounded sequence in L2(Rd) then (W ε[fε])ε>0 is a bounded sequence of

tempered distributions in S ′(Rd × Rd,CN×N ).
(3) If (fε)ε>0 is a bounded sequence in L2(Rd), then every limit point of (W ε[fε])ε>0 is a

positive measure on Rd × Rd.

The distributional interpretation of Wigner transforms in terms of pseudodifferential operators
is a powerful tool and in the two last points of Proposition 2.3 lay the foundation for the section
about Wigner measures. Proposition 2.3 is proved at the end of Section 2.2.
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2.1.3. Wigner function of a pair of functions. One sometimes extends the definition of Wigner
transform to pairs of functions f, g ∈ L2(Rd) by setting

W ε[f, g](x, ξ) := (2π)−d
∫
Rd
f
(
x− εv

2

)
g
(
x+

εv

2

)
eiξ·vdv,

with the straightforward properties listed in the next statement.

Proposition 2.4. (1) For all f ∈ L2(Rd), W ε[f, f ] = W ε[f ].
(2) For all f, g ∈ L2(Rd), W ε[g, f ] = W ε[f, g] and∫

R2d

W ε[f, g](x, ξ) dxdξ = (g, f)L2(Rd).

(3) For all f1, f2, g1, g2 ∈ L2(Rd),

(2.4) (W ε[f1, g1],W ε[f2, g2])L2(R2d) = (2πε)−d (f1, f2)L2(Rd) (g2, g1)L2(Rd) .

(4) For all (f, g) ∈ (L2(Rd))2 and a ∈ C∞c (R2d),

〈W ε[f, g], a〉 = (g, opε(a)f)L2(Rd) = (opε(a)g, f)L2(Rd) .

Proof
1, 2 and 4 come from the definition.
For 3, one writes

(W ε[f1, g1],W ε[f2, g2])L2(R2d)

= (2πε)−2d

∫
R4d

f1(x− v
2 )g1(x+ v

2 )f2(x− v′

2 )g2(x+ v′

2 ) eiξ·(v
′−v)/ε dv dv′ dx dξ

= (2πε)−d
∫
R2d

f1(x− v
2 )g1(x+ v

2 )f2(x− v
2 )g2(x+ v

2 ) dv dx

= (2πε)−d (f1, f2)L2(Rd) (g2, g1)L2(Rd) .

Example 2.5. We consider two functions f1, f2 ∈ L2(Rd) and two points in the phase space
z1 = (x1, ξ1) and z2 = (x2, ξ2). Denote Q = x1+x2

2 , P = ξ1+ξ2
2 . Let

fεzj (x) = ε−
d
4 e

i
ε ξj ·(x−xj)fj

(
x− xj√

ε

)
, x ∈ Rd, j = 1, 2.

Then, the joint Wigner function satisfies for all (x, ξ) ∈ R2d,

W ε[fεz1 , f
ε
z2 ](x, ξ)

= W ε[e
i√
ε
ξ1·(x− x1√

ε
)
f1(x− x1√

ε
), e

i√
ε
ξ2·(x− x2√

ε
)
f2(x− x2√

ε
)]

(
x√
ε
,
√
εξ

)
= e

i
ε (ξ1−ξ2)·(x−Q)W ε[f1, f2]

(
x−Q√

ε
,
√
ε(ξ − P )

)
= ε−d e

i
ε (ξ1−ξ2)·(x−Q)W 1[f1, f2]

(
x−Q√

ε
,
ξ − P√

ε

)
.

2.2. Semi-classical calculus. Let a ∈ C∞c (R2d) and ε ∈]0, 1] a small parameter. Recall we in-
troduced the semi-classical pseudodifferential operator of symbol a as the operator opε(a) defined
on S(Rd) by equation (2.3), namely

opε(a)f(x) = (2πε)−d
∫
R2d

a
(

1
2 (x+ y), ξ

)
e
i
ε ξ·(x−y)f(y)dy dξ, f ∈ S(Rd).

Note that there exists other choices of quantization.
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The integral in (2.3) is convergent because f is rapidly decreasing. For symbols a = a(x, ξ)
that are polynomials in x and ξ, the integral defining opε(a)f still exists for f ∈ S(Rd), since
f ∈ S(Rd) can compensate the polynomial growth. This property and those of the Fourier
transform calls for a generalisation of the notation opε(a) to polynomial functions and one talks
of opε(x) to denote the operator of multiplication with x, and of opε(ξ) for the differentiation
operator −iε∂x. In particular, one has the following example.

Example 2.6. We have opε(x·ξ) = 1
2 (opε(x) · opε(ξ) + opε(ξ) · opε(x)). Indeed, for all f ∈ S(Rd),

opε(x · ξ)f(x) = (2πε)−d
∫
Rd

1
2 (x+ y) · ξ eiξ·(x−y)/εf(y) dξdy

= (2πε)−d
∫
Rd

1
2

(
(ix · ∂y − iy · ∂x)eiξ·(x−y)/ε

)
f(y) dξdy

= 1
2 (x · (−i∂x)f(x)− i∂x · (xf(x))) .

Besides, if c ∈ C∞(Rd), then for 1 ≤ j, ` ≤ d,

opε (c(x)ξj) =
ε

i
c(x)∂xj +

ε

2i
∂xjc(x),

opε(c(x)ξjξ`) = −ε2∂x`
(
c(x)∂xj ·

)
+
iε

2
opε

(
ξj∂x`c(x)− ξ`∂ξjc(x)

)
+
ε2

4
∂2
xjx`

c(x).

2.2.1. Action on L2(Rd). Let us now investigate how one can extend the action of opε(a) to
square integrable functions. The kernel (x, y) 7→ kε(x, y) of the semi-classical pseudodifferential
operator opε(a) is given by

kε(x, y) = (2πε)−d
∫
Rd

e
i
ε ξ·(x−y)a

(
1
2 (x+ y), ξ

)
dξ

= ε−dκa
(

1
2 (x+ y), 1

ε (x− y)
)

(2.5)

where

κa(X, v) = (2π)−d
∫
Rd

eiξ·va (X, ξ) dξ.

The function κa(x, ·) is the inverse Fourier transform of ξ 7→ a(x, ξ), we write

(2.6) κa(x, v) = F−1
ξ 7→va (x, v) .

The function (x, v) 7→ κa(x, v) is compactly supported in x and Schwartz class in v. Note that
the link between a and κa also writes

(2.7) a(x, ξ) =

∫
Rd

e−iξ·vκa(x, v)dv.

The precise structure of the kernel of this operator calls for using the next Proposition.

Proposition 2.7. Let P ε be an operator of kernel kε(x, y) of the form

kε(x, y) = ε−dκ
(

1
2 (x+ y), 1

ε (x− y)
)

and such that K satisfies
∫

sup
X∈Rd

|κ(X, v)| dv < +∞. Then, the operator P ε is uniformly bounded

in L2(Rd) and

‖P ε‖L(L2(Rd)) ≤
∫

sup
X∈Rd

|κ(X, v)| dv.
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Proof
For f ∈ L2(Rd), we have

|P εf(x)| ≤ ε−d
∫

sup
X∈Rd

∣∣kε(X, x−yε )∣∣ |f(y)|dy.

Set gε(x) = ε−d supX∈Rd
∣∣kε(X, xε )∣∣, then gε ∈ L1(Rd) and

‖gε‖L1(Rd) =

∫
sup
X∈Rd

|κ(X, v)| dv.

We obtain by use of Young’s convolution inequality for p = 1 and q = r = 2,

‖P εf‖L2(Rd) ≤ ‖gε ∗ f‖L2(Rd) ≤ ‖gε‖L1(Rd)‖f‖L2(Rd) ≤ ‖f‖L2(Rd)

(∫
sup
X∈Rd

|κ(X, v)| dv
)
.

Note that the Young’s convolution inequality is straightforward for this choice of indices.

As a consequence of Proposition 2.7, we obtain the boundedness in L(L2(Rd)) of pseudodif-
ferential operators. Indeed, for κ = κa as in (2.6), we have∫

sup
x∈Rd

|κa(x, v)| dv ≤ C sup
β∈Nd
|β|≤d+1

sup
x∈Rd

‖∂βξ a(x, ·)‖L1(Rd).

with C =
∫
〈v〉−d−1dv. In the following, we set

(2.8) Nd(a) := sup
β∈Nd
|β|≤d+1

sup
x∈Rd

‖∂βξ a(x, ·)‖L1(Rd).

We observe that the norm Nd(a) is controlled by Schwartz semi-norms: there exists a constant
cd depending only on d such that

(2.9) Nd(a) ≤ cd sup
β∈Nd
|β|≤d+1

sup
x∈Rd

∣∣∣(1 + |ξ|)d+1∂βξ a(x, ξ)
∣∣∣ .

The result is the following.

Theorem 2.8. There exists a constant c > 0 which depends only on d such that for all a ∈
C∞c (R2d),

‖opε(a)‖L(L2(Rd)) ≤ cNd(a)(2.10)

Let us define the ε-Fourier transform:

(2.11) ∀f ∈ S(Rd), ∀ξ ∈ Rd, Fε(f)(ξ) = (2πε)−d/2
∫
Rd

e−
i
εx·ξf(x)dx.

Then, if a(x, ξ) = a(−ξ, x), one has

(2.12) (f, opε(a)g)L2(Rd) = (2π)−d (Fε(f), opε(a)Fε(g))L2(Rd) , f, g ∈ L2(Rd).

Therefore, one can get an estimate similar to (2.10) where the roles of x and ξ are exchanged:

‖opε(a)‖L(L2(Rd)) = ‖opε(a)‖L(L2(Rd)).

which yields the estimate

(2.13) ‖opε(a)‖L(L2(Rd)) ≤ c sup
β∈Nd
|β|≤d+1

sup
ξ∈Rd

∥∥∂βxa(·, ξ)
∥∥
L1(Rd)

.
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Remark 2.9. Observe that the estimates (2.10) makes possible to define bounded semi-classical
pseudodifferential operators with a symbol a which has few regularity in x, as long as a is
measurable, compactly supported and that ∂βξ a is integrable for all β ∈ Nd such that |β| ≤ d+ 1.
And similarly, we can exchange the role of x and ξ by estimate (2.13) .

The estimate the most used in the literature is the one obtained by Calderón and Vaillancourt
in [21].

Theorem 2.10 (Calderón-Vaillancourt Theorem). There exists N ∈ N∗ and C > 0 such that
for all a ∈ C∞c (R2d),

(2.14) ‖opε(a)‖L(L2(Rd)) ≤ C
∑

α∈N2d,|α|≤d+2

ε
|α|
2 sup

Rd×Rd
|∂αx,ξa|

2.2.2. The adjoint and the composition of semi-classical pseudodifferential operators. We intro-
duce the notation for the Poisson bracket of two functions. For f, g ∈ C1(Rd), we set

(2.15) {f, g} = ∇ξf · ∇xg −∇xf · ∇ξf.
This notation extends to matrix-valued functions, paying attention to the non-commutativity of
the product on the set of matrices.

Proposition 2.11. Let a, b ∈ C∞c (R2d), then in L(L2(Rd)),
opε(a)∗ = opε(a),(2.16)

opε(a)opε(b) = opε(ab) +
ε

2i
opε ({a, b}) +O

(
ε2
)
,(2.17)

[opε(a), opε(b)] =
ε

i
opε({a, b}) +O

(
ε3
)

(2.18)

We are not going to prove this proposition but another one, with less complicated symbols
but low regularity.

2.2.3. Pseudodifferential calculus with low regularity. With the observation (2.12) in mind, one
can perform some symbolic calculus with low regularity in the ξ-variable. The reader will find
applications where this calculus is used in [34] and [32]. We focus on Lipschitz regularity and
consider the set Lip(Rd) of continuous functions f such that

∃Lf > 0, ∀x, y ∈ Rd, |f(x)− f(y)| ≤ Lf |x− y|.

Lemma 2.12. (1) Suppose % ∈ Lip(Rd), and a ∈ C∞c (R2d). Then, in L(L2(Rd))
opε(a %) = opε(a)%(x) +O (εLρNd((1 + ∆ξ)a))

opε(% a) = %(x)opε(a) +O (εLρNd((1 + ∆ξ)a)) .

(2) Suppose % ∈ C1(Rd) with ∇% ∈ Lip(Rd), and a ∈ C∞c (R2d). Then, in L(L2(Rd))

[opε(a), %(x)] =
ε

i
opε(∇ξa · ∇%(x)) +O(ε2L∇%Nd(∆ξa)).

Note that the observation of (2.12):

opε(a) = (Fε)∗opε(a)Fε, a(x, ξ) := a(−ξ, x),

induces that properties proved for % = %(x) have their analogue for % = %(ξ).
Proof
Point 1. We consider Rε := opε(a %)− opε(a)%(x). We have

Rεf(x) =
1

εd

∫
Rd
rε
(
x+ y

2
,
x− y
ε

)
f(y) dy, ∀f ∈ S(Rd,CN ),
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where rε(x, v) := F−1
ξ a(x, v)(%(x)− %(x− εv)). By Proposition 2.7,

‖Rε‖L(L2(Rd)) ≤ (2π)−d
∫
Rd

sup
x∈Rd

|rε(x, v)|dv.

By hypothesis, we can find L% > 0 such that

|%(x)− %(x− εv)| ≤ L%ε|v|, ∀(x, v) ∈ suppF−1
ξ a.

Therefore, using |v||F−1
ξ a(x, v)| ≤ (1 + |v|2)|F−1

ξ a(x, v)| = |F−1
ξ a(x, v)|+ |F−1

ξ (−∆ξa)(x, v)|, we
deduce

‖Rε‖L(L2(Rd)) ≤ εCdL%(Nd(a) +Nd(∆ξa)).

Point 2. We observe that the kernel of R̃ε := [opε(a), %(x)]− ε
i opε(∇ξa ·∇%), is of the form (2.5)

with

r̃ε(x, v) = F−1
ξ a(x, v) (%(x)− %(x− εv))− ε

i
F−1
ξ ∇ξa(v, x) · ∇%(x)

= F−1
ξ a(x, v) (%(x)− %(x− εv)− εv · ∇%(x))

= ε2θ(x, v)F−1
ξ a(x, v)

with |θ(x, v)| ≤ L∇%|v|2. Then, we conclude as before using |v|2F−1
ξ a = −F−1

ξ ∆ξa.

2.2.4. Weak Gårding inequality. Gårding inequality gives an answer to the question of the link
between the positivity of the symbol a and the positivity of the operator opε(a). We prove here
a weak version of the Gårding inequality.

Proposition 2.13 (Weak Gårding inequality). Let a ∈ C∞c (R2d) such that a ≥ 0. Then, for all
δ > 0, there exists Cδ > 0 such that for all f ∈ L2(Rd),

(2.19) (f, opε(a)f)L2(Rd) ≥ −(δ + Cδε
2)‖f‖2L2(Rd), ∀f ∈ L2(Rd).

Remark 2.14. This estimate can be ameliorated into: if a ≥ 0, there exists a constant Ca > 0
such that

(f, opε(a)f) ≥ −Caε‖f‖L2 , ∀f ∈ L2(Rd)
Besides, with the assumptions of Proposition 2.13, one can prove the Fefferman-Phong inequality
(cf. [73] for a detailed proof):

∃C > 0, ∀f ∈ L2(Rd), (f, opε(a)f)L2(Rd) ≥ −Cε
2‖f‖2L2(Rd).

However, the easiest version of Proposition 2.13 is enough for our purpose.

Proof
We associate with a a function χ ∈ C∞c (R2d) such that χ = 1 on the support of a and we set for
some λ > 0 to be fixed later

bδ(x, ξ) = χ(x, ξ)
(
a(x, ξ) + λ δ

)1/2
.

The function bδ is in C∞c (R2d) and satisfies

bδ(x, ξ)
2 = a(x, ξ) + λ δ χ2(x, ξ).

Therefore, using {bδ, bδ} = 0, the symbolic calculus gives in L(L2(Rd)),

opε(bδ)
∗opε(bδ) = opε(a) + λ δ opε(χ

2(x, ξ)) +O(ε2).

Let us now choose λ so that we have

λ ‖opε(χ
2(x, ξ))‖L(L2(Rd)) ≤ 1,



16 CLOTILDE FERMANIAN KAMMERER & LINO BENEDETTO (TA)

then, for all f ∈ L2(Rd),

0 ≤ ‖opε(bδ)f‖2 = (f, opε(bδ)
∗opε(bδ)f)L2(Rd)

= (f, opε(a)f)L2(Rd) + λδ
(
f, opε(χ

2(x, ξ))f
)
L2(Rd)

+O
(
ε2‖f‖2L2(Rd)

)
≤ (f, opε(a)f)L2(Rd) + δ‖f‖2L2(Rd) +O

(
ε2‖f‖2L2(Rd)

)
,

whence the result.

2.2.5. Proof of Proposition 2.3. Points 1. and 2. are a consequence of (2.10) and (2.2).
For Point 3, we observe that Gårding inequality of Proposition 2.13 implies that every accumula-
tion point of (W ε[fε]) in S ′(Rd×Rd) is a positive distribution and therefore, a positive measure
on Rd × Rd, as detailed in the proof of the next Theorem 2.15.

2.3. Wigner measures.

2.3.1. Definition. In this section, we continue with the observation of Point 3 in Proposition 2.3
and analyze the properties of the weak limits of the Wigner transform.

Theorem 2.15. Let (fε)ε>0 be a bounded family in L2(Rd). There exists a sequence (εn)n∈N
which tends to 0 when n goes to +∞ and a positive measure µ on R2d such that

(2.20) ∀a ∈ C∞c (R2d),
(
fεn , opεn(a)fεn

)
L2(Rd)

−→
n→+∞

∫
R2d

a(x, ξ)µ(dx, dξ).

Moreover µ(R2d) < +∞.

Any measure µ ∈ M+(R2d) satisfying (2.20) for some sequence (εn)n∈N is called Wigner
measure or semi-classical measure of the family (fε)ε>0. A given family (fε)ε>0 may have
several Wigner measures.

The use of Wigner measures developed in the 90s, in particular with the articles [49] by Pierre-
Louis Lions, Thierry Paul and [36] by Patrick Gérard, Éric Leichtnam (see also [34] and [37]).
They first appear in [38] in the frame of the analysis of sequences of eigenfunctions of a Laplace
Beltrami operator on a compact manifold (see also [6] and [7] for similar problematic on the
torus).

Proof
Since the quantity Iε(a) = (fε, opε(a)fε)L2(Rd) is uniformly bounded in ε, for a given function
a ∈ C∞c (R2d), one can find an extracted convergent subsequence Iεn,a(a). Considering a dense
countable subset of C∞c (R2d) and using a diagonal extraction process, one builds a sequence εn
for which Iεn(a) has a limit for all a ∈ C∞c (R2d). The map which sends a on the limit I(a) of the
sequence Iεn(a) is a linear form on C∞c (R2d). It defines a distribution and Gårding inequality
shows that this distribution is positive.

It remains to prove that I satisfies a measure estimate. We consider a nonincreasing function
χ ∈ C∞c ([0,+∞)) such that 0 ≤ χ ≤ 1, χ(u) = 0 for u ≥ 2 and χ(u) = 1 for 0 ≤ u ≤ 1. We set
χR = χ

( ·
R

)
. Then, we deduce from(

fε, opε(χR(x2 + ξ2))fε
)
L2(Rd)

≤ C

that I(χR(x2 + ξ2)) < +∞ and is uniformly bounded in R. Moreover, the function R 7→
I(χR(x2 + ξ2)) is nondecreasing and we can set

I(1) := lim
R→+∞

I(χR(x2 + ξ2)).
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Then, the positivity of I yields

∀a ∈ C∞c (R2d), I
(
‖a‖L∞(R2d) − a

)
≥ 0,

which implies the measure’s type control that we were seeking:

∀a ∈ C∞c (R2d), I(a) ≤ C ‖a‖L∞(R2d).

Therefore, the linear form I defines a positive finite measure µ on R2d.

2.3.2. Examples. Let us compute the Wigner measures associated with some exemplary families.

Example 2.16. Let x0, ξ0 ∈ Rd and ϕ ∈ L2(Rd).

(1) Concentration. Let uε(x) = ε−d/2ϕ
(
ξ−ξ0
ε

)
, then (uε)ε>0 has a unique Wigner measure

µu(dx, dξ) = (2π)−d δx0
(x)⊗ |ϕ̂(ξ)|2dξ.

(2) Oscillation. Let vε(x) = ϕ(x)eix·ξ0/ε, then (vε)ε>0 has a unique Wigner measure

µv(dx, dξ) = |ϕ(x)|2dx⊗ δξ0(ξ).

Note that the ε-Fourier transform transforms an oscillation in position into a concentration
in impulsion, and conversely

Fεuε(ξ) = e−
i
εx0·ξF1ϕ(ξ) and Fεvε = ε−

d
2F1ϕ

(
ξ − ξ0
ε

)
.

The Wigner measure of a family (fε)ε>0 provides information about the strong convergence
of this family. In example (1) above, it is the point x0 of the configuration space that is the
obstruction to the strong convergence of uε to 0 in the sense that if x0 is not on the support
of φ ∈ C∞c (Rd), then (φ, uε)L2(Rd) goes to 0 as ε goes to 0. Similarly, for the oscillation family
(vε)ε>0 of example (2), it is the point ξ0 of the momentum space that is the obstruction and
(φ, uε)L2(Rd) will go to 0 if ξ0 is not in the support of the φ̂.

Another important class consists in Coherent states.

Example 2.17. Let α ∈ (0, 1), β > 0 and

uεα,β = ε−dα/2ϕ

(
ξ − ξ0
εα

)
eix·ξ0/ε

β

,

then (uα,βε )ε>0 has a unique Wigner measure

µα,β(x, ξ) =

 δx0
(x)⊗ δξ0(ξ) if β = 1

δx0
(x)⊗ δ0(ξ) if β < 1

0 if β > 1
.

