
SEMI-CLASSICAL ANALYSIS AND BLOCH-FLOQUET THEORY

CLOTILDE FERMANIAN KAMMERER

ABSTRACT. The aim of these lectures is to discuss different PDEs technics related with a Schrödinger
equation describing the dynamics of an electron in a crystal in presence of impurities. Because the size of the
cells of the crystal are supposed to be very small comparatively with the macroscopic scale, it is a multi-scale
problem with periodic aspects. We shall use semi-classical measures (also called Wigner measures) to take
care of the multi-scale features, and Bloch theory to deal with the periodicity. These notions will be explained
and used for calculating the density of probability of presence of the electron in the limit where the size of
the cells is much smaller than the macroscopic one.
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1. INTRODUCTION

This lecture is devoted to the analysis of the Schrödinger equation

(1.1)

 i∂tψ
ε(t, x) +

1

2
∆xψ

ε(t, x)− 1

ε2
Vper

(x
ε

)
ψε(t, x)− V (t, x)ψε(t, x) = 0,

ψε|t=0 = ψε0.

where (ψε0)ε>0 is a bounded family in L2(Rd) with ‖ψε0‖L2(Rd) = 1, Vper a Zd-periodic potential
that we will suppose smooth, V (t, ·) a time dependent exterior potential that will be supposed to be in
L∞(R, C1(Rd)), in the sense that for all t ∈ R, V (t, ·) ∈ C1(R) and has bounded derivatives, uniformly
in time. The parameter ε is the so-called semi-classical parameter, ε � 1, because of the scaling of the
problem that we will discuss in the next section, and we are interested in the description as ε goes to 0 of
the density |ψε(t, x)|2dx which gives the probability of finding the particule at time t at the position x.
We will consider quadratic functions of ψε(t) involving more general observables.

The first section of this introduction is devoted to the motivations leading to using this equation for
describing the dynamics of an electron in a crystal, in presence of an external potential. The second
subsection will explain the basic ideas of Effective mass theory, that we will implement in simplified
situations, exhibiting some of the main ideas of the lecture. We will finish by presenting the result that
we are going to prove and the schedule of the lecture.

This lecture is issued from works with Victor Chabu and Fabricio Macia (see [13, 14, 15]). The presen-
tation of the different notions treated in this text is also highly impacted by collaborations with Caroline
Lasser and Fabricio Macia, independently and, more recently, simultaneously. They will recognize their
influence. It is an opportunity to thank them for these collaborations that have been, and still are, a source
of major mathematical satisfaction.

1.1. The dynamics of an electron in a crystal. The dynamics of an electron in a crystal in the presence
of impurities is described by a wave function Ψ(t′, x′) that solves the Schrödinger equation:

(1.2)

 i~∂t′Ψ(t′, x′) +
~2

2m
∆x′Ψ(t′, x′)− eQper (x′) Ψ(t′, x′)− eQext(t

′, x′)Ψ(t′, x′) = 0,

Ψ|t′=0 = Ψ0, (t′, x′) ∈ R× Rd.

The potential Qper is periodic with respect to some lattice in Rd and describes the interactions between
the electron and the crystal. The external potential Qext takes into account the effects of impurities on
the otherwise perfect crystal. Here ~ denotes the Planck constant, e is the charge of the electron and m
its mass. In many cases of physical interest, the ratio between the mean spacing of the lattice and the
characteristic length scale of variation of Qext is very small. We shall denote that ratio by ε and consider
the limit ε→ 0.

Following [42], one observes that there are two scales in the problem:

• the quantum scale characterized by the typical length λ of the lattice,
• the macroscopic scale of which we shall denote by L its typical length.

With these length scales are associated time scales: the quantum time scale characterized by the typical
time τ and and the macroscopic time scale characterized by the typical time T which are related to the
length scale by

τ =
mλ2

~
, T =

mL2

~
.

Strictly speaking, we should consider the Planck constant in macroscopic units h and define T as T =
mλ2

h . We have implicitly assumed that ~/h is a constant, that we have set to 1.
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Since the periodic potential acts on the quantum scale, we rescale it as

eQper(x
′) =

mλ2

τ2
Vper

(
x′

λ

)
,

and we rescale the external potential that acts at macroscopic scale as

eQext(t
′, x′) =

mL2

T 2
Vper

(
t′

T
,
x′

L

)
.

The meaning of these new scales consists in saying that a free electron under the influence of Qper will
travel a distance of length λ in the time unit τ and, similarly, a free electron under the influence ofQext(t

′)
will travel a distance of length L in the time unit T .

We shall reformulate our problem in terms of the variables

(t, x) =

(
t′

T
,
x′

L

)
,

that are usually called the slow variables. The so-called fast variables

(s, y) =

(
t′

τ
,
x′

λ

)
,

will of course play a role in the analysis. They are linked with the slow ones by

x = εy and t = ε2s with ε =
λ

L
=

√
τ

T
� 1.

Since the wave function is normalized in L2(Rd) (‖Ψ‖L2(Rd) = 1), we choose the new unknown

ψε(t, x) = L−d/2Ψ(t′, x′) = L−d/2Ψ(T t, L x).

Lemma 1.1. Setting ψε0(x) = L−d/2Ψ0(Lx), the family ψε(t, x) satisfies (1.1).

Proof
We just have to perform carefully the computation.

i~∂tψε(t, x) = T L−d/2i~∂tΨ(T t, L x)

= T L−d/2
(
− ~2

2m
∆x′Ψ(T t, L x) + eQper(x)Ψ(T t, L x) + eQext(T t, L x)Ψ(T t, L x)

)
= − ~2T

2mL2
∆xψ

ε(t, x) +
Tmλ2

τ2
Vper

(
L

λ
x

)
ψε(t, x) +

mL2

T
Vext(t, x)ψε(t, x).

Dividing the equation by ~, we obtain

i∂tψ
ε(t, x) = −1

2
· ~T
mL2

∆xψ
ε(t, x) +

Tmλ2

~τ2
Vper

(
L

λ
x

)
+
mL2

T~
Vext(t, x)ψε(t, x).

Since ε = λ
L and mλ2

~τ = mL2

~T = 1, we have

Tmλ2

~τ2
=
mλ2

~τ
× T

τ
=

1

ε2

and we obtain

i∂tψ
ε(t, x) = −1

2
∆x̃ψ

ε(t, x) +
1

ε2
Vper

(x
ε

)
ψε(t, x) + Vext(t, x)ψε(t, x),

which concludes the proof of the Lemma.
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In the following, we shall consider equation (1.1) with ‖ψε0‖L2(Rd) = 1 and we shall assume that the
potential Vper is periodic with respect to a fixed lattice in Rd, which, for the sake of definiteness will be
assumed to be Zd. We shall focus on the description of the density

(1.3) nε(t, x) = |ψε(t, x)|2dxdt

which gives the probability of finding the electron at time t in the position x. More precisely, we are
interested in the computation of time averages of quadratic functions of ψε(t, x), that is, in describing the
limit as ε goes to 0 of quantities of the form

1

T

∫ T

0

a(x)nε(t, x)dx dt, T > 0, a ∈ C∞c (Rd).

1.2. Effective mass theory. Effective Mass Theory consists in showing that, under suitable assumptions
on the initial data ψε0, the solutions of (1.1) can be approximated for small values of ε by those of a
simpler Schrödinger equation, called the effective mass equation, which is for example of the form:

(1.4) i∂tφ(t, x) +
1

2
B∇x · ∇xφ(t, x)− Vext(t, x)φ(t, x) = 0.

Above, B is a d × d matrix called the effective mass tensor. It is an experimentally accessible quantity
that can be used to study the effect of the impurities on the dynamics of the electrons. Both the question
of finding those initial conditions for which the corresponding solutions of (1.1) converge (in a suitable
sense) to solutions to the effective mass equation and that of clarifying the dependence of B on the
sequence of initial data have been extensively studied in the literature [9, 42, 3, 27, 8].