Notice that when β > 1, the family (uεα,β)ε>0 is not ε-oscillating and its Wigner measures at
the scale ε do not capture its mass. The coherent states for which α = 1

2 and β = 1 are called
wave packets.

The WKB states are often used in semi-classical analysis (see [20]).

Example 2.18. Let S ∈ C2(Rd) and gε(x) = e
i
εS(x)ϕ(x), then (gε)ε>0 has a unique Wigner

measure
µS(x, ξ) = |ϕ(x)|2dx⊗ δ∇S(x)(ξ).
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Proof
We have for a ∈ S(R2d),

(gε, opε(a)gε)L2(Rd) =

∫
R2d

F−1
ξ a(X, v)e

i
ε (S(X+ε v2 )−S(X−ε v2 ))ϕ

(
X + ε

v

2

)
ϕ
(
X − εv

2

)
dXdv

and the result follows from Lebesgue dominated convergence Theorem.
Actually, the proof shows that the result extends to functions S for which there exists a

function ∇S ∈ L∞(Rd) such that

∀x, v ∈ Rd,
1

t
(S(x)− S(x+ tv))−→

t→0
∇S(x) · v.

When ∇S 6= 0 almost everywhere, one deduces from the result on the measure that WKB states
with phase of low regularity goes weakly to 0 in L2.

2.3.3. Wigner measures and ε-oscillation. One can wonder how using Wigner measures may
help to calculate the weak limits of energy densities, since the measures are obtained by testing
against smooth, compactly supported functions a. In particular, the symbols a are compactly
supported in the Fourier variable ξ, while the limits that we wanted to compute do not present
cut-off in frequencies. This question is solved via the notion of ε-oscillation which allows to
link the Wigner measures with the accumulation points of the energy density, provided that the
family of functions under investigation is ε-oscillating.

Definition 2.19. A family (fε)ε>0 in L2(Rd) is ε-oscillating if

(2.21) limsup
ε→0

∫
|ξ|>R/ε

∣∣∣f̂ε(ξ)∣∣∣2 dξ −→
R→+∞

0,

Remark 2.20. If a family (fε)ε>0 in L2(Rd) has a Hs
ε norm uniformly bounded for some s > 0:

∃C > 0, ‖〈εD〉sfε‖L2(Rd) ≤ C,

then, using that 1|εD|≥R ≤ R−2s〈εD〉2s, one obtains that this family is ε-oscillating. Indeed,∫
|ξ|>R/ε

∣∣∣f̂ε(ξ)∣∣∣2 dξ =
(
1|εD|≥Rf

ε, fε
)
L2(Rd)

≤ R−2s
(
〈εD〉2sfε, fε

)
L2(Rd)

≤ C2R−2s −→
R→+∞

0.

The families of Example 2.16 are ε-oscillating. We verify this claim for the concentration
family (uε)ε>0. Indeed, for any R > 0,∫

|ξ|>R/ε
|ûε(ξ)|2 dξ = ε−d

∫
|ξ|>R/ε

∫
Rd

∫
Rd
ϕ( ξ−ξ0ε )ϕ(y−x0

ε )eiξ·(x−y)d(x, y, ξ)

=

∫
|ξ|>R

∫
Rd

∫
Rd
ϕ(x)ϕ(y)eiξ·(x−y)d(x, y, ξ)

=

∫
|ξ|>R

|ϕ(ξ)|2dξ −→
R→+∞

0.

Proposition 2.21 ([34, 36, 37]). If µ ∈M+(Rd ×Rd) is an accumulation point of (W ε[fε])ε>0

along some subsequence (εn)n∈N, and if the measure |fεn(x)|2dx converges weakly towards a
measure ν ∈M+(Rd) then

(2.22)
∫
Rd
µ(·, dξ) ≤ ν.

Equality holds in (2.22) if and only if (fε)ε>0 is ε-oscillating.
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Proof
We use the function χR = χ

( ·
R

)
where χ ∈ C∞c (R, [0, 1]) is compactly supported in {|ξ] ≤ 2}.

For R > 0 and ϕ ∈ C∞c (Rd), ϕ ≥ 0, we have∫
Rd
ϕ(x)|fεn(x)|2dx = (fεn , ϕ(1− χR) (εnD) fεn) + (fεn , ϕχR (εnD) fεn) .

Besides,

lim
n→+∞

(fεn , ϕχR (εnD) fεn) =

∫
R2d

ϕ(x)χ(ξ/R)µ(dx, dξ)

and, in view of

(fεn , ϕ(1− χR) (εnD) fεn) =

∫
Rd
ϕ(x)|(1− χR)(εnD)fεn(x)|2dx

+ (χR (εnD) fεn , ϕ(1− χR) (εnD) fεn)

≥ (χR (εnD/R) fεn , ϕ(1− χR) (εnD) fεn) ,

we have

lim
n→+∞

(fεn , ϕ(1− χR) (εnD) fεn) ≥
∫
R2d

ϕ(x)χR(ξ)(1− χR(ξ))µ(dx, dξ).

We deduce that for all R > 0,

liminf
n→+∞

∫
Rd
ϕ(x)|fεn(x)|2dx ≥

∫
R2d

ϕ(x)χR(ξ)µ(dx, dξ) +

∫
R2d

ϕ(x)χR(ξ)(1− χR(ξ))µ(dx, dξ).

Using Fatou lemma, we have

liminf
R→+∞

∫
R2d

ϕ(x)χR(ξ)µ(dx, dξ) ≥
∫
R2d

ϕ(x) liminf
R→+∞

χR(ξ)µ(dx, dξ) =

∫
R2d

ϕ(x)µ(dx, dξ).

Moreover
liminf
R→+∞

∫
R2d

ϕ(x)χR(ξ)(1− χR(ξ))µ(dx, dξ) ≥ 0.

Therefore,

liminf
n→+∞

∫
Rd
ϕ(x)|fεn(x)|2dx ≥

∫
R2d

ϕ(x)µ(dx, dξ).

One notices that the ε-oscillation property implies that for χ as before,

limsup
n→+∞

(ϕ (1− χR (εnD)) fεn , fεn) −→
R→+∞

0.

We then get the result by letting n and then R go to +∞ in the equality∫
Rd
ϕ(x)|fεn(x)|2dx = (fεn , ϕχR (εnD) fεn) + (fεn , ϕ (1− χR (εnD)) fεn)

=
(
fεn , opεn (ϕ(x)χR (ξ)) fεn ,

)
+ (fεn , ϕ(x) (1− χR (εnD)) fεn)

+O(εn).

2.3.4. Wigner measures of vector-valued families and orthogonality. Suppose now that (fε)ε>0

is a bounded sequence in L2(Rd,CN ); then one can consider the N by N matrix

W ε[fε](x, ξ) = (W ε[fεi , f
ε
j ](x, ξ))1≤i,j≤N , x, ξ ∈ Rd.

The family (W ε[fε])ε>0 is a distribution acting on matrix-valued Schwartz functions via

〈a,W ε[fε]〉 =

∫
R2d

TrCN (a(x, ξ)W ε[fε](x, ξ))dxdξ, a ∈ S(R2d,CN,N ).
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Its accumulation points are called semi-classical or Wigner measures of the sequence (fε)ε>0.
The coefficients (µi,j)1≤i,j≤N of this matrix-valued distribution are measures. Indeed, the diag-
onal ones are positive measures, as Wigner measures of the sequences (fεi )ε>0, the coordinates
functions of (fε)ε>0. Moreover, denoting by ε` the subsequence (fε`)`∈N giving the semi-classical
measure µ, one has

(2.23) ∀a ∈ C∞c (R2d), lim
`→∞

(
opε(a)fε`i , f

ε`
j

)
L2(Rd)

=

∫
R2d

a(x, ξ)µi,j(dx, dξ),

Therefore, the distributions µi,j are express as linear combination of Wigner measures of linear
combination of the (fεj )1≤j≤N , and thus are Radon measures.

In other words, µ takes values in the set of Hermitian positive semi-definite matrices: the
elements µi,i are positive (scalar) Radon measures and that µi,j is absolutely continuous with
respect to both µi,i and µj,j .The latter condition implies that µi,j = 0 as soon as µi,i and µj,j
are mutually singular. In particular:

(2.24) µi,i⊥µj,j =⇒ ∀a ∈ C∞c (R2d), lim
`→∞

(
opε(a)fε`i , f

ε`
j

)
L2(Rd)

= 0.

Remark 2.22. One can generalize the above study to a more general setting by considering
L2 families from Rd into some Hilbert space H. One then defines pseudodifferential operators
with symbol a(x, ξ) which are compact operators on H and semi-classical measures are positive
elements of the dual to C∞c (R2d,K(H)), that is elements of C∞c (R2d,L1

+(H)), whereK(H) denotes
the set of compact operators on H, L1(H) the set of trace class operators on H and L1

+(H) the
subset of its positive elements.

The above description has important consequences when passing to the limit in bilinear quan-
tities depending on two families.

Lemma 2.23 (Orthogonality lemma). Let (fε)ε>0 and (gε)ε>0 be two bounded families in
L2(Rd). We assume that each of them has only one Wigner measure that we denote by µf
and µg respectively. Assume µf ⊥ µg, then for all a ∈ C∞c (R2d), (fε, opε(a)gε)−→

ε→0
0.

Moreover, if the families are ε-oscillating, then for all ϕ ∈ C∞c (Rd),
∫
Rd
ϕ(x)gε(x)fε(x)dx−→

ε→0
0.

In that situation, one says that the families (fε)ε>0 and (gε)ε>0 are orthogonal families.
This sort of result is at the origine of the emergence of the concept of microlocal defect

measures, also called H-measures, which are the non semi-classical version of Wigner measures.
They were introduced independently and simultaneously in [35] and [68] and allow generalizations
of div-curl Lemma in the context of homogeneization.
Proof
One considers the vector valued family Ψε = (fε, gε) and one of its Wigner measures µ, which is
a 2× 2 matrix with diagonal elements µf and µg. The off-diagonal elements of µ are absolutely
continuous with respect to µf and µg and thus are 0 if µf ⊥ µg. This implies the first statement
of the Lemma. The second one comes by combining the previous result with ε-oscillation.

2.4. Wigner measures and time-dependent families. We now study time-dependent fam-
ilies, such as the family (ψε(t))ε>0 of solutions to the Schrödinger equation (1.1). The modifica-
tions required in order to adapt the theory to this context are rather straightforward. Suppose
now that (ψε)ε>0 is bounded in L∞(Rt;L2(Rdx)) and define the time-dependent Wigner trans-
form W ε

ψε(t) as

(2.25) W ε
ψε(t, x, ξ) := W ε[ψε(t, ·)](x, ξ) =

∫
Rd

eiξ·vψε
(
t, x− εv

2

)
ψε
(
t, x+

εv

2

) dv

(2π)d
.
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Proposition 2.24. Any accumulation point µ of the family (W ε
ψε)ε>0 in S ′(R×R2d) is a positive

Radon measure µ on R× R2d of the form µ(dt, dx, dξ) = µt(dx, dξ)⊗ dt.

Such a measure µtdt is called Wigner measure or semi-classical measure of the time-dependent
family (ψε)ε>0.

Proof
Estimates (2.10) (or (2.14) ) implies that for every θ ∈ L1(R) and every a ∈ C∞c (R2d),

(2.26)
∣∣∣∣∫

R

∫
R2d

θ(t)a(x, ξ)W ε
ψε(t, x, ξ)dx dξ dt

∣∣∣∣ ≤ Cd‖ψε‖2L∞(Rt;L2(Rdx))‖θ‖L1(R)Nd(a).

This ensures that (W ε
ψε) is bounded in S ′(R×R2d). Moreover, any accumulation point µ of this

sequence is a positive Radon measure on R × R2d. It follows from (2.26) that the projection
of µ onto the t-variable is absolutely continuous with respect to the Lebesgue measure on R.
Therefore, we conclude using the disintegration theorem (see Theorem 9.1 in [1] or Section 2.5
of [2]) the existence of a measurable map from t ∈ R to positive, finite, matrix-valued Radon
measures µt on R2d such that

µ(dt, dx, dξ) = µt(dx, dξ)dt.

Summing up, for every sequence (ε`)`∈N going to 0 as ` goes to +∞ such that (W ε`
ψε` ) converges

in the sense of distributions the following holds: for all θ ∈ L1(R) and a ∈ C∞c (R2d),

(2.27)
∫
R

∫
R2d

θ(t)a(x, ξ)W ε`
ψε` (t, x, ξ)dx dξ dt −→

`→∞

∫
R

∫
R2d

θ(t)a(x, ξ)µt(dx, dξ)dt.

If the sequence (ψε`(t, ·)) is in addition ε-oscillating for almost every t ∈ R, the projections of
the measures µt on the ξ-variable are the limits of the energy densities: for every θ ∈ L1(R),
φ ∈ C0(Rd),

(2.28)
∫
R

∫
Rd
θ(t)φ(x)|ψε`(t, x)|2dx −→

`→∞

∫
R

∫
Rd
θ(t)φ(x)µt(dx, dξ) dt.

Remark 2.25. Time-dependent analogues of (2.23), (2.24) also hold after replacing µi,j by µti,j
and averaging in the t-variable.



22 CLOTILDE FERMANIAN KAMMERER & LINO BENEDETTO (TA)

3. Floquet-Bloch theory

.
In this section, we consider the operator on L2(Td) defined by

P (ξ) =
1

2
|ξ +Dy|2 + Vper(y), ξ ∈ Rd.

In the next sections, we focus on the spectral analysis of the operator P (ξ) for ξ ∈ Rd (Sec-
tion 3.1). It turns out that much more can be said in dimension 1 (see Section 3.2) than in
higher dimension. We discuss regularity issues in Section 3.3.

3.1. Spectral analysis of the operator P (ξ). One associates with the lattice Zd its dual
lattice 2πZd. The centered fundamental domain of 2πZd is called the Brillouin zone:

B = [−π, π[
d
.

Note that if ξ ∈ Rd, there exists a unique decomposition

ξ = η + 2πk, k ∈ Zd and η ∈ B.
The operator P (ξ) has the important property that, for k ∈ Zd and ξ ∈ Rd, the operator
P (ξ + 2πk) is unitarily equivalent to P (ξ). More precisely, one has

(3.1) P (ξ + 2πk) = e−i2π〈k,·〉P (ξ)ei2π〈k,·〉, ∀ξ ∈ Rd, ∀k ∈ Zd.
Therefore, we can restrict our analysis to ξ ∈ B.

For ξ ∈ Rd, we shall denote by P0(ξ) the operator P0(ξ) = |Dy + ξ|2 acting on the space

L2(Td) =

f(y) =
∑
k∈Zd

cke2iπk·y,
∑
k∈Zd

|ck|2 < +∞

 .

Both P (ξ) and P0(ξ) have ξ-independent domain H2(Td) ⊂ L2(Td) where for s > 0 the spaces
Hs(Td) are defined by

Hs(Td) =

f(y) =
∑
k∈Zd

cke2iπk·y,
∑
k∈Zd
〈k〉s|ck|2 < +∞

 .

It is also interesting to link the operator P0(ξ) with the operator −∆(ξ), which consists in the
Laplace operator on the cube C̄ = [0, 1]d with boundary conditions

f(y + `) = eiξ·`f(y), ∂nf(y + `) = −∂nf(y)eiξ·`, ∀(y, `) ∈ ∂C × Zd such that y + ` ∈ ∂C.
This operator is unitarily equivalent to P0(ξ) by the map which associates to any function
f ∈ L2(Td) the function fξ of L2(C) defined by

(3.2) ∀y ∈ [0, 1]d, fξ(y) = f(y)eiξ·y.

One has ‖fξ‖L2([0,1]d) = ‖f‖L2(Td) and ‖∆fξ‖L2([0,1]d) = ‖P0(ξ)f‖L2(Td).

Theorem 3.1. Assume that the operator Vper is smooth. Then, for all ξ ∈ B, the operator P (ξ)
is self-adjoint and its spectrum is bounded from below. Besides it has a compact resolvent, thus
a non-decreasing sequence of eigenvalues

%1(ξ) ≤ %2(ξ) ≤ · · · ≤ %n(ξ) ≤ · · · −→ +∞,
and there exists an orthonormal basis of L2(Td) consisting of eigenfunctions (ϕn(·, ξ))n∈N of
P (ξ):

ϕn(·, ξ) ∈ H2(Td), P (ξ)ϕn(y, ξ) = %n(ξ)ϕn(y, ξ), for y ∈ Td.
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Remark 3.2. If the potential Vper is in Lp(Td) with

p = 2 if d = 1, 2, 3, p > 2 if d = 4 or p =
d

2
if d ≥ 5,

then Theorem 3.1 holds (see [47] and Appendix A). This includes 3d potentials developing
Coulombian singularity in a point, Vper(y) ∼ a0

|y−y0| close to some y = y0, a0 > 0 and y0 ∈ Td.

Definition 3.3. The functions defined on Rd, ξ 7→ %n(ξ) are called Bloch energies or Bloch
modes and the functions on Td × Rd defined by (y, ξ) 7→ ϕn(y, ξ) are called Bloch waves.

Remark 3.4. The property (3.1) yields that the Bloch energies %n(ξ) are 2πZd-periodic functions
whereas the Bloch waves satisfy

ϕn(y, ξ + 2πk) = e−i2πk·yϕn(y, ξ), for every k ∈ Zd.

The Bloch modes have a MinMax characterization (see Appendix C)

(3.3) %1(ξ) = min
‖f‖=1

(
1

2
‖(Dy + ξ)f‖2L2(Td) + (Vperf, f)L2(Td)

)
and, for n ∈ N \ {1},

(3.4) %n(ξ) = min
dimM=n, M⊂H1(Td)

max
f∈M, ‖f‖=1

(
1

2
‖(Dy + ξ)f‖2L2(Td) + (Vperf, f)L2(Td)

)
One defines the crossing sets of two distinct Bloch energies as the sets;

(3.5) Σn,n′ := {ξ ∈ Rd : %n(ξ) = %n′(ξ)}, n, n′ ∈ N∗, %n 6= %n′ .

It is proved in [72] that the Bloch energies %n are continuous and piecewise analytic functions of
ξ ∈ Rd, and that the Bloch waves ϕn can be chosen in such a way there exists a subset Z of the
Brillouin zone B of zero Lebesgue measure such that each ϕn is analytic in ξ ∈ B \ Z. However,
in the following, we shall only use the Lipschitz regularity of the Bloch modes, together with the
smoothness of the Bloch modes and of their associated eigenprojectors outside the crossing sets.
These properties are proved in Sections 3.2 (for d = 1) and Section 3.3 (in general);

Let us prove Theorem 3.1.
Proof
We first observe that P0(ξ) is self-adjoint with domain H2(Td), spectrum { 1

2 |ξ+ 2kπ|2, k ∈ Zd}
and eigenvectors y 7→ e2iπk·y. Moreover, Vper being bounded, the Kato-Rellich criterium is
satisfied (see [48] and Appendix A): there exists a constant C = ‖V ‖L∞(Td), such that for all
α ∈ (0, 1) and all ξ ∈ Rd,

∀f ∈ H2(Td), ‖Vperf‖L2(Td) ≤ C‖f‖L2(Td) + α‖P0(ξ)f‖L2(Td).

Therefore P (ξ) = P0(ξ) + V Bper is self-adjoint with domain H2(Td).
The second step consists in observing that the operator (P0(ξ)− i)−1 is compact as the limit

of finite rank operators in the strong topology.
To close the proof, we choose µ large enough so that the operator Vper(P0(ξ)+iµ)−1 has a norm

strictly smaller than 1. As a consequence, the operator
(
1 + Vper(P0(ξ) + iµ)−1

)
is invertible and

we can write
(P (ξ) + iµ)−1 = (P0(ξ) + iµ)−1

(
1 + Vper(P0(ξ) + iµ)−1

)−1
.

We conclude by observing that the (P0(ξ) + iµ)−1 is compact and
(
1 + Vper(P0(ξ) + iµ)−1

)−1 is
bounded, thus their composition is compact. In view of Appendix B, the spectral properties of
the operator P (ξ) follow.
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3.2. One dimensional Bloch modes and Bloch waves. When d = 1, the equation satisfied
by the eigenfunctions of the operator P (ξ) are second order differential equations, which allow
us to simplify the analysis. The material of this section mainly comes from the books [53, 62] or
the articles [46, 54, 33] among others for additional details. Let us consider φ ∈ L2(T), φ solves
P (ξ)φ = λφ for some ξ, λ ∈ R if and only if f(y, λ) := eiξyφ(y) is a solution to the ODE

(3.6) − 1

2
∂2
yf(y, λ) + Vper(y)f(y, λ) = λf(y, λ), y ∈ R,

satisfying the quasi-periodicity conditions derived from (3.2)

(3.7) f(1, λ) = eiξf(0, λ) and ∂yf(1, λ) = eiξ∂yf(0, λ).

Given λ ∈ R, the solutions of (3.6) are linear combinations of two solutions f1(y, λ) and f2(y, λ)
satisfying

f1(0, λ) = ∂yf2(0, λ) = 1, f2(0, λ) = ∂yf1(0, λ) = 0.

Define the matrix

Mλ(y) :=

(
f1(y, λ) f2(y, λ)
∂yf1(y, λ) ∂yf2(y, λ)

)
.

Lemma 3.5. There exists a solution to (3.6) satisfying (3.7) if and only

(3.8) ∆(λ) := TrMλ(1) = 2 cos ξ.

Proof
Any solution f to (3.6) is of the form f = af1 + bf2 with a = f(0, λ) and b = ∂yf(0, λ). The
condition (3.7) implies

af1(1, λ) + bf2(1, λ) = aeiξ,

a∂yf1(1, λ) + b∂yf2(1, λ) = beiξ,

which means that t(a, b) is an eigenvector of Mλ(1) for the eigenvalue eiξ. Moreover, since
detMλ(y) = 1 for every y, λ ∈ R, the other eigenvalue should be e−iξ. We deduce that eiξ ∈
Sp Mλ(1) if and only if

TrMλ(1) = eiξ + e−iξ = 2 cos ξ.

It can be shown that solutions to (3.6) depend analytically on λ, and that moreover, ∆
extends to an entire function of order 1/2. The real solutions to equations ∆(λ) = ±2 form
infinite increasing sequences (a±i ) that tend to infinity. More precisely, the following facts hold
(the reader may find helpful to consult [54, Figure 1, p. 145] or [62, Section XIII.16]) (note also
that complete study of ∆(λ) in one dimension is found in [52] and some figures in [24]):

• The sequences (a±i ) are intertwined and one has:

(3.9) a+
1 < a−1 ≤ a

−
2 < a+

2 ≤ a
+
3 < a−3 · · · ,

• Let be I2i−1 = (a+
2i−1, a

−
2i−1) and I2i = (a−2i, a

+
2i). Then Ii has non-empty interior and

∆| Ii is strictly decreasing for i odd and strictly increasing for i even.
• If aσi = aσi+1 for some i ∈ N, σ ∈ {+,−} then ∆′(aσi ) = 0.
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These properties have important implications on the behavior of Bloch energies. For every
n ∈ N the following hold.

(1) The nth Bloch energy is the solution to ∆| In(%n(ξ)) = 2 cos ξ.
(2) %n is 2πZ-periodic (we knew this already), and moreover

%n(ξ) = %n(2π − ξ), ∀ξ ∈ R.

(3) %n| [0,π] is strictly increasing if n is odd (resp. strictly decreasing if n is even) and analytic
in the interior of the interval. If it is differentiable at ξ = 0, π then necessarily %′n(ξ) = 0
and %n is analytic around that point.

(4) A crossing can happen only at two consecutive Bloch energies. Let n ∈ N be such that

Σn := {ξ ∈ R : %n(ξ) = %n+1(ξ)} 6= ∅;

then Σn = πZ \ 2πZ if n is odd, Σn = 2πZ if n is even. Moreover

(3.10) ∆′(%n(ξ)) = 0, ∀ξ ∈ Σn.

In addition, critical points of Bloch energies in the one dimensional case are never degenerate
nor can occur at a crossing point, as stated in the next lemma.

Lemma 3.6. The set of critical points of any Bloch energy %n is contained in πZ and all the
critical points are non-degenerate. Moreover, the crossing set Σn associated with two consecutive
Bloch modes %n and %n+1 does not contain any critical points of the Bloch energies %n and %n+1.

Proof
The first assertion on the critical points is property (3) above, whereas the second follows from
differentiating twice equation (3.8) and evaluating at a critical point ξ = kπ, k ∈ Z to get:

∆′(%n(kπ))%′′n(kπ) = 2 (−1)k+1.

This relation also shows that ∆′(λ) cannot vanish at λ = %n(kπ). Together with (3.10) this
shows that a critical point cannot be a crossing point.

Remark 3.7. In the free case (Vper = 0) there is only a Bloch band of infinite multiplicity. More
generally, it has been proved in [15] that the absence of spectral gap is equivalent to the periodic
potential Vper being constant.

3.3. Regularity of Bloch modes and waves.
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3.3.1. Lipschitz properties of the Bloch modes. Using MinMax formula (3.3) and (3.4), we prove
the Lipschitz regularity of the Bloch modes (%n(ξ))n∈N.

Proposition 3.8. For all n ∈ N, there exists a constant Cn such that

∀ξ, ξ′ ∈ B, |%n(ξ)− %n(ξ′)| ≤ Cn|ξ − ξ′|.
Therefore, the functions ξ 7→ %n(ξ) are Lipschitz continuous.

Remark 3.9. Recall that it is proved in [72] that the Bloch energies %n are continuous and
piecewise analytic functions of ξ ∈ Rd.

Proof
We associate with P (ξ) the positive quadratic form

Qξ(f) =
1

2
‖(Dy + ξ)f‖2L2(Td) + (Vperf, f)L2(Td) +K‖f‖2L2(Td).

where K is chosen such that for all ξ ∈ B, the spectrum of P (ξ) is included in ] −K + 1,+∞[.
Note that the Proposition is equivalent to proving the Lipschitz property of the functions

λn(ξ) = %n(ξ) +K + 1.

which we are going to do now. We observe first that for ξ, ξ′ ∈ B and f ∈ L2(Td), we have

Qξ′(f)−Qξ(f) =
1

2

∫
Td

(
|Dyf(y) + ξf(y)|2 − |Dyf(y) + ξ′f(y)|2

)
dy

= 2

d∑
j=1

Re

(
(ξj − ξ′j)

(
f , Dyjf −

ξj + ξ′j
2

f

)
L2(Td)

)
.

Therefore, there exists a constant C > 0 such that for all ξ, ξ′ ∈ B and for all f ∈ L2(Td),

(3.11) |Qξ(f)−Qξ′(f)| ≤ C|ξ − ξ′|
(
‖f‖2L2(Td) +

1

2
(Qξ(f) +Qξ′(f))

)
.

We are going to use the Min-Max characterization of the eigenvalues (see (3.3) and (3.4)). LetM
be a subset of H1(Td) of dimension n. We deduce from (3.11), that for any f ∈M , ‖f‖L2(Td) = 1

and f ∈ H1(Td),

Qξ′(f) ≤ Qξ(f) + C|ξ − ξ′|(1 +
1

2
(Qξ(f) +Qξ′(f))).

We deduce

min
dimM=n, M⊂H1(Td)

max
f∈M, ‖f‖=1

Qξ′(f) ≤ (1 + C|ξ − ξ′|) max
f∈M, ‖f‖=1

Qξ(f) + C|ξ − ξ′|,

and

min
dimM=n, M⊂H1(Td)

max
f∈M, ‖f‖=1

Qξ′(f)

≤ (1 + C|ξ − ξ′|) min
dimM=n, M⊂H1(Td)

max
f∈M, ‖f‖=1

Qξ(f) + C|ξ − ξ′|.

Therefore, we obtain the first relation:

(3.12) λn(ξ′)− λn(ξ) ≤ C|ξ − ξ′|(1 + λn(ξ)).

We now fix α > 0 and we assume |ξ − ξ′| < α, then

λn(ξ′)− (1 + Cα)λn(ξ) ≤ C|ξ − ξ′|
which writes

(1 + Cα)(λn(ξ′)− λn(ξ)) ≤ C|ξ − ξ′|+ Cαλn(ξ′).
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We deduce the second relation

λn(ξ′)− λn(ξ) ≤ C

1 + Cα
|ξ − ξ′|+ Cα

1 + Cα
λn(ξ′) ≤ C|ξ − ξ′|+ Cαλn(ξ′).

Exchanging the roles of ξ and ξ′, we obtain

(3.13) λn(ξ)− λn(ξ′) ≤ C|ξ − ξ′|+ Cαλn(ξ).

Combining (3.12) and (3.13), we obtain

|λn(ξ)− λn(ξ′)| ≤ C|ξ − ξ′|+ Cαλn(ξ).

Let us now fix ξ ∈ B and consider η > 0, we choose α such that Cα(1 + λn(ξ)) < η. Then if
|ξ − ξ′| < α, we have |λn(ξ) − λn(ξ′)| < η. We deduce that the function λn is continuous in
any point ξ of the compact B. Thus, this function is bounded on B. Let Λn = supξ∈B λn(ξ),
equation (3.12) implies that for all ξ, ξ′ ∈ B,

λn(ξ)− λn(ξ′) ≤ C(1 + Λn)|ξ − ξ′|,

which yields
|λn(ξ)− λn(ξ′)| ≤ C(1 + Λn)|ξ − ξ′|,

by exchanging the roles of ξ and ξ′. As a conclusion, ξ 7→ λn(ξ) is Lipschitz.

3.3.2. Smoothness of the Bloch modes and associated eigenprojectors outside the crossing sets.
We consider here the eigenprojector on a Bloch mode isolated from the remainder of the spectrum.
Denote by SpP (ξ) the spectrum of P (ξ), we suppose that there exists n0 ∈ N, an open subset
U ⊂ B and δ0 > 0 such that

(3.14) d (%n0(ξ),SpP (ξ) \ {%n0(ξ)}) ≥ δ0, ∀ξ ∈ U.

We choose ξ0 ∈ U and work in a neighborhood B(ξ0, r) of ξ0 where we are going to prove the
smoothness of the eigenprojectors and eigenvalues. Choosing r small enough, we deduce from the
continuity of the map %n on the compact B(ξ0, r) that there exists a contour C of the complex
plane which delimitates an open set Ω ⊂ C such that

{%n0(ξ), ξ ∈ U} ⊂ Ω and Ω ∩ SpP (ξ) = {%n0(ξ), ξ ∈ U}, ∀ξ ∈ B(ξ0, r).

Then, we apply the residue formula to the resolvent

R(z, ξ) = (z − P (ξ))−1 =
∑
n∈N

(z − %n(ξ))−1|ϕn(·, ξ)〉〈ϕn(·, ξ)|.

We obtain

(3.15) Πn0
(ξ) =

1

2πi

∮
C

R(z, ξ)dz, ∀ξ ∈ B(ξ0, r).

Besides, we have

(3.16) ∀z ∈ C, ‖(z − P (ξ))−1‖L(L2(Td) ≤ δ−1
0 .

One deduces the following proposition.

Proposition 3.10. Let n0 ∈ N, U an open subset of B and δ0 such that (3.14) holds. Then, the
function ξ 7→ Πn0

(ξ) is smooth in U , and therefore is of constant rank.

Corollary 3.11. Assume that the eigenmodes %n0(ξ) is isolated from the remainder of the spec-
trum, then the function %n0

(ξ) = (RkΠn0
(ξ))

−1
tr (Πn0

(ξ)P (ξ)) is smooth.

Proposition 3.12. If they exist, the derivatives of Πn0
satisfy the following properties :
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(1) They are off-diagonal operators with respect to P (ξ): ∀ξ ∈ Rd, ∀k ∈ {1, · · · d},

∂ξkΠn0
(ξ) =

∑
n∈N

(Πn(ξ)∂ξkΠn0
(ξ) Πn0

(ξ) + Πn0
(ξ) ∂ξkΠn0

(ξ) Πn(ξ)) .

(2) They are bounded operators on Sobolev spaces: for all s ∈ R,

(3.17) ∃C0 > 0, ∀ξ ∈ Rd, ∀j ∈ {1, · · · , d},
∥∥∂ξjΠn0(ξ)

∥∥
L(Hs(Td),Hs+3(Td))

≤ C0.

Proof
Point 1 comes from the derivation of Πn0

(ξ)2 = Πn0
(ξ). Indeed, the later relation yields

Πn0
(ξ)∂ξkΠn0

(ξ) + ∂ξkΠn0
(ξ) Πn0

(ξ) = ∂ξkΠn0
(ξ).

We multiply the left-hand side of the above equality by Πn(ξ) with n 6= n0. Then, we multiply
the right-hand side by Πn′(ξ) with n′ 6= n0. THis gives

Πn(ξ)∂ξkΠn0(ξ)Πn′(ξ) = 0,

whence the above decomposition.

The second relation comes from the observation that since Vper is smooth (and thus have
bounded derivatives), for z ∈ C, (z−P (ξ))−1 maps Hs(Td) into Hs+2(Td). Moreover ∂ξjP (ξ) =

ξj +Dyj mas Hs(Td) into Hs−1(Td).

3.3.3. Singularities of the Bloch modes at crossing points. We are interested here in the properties
of the Bloch modes close to the sets Σn,n′ (see (3.5)). We assume that these sets are union of
closed connected submanifolds of Rd.

We will use the geometric notion of the normal bundle to a manifold. If Σn,n′ is a manifold,
its tangent bundle TΣn,n′ is defined by its fiber above σ ∈ Σn,n′ which is the tangent space
TσΣn,n′ at σ to Σn,n′ . The normal bundle NΣn,n′ to Σn,n′ has fiber NσΣn,n′ = TσRd/TσΣn,n′ .
If moreover Σn,n′ is a closed connected manifold, the geodesic coordinates give a mapping from
a tubular neighborhood U of Σn,n′ into Σn,n′

σΣn,n′ : ξ ∈ U 7→ σΣn,n′ (ξ) ∈ Σn,n′

such that for all ξ ∈ U , ξ − σΣn,n′ (ξ) ∈ Nσ(ξ)Σn,n′ .
We consider crossings between two successive Bloch modes %n and %n+1.

Definition 3.13. Let n ∈ N∗. We say that the crossings of the set Σn,n+1 are conic if and only
if there exists a neighborhood U of Σn,n+1 such that %n and %n+1 are of multiplicity 1 outside
Σn,n+1 in U and there exists c > 0 such that for all (σ, η) ∈ NΣn,n+1,

|%n+1(σ + η)− %n(σ + η)| ≥ c|η|.

Conical crossings are in some sense generic in view of the next Lemma which gives a normal
form for the expression of two Bloch modes %n(ξ) and %n+1(ξ) close to the crossing set Σn,n+1.

Lemma 3.14. Let σ0 be a point in the crossing set Σn,n+1 of two consecutive Bloch energies %n
and %n+1 having neighborhood U with the following properties:

(i) Σn,n+1 ∩ U is a smooth manifold.
(ii) The multiplicities of %n, %n+1 are constant on each connected component of U \ Σn,n+1.
(iii) There exists δ0 > 0 such that for all ξ ∈ U ,

d ({%n(ξ), %n+1(ξ)},SpP (ξ) \ {%j(ξ), %j(ξ) = %n(ξ) or %j(ξ) = %n+1(ξ)}) ≥ δ0.
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Then, there exist Ω ⊆ U , a neighborhood of σ0 that is 2πZd-invariant, two functions λn ∈ C∞(Ω)

and gn ∈ C∞
(
tξ∈Ω

(
{ξ} ×NσΣn,n+1

(ξ)Σn,n+1

))
, and a function m ∈ L∞(U) which is constant

on each connected component of U such that for all ξ ∈ Ω \ Σn,n+1,

%n(ξ) = λn(ξ)− gn(ξ, ξ − σΣn,n+1(ξ)),

%n+1(ξ) = λn(ξ) +m(ξ)gn(ξ, ξ − σΣn,n+1(ξ)).

Moreover,
(1) If the crossing set Σn,n+1 is conical in U , then for all ξ ∈ U , the map Nσ(ξ)ση 7→ gn(ξ, η)

is homogeneous of degree 1 and gn(σ, η) 6= 0 when (σ, η) ∈ Nσn with η 6= 0,
(2) If none of the points of Σn,n+1 are conical crossings in U , then there exists θn ∈ C∞(Rd)

such that gn(ξ, η) = |η|2θn(ξ), which implies that %n, %n+1 ∈ C1,1(Rd),
(3) If the multiplicities of %n, %n+1 are equal on U \ Σn,n+1 then m = 1.
(4) If d = 1 and σ ∈ πZ \ 2Z, then ∇λn(σ)∓ g′(ω) 6= 0 or ω = ±1.

Remark 3.15. Note that in case (2), the function θn can be zero on Σn,n+1.

Proof
We denote by j−(ξ), j+(ξ) the functions valued in N and constant on connected component
of U \ Σn,n+1 such that for all ξ ∈ U \ Σn,n+1 %n−j+1(ξ) = %n(ξ) for 1 ≤ j ≤ j−(ξ) and
%n+j(ξ) = %n+1(ξ) for 1 ≤ j ≤ j+(ξ). We denote by Π(ξ) the projector on

Fξ = Ker(P (ξ)− %n(ξ))⊕Ker(P (ξ)− %n+1(ξ)).

By the assumption (iii) on U , the pair {%n(ξ), %n+1(ξ)} is isolated from the remainder of the
spectrum of P (ξ) when ξ ∈ U , this implies that the map Uξ 7→ Π(ξ) ∈ L(L2(Td)) is analytic
and the function dimFξ is constant for ξ ∈ U . We denote by `0 this constant and we have
`0 = j−(ξ) + j+(ξ) for all ξ ∈ U \ Σn,n+1. Moreover, %n(ξ) and %n+1(ξ) are the two only
eigenvalues of the operator Π(ξ)P (ξ)Π(ξ) which maps Fξ onto Fξ for any ξ ∈ Rd.

Let us first show that it is possible to find Ω ⊆ U , with σ0 ∈ Ω and construct, for every ξ ∈ Ω,
an orthonormal basis (φj(ξ, ·))1≤j≤`0 of Fξ such that the maps ξ 7→ φj(ξ, ·) are analytic for all
j ∈ {1, · · · `0}. To see this, consider (ϕi(σ0, ·))1≤i≤`0 , a basis of Fσ0 . Chose a neighborhood Ω of
σ0 small enough to ensure that the vectors

Π(ξ)ϕj(σ0, ·), j ∈ {1, . . . , `0}

form a rank `0 family. Then apply the standard Schmidt orthonormalization process to this
family.

Let A(ξ), ξ ∈ Ω, be the matrix of the operator Π(ξ)P (ξ)Π(ξ) in the basis we just constructed.
This is a `0 × `0 analytic matrix that we can write

A(ξ) = λn(ξ)Id +A0(ξ)

with λn(ξ) := 1
`0

TrC`0A(ξ) and A0(ξ) analytic and trace-free. Moreover, A(ξ) is diagonalizable
and has only two eigenvalues %n(ξ) and %n+1(ξ) that we write

%n(ξ) = λn(ξ)− g(ξ), %n+1(ξ) = λn(ξ) +m(ξ)g(ξ),

with g(ξ) > 0 and where, for ξ ∈ Ω\Σn,n+1, m(ξ) is the ratio between the multiplicities of %n(ξ)
and %n+1(ξ),

m(ξ) =
j−(ξ)

j+(ξ)

and m is constant in the connected component of U \ Σn,n+1.
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The functions −g(ξ) and m(ξ)g(ξ) are the two eigenvalues of A0(ξ). Therefore, they are
homogeneous function of degree 1 of the coefficients of A0(ξ) = (ai,j(ξ))1≤i,j≤`0 : we write g(ξ) =

G(A0(ξ)) where G is a homogeneous function on R
`20−1

2 . Here, we have considered that a `0× `0
trace-free Hermitian matrix is a function of `0−1 real-valued diagonal coefficients and of `0(`0−1)

2
complex-valued coefficients (those under the diagonal being the conjugate of those above the
diagonal), and we have observed that (`0 − 1) + `0(`0−1)

2 =
`20−1

2 .

By the definition of the crossing set, A0(ξ) = 0 if and only if ξ ∈ σn. Since the map ξ 7→ A0(ξ)
is analytic, it vanishes on Σn,n+1 at finite order q ∈ N and the crossing set is conical if and only
if q = 1 for all points of σn. Therefore, in case (1), there exists a smooth tensor T `0,1(ξ) such
that

A0(ξ) = T `0,1(ξ)[ξ − σΣn,n+1(ξ)],

with
∀σ ∈ Σn,n+1 ∩ Ω, ∀η ∈ NσΣn,n+1 \ {0}, T `0,1(σ)η 6= 0C`0×`0 .

We deduce that

g(ξ) = gn(ξ, ξ − σΣn,n+1
(ξ)), with gn(ξ, η) := G

(
T `0,1(ξ) [η]

q)
where gn is homogeneous of degree 1 in the variable η. Besides, if none of the crossing points are
conical, we write A0(ξ) = T `0,2(ξ)[ξ − σΣn,n+1(ξ)]2 with T `0,2(ξ) a smooth tensor, which allows
to prove Point (2) with

θn(ξ) = |ξ − σΣn,n+1
(ξ)|−2G(T `0,2(ξ)[ξ − σσn(ξ)]2).

Since Point (3) is obvious, it remains to examine the case d = 1. At a crossing point σ = kπ,
k ∈ Z, we have m(σ) = 1. Moreover, the function gn can be written in a simple manner: there
exists α−, α+ ∈ R such that

gn(η) = α− η1η<0 + α+ η1η>0, α± = g′(η)1±η>0.

Let η < 0, then %′n(σ + η) = λ′n(σ + η) − α−. and %′′n(σ + η) has a limit when η go to 0−.
Differentiating twice (3.8), we obtain

∆′(%n(σ + η))%′′n(σ + η) + ∆′′(%n(σ + η))%′n(σ + η) = 2(−1)k+1.

Letting η go to O−, we obtain

∆′′(%n(σ))(λ′n(σ)− α−) 6= 0.

Arguing similarly with %n(σ+η with η > 0, we deduce λ′n(σ)−α+ 6= 0. Therefore, λ′n(σ)−g′(ω) 6=
0 for ω ∈ {−1,+1}. Considering now the Bloch mode %n+1, we obtain in the same manner
λ′n(σ) + g′(ω) 6= 0 for ω ∈ {−1,+1}, which finishes the proof.
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4. Wigner measures and Bloch modes

We resume with the family (ψε(t))ε>0 solution to (1.1). We look for the solution as

ψε(t, x) = Uε(t, x,
x

ε
), (t, x) ∈ R× Rd,

with (Uε(t))ε>0 solution to equation (1.9) in L2(Rd × Td) and

Uε0

(
x,
x

ε

)
= ψε0(x).

Using the spectral resolution of the operator P (ξ) we write

Uε(t, x, y) =
∑
n∈N

ϕn(y, εDx)Uεn(t, x),

with

Uεn(t, x) :=

∫
Td
ϕn(y, εDx)Uε(t, x, y)dy =

∫
Td

∫
Rd×Rd

ϕn(y, εξ)Uε(t, w, y)eiξ·(x−w) dwdξ

(2π)d
dy.

We deduce a (formal) representation formula for the solution of the equation (1.1):

(4.1) ψε(t, x) =
∑
n∈N

ψεn(t, x), ψεn(t, x) = ϕn

(x
ε
, εDx

)
Uεn(t, x).

We work under the assumption that (ψε0)ε>0 is uniformly bounded in Hs
ε (Rd) for some s > d

2
and we choose

(4.2) Uε0 (x, y) = ψε0(x)1Td(y), (x, y) ∈ Rd × Td.
The formula (4.1) implies that the solutions of (1.1) can be decomposed as a countable su-

perposition of waves whose dependence on the fast variable is given by a Bloch wave, whereas
the profile Uεn describing the dependence on the slow variable is given by a time-evolution whose
dispersion relation involves Bloch energies. Several questions then are in order:

(i) Are the families (ψεn)ε>0 bounded in L2(Rd) ?
(ii) Is the series converging and in which space ?
(iii) Is the function (ψε)ε>0 ε-oscillating so that a semi-classical analysis is adapted ?