The equation (1.4) is an approximation of the equation (1.1) in the sense that the limit as a distribution
of the density nε(t, x) is |φ(t, x)|2, at least in time average, or, equivalently, that for all a ∈ C∞c (Rd) and
T > 0,

1

T

∫ T

0

∫
a(x)nε(t, x)dxdt−→

ε→0

1

T

∫ T

0

∫
a(x)|φ(t, x)|2dxdt.

One has to notice that the effective mass equation is independent of the small parameter and, thus, is
easiest to treat, for example numerically. When replacing the original equation by (1.4), one can say that
one has solved the question of the oscillations of size 1

ε of the function ψε(t, x).

Dealing with the limit ε → 0 expresses in mathematical terms as looking for weak-? accumulation
points of the sequence of densities |ψε(t, x)|2, that we are going to study in terms of time-dependent
Wigner distribution. Therefore, Wigner measure approach is a good way to handle this question. It allows
to treat quite general initial data and give a new insight on the status of the function φ(t, x) satisfying the
Effective mass equation.

A typical example of this sort of results has been obtained in [3] for data that we will call well-prepared
initial data. We describe below a weaker result that is a consequence of the work [3]. For this, we need
some notations.

(i) With ξ ∈ Rd, we associate the operator P (ξ) with domain H2(Td) ⊂ L2(Td)

(1.5) P (x) = −1

2
|ξ +Dy|2 + Vper(y), y ∈ Td,

where Td = Rd\Zd is a flat torus.
We will see in Section 3 that this operator is essentially self-adjoint on L2(Td) with domain H2(Td), and
has a compact resolvent, hence a non-decreasing sequence of eigenvalues counted with their multiplici-
ties, which are called Bloch energies or band functions

%1(ξ) ≤ %2(ξ) ≤ · · · ≤ %n(ξ) −→ +∞,
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and an orthonormal basis of eigenfunctions (ϕn(·, ξ))n∈N∗ called Bloch waves or Bloch modes, satisfying

(1.6) P (ξ)ϕn(·, ξ) = %n(ξ)ϕn(·, ξ), ∀ξ ∈ Rd, ∀n ∈ N∗.

(ii) The initial data (ψε0)ε>0 is said well-prepared if there exist n ∈ N∗, ξ0 ∈ Rd and v0 ∈ S(Rd)
such that

(1.7) ψε0(x) = e
i
ε ξ0·xϕn

(
ξ0,

x

ε

)
v0(x).

Theorem 1.2. [3] Let T > 0. Assume (ψε0)ε>0 satisfies (1.7) with ξ0 a critical point of ξ 7→ %n(ξ). As-
sume that the eigenvalue %n(ξ) is separated from the rest of the spectrum of P (ξ) for ξ in a neighborhood
of ξ0. Then the solution of (1.1) satisfies

ψε(t, x) = e
i
ε ξ0·x−

i
ε2
%n(ξ0)tϕn

(
ξ0,

x

ε

)
vε(t, x)

and vε(t) converges weakly in L2((0, T ), H1(Rd)) to the solution v(t) of the equation

(1.8)
{
i∂tv = − 1

2d
2%n(ξ0)∇x · ∇x v + V (t, x)v,

v|t=0 = v0.

The equation (1.8) typically is an effective equation since it is ε-independent. It involves the eigen-
functions and the eigenmodes of the operator P (ξ). In particular, starting from a data proportional to
ϕn
(
ξ0,

x
ε

)
, the solution is proportional to ϕn

(
ξ0,

x
ε

)
and the coefficient of proportionality evolve in an

autonomous manner involving the Bloch mode %n(ξ).
We point out that the importance of the assumption that ξ0 is a critical point of %n will be made clear

in the next chapters. Let us now discuss the role of the operator P (ξ). The existence of two scales in the
problem suggests to look for (ψε(t))ε>0 of the form

ψε(t, x) = Uε
(
t, x,

x

ε

)
, (t, x) ∈ R× Rd,

where the function Uε = Uε(t, x, y) is defined on R× Rd × Td. Formally, if (Uε(t))ε>0 satisfies

(1.9)
{
iε2∂tU

ε(t, x, y) = P (εD)Uε(t, x, y) + ε2V (t, x)Uε(t, x, y),
Uε|t=0 = Uε0 ,

with Uε0 (x, xε ) = ψε0, then (t, x) 7→ Uε
(
t, x, xε

)
solves (1.1). Here, the opeartor P (εD) acts as a Fourier

multiplier in the variable ξ:

P (εD)Uε(t, x, y) = (2π)−d
∫
Rd

eiξ·(x−x
′)P (εξ)Uε(t, x′, y)dx′dξ.

Of course, there are several choices possible for realizing Uε0 (x, xε ) = ψε0. For example, one can take

Uε0,1(x, y) = ψε0(x)1y∈Td , (x, y) ∈ Rd × Td.

In the case of well-prepared initial data satisfying (1.7), it looks appropriate to choose

Uε0,2(x, y) = e
i
ε ξ0·xϕn(ξ0, y)v0(x), (x, y) ∈ Rd × Td.

These choices will generate two functions Uεj (t, x, y), j = 1, 2, that are different functions of Rd × Td.
However, by unicity of the solution of (1.1), they satisfy

Uε1

(
t, x,

x

ε

)
= Uε2

(
t, x,

x

ε

)
, (t, x) ∈ R× Rd.

Let us now prove Theorem 1.2 in the simple case V (t, x) = 0. The next chapters will give the elements
for proving the general case.
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Proof
We first write the equation satisfied by Ûε(t, ξ, y) where we denote by f̂ the Fourier transform with
respect to the variable x:

f̂(ξ) =

∫
Rd
f(x)e−iξ·xdx, ξ ∈ Rd, f ∈ S(Rd).

We have {
iε2∂tÛ

ε(t, ξ, y) = P (εξ)Ûε(t, ξ, y),

Uε|t=0(ξ, y) = v̂0

(
ξ − ξ0

ε

)
ϕn(ξ0, y).

For ` ∈ N∗, let us denote by Πn(ξ) the eigenprojector on the n-th mode of P (ξ) and by Π⊥(ξ) the
orthogonal projector (Π⊥ = Id−Πn(ξ)). We have

Ûε(t, ξ, y) = Uεn(t, ξ, y) + Uε⊥(t, ξ, y), Uεn(t, ξ, y) = Πn(εξ)Uε(t, ξ, y), (t, x, y) ∈ R× Rd × Td.

Besides, for ` ∈ {n,⊥}, (Ûε` (t))ε>0 solves

iε2∂tÛ
ε
` (t, ξ, y) = (Π`P )(εξ)Ûε` (t, ξ, y)

with

Uε` |t=0(ξ, y) = v̂0

(
ξ − ξ0

ε

)
Π`(εξ)ϕn(ξ0, y)

= v̂0

(
ξ − ξ0

ε

)(
Π`(ξ0) + ε

∫ 1

0

(
ξ − ξ0

ε

)
· ∇ξΠ`

(
ξ0 + sε

(
ξ − ξ0

ε

))
ds

)
ϕn(ξ0, y)

where we have used that Πn is a smooth function (this comes from the assumption on the mode %n, as we
shall see in Section 3). Assuming for example that v̂0 is compactly supported, we obtain in L2(Rd ×Td)

Ûε` |t=0(ξ, y) = δ`,nv̂0

(
ξ − ξ0

ε

)
ϕn(ξ0, y) +O(ε).

When ` =⊥, this implies Uε⊥(t) = O(ε) in L2(Rd × Td).
When ` = n, using Πn(ξ)P (ξ) = %n(ξ)Πn(ξ), we obtain Ûεn(t, ξ, y) = e−

i
ε2
%n(εξ)tÛεn(0, ξ, y),

whence

Uεn(t, x, y) = (2π)−d
∫
Rd

eiξ·x−
i
ε2
%n(εξ)tÛεn(0, ξ, y)dξ

= (2π)−d e
i
ε ξ0·xϕn(ξ0, y)

∫
R2d

ei(ξ−
ξ0
ε )·(x−x′)− i

ε2
%n(εξ)tv0(x′)dξdx′

= (2π)−d e
i
ε ξ0·xϕn(ξ0, y)

∫
R2d

eiξ·(x−x
′)− i

ε2
%n(ξ0+εξ)tv0(x′)dξdx′

Writing %n(ξ0 +εξ) = %n(ξ0)+ ε2

2 d
2%n(ξ0)ξ ·ξ+ε3Gε(ξ)[ξ, ξ, ξ] forGε(ξ) a smooth bounded 3-tensor,

we obtain

vε(t) = (2π)−d
∫
R2d

eiξ·(x−x
′)− i

2d
2%n(ξ0)ξ·ξ t+itεGε(ξ)[ξ,ξ,ξ]v0(x′)dξdx′,

whence the result. In the case where ∇%n(ξ0) 6= 0, the non-stationary phase theorem gives the conver-
gence to 0 of (vε(t))ε>0.
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1.3. Our aim. Our aim in this lecture is to provide a similar description for more general initial data,
without assumptions on its form, as the well-prepared data of (1.7). However, we will relax our exigence
by only asking for a description of the weak limits of quadratic quantities as∫ b

a

∫
Rd
φ(x)|ψε(t, x)|2dxdt or

∫ b

a

∫
Rd
φ(εξ)|ψ̂ε(t, ξ)|2dξdt.

To unify the position and impulsion (or frequency, or also Fourier) point of view, we shall consider the
Wigner transform of the family (ψε(t))ε>0 and replace the analysis of the densities |ψε(t, x)|2dxdt or
ε−d|ψ̂ε(t, ξ/ε)|2dξdt by the one of the distribution on R× R2d

wε(t, x, ξ) = (2πε)−d
∫
Rd
ψε(t, x+ εv/2)ψ

ε
(t, x− εv/2)eiv·ξdv.

Note that, formally, the marginals of wε(t, x, ξ) give the position and impulsion densities. Things will be
made rigorous in Section 2. We are going to prove the following result, in the case d = 1.

Theorem 1.3. Consider for each n ∈ N the sets of critical values of the Bloch modes

(1.10) Λn := {ξ, ∇%n(ξ) = 0}.
Assume (ψε0) is bounded in Hs

ε (R) for some s > 1/2. Assume Vper is smooth and that t 7→ V (t, x)
is bounded in L∞(C1(Rd)). Then, there exists a subsequence (ψε`0 )ε`>0, such that ε` −→

`→+∞
0 and, for

every a < b and every φ ∈ C∞c (R2) the following holds:

lim
`→∞

∫ b

a

∫
R2

φ(x, ξ)wε`(t, x, ξ)dxdξdt =
∑
n∈N∗

∑
ξ∈Λn

∫ b

a

∫
R2

φ(x, ξ)|ψ(n)
ξ (t, x)|2dxdt(1.11)

where, for every n ∈ N∗ and ξ ∈ Λn, ψ(n)
ξ solves the Schrödinger equation:

(1.12) i∂tψ
(n)
ξ (t, x) =

1

2
∂2
ξ%n(ξ)∂2

xψ
(n)
ξ (t, x) + Vext(t, x)ψ

(n)
ξ (t, x),

with initial datum:

ψ
(n)
ξ |t=0 is the weak limit in L2(R) of the sequence

(
e
− i
ε`
ξx

Πn(εDx)(ψε`0 ⊗ 1y∈T)
)

.

Moreover, for all φ ∈ C∞c (R),

(1.13) lim
`→∞

∫ b

a

∫
R
φ(x)|ψε`(t, x)dxdt =

∑
n∈N∗

∑
ξ∈Λn

∫ b

a

∫
R
φ(x)|ψ(n)

ξ (t, x)|2dxdt

Note that some of the accumulation points of e
− i
ε`
ξx

Πn(εDx)(ψε`0 ⊗ 1y∈T) may just be 0. For exam-
ple, when Vper = 0, only the first Bloch energy %1 has critical points and they are precisely Λ1 = 2πZ.
Besides, the associated projector Π1(ξ) coincides with the orthogonal projection onto Ceiky when-
ever ξ ∈ (k − π, k + π) and k ∈ 2πZ. Therefore Π1(εξ)(ψ̂ε`0 (ξ)1y∈T) = 1(−π,π)(εξ)ψ̂

ε`
0 (ξ) and

e
− i
ε`

2πkx
Π1(εDx)(ψε`0 ⊗ 1y∈T) weakly converges to zero when k 6= 0. As a consequence, in this el-

ementary case Vper = 0, Theorem 1.3 says nothing but that the weak limits of |ψε(t, x)|2 are equal to
|ψ0(t, x)|2 where ψ0(t, x) solves (1.1) with initial data ψ0

0 , the weak limit of (ψε0) in L2(R).
If the data is well-prepared, one recovers the result of Theorem 1.2.
In higher dimension, the result is more complicated to state. We will discuss it in the last section.
This result relies on a semi-classical analysis of the problem and the use of the Bloch-Floquet theory.

The aim of the lecture is to explain these tools (Sections 2 and 3 respectively) and to implement them
for analyzing the solutions of equation (1.1) (Section 4). We will see that this requires the introduction
of a two-scale analysis, and thus the introduction of a refined notion of two-scale Wigner transform
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(Section 5). In the conclusive Section 6, we will be able to prove Theorem 1.3 and we will discuss the
higher dimension case.
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2. THE SEMI-CLASSICAL APPROACH

In this chapter, we introduce Wigner transforms in Section 2.1. We will use their tight link with semi-
classical pseudodifferential operators, of which we shall describe the properties that will be useful for our
purpose in Section 2.2. Wigner measures are defined in Section 2.3, together with the analysis of their
main properties.

2.1. Wigner function.

2.1.1. Definitions. The Wigner function W ε[f ] of a function f ∈ L2(Rd) is the function defined on R2d:

(2.1) W ε[f ](x, ξ) = (2π)−d
∫
Rd

eiv·ξf
(
x− ε

2
v
)
f
(
x+

ε

2
v
)
dv.

It also writes

W ε[f ](x, ξ) = (2πε)−d
∫
Rd

e
i
ε v·ξf

(
x− v

2

)
f
(
x+

v

2

)
dv.

It has been introduced by Wigner [46] at the beginning of the 20th century. Let us derive a first set of
basic properties.

Proposition 2.1 (Wigner distributions). For f ∈ S(Rd), its Wigner function satisfies the following prop-
erties:

(1) W ε[f ] ∈ S(Rd × Rd) and for all N ∈ N, there exists CN > 0

〈ξ〉N 〈x〉N |W ε[f ](x, ξ)| ≤ CN sup
|α|,|β|≤N

‖xα(ε∂x)βf‖L2 , (x, ξ) ∈ R2d.