Answering those questions is the subject of that chapter. A key point is the understanding of
the restriction operator Lε defined on functions F on Rd × Td by

(LεF )(x) := F
(
x,
x

ε

)
.

Of course, to define LεF , the function F needs to enjoy enough Sobolev regularity, which moti-
vates the introduction of adapted functional spaces on Rd × Td.

4.1. The functional framework and the restriction operator. Recall that via the decom-
position in Fourier series in the second variable, any function U ∈ L2(Rdx × Tdy) can be written
as:

U(x, y) =
∑
k∈Zd

Uk(x)ei2πk·y with ‖U‖2L2(Rd×Td) =
∑
k∈Zd

‖Uk‖2L2(Rd).

We denote by Hs
ε (Rd × Td), for s ≥ 0, the Sobolev space consisting of those functions U ∈

L2(Rd × Td) such that there exists ε0, C > 0 for which we have

(4.3) ∀ε ∈ (0, ε0), ‖U‖2Hsε (Rd×Td) :=
∑
k∈Zd

∫
Rd

(1 + |εξ|2 + |k|2)s|Ûk(ξ)|2dξ ≤ C,

where Ûk(ξ) =

∫
Rd

e−ix·ξUk(x)dx.
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Note that the data (Uε0 )ε>0 defined in (4.2) with (ψε0)ε>0 uniformly bounded inHs
ε (Rd), then is

uniformly bounded in Hs
ε (Rd×Td). As we shall see below, it turns out that Lε acts continuously

from L2(Rd, Hs(Td)) to L2(Rd) provided s > d
2 . Moreover, the equation (1.9) satisfied by

(Uε(t))ε>0 can be solved easily in spaces Hs
ε (Rd × Td) in order to get Sobolev regularity in the

variable y. SinceHs
ε (Rd×Td) ⊂ L2(Rd, Hs(Td)), which is also adequate for treating ε-oscillations

(see (2) of the statement below), we will use these spaces.

The following results are proved in [23] (Sections 6.1 and 6.2) and in [24] (Section 2).

Proposition 4.1. Assume s > d
2 .

(1) There exists C > 0 such that, for every F ∈ L2(Rd, Hs(Td)), uniformly in ε > 0,

(4.4) ‖LεF‖L2(Rd) ≤ C‖F‖L2(Rd,Hs(Td)).

Moreover if ξ 7→ %(ξ) is 2πZd-periodic, then Lε commutes with %(εDx).
(2) If (Uε)ε>0 is a bounded family in L2(Rdx;Hs(Tdy)) and satisfies the estimate:

(4.5) limsup
ε→0+

‖1|εDx|>RU
ε‖L2(Rd;Hs(Td)) −→

R→∞
0,

then the sequence (LεUε)ε>0 is bounded in L2(Rd) and ε-oscillating (see Definition 2.19).
(3) Assume Vext ∈ L∞(R, C1(Rd)) with ∇xVext ∈ L∞(R×Rd) and suppose that the potential

Vper is such that the operator P (εD) with domain H2(Td) is self-adjoint. Then, there
exists Cs > 0 such that for every t ∈ R, ε > 0 and Uε0 ∈ Hs

ε (Rd×Td), the solution Uε(t)
of (1.9) satisfies

(4.6) ‖Uε(t, ·)‖Hsε (Rd×Td) ≤ ‖Uε0‖Hsε (Rd×Td) + Csε|t|,

Note that in Point 3, it is enough to assume that the operator P (ξ), with domain H2(Td),
is self-adjoint for all ξ ∈ B, which is possible with less restrictive assumptions on Vper than
smoothness (see Remark 3.2).

Proof
Point 1 comes from the Sobolev embedding Hs(Td) ⊂ L∞(Td): we use the Fourier resolution of
F and write for x ∈ Rd and y ∈ Td,

F (x, y) =
∑
k∈Zd

Fk(x)e2iπk·y.

Then, by Cauchy-Schwartz inequality

|F (x, y)| ≤

∑
k∈Zd

|Fk(x)|2〈k〉2s
 1

2
∑
k∈Zd
〈k〉−2s

 1
2

Since s > d
2 , we have

∑
k∈Zd〈k〉−2s < c0 < +∞ and we deduce

‖LεF‖2L2(Rd) =

∫
Rd
|F (x,

x

ε
)|2dx ≤ c0

∫
R2d

∑
k∈Zd

|Fk(x)|2〈k〉2sdx = c0‖F‖2L2(Rd;Hs(Td)),



SEMI-CLASSICAL METHODS AND SOLID STATES PHYSICS 33

whence the result. Moreover,

%(εDx)(LεF )(x) =
∑
k∈Zd

%(εDx)
(

e
2iπ
ε k·xFk

)
(x)

=
∑
k∈Zd

e
2iπ
ε k·x%(εDx − 2kπ)Fk(x)

=
∑
k∈Zd

e
2iπ
ε k·x%(εDx)Fk(x)

= Lε (%εDx)F ) (x).

For Point 2, we take δ > 0, since s > d/2, there exists Nδ > 0 such that∑
|k|>Nδ

|k|−2s < δ2.

Define
vεδ(x) =

∑
|k|≤Nδ

Uεk(x)ei2πk·
x
ε .

Then,
‖LεUε − vεδ‖L2(Rd) ≤ δ‖Uε‖L2(Rd;Hs(Td)).

Therefore, it suffices to show that for any δ > 0 the sequence (vεδ) is ε-oscillating. The Fourier
transform of vεδ is:

v̂εδ(ξ) =
∑
|k|≤Nδ

Ûεk

(
ξ − 2πk

ε

)
.

Therefore,

‖1|εDx|>Rv
ε
δ‖L2(Rd) ≤

∑
|k|≤Nδ

‖1|εDx+2πk|>RU
ε
k‖L2(Rd).

If R > R0 for R0 > 0 large enough, one has 1R(·+ 2πk) ≤ 1R/2 for every |k| ≤ Nδ. This allows
us to conclude that for R > R0:

‖1|εDx|>Rv
ε
δ‖L2(Rd) ≤

∑
|k|≤Nδ

‖1|εDx|>R/2U
ε
k‖L2(Rd) ≤ Cd,s‖1|εDx|>R/2U

ε‖L2(Rd;Hs(Td))

and the conclusion follows.

The proof of Point 3 uses that modulo the addition of a positive constant to equation (1.1),
we may assume that P (εDx) is a non-negative operator (this will modify the solutions only by
a constant phase in time). In that case there exists constants ε0, c > 0 such that:

(4.7) c−1‖U‖Hsε (Rd×Td) ≤ ‖ 〈εDx〉s U‖L2(Rd×Td) + ‖P (εDx)s/2U‖L2(Rd×Td) ≤ c‖U‖Hsε (Rd×Td),

for every U ∈ L2(Rd×Td) and 0 < ε < ε0. Moreover, P (εDx)k and 〈εDx〉s commutes with P (ε)
while

‖[P (εDx)s/2, V (t, x)]Uε‖L2(Rd×Td) ≤ εC sup
0≤r≤s−1

‖P (εDx)
r
2Uε‖L2(Rd×Td)

and a similar estimate holds for [〈εDx〉s, V (t, x)]Uε. We then conclude by a recursive argument
and energy estimate.
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4.2. Decomposition of the Wigner transform on Bloch modes. We focus on the families
(ψεn(t))ε>0. They satisfy

(4.8) ψεn(t, x) := LεP εϕnU
ε(t, x) = ϕn

(x
ε
, εDx

)∫
Td
ϕn(y, εDx)Uε(t, x, y)dy,

where we define for j ∈ N∗ the operator

(4.9) P εϕjW (x, y) := ϕj (y, εDx)

∫
Td
ϕj(z, εDx)W (x, z)dz, ∀W ∈ L2(Td × Rd).

Since [P (εDx)s/2, P εϕj ] = [〈εDx〉s , P εϕj ] = 0, if follows from (4.7) that there exists c1 > 0 such
that for all W ∈ Hs

ε (Rd × Td),
‖P εϕjW‖Hsε (Rd×Td) ≤ c1‖W‖Hsε (Rd×Td),

and, more generally, that everyW ∈ Hs
ε (Rd×Td) can be expressed in the topology ofHs

ε (Rd×Td)
as:

W =
∑
n∈N∗

P εϕnW.

As a corollary of Proposition 4.1, we have the following result.

Corollary 4.2. Assume Vext ∈ L∞(R, C1(Rd)) with ∇xVext ∈ L∞(R×Rd) and suppose that the
potential Vper is such that the operator P (εD) with domain H2(Td) is self-adjoint. Assume (ψε0)
is uniformly bounded in Hs

ε (Rd) for some s > d/2. Then, for every t ∈ R, we have the following
properties

(i) The series (4.1) is uniformly convergent

(4.10) limsup
ε→0+

∥∥∥∥∥∑
n>N

ψεn(t, ·)

∥∥∥∥∥
L2(Rd)

−→
N→∞

0.

(ii) The family (ψε(t))ε>0 is ε-oscillating, locally uniformly in time, i.e. for all T ∈ R,

limsup
ε→0+

sup
t∈[0,T ]

‖1|εD|>Rψε(t)‖L2(Rd) −→
R→∞

0.

(iii) Any Wigner measure ςt of (ψε(t))ε>0 writes

ςt =
∑

n,n′∈N∗
µtn,n′ ,

where the signed measures µtn,n′ are joint Wigner measures of the pair (ψεn(t), ψεn′(t))ε>0,
n, n′ ∈ N∗, and the convergence of the series being understood in the weak-∗ topology of
the space of Radon measures on R2d.

(iv) For all n ∈ N∗, the family ψεn(t) satisfies

(4.11) iε2∂tψ
ε
n = %n(εD)ψεn + ε2fεn(t),

with

(4.12) fεn(t, x) := ϕn

(x
ε
, εDx

)∫
Td
ϕn(y, εDx)(Vext(t, x)Uε(t, x, y))dy.

This corollary motivates the analysis of the Wigner measures associated with the families
(ψεn(t))ε>0, n ∈ N∗, that will be performed in the next section and will allow to obtain a complete
description of the weak-limits of the density measure |ψε(t, x)|2 (as stated in Theorem 1.4 when
d = 1).

Proof
(i) The boundedness inHs

ε (Td×Rd) of the operator Pϕj and the boundedness of Lε fromHs
ε (Td×
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Rd) to L2(Rd) for s > d/2 imply that (4.1) holds in L2(Rd). Besides, in view of (4.6), (4.4),
for proving (4.10). it is enough to show that if (V ε)ε>0 is a bounded family in Hs

ε (Rd × Td),
s > d/2, we have, for d/2 < r < s,

limsup
ε→0+

∥∥∥∥∥∑
n>N

P εϕnV
ε

∥∥∥∥∥
Hrε (Rd×Td)

−→
N→∞

0.

Remark 4.7 implies that we only have to prove
(4.13)

limsup
ε→0+

∥∥∥∥∥∑
n>N

P (εDx)r/2P εϕnV
ε

∥∥∥∥∥
2

L2(Rd×Td)

+ limsup
ε→0+

∥∥∥∥∥∑
n>N

〈εDx〉rP εϕnV
ε

∥∥∥∥∥
2

L2(Rd×Td)

−→
N→∞

0.

We thus focus on proving (4.13).
Let us consider the series

∑
n>N P (εDx)r/2P εϕnV

ε (the proof for
∑
n>N 〈εDx〉rP εϕnV

ε is sim-
ilar). In view of (4.9),

P (εDx)P εϕnV
ε(x, y) = ϕn(y, εDx)%n(εDx)

∫
Td
ϕn(z, εDx)V ε(x, z)dz,

This implies∥∥∥∥∥∑
n>N

P (εDx)r/2P εϕnV
ε

∥∥∥∥∥
2

L2(Rd×Td)

=
∑
n>N

∥∥∥P (εDx)r/2P εϕnV
ε
∥∥∥2

L2(Rd×Td)
.

We decompose V ε in Fourier series and write V ε(x, y) =
∑
j∈Zd V

ε
j (x)e2iπj·y, whence

P (εDx)P εϕnV
ε(x, y) = ϕn(y, εDx)

∑
j∈Zd

%n(εDx)

(∫
Td
ϕn(z, εDx)e2iπj·zdz

)
V εj (x)

and by functional calculus

P (εDx)r/2P εϕnV
ε(x, y) = ϕn(y, εDx)

∑
j∈Zd

dn(εDx, j)V
ε
j (x)

with

dn(ξ, j) = %n(ξ)r/2
(∫

Td
ϕn(z, εDx)e2iπj·zdz

)
We use three observations.

(1) First, if δ > 0 is fixed, there exists J0 such that

limsup
ε→0+

∑
|j|>J0

∫
Rd

(1 + |εξ|2 + |j|2)r|V̂ εj (ξ)|2dξ < δ.

To see this note that:∑
|j|>J0

∫
Rd

(1 + |εξ|2 + |j|2)r|V̂ εj (ξ)|2dξ ≤ (1 + |J0|2)r−s‖V ε‖2Hs(Rd×Td),

due to the definition of the Hs
ε -norm (4.3). Since (V ε)ε>0 is uniformly bounded in

Hs
ε (Rd), the claim follows.

(2) Second, given δ > 0 and J0 ∈ N, one can find R = R(δ, J0) > 0 such that,

limsup
ε→0+

∑
|j|<J0

∫
|εξ|>R

(1 + |εξ|2 + |j|2)r|V̂ εj (ξ)|2dξ < δ.
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This follows from the estimate:∫
|εξ|>R

(1 + |εξ|2 + |j|2)r|V̂ εj (ξ)|2dξ ≤ (1 +R2)r−s‖V ε‖2Hs(Rd×Td),

and again from the fact that (V ε)ε>0 is uniformly bounded in Hs
ε (Rd × Td).

(3) Third, given J0, R > 0,

DN (R, J0) := sup
|j|≤J0

sup
|ξ|≤R

∑
n>N

|dn(ξ, j)|2 −→
N→∞

0.

To see why this holds note that, for j ∈ Zd, the map

(4.14) ξ 7−→
∑
n∈N∗

|dn(ξ, j)|2 =
∥∥∥P (ξ)r/2e2iπj·

∥∥∥2

L2(Td)
∈ (0,∞)

is a non-negative continuous function. The claim then follows from Dini’s theorem, which
ensures that for every R > 0, j ∈ Zd one has:

sup
|ξ|≤R

∑
n>N

|dn(ξ, j)|2 −→
N→∞

0.

We now use these observations to treat the series whose terms are∥∥∥P (εDx)r/2P εϕnV
ε
∥∥∥2

L2(Rd×Td))
=
∑
j∈Zd

∫
Rd
|dn(εξ, j)|2|V̂ εj (ξ)|2dξ.

Fix δ > 0, and consider J0 given by Point (1) and R = R(δ, J0) given by Point (2). Decompose
the sum of integrals in three terms∑

j∈Zd

∫
Rd

=
∑
|j|≤J0

∫
|εξ|≤R

+
∑
|j|≤J0

∫
|εξ|>R

+
∑
|j|>J0

∫
Rd
.

We start by analyzing the third term. Note that∑
n∈N∗

|dn(ξ, j)|2 =
∥∥∥P (ξ)r/2e2iπj·

∥∥∥2

L2(Td)
≤ cr(1 + |ξ|2 + |j|2)r

Therefore,

limsup
ε→0+

∑
n>N

∑
|j|>J0

∫
Rd
|dn(εξ, j)|2|V̂ εj (ξ)|2dξ ≤limsup

ε→0+

∑
|j|>J0

∫
Rd

∑
n∈N∗

|dn(εξ, j)|2|V̂ εj (ξ)|2dξ

≤ cr limsup
ε→0+

∑
|j|>J0

∫
Rd

(1 + |εξ|2 + |j|2)r|V̂ εj (ξ)|2dξ < crδ,

using observation (1).
The second term is analyzed using observation (2):

limsup
ε→0+

∑
n>N

∑
|j|≤J0

∫
|εξ|>R

|dn(εξ, j)|2|V̂ εj (ξ)|2dξ

≤ cr limsup
ε→0+

∑
|j|≤J0

∫
|εξ|>R

(1 + |εξ|2 + |j|2)k|V̂ εj (ξ)|2dξ < crδ.

Observation (3) ensures that∑
n>N

∑
|j|≤J0

∫
|εξ|≤R

|dn(εξ, j)|2|V̂ εj (ξ)|2dξ ≤ DN (R, J0)‖V ε‖2L2(Rd×Td).
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As a consequence of this analysis:

limsup
N→+∞

limsup
ε→0+

∑
n>N

∑
j∈Zd

∫
Rd

∣∣∣∣∫
Td
%n(εξ)r/2ϕn(z, εξ)e2iπj·zdz

∣∣∣∣2 |V̂ εj (ξ)|2dξ < 2crδ.

Since δ is arbitrary, the result follows.

(ii) By Point 2 of Proposition 4.1, it is enough to prove that for all T > 0,

(4.15) limsup
ε→0+

sup
t∈[0,T ]

‖1|εD|>RUε(t)‖Hsε (Rd×Td) −→
R→∞

0.

Because of the choice of Uε0 = ψε0 ⊗ 1Td and of Remark 2.20 we have

limsup
ε→0+

‖1|εD|>RUε0‖Hsε (Rd×Td) −→
R→∞

0.

We set UεR(t, x) = χ(εD/R)Uε(t) where χ ∈ C∞(Rd) is such that 0 ≤ χ ≤ 1, χ(ξ) = 1 for |ξ| > 2
and χ(ξ) = 0 for |ξ| ≤ 1. The family UεR solves

(4.16) iε2∂tU
ε
R = P (εD)UεR + ε2Vext(t, x)UεR + ε2[χ(εD/R), Vext(t, x)]Uε

with initial data UεR(0) = χ(εD/R)Uε(0). Besides, the Using operator
1

ε
[χ(εD/R), Vext(t, x)] is

uniformly bounded in L(L2(Rd)) with respect to ε and R, which yields

‖UεR(t)‖L2(Rd×Td) ≤ ‖UεR(0)‖L2(Rd×Td) +O(ε)

and gives the result for s = 0. We then assume s ∈ N∗ and consider the operators P (εD)s/2 and
〈εD〉s. We are going to prove that uniformly with respect to R,

‖〈εD〉sUεR(t)‖L2(Rd×Td) ≤ ‖〈εD〉sUεR(0)‖L2(Rd×Td) +O(ε),

‖P (εD)s/2UεR(t)‖L2(Rd×Td) ≤ ‖P (εD)s/2UεR(0)‖L2(Rd×Td) +O(ε).

The families 〈εD〉sUεR(t) and P (εD)s/2UεR(t) satisfy an equation similar to (4.16). One observes
that the families of operators

1

ε
〈εD〉s[χ(εD/R), Vext(t, x)]〈εD〉−s and

1

ε
P (εD)s/2[χ(εD/R), Vext(t, x)]P (εD)−s/2

are uniformly bounded in L(L2(Rd × Td)). And so is the operator
1

ε
[〈εD〉s, Vext(t, x)]〈εD〉s−1.

These two properties allow to use a recursive argument on s, which gives the expected result for
values of s which are in N. One then extends the result to any s by interpolation.

(iii) We proceed to a first extraction to have

(4.17)
∫
R

∫
R2d

θ(t)a(x, ξ)W ε` [ψε` ](t, x, ξ)dx dξ dt −→
`→∞

∫
R

∫
R2d

θ(t)a(x, ξ)ςt(dx, dξ)dt.

and we keep denoting by ε the resulting subsequence. We put

Ψε
N := (ψε1, . . . , ψ

ε
N ) ∈ C(Rt;L2(Rdx,CN ))

and we are left with a vector-valued family as in Section 2.3.4. Any accumulation point of
(W ε[Ψε

N (t)]) obtained along some subsequence (ε`)`∈N is a time-dependent family of positive
matrix-valued Radon measures µtN . By diagonal extraction, we can find a sequence (ε`)`∈N such
that (W ε` [Ψε`

N (t)])ε>0 converge for every N ∈ N∗. We denote by (µtN )N∈N∗ their respective limits
and we have for every n, n′ ≤ N ≤ N ′ one has:

(µtN )n,n′ = (µtN ′)n,n′ = µtn,n′ ,

where µtn,n′ is obtained through (4.19). This shows that we can find a sequence (ε`)`∈N as
claimed.
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Define now ψN,ε :=
∑N
n=1 ψ

ε
n. One has that for a ∈ C∞c (R2d) and t ∈ R,∫

R2d

a(x, ξ)W ε` [ψN,ε`(t)](t, x, ξ)dx dξ =

∫
R2d

a(x, ξ)Tr CN×N (QW ε` [Ψε`
N ](t, x, ξ)) dx dξ,

where Q is the N ×N matrix whose all entries are equal to one. Therefore, (W ε` [ψN,ε`(t)])`∈N
converges to the semi-classical measure given, for a.e. t ∈ R, by

ςtN =
∑

1≤n,n′≤N

µtn,n′ .

Finally, (i) implies that for every θ ∈ L1(R),

limsup
`→∞

∫
R
θ(t)‖ψε`(t, ·)− ψN,ε`(t, ·)‖2L2(Rd)dt −→

N→∞
0;

which in turn guarantees that ςt =
∑
n,n′∈N∗ µ

t
n,n′ .

(iv) The result comes from the observation that since %n(ξ) is 2πZd-periodic, Lε commutes
with %(εDx) (cf. point 1 of Proposition 4.1.

4.3. Semi-classical analysis of Bloch components. By the definition of (ψεn(t))ε>0 per-
formed in equation (4.1), we deduce from the equation (1.9) that for all n ∈ N∗, we have the
pseudodifferential equation

(4.18)

{
iε2∂tψ

ε
n(t, x) = %n(εDx)ψεn(t, x) + ε2fεn(t, x), (t, x) ∈ R× Rd,

ψεn(0, x) = ϕn
(
x
ε , εDx

) ∫
Td ϕn(y, εDx)ψε0(x)dy,

with fεn given by (4.12). By Proposition 4.1 (1), for all T > 0, the family (fε(t))ε>0 is bounded
in the space L∞([0, T ], L2(Rd)).