(2) W ε[f ] ∈ L2(Rd × Rd) and ‖W ε[f ]‖L2(R2d) = (2πε)−
d
2 ‖f‖2L2(Rd).

(3) 〈W ε[f ],W ε[g]〉L2(Rd×Rd) = (2πε)−d |〈f, g〉L2(Rd)|2.
(4) The marginals of W ε[f ] on x or ξ give the position or momentum densities of f respectively :∫

Rd
W ε[f ](x, ξ)dξ = |f(x)|2,

∫
Rd
W ε[f ](x, ξ)dx =

1

(2πε)d

∣∣∣∣f̂ (ξε
)∣∣∣∣2 .

In particular, ∫
R2d

W ε[f ](x, ξ)dxdξ = ‖f‖2L2(Rd).

(5) W ε[f ] is real-valued but in general not positive.

Note that it is proved in [28, 44] that W ε[f ] is nonnegative if and only if f is Gaussian (the article [28]
concerns the dimension 1, while [44] holds in any dimension).

Example 2.2. Consider z0 = (x0, ξ0) ∈ R2d and

fεz0(x) = ε−d/4 e
i
ε ξ0·(x−x0)f

(
x− x0√

ε

)
, x ∈ Rd.

Then,

W ε[fεz0 ](x, ξ) = ε−d W 1[f ]

(
ξ − ξ0√

ε
,
ξ − ξ0√

ε

)
.

Proof
1. We observe that the transformation acts on ff by the measure preserving change of coordinates
(x, v) 7→ (x + 1

2v, x −
1
2v) followed by a partial Fourier transform with respect to v. Hence, if f is a
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Schwartz function, then the Wigner distribution W ε[f ], too.
2. Square integrability of W ε[f ] can be seen as in 1. For calculating the norm, let (x, ξ) ∈ R2d,

|W ε[f ](x, ξ)|2

= (2π)−2d

∫
R2d

f
(
x− εv

2

)
f
(
x+

εv

2

)
f

(
x+

εv′

2

)
f

(
x− εv′

2

)
eiξ·veiξ·(v−v

′)dvdv′.

Therefore, after integration in ξ, we obtain∫
Rd
|W ε[f ](x, ξ)|2dξ = (2π)−d

∫
Rd

∣∣∣f (x− εv
2

)∣∣∣2 ∣∣∣f (x+ ε
v

2

)∣∣∣2 dv.
We deduce

‖W ε[f ]‖2L2(R2d) = (2πε)−d
∫
R2d

|f (x)|2 |f (x+ v)|2 dvdx = (2πε)−d‖f‖2L2(Rd)

∫
R2d

|f (x)|2 dx

= (2πε)−d‖f‖4L2(Rd).

One then extends the result by density of Schwartz functions in L2(Rd).
3. is essentially the same calculation as in 2.
4. is straightforward.
5. Real-valuedness comes from changing v to −v in the integral. For non-positivity, we take f odd, that
is, f(x) = −f(−x), and evaluate in the origin, W ε[f ](0, 0) = −(πε)−d‖f‖L2(Rd).

2.1.2. Wigner transform as a distribution. The action of the Wigner distribution on smooth compactly
supported function simply expresses in terms of pseudodifferential operators. We have

(2.2) 〈W ε[f ], a〉 =

∫
R2d

a(x, ξ)W ε[f ](x, ξ)dxdξ = (f, opε(a)f)L2(Rd)

for f ∈ L2(Rd) and a ∈ C∞c (R2d), where

(2.3) ∀f ∈ S(Rd), opε(a)f(x) = (2πε)−d
∫
R2d

a
(

1
2 (x+ y), ξ

)
e
i
ε ξ·(x−y)f(y)dy dξ.

The properties of the semi-classical pseudodifferential operators then induce properties of the Wigner
distribution. The more important ones are the following.

Proposition 2.3 (Wigner distributions). The Wigner distributions satisfy the following properties:

(1) For all f ∈ L2(Rd), the map from C∞c (Rd × Rd) to C,

a 7→ 〈W ε[f ], a〉

is a distribution of finite order.
(2) If (fε)ε>0 is a bounded sequence in L2(Rd) then (W ε[fε])ε>0 is a bounded sequence of tem-

pered distributions in S ′(Rd × Rd,CN×N ).
(3) If (fε)ε>0 is a bounded sequence in L2(Rd), then every limit point of (W ε[fε])ε>0 is a positive

measure on Rd × Rd.

The distributional interpretation of Wigner transforms in terms of pseudo-differential operators is a
powerful tool and in the two last points of Proposition 2.3 lay the fundament for the section about Wigner
measures. Proposition 2.3 is proved at the end of Section 2.2.
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2.1.3. Wigner function of a pair of functions. One sometimes extends the definition of Wigner transform
to pairs of functions f, g ∈ L2(Rd) by setting

W ε[f, g](x, ξ) := (2π)−d
∫
Rd
f
(
x− εv

2

)
g
(
x+

εv

2

)
eiξ·vdv,

with the straightforward properties listed in the next statement.

Proposition 2.4. (1) For all f ∈ L2(Rd), W ε[f, f ] = W ε[f ].
(2) For all f, g ∈ L2(Rd), W ε[g, f ] = W ε[f, g] and∫

R2d

W ε[f, g](x, ξ) dxdξ = (g, f)L2(Rd).

(3) For all f1, f2, g1, g2 ∈ L2(Rd),

(2.4) (W ε[f1, g1],W ε[f2, g2])L2(R2d) = (2πε)−d (f1, f2)L2(Rd) (g2, g1)L2(Rd) .

(4) For all (f, g) ∈ (L2(Rd))2 and a ∈ C∞c (R2d),

〈W ε[f, g], a〉 = (g, opε(a)f)L2(Rd) = (opε(a)g, f)L2(Rd) .

Proof
1, 2 and 4 come from the definition.
For 3, one writes

(W ε[f1, g1],W ε[f2, g2])L2(R2d)

= (2πε)−2d

∫
R4d

f1(x− v
2 )g1(x+ v

2 )f2(x− v′

2 )g2(x+ v′

2 ) eiξ·(v
′−v)/ε dv dv′ dx dξ

= (2πε)−d
∫
R2d

f1(x− v
2 )g1(x+ v

2 )f2(x− v
2 )g2(x+ v

2 ) dv dx

= (2πε)−d (f1, f2)L2(Rd) (g2, g1)L2(Rd) .

Example 2.5. We consider two functions f1, f2 ∈ L2(Rd) and two points in the phase space z1 = (x1, ξ1)

and z2 = (x2, ξ2). Denote Q = x1+x2

2 , P = ξ1+ξ2
2 . Let

fεzj (x) = ε−
d
4 e

i
ε ξj ·(x−xj)fj

(
x− xj√

ε

)
, x ∈ Rd, j = 1, 2.

Then, the joint Wigner function satisfies for all (x, ξ) ∈ R2d,

W ε[fεz1 , f
ε
z2 ](x, ξ)

= W ε[e
i√
ε
ξ1·(x− x1√

ε
)
f1(x− x1√

ε
), e

i√
ε
ξ2·(x− x2√

ε
)
f2(x− x2√

ε
)]

(
x√
ε
,
√
εξ

)
= e

i
ε (ξ1−ξ2)·(x−Q)W ε[f1, f2]

(
x−Q√

ε
,
√
ε(ξ − P )

)
= ε−d e

i
ε (ξ1−ξ2)·(x−Q)W 1[f1, f2]

(
x−Q√

ε
,
ξ − P√

ε

)
.

2.2. Semi-classical calculus. Let a ∈ C∞c (R2d) and ε ∈]0, 1] a small parameter. The semi-classical
pseudodifferential operator of symbol a is the operator opε(a) defined on S(Rd) by equation (2.3),
namely

opε(a)f(x) = (2πε)−d
∫
R2d

a
(

1
2 (x+ y), ξ

)
e
i
ε ξ·(x−y)f(y)dy dξ, f ∈ S(Rd).

Note that there exists other choices of quantization.
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The integral in (2.3) is convergent because f is rapidly decreasing, also for symbols a = a(x, ξ)
that are multi-variate polynomials in x and ξ the integral defining opε(a)f exists for f ∈ S(Rd), since
f ∈ S(Rd) can compensate the polynomial growth. This property and those of the Fourier transform calls
for a generalisation of the notation opε(a) to polynomial functions and one talks of opε(x) to denote the
operator of multiplication with x, and of opε(ξ) for the differentiation operator −iε∂x. In particular, one
has the following example.

Example 2.6. We have opε(x · ξ) = 1
2 (opε(x) · opε(ξ) + opε(ξ) · opε(x)). Indeed, for all f ∈ S(Rd),

opε(x · ξ)f(x) = (2πε)−d
∫
Rd

1
2 (x+ y) · ξ eiξ·(x−y)/εf(y) dξdy

= (2πε)−d
∫
Rd

1
2

(
(ix · ∂y − iy · ∂x)eiξ·(x−y)/ε

)
f(y) dξdy

= 1
2 (x · (−i∂x)f(x)− i∂x · (xf(x))) .

Besides, if c ∈ C∞(Rd), then for 1 ≤ j, ` ≤ d,

opε (c(x)ξj) =
ε

i
c(x)∂xj +

ε

2i
∂xjc(x)

opε(c(x)ξjξ`) = −ε2∂x`
(
c(x)∂xj ·

)
+
iε

2
opε

(
ξj∂x`c(x)− ξ`∂ξjc(x)

)
+
ε2

4
∂2
xjx`

c(x).

2.2.1. Action on L2(Rd). Let us now investigate how one can extend the action of opε(a) to square
integrable functions. The kernel (x, y) 7→ kε(x, y) of the semi-classical pseudodifferential operator
opε(a) is given by

kε(x, y) = (2πε)−d
∫
Rd

e
i
ε ξ·(x−y)a

(
1
2 (x+ y), ξ

)
dξ

= ε−dκa
(

1
2 (x+ y), 1

ε (x− y)
)

(2.5)

where

κa(X, v) = (2π)−d
∫
Rd

eiξ·va (X, ξ) dξ.

The function κa(x, ·) is the inverse Fourier transform of ξ 7→ a(x, ξ), we write

(2.6) κa(x, v) = F−1
ξ 7→va (x, v) .

The function (x, v) 7→ κa(x, v) is compactly supported in x and Schwartz class in v. Note that the link
between a and κa also writes

(2.7) a(x, ξ) =

∫
Rd

e−iξ·vκa(x, v)dv.

The precise structure of the kernel of this operator calls for using the next Proposition.

Proposition 2.7. Let P ε be an operator of kernel kε(x, y) of the form

kε(x, y) = ε−dκ
(

1
2 (x+ y), 1

ε (x− y)
)

and such that K satisfies
∫

sup
X∈Rd

|κ(X, v| dv < +∞. Then, the operator P ε is bounded in L2(Rd) and

‖P ε‖L(L2(Rd)) ≤
∫

sup
X∈Rd

|κ(X, v| dv.
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Proof
For f ∈ L2(Rd), we have

|P εf(x)| ≤ ε−d
∫

sup
X∈Rd

∣∣kε(X, x−yε )∣∣ |f(y)|dy.

Set gε(x) = ε−d supX∈Rd
∣∣kε(X, xε )∣∣, then gε ∈ L1(Rd) and

‖gε‖L1(Rd) =

∫
sup
X∈Rd

|κ(X, v| dv.

We obtain by use of Young’s convolution inequality for p = 1 and q = r = 2,

‖P εf‖L2(Rd) ≤ ‖gε ∗ f‖L2(Rd) ≤ ‖gε‖L1(Rd)‖f‖L2(Rd) ≤ ‖f‖L2(Rd)

(∫
sup
X∈Rd

|κ(X, v| dv
)
.

Note that the Young’s convolution inequality is straightforward for this choice of indices.

As a consequence of Proposition 2.7, we obtain the boundedness in L(L2(Rd)) of pseudodifferential
operators. Indeed, for κ = κa as in (2.6), we have∫

sup
x∈Rd

|κa(x, v| dv ≤ C sup
β∈Nd
|β|≤d+1

sup
x∈Rd

‖∂βξ a(x, ·)‖L1(Rd).

with C =
∫
〈v〉−d−1dv. In the following, we set

(2.8) Nd(a) := sup
β∈Nd
|β|≤d+1

sup
x∈Rd

‖∂βξ a(x, ·)‖L1(Rd).

We observe that the norm Nd(a) is controlled by Schwartz semi-norms: there exists a constant cd de-
pending only on d such that

(2.9) Nd(a) ≤ cd sup
β∈Nd
|β|≤d+1

sup
x∈Rd

∣∣∣(1 + |ξ|)d+1∂βξ a(x, ξ)
∣∣∣ .

The result is the following.

Theorem 2.8. There exists a constant c > 0 which depends only on d such that for all a∈C∞c (R2d),

‖opε(a)‖L(L2(Rd)) ≤ cNd(a)(2.10)

Let us define the ε-Fourier transform:

(2.11) ∀f ∈ S(Rd), ∀ξ ∈ Rd, Fε(f)(ξ) = (πε)−d/2
∫
Rd

e−
i
εx·ξf(x)dx.

Then, if a(x, ξ) = a(−ξ, x), one has

(2.12) (f, opε(a)g)L2(Rd) = (2π)−d (Fε(f), opε(a)Fε(g))L2(Rd) , f, g ∈ L2(Rd).

Therefore, one can get an estimate similar to (2.10) where the roles of x and ξ are exchanged:

‖opε(a)‖L(L2(Rd)) = ‖opε(a)‖L(L2(Rd)).

which yields the estimate

(2.13) ‖opε(a)‖L(L2(Rd)) ≤ c sup
β∈Nd
|β|≤d+1

sup
ξ∈Rd

∥∥∂βxa(·, ξ)
∥∥
L1(Rd)

.
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Remark 2.9. Observe that the estimates (2.10) makes possible to define bounded semi-classical pseudo-
differential operators with a symbol awhich has few regularity in x, as long as a is measurable, compactly
supported and that ∂βξ a is integrable for all β ∈ Nd such that |β| ≤ d+ 1. And similarly exchanging the
role of x and ξ, by estimate (2.13) .

The estimate the most used in the literature is the one obtained by Calderón and Vaillancourt in [12].

Theorem 2.10 (Calderón-Vaillancourt Theorem). There exists N ∈ N∗ and C > 0 such that for all
a ∈ C∞c (R2d),

(2.14) ‖opε(a)‖L(L2(Rd)) ≤ C
∑

α∈N2d,|α|≤d+2

ε
|α|
2 sup

Rd×Rd
|∂αx,ξa|

2.2.2. The adjoint and the composition of semi-classical pseudodifferential operators. We introduce the
notation for the Poisson bracket of two functions. For f, g ∈ C1(Rd), we set

(2.15) {f, g} = ∇ξf · ∇xg −∇xf · ∇ξf.

This notation extends to matrix-valued functions, paying attention to the non-commutativity of the prod-
uct on the set of matrices.