Our aim is to obtain information about the measures µtn,n′ satisfying for all θ ∈ L1(R),
a ∈ C∞c (R2d),

(4.19)
∫
R

∫
R2d

θ(t)a(x, ξ)W εn,n
′

` [ψεn, ψ
ε
n′ ](t, x, ξ)dx dξ dt −→

`→∞

∫
R

∫
R2d

θ(t)a(x, ξ)µtn,n′(dx, dξ))dt,

Proposition 4.3. Suppose Vper is smooth and Vext ∈ C1(Rd) with ∇Vext bounded, consider
(ψε0)ε>0 a bounded family in Hs

ε (Rd) for some s > d/2. For any n, n′ ∈ N∗, let (ψεn) and (ψεn′) be
defined by (4.1) and let µtn,n′ be given by (4.19). Let Ω ⊆ Rd be open and invariant by translations
by 2πZd. Then the following hold.

(1) If ∇%n ∈ Lip(Rd) on Ω and ∇ξ%n|Ω 6= 0, then µtn,n(Rd × Ω) = 0 for almost every t ∈ R.
(2) Let δ > 0 and suppose that Ω ⊂ {ξ ∈ Rd : |%n(ξ)− %n′(ξ)| ≥ δ}, then |µtn,n′ |(Rd × Ω) = 0

for almost every t ∈ R.

This result shows that µtn,n can only charge the set of critical points of %n or the sets where %n
has a conical crossing with another Bloch energy (i.e. where %n ceases to be C1,1(Rd)). It also
shows that Σn,n′ is the only region where the measures µtn,n′ can be non-zero. The analysis of
these measures will be performed in the following sections by means of a two-scale analysis.

The proof of this proposition uses the calculus of semi-classical pseudodifferential operators
with low regularity of Lemma 2.12 and the following result.

Lemma 4.4. Let Ω ⊂ Rd and Φs : Rd × Ω → Rd × Ω a flow satisfying: for every compact
K ⊂ Rd × Ω such that K contains no stationary points of Φ there exist constants α, β > 0 such
that:

α|s| − β 6 |Φs(x, ξ)| 6 α|s|+ β, ∀(x, ξ) ∈ K.
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Let µ be a finite, positive Radon measure on Rd ×Ω that is invariant by the flow Φs. Then µ is
supported on the set of stationary points of Φs.

Proof
It suffices to show that µ(K) = 0 for every compact set K ⊂ Rd × Ω as in the statement of
the lemma. By the assumption made on Φs, it is possible to find sk → +∞ such that Φsk(K),
k ∈ N, are mutually disjoint. The invariance property of µ implies that µ(Φsk(K)) = µ(K) and
therefore, for every N > 0:

µ

(
N⋃
k=1

Φsk(K)

)
= Nµ(K).

Since µ is finite, we must have µ(K) = 0.

Proof
For proving Point 1, we write

iε2 d

dt
(ψεn(t), opε(a)ψεn(t)L2(Rd) = (ψεn(t), [opε(a), %n(εDx)]ψεn(t)L2(Rd) +O(ε2).

By Lemma 2.12 (2), we deduce

−ε d
dt

(ψεn(t), opε(a)ψεn(t)L2(Rd) = (ψεn(t), opε(∇ξ%n · ∇xa)ψεn(t)L2(Rd) +O(ε).

Therefore, for every θ ∈ C∞c (R) and a ∈ C∞c (Rd × Ω),∫
R
θ(t)(ψεn(t), opε(∇ξ%n · ∇xa)ψεn(t)L2(Rd)dt−→

ε→0
0.

By (4.19), this implies that, for almost every t ∈ R,∫
Rd×Ω

∇ξ%n(ξ) · ∇xa(x, ξ)µtn,n(dx, dξ) = 0,

or equivalently that the measure µtn,n1Rd×Ω is invariant by the flow (x, ξ) 7→ (x + s∇%n(ξ), ξ).
Since the measure µtn,n is positive and finite, necessarily it is identically 0, thanks to the
Lemma 4.4.

For proving Point 2, we write

(4.20) iε2 d

dt
(ψεn(t), opε(a)ψεn′(t))L2(Rd)

= (ψεn(t), (%n′(εDx)opε(a)− opε(a)%n(εDx))ψεn′(t))L2(Rd) + ε2Rε(t),

where |Rε(t)| ≤ C‖fεn(t, ·)‖2L2(Rd) is locally uniformly bounded in t ∈ R for every ε > 0. By
Lemma 2.12 (1), the following holds with respect to the L(L2(Rd)) norm:

%n′(εDx)opε(a)− opε(a)%n(εDx) = opε ((%n′ − %n)a) +O(ε).

This identity together with integration by parts transforms (4.20) into∫
R
θ(t) (ψεn(t), opε(%n′ − %n)a)ψεn′(t))L2(Rd) dt =

ε2

i

∫
R
θ′(t) (ψεn(t), opε(a)ψεn′(t))L2(Rd) dt+O(ε).

Taking limits ε→ 0, which is possible by Remark 2.9, we obtain∫
R

∫
R2d

θ(t)(%n′(ξ)− %n(ξ))a(x, ξ)µtn,n′(dx, dξ)dt = 0.
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By density, this relation holds for all a ∈ C∞c (Rd ×Ω), in particular for ã = (%n − %n′)−1a. This
shows that, as we wanted to prove

∀θ ∈ C∞c (R), ∀a ∈ C∞c (Rd × Ω),

∫
R

∫
R2d

θ(t)a(x, ξ)µtn,n′(dx, dξ)dt = 0.
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5. Two-scale Wigner analysis

We develop in this section a two scale method for analyzing more precisely the concentration of
a family on a point of the phase space. The two-scale Wigner measures (or two-scale semi-classical
measures) that we describe here, have been first introduced in [29, 57, 60] (see also [30, 31]).
The use of two-microlocal semiclassical measures for dispersive equations was initiated in [50],
in the context of the Schrödinger equation on the torus. We restrict ourselves to the analysis of
concentration on submanifolds of the space of impulsion (the ξ variable).

5.1. Two-scale Wigner measures.

5.1.1. Two-scale observables. We extend the phase space T ∗Rd := Rdx×(Rd)∗ξ with a new variable
η ∈ Rd, where Rd is the compactification of Rd obtained by adding a sphere Sd−1 at infinity. The
test functions associated with this extended phase space are functions a ∈ A where A is defined
as follows.

Definition 5.1. The function a ∈ C∞(T ∗Rdx,ξ×Rdη) belongs to the set A of two-scale observables
if it satisfies the two following properties:

(1) There exists a compact K ⊂ T ∗Rd such that, for all η ∈ Rd, the map (x, ξ) 7→ a(x, ξ, η)
is a smooth function compactly supported in K;

(2) There exists a smooth function a∞ defined on T ∗Rd × Sd−1 and R0 > 0 such that, if
|η| > R0, then a(x, ξ, η) = a∞(x, ξ, η/|η|).

In other words, Point 2 means that, in the set {|η| > R0}, a coincides with a function a∞ that
is homogeneous of degree 0 in η. The data of a ∈ A, defines a smooth function a∞ on R2d×Sd−1

and a function a on R2d × Rd obtained by setting

(5.1) a(x, ξ, η) = a(x, ξ, η) if |η| < +∞ and a(x, ξ, η) = a∞(x, ξ, ω) if η =∞ω, ω ∈ Sd−1.

If a ∈ A, the compact K of Point 1 of Definition 5.1 is called the support of the symbol a.
The set A is a subspace of C∞(R3d) and of the space of smooth bounded functions with

bounded derivatives. Indeed, for any k ∈ N,

sup
β∈N3d

sup
(x,ξ,η)∈R3d

∣∣∣∂βx,ξ,ηa(x, ξ, η)
∣∣∣ < +∞.

We shall consider the semi-norm

(5.2) Ñd(a) := sup
ξ,η∈Rd

sup
|β|≤d+1

‖∂βxa(·, ξ, η)‖L1(Rd)

that appear in (2.13).

5.1.2. Quantization of two-scale observables and two-scale Wigner transforms. We introduce first
here a two-scale quantization associated with a point ξ0 of the space of the impulsions. We denote
by εκ, for κ ∈ (0, 1], the second scale of observation. The two-scale Wigner transform acts on
two-scale observables a ∈ A according to

(5.3) 〈W ε,κ
{ξ=ξ0}[f ] , a〉 =

(
f, opε

(
a(x, ξ,

ξ − ξ0
εκ

)
f

)
L2(Rd)

.

One then defines the two-scale semi-classical pseudodifferential operator

op{ξ=ξ0}ε,κ (a) := opε

(
a

(
x, ξ,

ξ − ξ0
εκ

))
, a ∈ A,

and one has
〈W ε,κ
{ξ=ξ0}[f ] , a〉 =

(
f, op{ξ=ξ0}ε,κ (a)f

)
L2(Rd)

, ∀a ∈ A.
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The latter formula shows the zoom effect obtained by adding this new variable η. Indeed,
when |η| ≤ R for some R > 0, one restricts the domain of a to points (x, ξ) that are at a distance
smaller than Rεκ from the set {ξ = ξ0}). When |η| > R is large, one considers larger domains,
namely rings {Rεκ < |ξ − ξ0| < M} where the constant M is related with the compact K in
which a takes his values. The fact that |η| can go to +∞ allows to investigate all the directions
and to visit all the compact K.

In the following, we shall use the operator of multiplication by the phase e−
i
ε ξ0·x

Proposition 5.2. Let a ∈ A, we have the following properties.
(1) Suppose that the compact K associated to a by Point 1 of Definition 5.1 does not contain

ξ0. Then, there exists ε0 > 0 such that for all ε ∈ (0, ε0),

op{ξ=ξ0}ε,κ (a) = opε

(
a∞

(
x, ξ,

ξ − ξ0
|ξ − ξ0|

))
.

(2) The family of operators
(

op
{ξ=ξ0}
ε,κ (a)

)
ε>0

is a bounded family in L(L2(Rd)) satisfying

(5.4) op{ξ=ξ0}ε,κ (a) = e
i
ε ξ0·xopε1−κ (a(x, ξ0 + εκξ, ξ)) e−

i
ε ξ0·x.

(3) There exists C > 0 such that for all f ∈ S(Rd)∣∣∣〈W ε,κ
{ξ=ξ0}[f ], a〉

∣∣∣ ≤ C ‖f‖2L2 Ñd(a),

where the semi-norm Ñd is defined in (5.2).
(4) If (fε)ε>0 is a bounded family in L2(Rd), the functionals

a 7→ 〈W ε,κ
{ξ=ξ0}[f

ε], a〉

are linear maps on A that are continuous uniformly in ε for the semi norm Ñd.

Proof
Point 1. The first part of the proposition comes from the observation that for such compact K,
there exists ε0 > 0 such that all ε ∈ (0, ε0), |ξ− ξ0| > R0ε

κ, where R0 is associated to a by Point
2 of Definition 5.1. Therefore,

a

(
x, ξ,

ξ − ξ0
εκ

)
= a∞

(
x, ξ,

ξ − ξ0
|ξ − ξ0|

)
and the result follows.
Point 2 comes from an explicit calculus.
Points 3 and 4 are consequences of Point 2.

Remark 5.3. Equation (5.4) shows a fundamental difference between the case κ ∈ (0, 1) and κ = 1.
Indeed, when κ ∈ (0, 1) and a ∈ C∞c (R3d), the operator op

{ξ=ξ0}
ε,κ (a) is unitarily equivalent to the

operator opε1−κ (a(x, ξ0 + εκξ, ξ)) that coincides (at leading order) with a semi-classical operator
of the same style than those studied in the preceding chapters, but for the scale ε1−κ. Indeed
one has

(5.5) opε1−κ (a(x, ξ0 + εκξ, ξ)) = opε1−κ (a(x, ξ0, ξ)) +O(εκR),

where |η| ≤ R on the support of a. This comes from a Taylor estimate: there exists a constant
C > 0 such that

Nd
(
a(x, ξ0 + εκξ, ξ)− a(x, ξ0, ξ)

)
≤ εκNd

(∫ 1

0

x · ∇xa(x, ξ0 + εκsξ, ξ)ds

)
≤ C Rεκ.
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However, if κ = 1, equation (5.4) becomes

op
{ξ=ξ0}
ε,1 (a) = e

i
ε ξ0·xop1 (a(x, ξ0 + εξ, ξ)) e−

i
ε ξ0·x,

and relates the operator op
{ξ=ξ0}
ε,1 (a) with the operator op1(a(x, ξ0, ξ)) which is no longer a semi-

classical operator.

5.1.3. Two-scale Wigner measures. We now pass to the limit on the two-scale Wigner transform
of a bounded family in L2(Rd). We focus here on the scale κ = 1 and we omit the index 1 in the
notation op

{ξ=ξ0}
ε .

Theorem 5.4. Let (fε)ε>0 be a bounded family in L2(Rd), there exists a sequence (ε`)`∈N which
tends to 0 when ` goes to +∞ and a positive measure ν∞ on R2d

x,ξ×Sd−1 such that for all a ∈ A,(
fε` , op{ξ=ξ0}εn (a)fε`

)
L2(Rd)

−→
`→+∞

∫
Rd×Sd−1

a∞(x, ξ0, η)ν∞(dξ, dη) +
(
f, aW (x, ξ0, Dx)f

)
L2(Rd)

+

∫
R2d\{ξ=ξ0}

a∞

(
x, ξ,

ξ − ξ0
|ξ − ξ0|

)
µ(dx, dξ),

where µ is a Wigner measure of the family (fε)ε>0 for the scale (ε`)`∈N and f a weak limit in
L2(Rd) of the family

(
e
− i
ε`
x·ξ0fε`

)
n∈N

.

The term
(
f, aW (x, ξ0, Dx)f

)
L2(Rd)

writes(
f, aW (x, ξ0, Dx)f

)
L2(Rd)

= Tr(aW (x, ξ0, Dx)Mf )

where Mf is the orthogonal projector on the subspace Vect(f) of L2(Rd). It will be more
convenient to use the operator Mf .

Definition 5.5. We call the pair (ν∞,Mf ) a two-scale Wigner measure, or two-scale semi-
classical measure, associated with the concentration of (fε)ε>0 on the vector space {ξ = ξ0}.

We set for a ∈ A,
Iε`(a) =

(
fε` , op{ξ=ξ0}ε`

(a)fε`
)
L2(Rd)

.

Consider a function χ ∈ C∞c (Rd, [0, 1]) such that χ = 1 in a neighborhood of 0 and set for a ∈ A,

(5.6)


aδ(x, ξ, η) = a(x, ξ, η)

(
1− χ

(
ξ−ξ0
δ

))
,

aRδ (x, ξ, η) = a(x, ξ, η)
(
1− χ

(
η
R

))
χ
(
ξ−ξ0
δ

)
,

aR(x, ξ, η) = a(x, ξ, η)χ
(
η
R

)
χ
(
ξ−ξ0
δ

)
.

Then, we have a = aR + aRδ + aδ and

limsup
δ→0

limsup
R→+∞

limsup
`→+∞

Iε(aRδ ) =

∫
Rd×Sd−1

a∞(x, ξ0, η)ν(dξ, dη),

limsup
δ→0

limsup
R→+∞

limsup
`→+∞

Iε(aR) =
(
f, aW (x, ξ0, Dx)f

)
L2(Rd)

,

limsup
δ→0

limsup
R→+∞

limsup
`→+∞

Iε(aδ) =

∫
{ξ 6=ξ0}×Rd

a∞

(
x, ξ,

ξ − ξ0
|ξ − ξ0|

)
µ(dx, dξ),

We obtain a description of the semi-classical measure above ξ = ξ0

µ(x, ξ)1ξ=ξ0 = δξ0(ξ)⊗
(
|f(x)|2dx+

∫
Sd−1

ν∞(x, dη)

)
.
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The knowledge of the two-scale Wigner measures determine µ above ξ0.

Example 5.6. Let ϕ ∈ S(Rd), ξ0, η0 ∈ Rd, β > 0 and consider the family

uεβ(x) = ϕ(x)e
i
εx·(ξ0−ε

βη0), x ∈ Rd.

Then, the pair (ν
(β)
∞ , fβ) describing the concentration of (uεβ)ε>0 on {ξ = ξ0} is given by
ν

(β)
∞ = 0 and fβ = ϕ if β > 1,

ν
(β)
∞ = 0 and fβ(x) = e−ix·η0ϕ(x) if β = 1,

ν
(β)
∞ (x, η) = δ η0

|η0|
∞ (η)⊗ |ϕ(x|2dx and fβ = 0 if β < 1.

In the three cases, the semi-classical measure is µ(x, ξ) = δξ0(ξ)⊗ |ϕ(x)|2dx.

Remark 5.7. (1) As for the standard Wigner measures, the definition of two-scale Wigner
measures can be extended to vector-valued families and to time-dependent ones.

(2) The notion can also be extended to the concentration of families on submanifolds of the
cotangent space of the form Rd ×M (see [23]).

Let us now prove Theorem 5.4.

Proof
We use the decomposition a = aR + aRδ + aδ of (5.6). We first observe that if µ is a semiclassical
measure of (fε)ε>0 for a subsequence that we denote ε`, ` ∈ N. Then, we have

(5.7) limsup
`→+∞

(
fε` , op{ξ=ξ0}ε`

(aδ)fε`
)
L2(Rd)

−→
δ→0

∫
R2d

a∞

(
x, ξ,

ξ − ξ0
|ξ − ξ0|

)
µ(dx, dξ).

Moreover, by (5.5)(
fε, op{ξ=ξ0}ε (aR)fε

)
L2(Rd)

=
(
f̃ε, op1(aR(x, ξ0, ξ))f̃

ε
)
L2(Rd)

+O(Rε)

with f̃ε = e−
i
ε ξ0·xfε. Since the operator op1(aR(x, ξ0, ξ)) = aWR (x, ξ0, Dx) is a compact operator,

independent of ε, if f is a weak limit in L2(Rd) of f̃ε for the subsequence ε`, one has(
f̃ε` , op1(aR(x, ξ0, ξ))f̃

ε`
)
L2(Rd)

−→
`→+∞

(
f, aWR (x, ξ0, Dx)f

)
L2(Rd)

.

We deduce

(5.8) limsup
`→+∞

(
fε` , op{ξ=ξ0}ε`

(a)fε`
)
L2(Rd)

−→
R→+∞

(
f, aW (x, ξ0, Dx)f

)
L2(Rd)

.

Finally, we consider the symbol aR that is supported in the zone R > |η|. We consider the
quantity

Jε,R(a) :=
(
f̃ε, op1(aR(x, ξ0 + εξ, ξ))f̃ε

)
L2(Rd)

.

We are interested in the limit where ε goes to 0 first and then R goes to +∞. This quantity
is uniformly bounded in ε > 0 and R > 1. Besides, for all a ∈ A, Jε,R(a) = Jε,R(a∞) as soon
as R is large enough. We then deduce by a diagonal extraction argument that one can find two
sequences ε` −→

`→+∞
0 and R` −→

`→+∞
+∞, and a linear form I defined on C∞(Rd×Rd×Sd−1), such

that for all a ∈ A,
Jε`,R`(a) −→

`→+∞
J(a∞).
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It remains to prove that a∞ 7→ J(a∞) is a measure, which will define ν1|η|=∞. For this, we
prove that a∞ 7→ J(a∞) is a positive distribution. Let us start with the distribution argument:
we observe that there exists a constant C > 0 such that for all a ∈ A,

Jε`,R`(a) ≤ CÑd(aR`),

and we deduce from Nd(a
R`) −→

n→+∞
Nd(a∞) that J(a∞) ≤ Nd(a∞). Therefore a∞ 7→ J(a∞) is

a distribution. To prove the positivity, we observe that the operators a 7→ op1(aR(x, ξ0 + εξ, ξ)
satisfy a semi-classical calculus in the parameters ε and 1/R. Indeed, we have the following
observations: for all a, a1, a2 ∈ Ad

(i) op1(aR(x, ξ0 + εξ, ξ)∗ = op1(aR(x, ξ0 + εξ, ξ)),
(ii) in L(L2(Rd)),

op1(aR1 (x, ξ0 + εξ, ξ) ◦ op1(aR2 (x, ξ0 + εξ, ξ))

= op1((a1a2)R(x, ξ0 + εξ, ξ)) +O

(
ε+

1

R

)
Therefore, one has the following Gårding inequality

(iii) if a ≥ 0, then for all δ > 0 there exists Cδ > 0 such that for all f ∈ L2(Rd),

(
f, op1(aR(x, ξ0 + εξ, ξ)f

)
L2(Rd)

≥ −

(
δ + Cδ

(
ε+

1

R

)2
)
‖f‖L2 .

One can then conclude to the positivity of the map a∞ 7→ J(a∞), whence it defines a positive
measure on R2d×Sd−1, that we denote by ν∞, such that, after extraction of subsequences R`, ε`,
we have

(5.9) limsup
`→+∞

(
fε` , op{ξ=ξ0}ε`

(aR`δ )fε`
)
L2(Rd)

−→
δ→0

∫
Rd×Sd−1

a∞(x0, ξ, η)ν∞(dξ, dη).

Putting together (5.7), (5.8) and (5.9) concludes the proof.

Let us conclude this paragraph by a comment about the case κ ∈ (0, 1), for which one has the
following Theorem.

Theorem 5.8. Let (fε)ε>0 be a bounded family in L2(Rd), there exists a sequence (ε`)`∈N which
tends to 0 when n goes to +∞ and a positive measure ν on Rdx × Rdη such that for all a ∈ A,(

fε` , op{ξ=ξ0}ε`,κ
(a)fε`

)
−→
`→+∞

∫
Rd×Rd

a(x, ξ0, η)ν(dx, dη)

+

∫
R2d\{ξ=ξ0}

a∞

(
x, ξ,

ξ − ξ0
|ξ − ξ0|

)
µ(dx, dξ),

where µ is a Wigner measure of the family (fε)ε>0 for the scale (ε`)`∈N.