Proposition 2.11. Let a, b ∈ C∞c (R2d), then in L(L2(Rd)),

opε(a)∗ = opε(a),(2.16)

opε(a)opε(b) = opε(ab) +
ε

2i
opε ({a, b}) +O

(
ε2
)
,(2.17)

[opε(a), opε(b)] =
ε

i
opε({a, b}) +O

(
ε3
)

(2.18)

We are not going to prove this proposition but another one, with less complicated symbols but low
regularity.

2.2.3. Pseudo-differential calculus with low regularity. With the observation (2.12) in mind, one can
perform some symbolic calculus with low regularity in the ξ-variable. The reader will find applications
where this calculus is used in [22] and [20]. We focus on Lipschitz regularity and consider the set Lip(Rd)
of continuous functions f such that

∃Lf > 0, ∀x, y ∈ Rd, |f(x)− f(y)| ≤ Lf |x− y|.

Lemma 2.12. (1) Suppose % ∈ Lip(Rd), and a ∈ C∞c (R2d). Then, in L(L2(Rd))

opε(a %) = opε(a)%(x) +O (εLρNd((1 + ∆ξ)a))

opε(% a) = %(x)opε(a) +O (εLρNd((1 + ∆ξ)a)) .

(2) Suppose % ∈ C1(Rd) with∇% ∈ Lip(Rd), and a ∈ C∞c (R2d). Then, in L(L2(Rd))

[opε(a), %(x)] =
ε

i
opε(∇ξa · ∇%(x)) +O(ε2L∇%Nd(∆ξa)).

Note that the observation of (2.12):

opε(a) = (Fε)∗opε(a)Fε, a(x, ξ) := a(−ξ, x),

induces that properties proved for % = %(x) have their analogue for % = %(ξ).
Proof
Point 1. We consider Rε := opε(a %)− opε(a)%(x). We have

Rεf(x) =
1

εd

∫
Rd
rε
(
x+ y

2
,
x− y
ε

)
f(y) dy, ∀f ∈ S(Rd,CN ),
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where rε(x, v) := F−1
ξ a(x, v)(%(x)− %(x− εv)). By Proposition 2.7,

‖Rε‖L(L2(Rd,CN )) ≤ (2π)−d
∫
Rd

sup
x∈Rd

|rε(x, v)|CN×Ndv.

By hypothesis, we can find L% > 0 such that

|%(x)− %(x− εv)|CN×N ≤ L%ε|v|, ∀(v, x) ∈ suppF−1
ξ a.

Therefore, using |v||F−1
ξ a(x, v)| ≤ (1 + |v|2)|F−1

ξ a(x, v)| = |F−1
ξ a(x, v)| + |F−1

ξ (−∆ξa)(x, v)|, we
deduce

‖Rε‖L(L2(Rd,CN )) ≤ εCdL%(Nd(a) +Nd(∆ξa)).

Point 2. We observe that the kernel of R̃ε := [opε(a), %(x)]− ε
i opε(∇ξa · ∇%), is of the form (2.5) with

r̃ε(x, v) = F−1
ξ a(x, v) (%(x)− %(x− εv))− ε

i
F−1
ξ ∇ξa(v, x) · ∇%(x)

= F−1
ξ a(x, v) (%(x)− %(x− εv)− εv · ∇%(x))

= ε2θ(x, v)F−1
ξ a(x, v)

with |θ(x, v)| ≤ L∇%|v|2. Then, we conclude as before using |v|2F−1
ξ a = −F−1

ξ ∆ξa.

2.2.4. Weak Gårding inequality. Gårding inequality gives an answer to the question of the link between
the positivity of the symbol a and the positivity of the operator opε(a). We prove here a weak version of
the Gårding inequality.

Proposition 2.13 (Weak Gårding inequality). Let a ∈ C∞c (R2d) such that a ≥ 0. Then, for all δ > 0,
there exists Cδ > 0 such that for all f ∈ L2(Rd),

(2.19) (f, opε(a)f)L2(Rd) ≥ −(δ + Cδε
2)‖f‖2L2(Rd), ∀f ∈ L2(Rd).

Remark 2.14. This estimate can be ameliorated into: if a ≥ 0, there exists a constant Ca > 0 such that

(f, opε(a)f) ≥ Caε‖f‖L2 , ∀f ∈ L2(Rd)

Besides, with the assumptions of Proposition 2.13, one can prove the Fefferman-Phong inequality (cf.
[48] for a detailed proof):

∃C > 0, ∀f ∈ L2(Rd), (f, opε(a)f)L2(Rd) ≥ −Cε
2‖f‖2L2(Rd).

However, the easiest version of Proposition 2.13 is enough for our purpose.

Proof
We associate with a a function χ ∈ C∞c (R2d) such that χ = 1 on the support of a and we set for
some λ > 0 to be fixed later

bδ(x, ξ) = χ(x, ξ)
(
a(x, ξ) + λ δ

)1/2
.

The function bδ is in C∞c (R2d) and satisfies

bδ(x, ξ)
2 = a(x, ξ) + λ δ χ2(x, ξ).

Therefore, using {bδ, bδ} = 0, the symbolic calculus gives in L(L2(Rd)),

opε(bδ)
∗opε(bδ) = opε(a) + λ δ opε(χ

2(x, ξ)) +O(ε2).

Let us now choose λ so that we have

λ ‖opε(χ
2(x, ξ))‖L(L2(Rd)) ≤ 1,
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then, for all f ∈ L2(Rd),

0 ≤ ‖opε(bδ)f‖2 = (f, opε(bδ)
∗opε(bδ)f)L2(Rd)

= (f, opε(a)f)L2(Rd) + λδ
(
f, opε(χ

2(x, ξ))f
)
L2(Rd)

+O
(
ε2‖f‖2L2(Rd)

)
≤ (f, opε(a)f)L2(Rd) + δ‖f‖2L2(Rd) +O

(
ε2‖f‖2L2(Rd)

)
,

whence the result.

2.2.5. Proof of Proposition 2.3. Points 1. and 2. are a consequence of (2.10) and (2.2).
For Point 3, we observe that Gårding inequality of Proposition 2.13 implies that every accumulation point
of (W ε[fε]) in S ′(Rd × Rd) is a positive distribution and therefore, a positive measure on Rd × Rd, as
detailed in the proof of the next Theorem 2.15.

2.3. Wigner measures.

2.3.1. Definition. In this section, we continue with the observation of Point 3 in Proposition 2.3 and
analyze the properties of the weak limits of the Wigner transform.

Theorem 2.15. Let (fε)ε>0 be a bounded family in L2(Rd). There exists a sequence (εn)n∈N which
tends to 0 when n goes to +∞ and a positive measure µ on R2d such that

(2.20) ∀a ∈ C∞c (R2d),
(
fεn , opεn(a)fεn

)
L2(Rd)

−→
n→+∞

∫
R2d

a(x, ξ)µ(dx, dξ).

Moreover µ(R2d) < +∞.

Any measure µ ∈ M+(R2d) satisfying (2.20) for some sequence (εn)n∈N is called Wigner measure
or semi-classical measure of the family (fε)ε>0. A given family (fε)ε>0 may have several Wigner
measures.

The use of Wigner measures developed in the 90s, in particular with the articles [34] by Pierre-Louis
Lions, Thierry Paul and [24] by Patrick Gérard, Éric Leichtnam (see also [22] and [25]). They first appear
in [26] in the frame of the analysis of sequences of eigenfunctions of a Laplace Beltrami operator on a
compact manifold (see also [6] and [7] for similar problematic on the torus).

Proof
Since the quantity Iε(a) = (fε, opε(a)fε)L2(Rd) is uniformly bounded in ε, for a given function a ∈
C∞c (R2d), one can find an extracted convergent subsequence Iεn,a(a). Considering a dense countable
subset of C∞c (R2d) and using a diagonal extraction process, one builds a sequence εn for which Iεn(a)
has a limit for all a ∈ C∞c (R2d). The map which sends a on the limit I(a) of the sequence Iεn(a) is a
linear form on C∞c (R2d). It defines a distribution and Gårding inequality shows that this distribution is
positive.

It remains to prove that I satisfies a measure estimate. We consider a nonincreasing function χ ∈
C∞c ([0,+∞)) such that 0 ≤ χ ≤ 1, χ(u) = 0 for u ≥ 2 and χ(u) = 1 for 0 ≤ u ≤ 1. We set
χR = χ

( ·
R

)
. Then, we deduce from(

fε, opε(χR(x2 + ξ2))fε
)
L2(Rd)

≤ C

that I(χR(x2+ξ2)) < +∞ and is uniformly bounded inR. Moreover, the functionR 7→ I(χR(x2+ξ2))
is nondecreasing and we can set

I(1) := lim
R→+∞

I(χR(x2 + ξ2)).

Then, the positivity of I yields

∀a ∈ C∞c (R2d), I
(
‖a‖L∞(R2d) − a

)
≥ 0,
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which implies the measure’s type control that we were seeking:

∀a ∈ C∞c (R2d), I(a) ≤ C ‖a‖L∞(R2d).

Therefore, the linear form I defines a positive finite measure µ on R2d.

2.3.2. Examples. Let us compute the Wigner measures associated with some exemplary families.

Example 2.16. Let x0, ξ0 ∈ Rd and ϕ ∈ L2(Rd).

(1) Concentration. Let uε(x) = ε−d/2ϕ
(
ξ−ξ0
ε

)
, then (uε)ε>0 has a unique Wigner measure

µu(dx, dξ) = (2π)−d δx0
(x)⊗ |ϕ̂(ξ)|2dξ.

(2) Oscillation. Let vε(x) = ϕ(x)eix·ξ0/ε, then (vε)ε>0 has a unique Wigner measure

µv(dx, dξ) = |ϕ(x)|2dx⊗ δξ0(ξ).

Note that the ε-Fourier transform transforms an oscillation in position into a concentration in impul-
sion, and conversely

Fεuε(ξ) = e−
i
εx0·ξF1ϕ(ξ) and Fεvε = ε−

d
2F1ϕ

(
ξ − ξ0
ε

)
.

The Wigner measure of a family (fε)ε>0 provides information about the strong convergence of this
family. In example (1) above, it is the point x0 of the configuration space that is the obstruction to
the strong convergence of uε to 0 in the sense that if x0 is not on the support of φ ∈ C∞c (Rd), then
(φ, uε)L2(Rd) goes to 0 as ε goes to 0. Similarly, for the oscillation family (vε)ε>0 of example (2), it is
the point ξ0 of the momentum space that is the obstruction and (φ, uε)L2(Rd) will go to 0 if ξ0 is not in
the support of the φ̂.

Another important class consists in Coherent states.

Example 2.17. Let α ∈ (0, 1), β > 0 and

uεα,β = ε−dα/2ϕ

(
ξ − ξ0
εα

)
eix·ξ0/ε

β

,

then (uα,βε )ε>0 has a unique Wigner measure

µα,β(x, ξ) =

 δx0(x)⊗ δξ0(ξ) if β = 1
δx0(x)⊗ δ0(ξ) if β < 1
0 if β > 1

.

Notice that when β > 1, the family (uεα,β)ε>0 is not ε-oscillating and its Wigner measures at the
scale ε do not capture its mass. The coherent states for which α = 1

2 and β = 1 are called wave packets.

The WKB states are often used in semi-classical analysis (see [11]).

Example 2.18. Let S ∈ C2(Rd) and gε(x) = e
i
εS(x)ϕ(x), then (gε)ε>0 has a unique Wigner measure

µS(x, ξ) = |ϕ(x)|2dx⊗ δ∇S(x)(ξ).

Proof
We have for a ∈ S(R2d),

(gε, opε(a)gε)L2(Rd) =

∫
R2d

F−1
ξ (X, v)e

i
ε (S(X+ε v2 )−S(X−ε v2 ))ϕ

(
X + ε

v

2

)
ϕ
(
X − εv

2

)
dXdv

and the result follows from Lebesgue dominated convergence Theorem.
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Actually, the proof shows that the result extends to functions S for which there exists a function
∇S ∈ L∞(Rd) such that

∀x, v ∈ Rd,
1

t
(S(x)− S(x+ tv))−→

t→0
∇S(x) · v.

When ∇S 6= 0 almost everywhere, one deduces from the result on the measure that WKB states with
phase of low regularity goes weakly to 0 in L2.

2.3.3. Wigner measures and ε-oscillation. One can wonder how using Wigner measures may help to
calculate the weak limits of energy densities, since the measures are obtained by testing against smooth,
compactly supported functions a. In particular, the symbols a are compactly supported in the Fourier
variable ξ, while the limits that we wanted to compute do not present cut-off in frequencies. This question
is solved via the notion of ε-oscillation which allows to link the Wigner measures with the accumulation
points of the energy density, provided that the family of functions under investigation is ε-oscillating.

Definition 2.19. A family (fε)ε>0 in L2(Rd) is ε-oscillating if

(2.21) limsup
ε→0

∫
|ξ|>R/ε

∣∣∣f̂ε(ξ)∣∣∣2 dξ −→
R→+∞

0,

Remark 2.20. If a family (fε)ε>0 in L2(Rd) has a Hs
ε norm uniformly bounded for some s > 0:

∃C > 0, ‖〈εD〉sfε‖L2(Rd) ≤ C,

then, using that 1|εD|≥R ≤ R−2s〈εD〉2s, one obtains that this family is ε-oscillating. Indeed,∫
|ξ|>R/ε

∣∣∣f̂ε(ξ)∣∣∣2 dξ =
(
1|εD|≥Rf

ε, fε
)
L2(Rd)

≤ R−2s
(
〈εD〉2sfε, fε

)
L2(Rd)

≤ C2R−2s −→
R→+∞

0.

The families of Example 2.16 are ε-oscillating. We exemplarily verify this claim for the concentration
family (uε)ε>0. Indeed, for any R > 0,∫

|ξ|>R/ε
|ûε(ξ)|2 dξ = ε−d

∫
|ξ|>R/ε

∫
Rd

∫
Rd
ϕ( ξ−ξ0ε )ϕ(y−x0

ε )eiξ·(x−y)d(x, y, ξ)

=

∫
|ξ|>R

∫
Rd

∫
Rd
ϕ(x)ϕ(y)eiξ·(x−y)d(x, y, ξ)

=

∫
|ξ|>R

|ϕ(ξ)|2dξ −→
R→+∞

0.

Proposition 2.21 ([22, 24, 25]). If µ ∈ M+(Rd × Rd) is an accumulation point of (W ε[fε])ε>0 along
some subsequence (εn)n∈N, and if the measure |fεn(x)|2dx converges weakly towards a measure ν ∈
M+(Rd) then

(2.22)
∫
Rd
µ(·, dξ) ≤ ν.

Equality holds in (2.22) if and only if (fε)ε>0 is ε-oscillating.