Thus illustrates the criticality of the concentration at semi-classical scale, as already mentioned
in Remark 5.3, in the case κ = 1 some quantum effects remain.

5.2. Concentration of Bloch components on critical points. We resume with the families
(ψεn(t))ε>0 satisfying the equation (4.11). We denote by Λn the set of critical points of the Bloch
mode %n.

(5.10) Λn := {ξ ∈ Rd \ ∪n′ 6=nΣn,n′ : ∇%n(ξ) = 0}.
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According to the analysis of Chapter 3.2, when d = 1, Λn consists in isolated non degenerate
critical points. Our aim in this section is to compute the two-scale Wigner measures associated
with the concentration of (ψεn(t))ε>0 on such a point.

We fix n > 0 such that %n is isolated from the remainder of the spectrum in an open subset
Ω of Rd (as in (3.14)). Note that Ω can be chosen so that it does not contain any crossing
point of Σn,n′ . Therefore, by Proposition 4.3, any semi-classical measure of (ψεn(t))ε>0 satisfies
µtn1ξ∈Ω = µtn1ξ∈Ω∩Λn .

The equation (4.11) writes

iε2∂tψ
ε
n(t, x) = %n(εD)ψεn(t, x) + ε2Vext(t, x)ψεn(t, x) + ε2rεn(t, x)

with rε(t, x) = Lε[Vext(t, x),Πn(εD)]Uε(t, x, ·), uniformly bounded in L2(Rd). Moreover, since in
Ω, the map ξ 7→ Πn(ξ) is smooth, for all θ ∈ Cc(Ω) and t ∈ R, θ(εD)rε(t) = O(ε). Observing that
any microlocal symbol a = a(x, ξ) with support in Rd×Ω satisfies opε(a) = opε(a)θ(εD)+O(εN ),
in L(L2(Rd) for any function θ ∈ Cc(Ω) such that θ = 1 on the support of a, and for any N ∈ N,
we deduce that for all a ∈ A with support in Rd × Ω, and uniformly for t ∈ [0, T ], T > 0,

op{ξ=ξ0}ε (a)rε(t) = O(ε) in L2(Rd).

The strategy being independent of the dimension of the space, we state the result in any
dimension, assuming that Λn contains an isolated point ξn and we focus on this point.

Theorem 5.9 ([23]). Let n > 0 such that %n is isolated from the remainder of the spectrum in
an open subset Ω of Rd (as in (3.14)), assume that Ω ∩ Λn = {ξn}. Then, any pair (νtn,M

t
n) of

two-microlocal items associated with the concentration of (ψεn(t))ε>0 above ξn satisfies:

(1) The operator Mt
n is the orthogonal projection of L2(Rd) along the function ψ(n)

ξn
(t) which

solves the Schrödinger equation (1.12), namely

i∂tψ
(n)
ξn

(t, x) =
1

2
d2%n(ξ)Dx ·Dxψ

(n)
ξn

(t, x) + Vext(t, x)ψ
(n)
ξn

(t, x),

with initial data ψ(n)
ξn

(0) which is a weak limit of
(

e−
i
ε ξn·xLεΠn(εDx)(ψε0(x)1y∈T)

)
ε>0

.

(2) The measure νtn is invariant by the flow φsn,

φsn : (x, ω) 7→ (x+ s d2%n(σ)ω, ω),

which implies by Lemma 4.4, that, if ξn is a non degenerate critical point, then νtn = 0.

Note that the operator Mt
n satisfies the von Neumann equation

(5.11) i∂tM
t
n =

1

2

[
d2%n(ξ)Dx ·Dx + Vext(t, x),Mt

n

]
.

Besides, the map t 7→Mt
n is continuous.

Theorem 5.9 has the following consequence when d = 1.

Corollary 5.10. Assume d = 1 and let ξn be a critical point of %n. Then, in Ω

µtn,n(x, ξ)1ξ∈Ω = δξn(ξ)⊗ |ψ(n)
ξn

(t, x)|2dx

where ψ(n)
ξn

(t) solves (1.12), with ξ = ξn.

Proof
The proof consists in two parts corresponding to the two zones defined by the scale ε around ξn.
We consider a pair (νtn,M

t
n) and we denote by ε the subsequence associated with them.
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Part 1: Analysis at finite distance. For computing Mt
n, we analyze for a ∈ C∞c (Rd×Ω×Rd)

the time evolution of the quantity
〈
W ε
{ξ=ξn}[ψ

ε
n(t)], a

〉
, as defined in (5.3), and omitting the

mention of κ = 1. We have

d

dt

〈
W ε
{ξ=ξn}[ψ

ε
n(t)], a

〉
=

1

iε2

(
ψεn(t),

[
op{ξ=ξn}ε (a), %n(εD)

]
ψεn(t)

)
(5.12)

+
1

i

(
ψε(t) ,

[
op{ξ=ξn}ε (a), Vext(t, x)

]
ψε(t)

)
+O(ε).

Since %n is smooth in Ω, we can use the standard symbolic calculus for Weyl quantization and
we obtain that in L(L2(Rd))

1

iε2

[
op{ξ=ξn}ε (a), %n(εD)

]
=

1

ε
op{ξ=ξn}ε (∇%n(ξ) · ∇xa) +O(ε).

Besides, by Taylor formula and by use of ∇%n(ξn) = 0, we have

(5.13) ∇%n(ξ) = d2%n(ξn) (ξ − ξn) +B(ξ) (ξ − ξn) · (ξ − ξn) ,

where ξ 7→ B(ξ) is a smooth matrix-valued map. This yields

1

ε
∇%n(ξ) · ∇xa

(
x, ξ,

ξ − ξn
ε

)
= b

(
x, ξ,

ξ − ξn
ε

)
with

b(x, ξ, η) = d2%n(ξn)η · ∇xa(x, ξ, η) +B(ξ) (ξ − ξn) · η∇xa(x, ξ, η).

At this stage of the proof, we see that d
dt

〈
W ε
{ξ=ξn}[ψ

ε
n(t)], a

〉
is uniformly bounded in ε. Thus

using a suitable version of Ascoli’s theorem and a standard diagonal extraction argument, we can
find a sequence (εk) such that the limit exists for all a ∈ C∞c (Rd×Ω×Rd) and all time t ∈ [0, T ]
(for some T > 0 fixed) with a limit that is a continuous map in time. The transport equation
that we are now going to prove shall guarantee the independence of the limit from T > 0 and
imply the characterization of Mt

n. Moreover, the continuity of t 7→ Mt
n implies that at t = 0,

M0
n has to coincide with the projector on a weak limit of

(
e−

i
ε ξn·xLεΠn(εDx)(ψε0(x)1y∈T)

)
ε>0

.

It remains to prove the transport equation (5.11). We rewrite (5.12) as

d

dt

〈
W ε
{ξ=ξn}[ψ

ε
n(t)], a

〉
=
(
ψεn(t), op{ξ=ξn}ε (b)ψεn(t)

)
+

1

i

(
ψε(t) ,

[
op{ξ=ξn}ε (a), Vext(t, x)

]
ψε(t)

)
+O(ε),

and pass to the limit. We obtain

d

dt
TrL2(Rd)

(
aW (x, ξn, Dx)Mt

n

)
= TrL2(Rd)

(
bW (x, ξn, Dx)Mt

n

)
+ TrL2(Rd)

(
[aW (x, ξn, Dx), Vext(t, x)]Mt

n

)
.

Moreover

bW (x, ξn, Dx) = op1

(
d2%n(ξn)ξ · ∇xa(x, ξn, ξ)

)
=

1

2

[
d2%nDx ·Dx, a

W (x, ξ,Dx)
]
.
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We deduce, using the cyclicity of the trace
d

dt
TrL2(Rd)

(
aW (x, ξn, Dx)Mt

n

)
= TrL2(Rd)

([
aW (x, ξn, Dx),

1

2
d2%nDx ·Dx + Vext(t, x)

]
Mt

n

)
= TrL2(Rd)

(
aW (x, ξn, Dx)

[
1

2
d2%nDx ·Dx + Vext(t, x),Mt

n

])
,

whence the equation (5.11).

Part 2: Analysis at infinity. Let a ∈ A with support in Rd × Ω × Rd. We use a cut-off
function χ ∈ C∞c (Rd, [0, 1]) identically equal to 1 close to 0, and we set (as in (5.6))

aRδ (x, ξ, η) = a(x, ξ, η)χ

(
ξ − ξn
δ

)(
1− χ

( η
R

))
.

We introduce the symbol

bRδ (s, x, ξ, η) = aRδ

(
x+ sd2%n(ξ)

η

|η|
, ξ, η

)
.

We have bRδ ∈ A and

(bRδ )∞(s, x, ξ, ω) = a∞ ◦ φsn(x, ξ, ω)χ

(
ξ − ξn
δ

)
.

Our aim is to prove that for θ ∈ C∞c (R) and s ∈ R,

limsup
δ→0

limsup
R→+∞

limsup
ε→0

∫
R
θ(t)〈W ε

{ξ=ξn}[ψ
ε
n(t)], bR,δs 〉dt = 0.

We observe
d

ds
bRδ

(
s, x, ξ,

ξ − ξn
ε

)
= ∇xaRδ

(
x+ sd2%n(ξ)

ξ − ξn
|ξ − ξn|

, ξ,
ξ − ξn
ε

)
· d2%n(ξ)

ξ − ξn
|ξ − ξn|

.

Since d2%n(ξ)(ξ − ξn) = ∇%n(ξ) +O(|ξ − ξn|2), we have

d

ds
bRδ

(
s, x, ξ,

ξ − ξn
ε

)
= ∇%n(ξ) · ∇xcRδ

(
s, x, ξ,

ξ − ξn
ε

)
+ δ rε(x, ξ)

with
cRδ (s, x, ξ, η) =

1

|ξ − ξn|
bRδ (s, x, ξ, η)

and rε such that for all α ∈ Nd, (x, ξ) 7→ ∂αx r
ε(x, ξ) is bounded uniformly in ε and R. Note that

regarding cRδ , we have

(5.14) ∀α, β ∈ Nd, ∃Cα > 0, ∀R > 1, ∀δ, ε ∈ (0, 1), ‖xβ∂αx cRδ ‖L∞ ≤
Cα
Rε

,

in particular Ñd(cRδ ) = O(1/(Rε). Let us now conclude the proof. We first write, uniformly in
ε ∈ (0, 1), R ∈ [1,+∞) and s ∈ R(

ψεn(t), op{ξ=ξn}ε

(
d

ds
bRδ (s)

)
ψεn(t)

)
L2(Rd)

=

(
ψεn(t),

i

ε

[
%n(εD), op{ξ=ξn}ε

(
cRδ (s)

])
ψεn(t)

)
L2(Rd)

+O(δ).
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Then, taking into account equation (4.11), we deduce that uniformly in ε ∈ (0, 1), R ∈ [1,+∞)
and s ∈ R(

ψεn(t), op{ξ=ξn}ε

(
d

ds
bRδ (s)

)
ψεn(t)

)
L2(Rd)

= −ε d
dt

(
ψεn(t), op{ξ=ξn}ε

(
cRδ (s)

)
ψεn(t)

)
L2(Rd)

− iε
(
ψεn(t), op{ξ=ξn}ε

(
cRδ (s)

)
fεn(t)

)
L2(Rd)

+ iε
(
fεn(t), op{ξ=ξn}ε

(
cRδ (s)

)
ψεn(t)

)
L2(Rd)

+O(δ) +O(ε).

The estimate (5.14) gives ‖op
{ξ=ξn}
ε

(
cRδ (s)

)
‖L(L2(Rd)) = O

(
1
εR

)
. Therefore, for any θ ∈ C∞c (R),

we have ∫
R
θ(t)

(
ψεn(t), op{ξ=ξn}ε

(
d

ds
bRδ (s)

)
ψεn(t)

)
L2(Rd)

dt = O

(
1

R

)
+O(ε) +O(δ),

which concludes the proof.

5.3. Concentration above crossing points. In this section, we analyze the semi-classical
measure of (ψεn(t))ε>0 above crossing points. Here again, we work in any dimension under the
assumption that crossing points are isolated points of the space of impulsions, which is the case
when d = 1. We also assume that for all n ∈ N∗, the multiplicity of the Bloch energy %n is
one, except at crossing points, where it is two. This implies that a global labeling of the band
functions exists such that Σn,n′ 6= ∅ implies |n− n′| = 1. We write

(5.15) Σn := Σn,n+1, n ∈ N∗.

We additionally assume that in an open set Ω, we have Σn∩Ω = {σn} and we aim at calculating
the two-microlocal semi-classical measures associated with the concentration of (ψεn(t))ε>0 above
σn. All these assumptions are satisfied when d = 1.

Finally, we assume that the crossing is conical above the point σn in the sense that there exists
an homogeneous function of degree 1, gn, such that

∀ξ ∈ Ω, (%n+1 − %n)(ξ) = gn(ξ − σn).

We set

λn(ξ) =
1

2
(%n+1(ξ) + %n(ξ)) .

We recall that when d = 1, ∇λn(σn)± gn(ω) 6= 0 for ω ∈ {−1,+1} (see Lemma 3.14 (4)).

Theorem 5.11. Assume ∇gn(ω) 6= ∇λn(σn) for all ω ∈ Sd−1. Then, with the preceding as-
sumptions, any pair (γtn,Γ

t
n) of two-microlocal semi-classical measures associated with the con-

centration of (ψεn(t))ε>0 on {ξ = σn} is (0, 0) dt-almost everywhere.
If moreover ∇gn(ω) 6= −∇λn(σn) for all ω ∈ Sd−1. Then, any pair (γtn+1,Γ

t
n+1) of two-microlocal

semi-classical measures associated with the concentration of the family (ψεn+1(t))ε>0 on {ξ = σn}
is also (0, 0) dt-almost everywhere.

Corollary 5.12. When d = 1, the assumptions of Theorem 5.11 are satisfied and, assuming
that Ω does not contain any critical points of %n and %n+1 (which is always possible), we have

µtn,n1ξ∈Ω = µtn+1,n+11ξ∈Ω = 0, whence µtn,n+11ξ∈Ω = 0 as well.

Proof
Here again, we prove Theorem 5.11 in two steps: first we focus on the part of the two-scale
Wigner measure that comes from infinity, then we concentrate on the part at finite distance.
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Part 1: The two-scale Wigner measure at infinity. Let a ∈ A supported in Rd × Ω× Rd
and χ ∈ C∞c (Rd, [0, 1]) χ ∈ C∞0 (Rd, [0, 1]) identically equal to 1 close to 0. We set for R, δ > 0
(as in (5.6))

aRδ (x, ξ, η) = a(x, ξ, η)χ

(
ξ − ξn
δ

)(
1− χ

( η
R

))
.

Then, in view of equation (4.18),

(5.16) iε
d

dt

〈
W ε
{ξ=σn}[ψ

ε
n(t)], a

〉
= ε−1

(
ψεn(t), [op{ξ=σn}ε (aRδ ), %n(εD)]ψεn(t)

)
+O(ε).

Using the homogeneity of gn, we write

%n(εD) = λn(εD)− gn(εD − σn) = λn(εD)− ε op{ξ=σn}ε (gn).

Therefore, we have

ε−1
[
op{ξ=σn}ε (aRδ ), %n(εD)

]
= op{ξ=σn}ε (∇λn · ∇xaRδ )−

[
op{ξ=σn}ε (aRδ ), op{ξ=σn}ε (gn)

]
+O(ε).

We apply Lemma 2.12 and we obtain

ε−1
[
op{ξ=σn}ε (aRδ ), %n(εD)

]
= op{ξ=σn}ε ((∇λn −∇ηgn) · ∇xaRδ ) +O(ε) +O(R−1) +O(δ).

Let θ ∈ C∞c (R), equation (5.16) gives, passing to the limits ε → 0, then R → +∞, and finally
δ → 0 ∫

R×Rd×Sd−1

θ(t)(∇λn(σ)−∇gn(ω)) · ∇xa∞(x, σ, ω)dγt
n
(x, σ, ω) = 0.

This implies that the measure γtn(x, σ, ω) is invariant by the flow

(x, σ, ω) 7→ (x+ s(∇λn(σ)−∇gn(ω)), σ, ω).

As a consequence, by Lemma 4.4, γtn is supported on {∇λn(σ)−∇ηgn(σ, ω) = 0}.
Part 2: The two-scaled semiclassical measures coming from finite distance. We now
choose θ ∈ C∞c (R), a ∈ C∞c (Rd × Ω× Rd). Arguing as in (5.16), we observe∫

R
θ(t)

(
ψεn(t), [opε(aε), ε

−1%n(εDx)]ψεn(t)
)

= O(ε).

Using that a is compactly supported in the variable η and taking advantage of the homogeneity
of g, we obtain in L(L2(Rd)),

1

ε
[op{ξ=σn}ε (a), %n(εDx)] = i op{ξ=σn}ε (∇λn(ξ) · ∇xa)− [op{ξ=σn}ε (a), op{ξ=σn}ε (gn)] +O(ε).

Passing to the limit ε→ 0, we obtain

0 =

∫
R
θ(t)TrL2(Rd)

(
(i∇λn(σn) · ∇xaW (x, σn, Dx)− [aW (x, σn, Dx), g(Dx)])Γtn

)
dt = 0

=

∫
R
θ(t)TrL2(Rd)

(
[aW (x, σn, Dx),∇λn(σn) ·Dx − g(Dx)]Γtn

)
dt

=

∫
R
θ(t)TrL2(Rd)

(
aW (x, σn, Dx)

[
∇λn(σn) ·Dx − g(Dx),Γtn

])
dt.

We deduce that for almost all t ∈ R,[
∇λn(σn) ·Dx − g(Dx),Γtn

]
= 0.

Recall that the operator Γtn is a rank one projector of L2(Rd), Γtn = |ψσn(t)〉〈ψσn(t)|. We deduce
that there exists a measurable function t 7→ c(t) ∈ C such that

(∇λn(σn) ·Dx − g(Dx))ψσn(t) = c(t)ψσn(t).
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Therefore the L2-function ξ 7→ ψ̂σn(t, ξ) is supported on the set {∇λn(σn) · ξ − g(ξ) = c(t)}.
Since ∇λn(σn) − g(ξ) 6= 0 for ξ 6= 0, this set is a hypersurface and thus is of Lebesgue measure
0. We deduce ψtσn = 0, dt⊗ dx-almost everywhere, whence Γt = 0, dt-almost everywhere.
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6. Conclusion

In this conclusive chapter, we comment how the material displayed till now allow to prove the
Theorem 1.4 which was our objective. Then, we discuss the multidimensional case.

6.1. Effective Mass Theory in 1d. We are now able to prove Theorem 1.4]. By Corollary 4.2
(ii), the family (ψε(t))ε>0 is ε-oscillating. Thus, (1.13) is a consequence of (1.11). For prov-
ing (1.11), we have to determine the semi-classical measures ςt of (ψε(t))ε>0.

By Corollary 4.2 (iii), we have

(6.1) ςt =
∑

n,n′∈N∗
µtn,n′ ,

where µtn,n′ are joint measures of the pair (ψεn(t), ψεn′(t))ε>0, solutions to (4.11). Moreover, if Λn
is the set of critical points of the Bloch modes %n and Σn,n′ the set of crossing points between
%n and %n′ , by Proposition 4.3, for n ∈ N∗,

µtn,n(x, ξ) = 1ξ∈Λ̃n
µtn,n(x, ξ), Λ̃n = Λn ∪

⋃
n′ 6=n

Σn,n′ ,

and for n′ 6= n

µtn,n′(x, ξ) = 1ξ∈Σn,n′µ
t
n,n′(x, ξ).

By Lemma 3.6, Λn ⊂ πZ and Σn = πZ\Λn, in particular, both sets consist in isolated points.
The two-microlocal analysis of the concentration of the pair (ψεn(t), ψεn′(t))ε>0 above this point
give via Corollaries 5.10 and 5.12

µtn,n(x, ξ) =
∑
ξ∈Λn

δξn(ξ)⊗ |ψ(n)
ξ (t, x)|2dx, µtn,n′ = 0, n, n′ ∈ N∗, n 6= n′,

with ψ(n)
ξ solution to (1.12). This terminates the proof.

6.2. What happens in higher dimension ? In higher dimension, the precise structure of
the sets of critical points and of crossing points are rather open problems. One could have
degenerate critical points and manifolds of critical points instead of isolated points. One could
also have intersections between Bloch modes on critical points. One then has to exhibit a set
of reasonable assumptions, allowing to perform a two-scale semi-classical analysis. Indeed, the
approach of Chapter 5 can be extended to analyze the concentration of bounded families in
L2(Rd) on manifolds. This strategy is developed in [24]. We shortly describe the assumptions
made therein and the adaptation to make for obtaining a complete description of the semi-
classical measure of the solution (ψε(t))ε>0 of the Schrödinger equation (1.1).

6.2.1. Assumptions on the sets of critical and crossing points. Regarding the set of critical points
of the Bloch modes, the following assumption is introduced in [23].

H1 For n ∈ N∗, we assume that d2%n is of constant maximal rank over each connected
component of Λn.

This assumption has the advantage to be generic. It consists in saying that for all ξ ∈ Λn,

Rank d2%n(ξ) = codim Λn

or equivalently Ker d2%n(ξ) = TξΛn. It implies in particular that each connected component
X ⊆ Λn is a closed submanifold of Rd, which will give a good setting to perform a two-scale
semi-classical analysis above Λn.

Regarding the crossing sets between Bloch modes, different sets of assumptions offer a com-
fortable framework. The assumptions H2 and H3 below are introduced in [24].
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H2 For n ∈ N∗, the multiplicity of the Bloch energy %n is one, except at crossing points,
where it is two. This implies that a global labeling of the band functions exists such that
Σn,n′ 6= ∅ implies |n− n′| = 1.

Hypothesis H2 is generic, as follows from the variational characterization of the Bloch modes
(see (3.3) and (3.4)) As stated, it prevents from having simultaneous crossings of more than two
Bloch energies, and higher multiplicities (both scenarii are non-generic). In particular, one can
use the normal forms of Lemma 3.14. We introduce moreover a geometric assumption

H3 For n ∈ N∗, we assume that the crossing set Σn is a smooth closed submanifold of Rd.
Moreover, the crossing is of conic type in the sense of Definition 3.13 and for all σ ∈ Σn,
η ∈ NσΣn with η 6= 0,

1

2
∇ξ(%n+1 + %n)(σ)±∇ηgn(σ, η) 6= 0.

Assuming H2 and H3 implies that the crossings involve only two modes %n and %n+1 and that
the crossing set Σn (see (5.15)) is a manifold. Because of the periodicity of the Bloch modes, it
is thus the union of connected, closed embedded submanifold of (Rd)∗, which allows the use of a
two-microlocal approach on each of these connected components.

We point out that the assumption H3 may fail and there could be crossings above critical
points. Such a situation has been studied in [24], showing that some mass may be trapped above
these non conical crossing sets, leading to the presence of non-zero terms µtn,n′ in (6.1) with
n 6= n′.

6.2.2. Effective Mass Theory in dimension d ≥ 2. The main difference in dimension d ≥ 2
is the nature of the two-scale Wigner measures involved in the description of the process. For
stating the result, we need to introduce other geometric objects associated with a submanifold X
of (Rd)∗. We define its cotangent bundle as the union of all cotangent spaces to X

(6.2) T ∗X := {(ξ, x) ∈ X × Rd : x ∈ T ∗ξX},

each fibre T ∗ξX is the dual space of the tangent space TξX. We shall denote byM+(T ∗X) the set
of non-negative Radon measures on T ∗X. We observe that every point x ∈ Rd can be uniquely
written as

x = v + z where v ∈ T ∗ξX and z ∈ NξX.

Then, given a function φ ∈ L∞(Rd) and a point (ξ, v) ∈ T ∗X, we denote by mX
φ (ξ, v) the

operator acting on L2(NξX) by multiplication by φ(v + ·). We shall denote by L(L2(NξX)) the
set of bounded operators acting on L2(NξX) and by L1

+(L2(NξX)) the set of operators that are
non-negative and trace-class. When X = Λn and assumption H2 holds, we will consider the
operator d2%n(ξ)Dz ·Dz acting on NξΛn for any ξ ∈ Λn.

Theorem 6.1. [24] Assume H1, H2 and H3 are satisfied for all n ∈ N∗ and consider (ψε)ε>0

a family of solutions to equation (1.1) with an initial data (ψε0)ε>0 that is uniformly bounded
in Hs

ε (Rd) for some s > d
2 . Then, there exist a subsequence (ψε`0 )`∈N of the initial data, a

sequence of non negative measures (νn)n∈N on T ∗Λn, and a sequence of measurable non negative
trace-class operators (Mn)n∈N

Mn : T ∗ξ Λn(ξ, v) 7→Mn(ξ, v) ∈ L1
+(L2(NξΛn)), TrL2(NξΛn)Mn(ξ, v) = 1,
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both depending only on (ψε`0 )`∈N, such that for every a < b and every φ ∈ C0(Rd) one has

lim
`→+∞

∫ b

a

∫
Rd
φ(x)|ψε`(t, x)|2dxdt(6.3)

=
∑
n∈N

∫ b

a

∫
T∗Λn

TrL2(NξΛn)

(
mΛn
φ (ξ, v)Mt

n(ξ, v)
)
νn(dξ, dv)dt,

where t 7→Mt
n(ξ, v) ∈ C(R,L1

+(L2(NξΛn)) solves the von Neumann equation{
i∂tM

t
n(ξ, v) =

[
1
2 d

2%n(ξ)Dz ·Dz +mΛn
Vext

(ξ, v) , Mt
n(ξ, v))

]
M0

n = Mn.

(recall that mΛn
φ (ξ, v) (resp. mΛn

Vext
(ξ, v)) denotes the operator acting on L2(NξΛn) by multipli-

cation by φ(v + ·) (resp. Vext(v + ·))).

Theorem 1.4 is a consequence of Theorem 6.1 in the case where critical sets Λn consist in
isolated points. As Theorem 1.4, Theorem 6.1 tells that conical crossings do not trap energy. We
emphasize that (Mn)n∈N∗ and (νn)n∈N∗ are associated with the initial data. They are two-scale
Wigner measures associated with the concentration of (ψε0)ε>0 on the manifolds Λn.

The main difference with the case of the concentration on a point of Rdξ relies on the structure
of the two-scale Wigner measures describing the concentration at finite distance with respect to
the second scale ε. Indeed, if Λn = {ξ = ξn}, TξnΛ = {0} and NξnΛn = Rd. Thus, the measure
νn reduces to a scalar and the trace-class operator Mn only depends on ξn, it is no longer a
function. Theorem 5.4 states that in that special case, one can prove that Mn is a projector.

As a final conclusive remark, one can mention that, regarding the semi-classical analysis of
equation (1.1), the main issue consists in the understanding of the behavior of the Bloch modes
in dimension d ≥ 1, which is a problem at the intersection between spectral theory and geometry.
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Appendix A. Kato-Rellich’s Theorem

Kato-Rellich’s Theorem offers a way to prove that an operator is self-adjoint by a comparison
argument. The reader can refer to [48] or other books about Functional Analysis.

Theorem A.1. Let A be a self-adjoint operator on its domain D(A) and B a symmetric operator
on D(A). Let us assume that there exists 0 < α < 1 and C > 0 such that

∀v ∈ D(A), ‖Bv‖ ≤ α‖Av‖+ C‖v‖.

Then the operator A+B is self-adjoint on D(A).

As an example, we consider the Hilbert space L2([0, 1]d) and the operator −∆(ξ), which
consists in the Laplace operator on the cube C̄ = [0, 1]d with boundary conditions

f(y + `) = eiξ·`f(y), ∂nf(y + `) = −∂nf(y)eiξ` ∀(y, `) ∈ ∂C × Zd such that y + ` ∈ ∂C.

As mentioned in Section 3.1, this operator is unitarily equivalent to P0(ξ) and is self-adjoint.
Let us consider potentials Vper that are Zd-periodic and the operator −∆(ξ) + Vper(x). We

make the assumption:

(A.1) Vper ∈ Lp(Td), with


p = 2 if d = 1, 2, 3,
p > 2 if d = 4
p = d

2 if d ≥ 5

Theorem A.2. Assume that Vper satisfies Assumptions A.1. Then, the operator −∆(ξ)+Vper(x)
is self-adjoint for all ξ ∈ Rd, and its spectrum is bounded from below. Besides it has a compact
resolvent.

The result comes from the application of Theorem A.1 to the operators A := −∆(ξ) and
B := Vper, the next Lemma shows that the hypothesis of Theorem A.1 are satisfied.

Lemma A.3. Let Vper satisfying Assumptions A.1, then for all ε > 0 there exists a constant
Cε > 0 such that,

‖Vperf‖L2([0,1]d) ≤ ε‖∆f‖L2([0,1]d) + Cε‖f‖L2([0,1]d), ∀f ∈ H2(]0, 1[]d),∣∣∣∣∣
∫

[0,1]d
Vper(y)|f(y)|2dy

∣∣∣∣∣ ≤ ε
∫

[0,1]d
|∇f(y)|2dy + Cε‖f‖2L2([0,1]d), ∀f ∈ H

1(]0, 1[d).

A potential satisfying this type of property is said to be infinitesimally bounded with respect to
the Laplacian. Note that the result is trivial if Vper(y) is bounded. Let us now prove Lemma A.3
when d = 1, 2, 3.

Proof
Assume d = 1, 2, 3 and Vper ∈ L2(Td). Consider χ ∈ C∞c (Rd) such that 0 ≤ χ ≤ 1, χ = 1
on [0, 1]d and supp(χ) ⊂ [−1, 2]d. We associate with any f ∈ H2(]0, 1[d) the function fχ = χf
which is in H2(Rd), and thus in L∞(Rd) since 2 > d/2. Note that Vper can be extended to Rd
by periodicity.

‖Vperf‖L2([0,1]d) ≤ ‖Vperfχ‖L2(Rd)

≤ ‖fχ‖L∞(Rd)‖Vper1[−1,2]d‖L2(Rd)

≤ Cd‖fχ‖L∞(Rd)‖Vper‖L2([0,1]d),
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The constant Cd depends on the numbers of cells which are included in [−1, 2]d and next to
[0, 1]d. We then uses the inverse Fourier transform to evaluate ‖fχ‖L∞(Rd):

‖fχ‖L∞(Rd) ≤ (2π)−d
∫
Rd
|f̂χ(ξ)|dξ.

We choose β ∈
]
d
2 , 2
[
and use Cauchy-Schwartz inequality to write

‖fχ‖L∞(Rd) ≤ (2π)−d
(∫

Rd

dξ

(1 + |ξ|2)β

)1/2(∫
Rd

(1 + |ξ|2)β |f̂χ(ξ)|2dξ
)1/2

.

For all ε > 0, we can find Cε > 0 such that

∀ξ ∈ Rd, (1 + |ξ|2)β ≤ ε(1 + |ξ|2)2 + Cε.

Therefore, we have

‖fχ‖L∞(Rd) ≤ ε‖(1−∆)fχ‖L2(Rd) + Cε‖fχ‖L2(Rd)

≤ ε‖∆fχ‖L2(Rd) + (Cε + ε)‖fχ‖L2(Rd)

Besides, by the properties of χ,

‖∆fχ‖L2(Rd) ≤ ‖∆f‖L2([0,1]d) + 2‖∇f‖L2([0,1]d)‖∇χ‖L2(Rd) + ‖∆χ‖L2(Rd)‖f‖L2(Rd)

which gives the result.

Appendix B. Compact operators and operators with compact resolvent

We close this elements of spectral theory with a few words about compact operators, that are
used in this book. Recall that A ∈ L(H) is said to be a compact operator if for any bounded
family (fn)n∈N of HN, the sequence (Afn) has a limit point. Compact operators enjoy lots of
properties. In particular, the structure of their spectrum is very rigid. The next Theorem is
classic and proved in any book of functional analysis.

Theorem B.1. Assume H is of infinite dimension. Let A be a compact self-adjoint operator,
then its spectrum consists in isolated eigenvalues of finite multiplicity, (λn)n∈N, which admits
the only limit point 0. Moreover, there exists an orthonormal basis (ϕn)n∈N of H consisting of
eigenvectors of A.

As a consequence of this result, we have the following description of the spectrum of self-adjoint
operators with compact resolvent.

Proposition B.2. Let A : D(A) → H a self-adjoint operator the resolvent of which, (Aλ)−1

is compact for some λ ∈ C. Then, there exists an orthonormal basis (ϕn)n∈N and a sequence
(%n)n∈N ∈ RN such that %n −→

n→+∞
+∞ and

Aϕn = %nϕn, ∀n ∈ N.

Proof
By hypothesis, there exists (ϕn)n∈N and (λn)n∈ N with λn −→

n→+∞
0 such that

(A− λ)−1ϕn = λnϕn, ∀n ∈ N.

Besides, λn 6= 0. Then, a simple computation gives ϕn = λ−1
n (A− λ)ϕn, whence

Aϕn = λ−1
n (λnλ+ 1)ϕn.

We thus obtain the result with %n = λ + λ−1
n . The fact that %n ∈ R for all n ∈ N comes from

the self-adjointness of A.
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Appendix C. Min-Max formula

We give here a MinMax characterization of the eigenvalues %n(ξ) of the operators P (ξ). This
comes from the links between self-adjoint operator and quadratic forms. We associate with P (ξ)
the positive quadratic form

Qξ(f) =
1

2
‖(Dy + ξ)f‖2L2(Td) + (Vperf, f)L2(Td) +K‖f‖2L2(Td).

where K is chosen such that for all ξ ∈ B, the spectrum of P (ξ) is included in ] −K + 1,+∞[.
The quadratic form Qξ is associated with the operator P (ξ) + K, in the sense that for all f in
the domain of P (ξ) (which is included in the domain of Qξ)

Qξ(f) = ((P (ξ) +K)f, f)L2(Td) .

The domain of the quadratic form Qξ is H1(Td) and Qξ is coercive since

Qξ(f) ≥ ‖f‖L2(Td), ∀f ∈ L2(Td)

and thus defines a norm f 7→
√
Qξ(f) on H1(Td). The form Qξ and the operator P (ξ) + K

are linked by Riesz-Friedrichs theorem: Aξ = P (ξ) +K is the unique self-adjoint operator with
domain D(Aξ) ⊂ D(Qξ) and such that (Aξf, f) = Qξ(f) for all f ∈ D(Aξ). This is another way
to define P (ξ) as Aξ −K where Aξ is the self adjoint operator associated with the form Qξ.

Proposition C.1. The family of eigenvalues (%n(ξ))n∈N are given by the Courant-Fischer for-
mula (also called Min-Max formula),

(C.1) λ1(ξ) := %1(ξ) +K = min
‖f‖=1

Qξ(f),

and, for n ∈ N \ {1},
(C.2) λn(ξ) := %n(ξ) +K = min

dimM=n, M⊂H1(Td)
max

f∈M, ‖f‖=1
Qξ(f).

Note that the real numbers λn(ξ) are non negative for all ξ ∈ Rd.
Proof
Let us prove the Courant-Fischer formula. Recall that for any f ∈ L2(Td) such that

Qξ(f) =
∑
n∈N

λn(ξ)|〈f, ϕn(ξ)〉|2.

Therefore, since the λn(ξ) are non negative, one gets that if ‖f‖L2(Td) = 1, one has

Qξ(f) ≥ λ1(ξ)
∑
n∈N
|〈f, ϕn(ξ)〉|2 = λ1(ξ) = Qξ(ϕ1(ξ)),

which proves (C.1).
For proving (C.2), we consider the setsMn = Vect (ϕ1(ξ), · · · , ϕn(ξ)) for n ∈ N∗. We first deduce

min
dimM=n, M⊂H1(Td)

max
f∈M, ‖f‖=1

Qξ(f) ≤ max
f∈Mn, ‖f‖=1

Qξ(f) = λn(ξ).

Let us now consider a vector space M ⊂ L2(Td) of dimension n. Since dimMn−1 = n− 1,

dimM ∩M⊥n−1 = dimM − dimM ∩Mn−1 ≥ n− (n− 1) = 1

and M ∩M⊥n−1 6= ∅. Let f ∈ M ∩M⊥n−1 with ‖f‖L2(Td) = 1, then f has only components on
ϕp(ξ) for p ≥ n and

Qξ(f) =
∑
p≥n

λp(ξ)|〈f, ϕp(ξ)〉|2 ≥ λn(ξ)
∑
p≥n

|〈f, ϕp(ξ)〉|2 = λn(ξ).
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Therefore, for any vector space M ⊂ L2(Td) of dimension n

max
f∈M, ‖f‖=1

Qξ(f) ≥ λn(ξ)

and we obtain
min

dimM=n, M⊂H1(Td)
max

f∈M, ‖f‖=1
Qξ(f) ≥ λn(ξ),

which concludes the proof of (C.2).
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Appendix D. Problems

In this section, we present three questions related with the topics of the lecture.

D.1. Problem 1 – Super-adiabatic projectors. We discuss here the construction of supera-
diabatic projectors. These operators realize approximate projectors at any order in ε and allow
to diagonalize an operator, eigenspace by eigenspace, if all the eigenvalues are of constant multi-
plicity, or by blocks of eigenspaces corresponding to eigenvalues that are separated from the rest
of the spectrum. This assumption of separation is at the core of the adiabatic approach: the fact
that the eigenvalues are separated by a fixed gap, induces that frontier between the eigenspaces
is impassable, or adiabatic from the ancient Greek ’adiabatos=impassable’.

We consider two Hilbert spaces A et B satisfying the continuous embedding A ⊂ B and the
symbol classes

S(R2d,L(A,B)) = {H ∈ C∞(R2d,L(A,B)) ,∀α ∈ N2d ,∃C > 0 : ‖∂αH‖L(A,B) ≤ Cα} .

These operator valued symbols may depend on ε. One then requires that the estimates are
uniform in ε. Even though this class is not an algebra, one has composition rules and a Calderón-
Vaillancourt theorem.

We consider a self-adjoint symbol H that admits an asymptotic expansion

H = H0 + εH1 + ε2H2 + ...

We consider a orthogonal projector Π0 that commues with H, i.e. satisfying

Π2
0 = Π0, Π∗0 = Π0 and [H0,Π0] = 0.

This projector satisfies the adiabaticity assumption (AA) if and only if
(AA) The spectrum of Π0H0Π0 and the spectrum Π⊥0 H0Π⊥0 are uniformly separated in X =

(x, ξ).
The aim is to prove the following Theorem

Theorem D.1. Let H ∈ S(R2d,L(A,B)) be an operator-valued symbol. There exists operator-
valued symbols

Π = Π0 + εΠ1 + ε2Π2 + · · · , Π ∈ S(R2d,L(A)) ∩ S(R2d,L(B))

such that
opε(Π)opε(Π) = opε(Π) +O(ε∞) , opε(Π)∗ = opε(Π) ,

and
[opε(H), opε(Π)] = O(ε∞) ,

where O(ε∞) has to be understood in the sense of asymptotic series.

Theorem D.1 is classical in the literature since the 90-s and the statement we give here
follows old lines of ideas. Nenciu developed adiabatic theory for spectral subsets [58, 59] and the
construction of superadiabatic projectors dates to the end of the 90s with [12] which was inspired
by the paper [28], and [14, 13]. The monographs [69] and [56] give detailed accounts of more
recent approaches to adiabaticity in the frame of molecular dynamics (see also the book [69]).
One can also find such a construction in Section 14.4 of the latest edition of [26] (2021). The
interest for adiabatic result is still active (see [17, 18, 19]).

The proof of Theorem D.1 follows a series of steps.



60 CLOTILDE FERMANIAN KAMMERER & LINO BENEDETTO (TA)

Question 0. Preliminaries - resolution of the Sylvester problem. We shall use the following result
called a Sylvester problem (see [8, 63]).

Theorem D.2 ([8]). Let K0 and K1 be two self-adjoint operators such that there exists m > 0
for which σ(K0) ⊂ (0,m) and σ(K1) ⊂ (m,+∞). Let γ be a closed contour in the plane
with winding number one around σ(K0) and zero around σ(K1). Then, for any operator Y the
equation K0X −XK1 = Y has a unique solution X that can be expressed as

(D.1) X = − 1

2πi

∮
γ

(K0 − z)−1Y (K1 − z)−1dz.

(1) Check that the formula D.1 gives a solution to the equation K0X −XK1 = Y .
(2) Assume X satisfies K0X = XK1. Justify why m−1K1 is invertible and prove

∀n ∈ N, X = (m−1K0)nX((m−1K1)−n).

(3) Deduce from (2) the unicity of the solution to the Sylvester problem.

Question 1: Initialization. Define the symbol R1 and S1 by

opε(Π0)2 − opε(Π0) = εopε(R1), R1 = R1,0 + εR1,1 + · · · .
[opε(H0 + εH1), opε(Π0)] = εopε(S1), R1 = R1,0 + εR1,1 + · · · .

(1) Check that the symbolic calculus gives S1,0 = 1
2i ({H0,Π0} − {Π0, H0})+[H1,Π0]. Com-

pute R1,0 and check that we have

−Π0[H0, R1,0]Π0 = −Π0S1,0Π0 and Π⊥0 [H0, R1,0]Π⊥0 = −Π⊥0 S1,0Π⊥0 .

(2) Let A be an operator-valued symbol, prove that the symbol

Π1 = −Π0R1,0Π0 + Π⊥0 R1,0Π⊥0 + Π0AΠ⊥0 + Π⊥0 A
∗Π0

is enough to realize opε(Π0 + εΠ1)opε(Π0 + εΠ1) = opε(Π0 + εΠ1) +O(ε2).
(3) Prove that if X = Π0AΠ⊥0 satisfies

(H0Π0)X −X(H0Π⊥0 ) = Y,

with Y = −Π0S1,0Π⊥0 , then one also has [opε(H0 + εH1), opε(Π0 + εΠ1)] = O(ε2).
(4) Conclude with Sylvester Theorem

Question 3. The recursive construction. Let k ≥ 1. Assume we have constructed Π0, Π1, . . .
and Πk so that

Πw
[k]Π

w
[k] = Πw

[k] + hk+1Rwk+1 , Π[k] = Π0 + hΠ1 + . . .+ hkΠk ,(D.2)

[Hw
[k],Π

w
[k]] = hk+1Swk+1, H[k] = H0 + hH1 + · · ·+ hkHk .(D.3)

The aim of this question is to construct Πk+1 in order to push the recursion one step forward.
(1) Prove that such a Πk+1 has to satisfy

Π0Πk+1 −Πk+1Π⊥0 = Rk+1,0 and [H0,Πk+1] = Sk+1,0 ,

.
(2) Deduce from (D.2) the first compatibility relation,

Π0, Rk+1,0] = 0 and R∗k+1,0 = Rk+1,0.

(3) Deduce from (D.3) and (D.2), the second compatibility relatyion

−Π0[H0, Rk+1,0]Π0 = −Π0Sk+1,0Π0 and Π⊥0 [H0, Rk+1,0]Π⊥0 = −Π⊥0 Sk+1,0Π⊥0 .

(4) Determine Π0Πk+1Π0 and Π⊥0 Πk+1Π⊥0 in terms of Rk+1,0.
(5) Determine Π0Πk+1Π⊥0 by solving a Sylvester problem.
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Question 3. Regularity issues.
(1) Let Ω be an open subset of Rd where H and Π0 are smooth (resp. analytic) in Ω. Prove

that the symbol Π constructed above is smooth (resp. analytic) in Ω.
(2) Assume there also exists δ > 0 such that

∀z ∈ Ω, d(σ((Π0H)(z)), σ((Π⊥0 H)(z))) ≥ δ.
Prove that the symbol Πj satisfy: for all j ∈ N and α ∈ N2d, there exists Cα,j > 0 such
that

∀z ∈ Ω, ‖∂αz Πj(z)‖L(A,B) ≤ Cα,jδ−|α|−2j .
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D.2. Exercice 1 – Two scale Wigner measures. Let ϕ ∈ S(Rd), (x0, ξ0, ω0) ∈ Rd×Rd×Rd
and β ∈ (0, 1]. We set

uε(x) = ε−d/4ϕ

(
x− x0 − εβω0√

ε

)
exp

(
i
x · ξ0
ε

)
, ∀x ∈ Rd.

(1) Prove that (uε)ε>0 is a bounded family in L2(Rd).
(2) Compute the Wigner measures of (uε)ε>0.
(3) Let a ∈ A. We set aε(x, ξ) = a

(
x, ξ, x√

ε

)
. We choose x0 = 0, ω0 6= 0. Compute the

limit of (opε(aε)u
ε, uε) when ε goes to 0 (it will depend on β).

D.3. Problem 2 – Obstruction to smoothing effect. Since the pioneering works of [42, 65,
70, 25, 43, 10], it is well-known that dispersive-type equations develop some kind of smoothing
effect described by means of smoothing-type estimates. For example, given any δ > 0 and any
ball B ⊂ Rd it is possible to find a constant C > 0 such that the estimate

(D.4)
∫ δ

0

‖|Dx|1/2
(
e−it∆uε0

)
‖2L2(B)dt ≤ C‖u0‖2L2(Rd),

holds uniformly for every u0 ∈ C∞0 (Rd). The result is still true when considering the operator
B∇ · ∇ where B is an invertible symmetric d× d matrix.

One can wonder what happens if one adds to the operator a potential V (t, x) and if the matrix
B may slowly vary in terms of the variable ξ. For example, for ε ∈ (0, 1] and B a smooth map
from Rd into the set of symmetric invertible d× d matrix, we consider the operator B(εD)∇·∇.
One then asks whether an estimate of the form (D.4) holds for the operator

Ĥε = B(εD)∇ · ∇+ V (t, x).

In that case, setting λ(ξ) = −B(ξ)ξ · ξ, the function

uε(t, x) = e−itĤεu0

is the solution of the equation

(D.5)

{
iε2∂tu

ε(t, x) = λ(εDx)uε(t, x) + ε2V (t, x)uε(t, x), (t, x) ∈ R× Rd,

uε|t=0 = u0.

We introduce the following set of assumptions:
A1. V ∈ C0(Rt, C∞(Rdx)) is bounded, together with all its space derivatives and λ ∈ C∞(Rd)

is a symbol of order N > 0 (as in [27], Definition 7.5):

∀α ∈ Nd, sup
ξ∈Rd

|∂αξ λ(ξ)| (1 + |ξ|)−N <∞.

Moreover, the set Λ of critical points of the function λ, Λ := {ξ ∈ Rd, ∇λ(ξ) = 0}, is a
countable set of Rd.

The aim of this section if to prove the existence of obstructions to the validity of smoothing-
type estimates in the presence of non-zero critical points of the symbol λ, as stated in the next
result..

Theorem D.3. Suppose A1 holds and that λ has a non-zero critical point ξ0. Then, given
any δ, s > 0 and any ball B ⊂ Rd it is not possible to find a constant C > 0 such that the
estimate (D.4) holds uniformly for every solution uε of of (D.5) with initial datum uε0 ∈ C∞0 (Rd).
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Note that this type of behavior is already described in [40]; moreover, smoothing-type esti-
mates outside the critical points of λ are presented in [64]. The proof consists in the construction
of a data (uε0)ε>0 such that the associated family of solutions (uε(t))ε>0 violate the dispersion
estimate. The example constructed below is taken from the article [22]. Similar results proved
with similar arguments have been obatined in [51] in a more geometric setting.

Question 1. Semi-classical measures for the solutions of (D.5). Let (uε(t))ε>0 be issued from a
bounded family of initial data (uε0)ε>0. Let µt(dx, dξ) be a semi-classical measure of (uε(t))ε>0.
Prove that µt is invariant by the flow

Φs : (x, ξ) 7→ (x+ s∇λ(ξ), ξ)

and deduce that it concentrates on Λ.

Question 2. Two-scale analysis of the solutions of (D.5) on Λ. Let ξ0 ∈ Λ. Consider the time-
averaged two-scale Wigner measures associated with the concentration of (uε)ε>0 on ξ0 at the
scale ε. They consist in a measure γt(dx, dω) and a function uξ0(t).

(1) 2-scale measure at infinity. Let a ∈ Ad and aRδ as defined in (5.6). Set

bR,δε (s, x, ξ) = aRδ

(
x+

s

|ξ − ξ0|
∇λ(ξ), ξ,

ξ − ξ0
ε

)
.

(a) Prove that for all θ ∈ C∞0 (Rt), as ε goes to 0, then R to +∞, and finally δ to 0,

d

ds

∫
R
θ(t)

(
uε(t), opε(b

R,δ
ε (s)uε(t)

)
L2(Rd)

dt = o(1).

(b) Let Φ
(2)
s be the flow on R3d defined by

Φ(2)
s (x, ξ, η) 7−→ (x+ s∇2λ(ξ)

η

|η|
, ξ, η).

Prove that in L(L2(Rd)),

opε(b
R,δ
ε (s)) = opΛ

ε

(
aR,δ ◦ Φ(2)

s

)
+O(δ) +O(R−1) +O(ε).

(c) Prove that for almost every t ∈ R, the measure γt is invariant through the flow Φ
(2)
s

restricted to Rd × {ξ = ξ0} × Sd−1.
(2) 2-scale measure at finite distance. Prove that the function uξ0 solves{

i∂tuξ0(t, x) = 1
2∇

2λ(ξ0)Dx ·Dxuξ0(t, x) + V (x)uξ0(t, x),

uξ0 |t=0(x) = u0
ξ0

(x),

and u0
ξ0

is a weak limit in L2(Rd) of (e−
i
ε ξ0·xuε0)ε>0 when ε→ 0.

(3) Deduce that any semi-classical measure µ of Question 1 satisfies: for almost every t ∈ R,

(D.6) µ(t, x, ξ) ≥
∑
ξ0∈Λ

δξ0(ξ)⊗ |uξ0(t, x)|2dx,

(4) Prove in addition that if all the points of Λ are non-degenerate critical points, then
inequality (D.6) becomes an equality.
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Question 3. Construction of a counter-example. Let θ ∈ C∞0 (Rd) with ‖θ‖L2(Rd) = 1 and consider
the sequence of initial data:

uε0(x) := θ(x)ei
ξ0
ε ·x.

(1) Check that ‖uε0‖L2(Rd) = 1 and that (uε0) converges weakly to zero.
(2) Prove that the family uξ0(t) of Question 2 for this initial data satisfies

‖uξ0(t, ·)‖L2(Rd) = 1.

Question 4. Proof of Theorem D.3. Suppose (D.4) holds for some δ, s, C > 0 and some ball B.
(1) Prove that the solution of (D.5) converges strongly in L2((0, δ)×B).
(2) Obtain a contradiction from Point (1), Question 3 and (D.6) and deduce Theorem D.3.
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D.4. Problem 3 – Wave equation in 1d heterogeneous medium. Let us consider the 1d
wave equation

(D.7) ∂2
t u

ε − ∂x ·
(
c(x)2∂xu

ε
)

= 0, u|t=0 = uε0, ∂tu|t=0 = uε1,

where c ∈ C∞(R) has the property

∃c0, c1 > 0, ∀x ∈ R, c0 ≤ c(x) ≤ c1.

The function c(x) takes into account the heterogeneity of the medium where the wave uε prop-
agates.

The initial data (uε0, u
ε
1)ε>0 is taken so that (uε1)ε>0 and (∂xu

ε
0)ε>0 are uniformly bounded in

L2(R), ε-oscillating, and satisfies

(D.8) limsup
ε→0

‖1|x|>ruε1‖2L2(R) + ‖1|x|>rc(x)∂xu
ε
0‖2L2(R) → 0 as r →∞.

Moreover, for simplicity, we suppose that (uε1)ε>0 has only one Wigner measure µ1, and
similarly, that (c(x)∂xu

ε
0)ε>0 has only one Wigner measure µ0. We also assume that the pair

(∂tu
ε, c(x)∂xu

ε
0) has only one joint Wigner measure ν. In other words, we assume that the

vector-valued family (uε1, ∂xu
ε
0)ε>0 has a unique 2 by 2 matrix-valued Wigner measure that we

write
(
µ1 ν
ν µ0

)
.

The energy of the wave uε(t) is defined by

Eε(t) = ‖∂tuε(t)‖2L2(R) + ‖c(x) ∂xu
ε(t)‖2L2(R).

It is conserved along time: Eε(t) = Eε(0) for all t ∈ R, and we are interested in computing by
means of Wigner measures the weak limits as measures of the energy density

eε(t, x)dx :=
(
|∂tuε(t, x)|2 + |c(x)∂xu

ε(t, x)|2
)
dx.

The rays of geometric optics are the Hamiltonian flow of the function (x, ξ) 7→ ±c(x)ξ, it is
the curves t 7→ Φt± = (qt±, p

t
±),

(D.9)
{
q̇t±(x) = ±c(qt±(x, ξ)), q0

±(x, ξ) = x,
ṗt±(x, ξ) = ∓c′(qt±(x, ξ))pt±(x, ξ), p0

±(x, ξ) = ξ.

Note that if c(x) = 1, these curves are the rays (x, ξ) 7→ (x± t sgn (ξ), ξ).

The evolution of the energy density is described in the following statement.

Theorem D.4. Assume µ0({ξ = 0}) = µ1({ξ = 0}) = 0. Then for all φ ∈ C∞0 (R) and for
almost all t ∈ R, one has∫

Rd
φ(x)eε(t, x)dx−→

ε→0

∫
R2

φ(x)
(
dµt+(x, ξ) + dµt−(x, ξ)

)
where the measures µt± are defined by

µt±(x, ξ) = (Φt±)∗(µ
0
±)(x, ξ)(D.10)

with µ0
±(x, ξ) =

1

2
(µ1(x, ξ) + µ0(x, ξ) ± 2Re (ν(x, ξ))) .(D.11)
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Question 1. Reduction to a system of Schrödinger equations. We set

vε±(t, x) =
1√
2

(∂tu
ε ± c(x)∂xu

ε(t, x)) , (t, x) ∈ R× R.

(1) Prove
eε(t, x)dx = |vε+(t, x)|2dx+ |vε−(t, x)|2dx.

(2) Verify the relation
opε(c(x)ξ) =

ε

i
c(x)∂x +

ε

2i
c′(x)

and prove that the families (vε±(t))ε>0 satisfy the coupled system of equations{
iε∂tv

ε
+(t, x) + opε(c(x)ξ)vε+(t, x) = iε

2 c
′(x)vε−(t, x),

iε∂tv
ε
−(t, x)− opε(c(x)ξ)vε−(t, x) = iε

2 c
′(x)vε+(t, x).

with initial data vε±(0) = 1√
2
(uε1 ± c∂xuε0), uniformly bounded in L2(Rd), ε-oscillating,

and having only one Wigner measure µ0
± introduced in (D.11).

(3) Let T > 0, let t, t′ ∈ [0, T ], a ∈ S(R2d) supported outside {ξ = 0}, prove that uniformly
on [0, T ], one has

d

dt

(
vε+(t), opε(at)v

ε
+(t)

)
= 2 Re

(
vε+(t), opε(at(x, ξ)c

′(x))vε−(t)
)

+O(ε).

(4) Verify that the flow Φt+ preserves the quantity c(x)ξ and deduce that the function

(x, ξ) 7→ bs(x, ξ) := as(x, ξ)c
′(x)(c(x)ξ)−1

is Schwartz class.
(5) Using the symbol bs introduced before, prove that, uniformly on [0, T ],∣∣∣∣∫ t

t′
Re
(
vε+(s), opε(as(x, ξ)c

′(x))vε−(s)
)
ds

∣∣∣∣ = O(|t− t′|ε),

(6) Deduce from the preceding results that for any t, t′ ∈ R we have in the set of distributions
on R× (R \ {0})

W ε[vε±(t)](x, ξ) = (Φt−t
′

± )∗W
ε[vε±(t′)](x, ξ) +O(ε|t− t′|).

(7) Prove that for all T > 0, there exists a sequence (εk)k∈N realizing the Wigner measure of
vε±(t) for all t ∈ [0, T ] and this semi-classical measure is given by µt±(dx, dξ), as defined
in (D.10) (one will use the conservation of the mass of the semi-classical measure).

Question 2. Proof of Theorem D.4 for strictly ε-oscillating datas. We assume in this question
that µ0({ξ = 0}) = µ1({ξ = 0}) = 0 (one then says that the initial data are strictly ε-oscillating).

(1) Let θ, φ ∈ C∞0 (R), prove that we have∫
R

∫
R
θ(t)φ(x)eε(t, x)dx dt −→

k→+∞

∫
R
θ(t)〈µt+ + µt− , φ(x)⊗ 1R(ξ)〉dxdt,

(2) Deduce Theorem D.4 under the assumption µ0({ξ = 0}) = µ1({ξ = 0}) = 0.
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D.5. Problem 4 – Wave equation in heterogeneous media, d ≥ 1. We consider the wave
equation

(D.12) ∂2
t u

ε −∇x ·
(
C(x)2∇xuε

)
= 0, u|t=0 = uε0, ∂tu|t=0 = uε1,

where C = (ci,j)1≤i,j≤d ∈ C∞(Rd,Rd×d) is valued in the space of symmetric matrices and has
the property

∃c0, c1 > 0, ∀x ∈ R, c0Idd ≤ C(x) ≤ c1Idd.

The initial data (uε0, u
ε
1)ε>0 is taken so that (uε1)ε>0 and (|D|uε0)ε>0 are uniformly bounded

in L2(Rd), ε-oscillating, and satisfies (D.8). For simplicity, we suppose that the vector-valued
family (uε1,∇xuε0)ε>0 has a unique (d+ 1, d+ 1) matrix-valued Wigner measure that we write by

block
(
µ1 ν∗

ν µ0

)
with µ1 scalar-valued.

We consider the energy density of the wave uε(t), defined by

eε(t, x)dx :=
(
|∂tuε(t, x)|2 + |C(x)∇xuε(t, x)|2Cd

)
dx

and we recall the energy conservation :

∀t ∈ R,
∫
R
eε(t, x)dx =

∫
R
eε(0, x)dx.

We consider the rays of geometric optics that are the Hamiltonian flow of the square-root of
the principal symbol of the wave operator, i.e. the function

(x, ξ) 7→ h(x, ξ) := |C(x)ξ|.
When ξ 6= 0, one defines the curves t 7→ Φt±(x, ξ) = (qt±, p

t
±) by

(D.13)
{
q̇t±(x) = ±∇ξh(qt±(x, ξ), pt±(x, ξ)), q0

±(x, ξ) = x,
ṗt±(x, ξ) = ∓∇ξh(qt±(x, ξ), pt±(x, ξ)). p0

±(x, ξ) = ξ 6= 0.

If C(x) = Idd, these curves are the rays (x, ξ) 7→ (x± t ξ|ξ| , ξ).
Since C(x) is invertible and because the function h(x, ξ) is constant along the curves Φt(x, ξ),

we have
pt±(x, ξ) 6= 0, ∀t ∈ R, ∀(x, ξ) ∈ Rd × (Rd \ {0}).

The aim of this problem is to prove the following statements.

Theorem D.5. Assume µ0({ξ = 0}) = µ1({ξ = 0}) = 0. Then for all φ ∈ C∞0 (R) and for
almost all t ∈ R, one has∫

Rd
φ(x)eε(t, x)dx−→

ε→0

∫
R2d

φ(x)
(
dµt+(x, ξ) + dµt−(x, ξ)

)
with µt±(x, ξ) = (Φt±)∗(µ

0
±)(x, ξ),

µ0
± =

1

2

(
µ1 +

C(x)ξ

|C(x)ξ|
· µ0

C(x)ξ

|C(x)ξ|
± 2Re

(
C(x)ξ

|C(x)ξ|
· ν
))

.

Using two-scale Wigner measure will allow to ameliorate the result of Proposition D.5 and get
rid of the assumptions on the support of the measures µ0 and µ1.

We consider the two-scale Wigner measures associated with the concentration of (uε0)ε>0 and
(uε1)ε>0 on {ξ = 0} with respect to the scale ε. The concentration coming from finite distance is
described by weak limits (u0, u1) of (uε0, u

ε
1). Then, uε(t, x) has a weak limit u(t, x) for the same

subsequence and u(t, x) is a solution to the wave equation (D.12) with initial data (u0, u1).
We denote by ν1 the two-scale Wigner measure associated to the concentration on {ξ = 0}

of (uε1)ε>0 coming from infinity, and by ν0, ν̃, the two-scale Wigner measure and the two-scale
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joint Wigner measure associated respectively with the vector-valued family (C(x)∇uε0)ε>0 and
the pair (uε1, C(x)∇uε0). We assume for simplicity that these families have only one two-scale
Wigner measures.

Theorem D.6. For all φ ∈ C∞0 (R) and for all t ∈ R, one has∫
Rd
φ(x)eε(t, x)dx−→

ε→0

∫
R2d

φ(x)
(
dµt+(x, ξ) + dµt−(x, ξ)

)
+

∫
Rd
φ(x)|u(t, x)|2dx+

∫
Rd×Sd−1

φ(x)
(
dνt+(x, ω) + dνt−(x, ω)

)
with, using the flows Φt± defined in (D.9),

µt±(x, ξ) = (Φt±)∗(µ
0
±)(x, ξ), µ0

± =
1

2

(
µ1 +

C(x)ξ

|C(x)ξ|
· µ0

C(x)ξ

|C(x)ξ|
± 2Re

(
C(x)ξ

|C(x)ξ|
· ν
))

,

νt±(x, ω) = (Φt±)∗(ν
0
±)(x, ω), ν0

± =
1

2

(
ν1 +

C(x)ω

|C(x)ω|
· ν0

C(x)ω

|C(x)ω|
± 2Re

(
C(x)ω

|C(x)ω|
· ν̃
))

.

The proof relies on the analysis of the space-time semi-classical measure M t(dx, dξ)dt of the
family (Uε(t))ε>0 defined by

Uε(t) := (∂tu
ε(t), C(x)∇xuε(t)) ∈ L∞(Rt, L2(Rd,Cd+1)).

Indeed, we observe
eε(t, x)dx = |Uε(t, x)|2Cd+1dx.

It is thus natural to consider the Wigner measures of the vector-valued family (Uε(t))t>0.

Question 1. Equation of Uε(t, x).

(1) Denote by Cj(x) the lines of the matrix C(x) and by ci,j(x) its coefficients. Prove that
the family (Uε(t))ε>0 satisfies the system

iε∂tU
ε(t, x) + opε(H0)Uε(t, x) =

ε

2i

(
0 −tw(x)

w(x) 0Rd×d

)
Uε(t, x)

with

H0(x, ξ) =


0 C1(x) · ξ · · · Cd(x) · ξ

C1(x) · ξ
...

Cd(x) · ξ
0Rd×d


and w(x) =t (w1(x), · · · , wd(x)), wj(x) =

∑
1≤k≤d ∂xkcj,k(x).

(2) Using Problem 1, prove that outside {ξ = 0}, any time-averaged semi-classical measure
M t of the family (Uε(t))ε>0 is of the form

M t(dx, dξ) = V+(x, ξ)⊗ V+(x, ξ)µt+(dx, dξ) + V−(x, ξ)⊗ V−(x, ξ)µt−(dx, dξ),

where µt+ and µt− are positive Radon measures and

(D.14) V±(x, ξ) =
1√
2

(
±1
C(x)ξ
|C(x)ξ|

)
.

(3) Prove Theorem D.6



SEMI-CLASSICAL METHODS AND SOLID STATES PHYSICS 69

Question 2. Two scale analysis above {ξ = 0}. We now analyze (uε(t))ε>0 in the zone εR ≤
|ξ| ≤ δ for δ going to 0 and R to +∞.

(1) Let a ∈ Ad valued in Cd×d, and set aR = a(x, ξ, η)χ(η/R) with χ ∈ C∞(Rd) with support
outside ξ = 0 and equal to 1 as |ξ| > 1. Prove that we have

(C(x)∇uε, op{ξ=0}
ε (aR)C(x)∇uε)L2(Rd,Cd×d)

= (op{ξ=0}
ε (b)|D|uε, |D|uε)L2(Rd) +O

(
ε+

1

R

)
for b(x, ξ, η) =

(
a(x, ξ)C(x) η

|η|

)
·
(
C(x) η

|η|

)
χ(η/R) where the inner product is in Rd.

(2) Deduce that the matrices νt(x, ξ) are of the form

(D.15) N t(dx, dξ) = V+(x, ω)⊗ V+(x, ω)νt+(dx, dω) + V−(x, ω)⊗ V−(x, ω)νt−(dx, dω),

for the vectors V± defined in (D.14) and positive measures νt±.
(3) Prove that the measures measures νt± are also some two-scale Wigner measures at infinity

associated to the concentation on {ξ = 0} at the scale ε of the families

vε,R± =
1√
2
χ̃(Dx/R) (i∂tu

ε ± op1 (|C(x)ξ|χ(ξ/R))uε) , (t, x) ∈ R× Rd

where χ̃ can be chosen smooth, equal to 1 for |ξ| > 1
2 so that χ̃χ = χ.

(4) Using the observation

op1 (|C(x)ξ|χ(ξ/R)) = op{ξ=0}
ε (|C(x)η|χ(η/R)) ,

prove

M t(x, ξ)1{ξ=0} = δ0(ξ)⊗
(
|u(t, x)|2dx+

∫
Sd−1

N t(x, dω)

)
,

where N t(x, ω) is given by (D.15) with νt± = (Φt±)∗ν
0
±.
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