Proof
We use the function χR = χ

{ ·
R

)
where χ ∈ C∞C (R, [0, 1]) is compactly supported in {|ξ] ≤ 2}. For

R > 0 and ϕ ∈ C∞c (Rd), ϕ ≥ 0, we have∫
Rd
ϕ(x)|fεn(x)|2dx = (fεn , ϕ(1− χR) (εnD) fεn) + (fεn , ϕχR (εnD) fεn) .
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Besides,

lim
n→+∞

(fεn , ϕχR (εnD) fεn) =

∫
R2d

ϕ(x)χ(ξ/R)µ(dx, dξ)

and, in view of

(fεn , ϕ(1− χR) (εnD) fεn) =

∫
Rd
ϕ(x)|(1− χR)(εnD)fεn(x)|2dx

+ (χR (εnD) fεn , ϕ(1− χR) (εnD) fεn)

≥ (χR (εnD/R) fεn , ϕ(1− χR) (εnD) fεn) ,

we have

lim
n→+∞

(fεn , ϕ(1− χR) (εnD) fεn) ≥
∫
R2d

ϕ(x)χR(ξ)(1− χR(ξ))µ(dx, dξ).

We deduce that for all R > 0,

liminf
n→+∞

∫
Rd
ϕ(x)|fεn(x)|2dx ≥

∫
R2d

ϕ(x)χR(ξ)µ(dx, dξ) +

∫
R2d

ϕ(x)χR(ξ)(1− χR(ξ))µ(dx, dξ).

Using Fatou lemma, we have

liminf
R→+∞

∫
R2d

ϕ(x)χR(ξ)µ(dx, dξ) ≥
∫
R2d

ϕ(x) liminf
R→+∞

χR(ξ)µ(dx, dξ) =

∫
R2d

ϕ(x)µ(dx, dξ).

Moreover

liminf
R→+∞

∫
R2d

ϕ(x)χR(ξ)(1− χR(ξ))µ(dx, dξ) ≥ 0.

Therefore,

liminf
n→+∞

∫
Rd
ϕ(x)|fεn(x)|2dx ≥

∫
R2d

ϕ(x)µ(dx, dξ).

One notices that the ε-oscillation property implies that for χ as before,

limsup
n→+∞

(ϕ (1− χR (εnD)) fεn , fεn) −→
R→+∞

0.

We then get the result by letting n and then R go to +∞ in the equality∫
Rd
ϕ(x)|fεn(x)|2dx = (fεn , ϕχR (εnD) fεn) + (fεn , ϕ (1− χR (εnD)) fεn)

=
(
fεn , opεn (ϕ(x)χR (ξ)) fεn ,

)
+ (fεn , ϕ(x) (1− χR (εnD)) fεn)

+O(εn).

2.3.4. Wigner measures of vector-valued families and orthogonality. Suppose now that (fε)ε>0 is a
bounded sequence in L2(Rd,CN ); then one can consider the N by N matrix

W ε[fε](x, ξ) = (W ε[fεi , f
ε
j ](x, ξ))1≤i,j≤N , x, ξ ∈ Rd.

The family W ε[fε])ε>0 is a distribution acting on matrix-valued Schwartz functions via

〈a,W ε[fε]〉 =

∫
R2d

TrCN (a(x, ξ)W ε[fε](x, ξ))dxdξ, a ∈ S(R2d,CN,N ).

Its accumulation points are called semi-classical or Wigner measures of the sequence (fε)ε>0. The
coefficients (µi,j)1≤i,j≤N of this matrix-valued distribution are measures. Indeed, the diagonal ones are
positive measures, as Wigner measures of the sequences (fεi )ε>0, the coordinates functions of (fε)ε>0.
Moreover, denoting by ε` the subsequence (fε`)`∈N giving the semi-classical measure µ, one has

(2.23) ∀a ∈ C∞c (R2d), lim
`→∞

(
opε(a)fε`i , f

ε`
j

)
L2(Rd)

=

∫
R2d

a(x, ξ)µi,j(dx, dξ),
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Therefore, the distributions µi,j are express as linear combination of Wigner measures of linear combi-
nation of the (fεj )1≤j≤N , and thus are Radon measures.

In other words, µ takes values in the set of Hermitian positive semi-definite matrices: the elements µi,i
are positive (scalar) Radon measures and that µi,j is absolutely continuous with respect to both µi,i and
µj,j .The latter condition implies that µi,j = 0 as soon as µi,i and µj,j are mutually singular. In particular:

(2.24) µi,i⊥µj,j =⇒ ∀a ∈ C∞c (R2d), lim
`→∞

(
opε(a)fε`i , f

ε`
j

)
L2(Rd)

= 0.

Remark 2.22. One can generalize the above study to a more general setting by considering L2 fami-
lies from Rd into some Hilbert space H. One then defines pseudodifferential operators with symbol
a(x, ξ) which are compact operators on H and semi-classical measures are positive elements of the dual
to C∞c (R2d,K(H)), that is elements of C∞c (R2d,L1

+(H)), where K(H) denotes the set of compact op-
erators onH, L1(H) the set of trace class operators onH and L1

+(H) the subset of its positive elements.

The above description has important consequences when passing to the limit in bilinear quantities
depending on two families.

Lemma 2.23 (Orthogonality lemma). Let (fε)ε>0 and (gε)ε>0 be two bounded families in L2(Rd). We
assume that each of them has only one Wigner measure that we denote by µf and µg respectively. Assume
µf ⊥ µg , then for all a ∈ C∞c (R2d), (fε, opε(a)gε)−→

ε→0
0.

Moreover, if the families are ε-oscillating, then for all ϕ ∈ C∞c (Rd),
∫
Rd
ϕ(x)gε(x)fε(x)dx−→

ε→0
0.

In that situation, one says that the families (fε)ε>0 and (gε)ε>0 are orthogonal families.
This sort of result is at the origine of the emergence of the concept of microlocal defect measures, also

called H-measures, which are the non semi-classical version of Wigner measures. They were introduced
independently and simultaneously in [23] and [45] and allow generalizations of div-curl Lemma in the
context of homogeneization.
Proof
One considers the vector valued family Ψε = (fε, gε) and one of its Wigner measures µ, which is a 2×2
matrix with diagonal elements µf and µg . The off-diagonal elements of µ are absolutely continuous with
respect to µf and µg and thus are 0 if µf ⊥ µg . This implies the first statement of the Lemma. The
second one comes by combining the previous result with ε-oscillation.

2.4. Wigner measures and time-dependent families. We are now interested in time-dependent fam-
ilies, such as the family (ψε(t))ε>0 of solutions to the Schrödinger equation (1.1). The modifications
required in order to adapt the theory to this context are rather straightforward. Suppose now that (ψε)ε>0

is bounded in L∞(Rt;L2(Rdx)) and define the time-dependent Wigner transform W ε
ψε(t) as

(2.25) W ε
ψε(x, ξ) := W ε[ψε(t, ·)](x, ξ) =

∫
Rd

eiξ·vψε
(
t, x− εv

2

)
ψε
(
t, x+

εv

2

) dv

(2π)d
.

Proposition 2.24. Any accumulation point µ of the family (W ε
ψε)ε>0 in S ′(R×R2d) is a positive Radon

measure µ on R× R2d of the form µ(dt, dx, dξ) = µt(dx, dξ)dt.

Such a measure µtdt is called Wigner measure or semi-classical measure of the time-dependent fam-
ily (ψε)ε>0.

Proof
Estimates (2.10) (or (2.14) ) implies that for every θ ∈ L1(R) and every a ∈ C∞c (R2d),

(2.26)
∣∣∣∣∫

R

∫
R2d

θ(t)a(x, ξ)W ε
ψε(t, x, ξ)dx dξ dt

∣∣∣∣ ≤ Cd‖ψε‖2L∞(Rt;L2(Rdx))‖θ‖L1(R)Nd(a).
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This ensures that (W ε
ψε) is bounded in S ′(R×R2d). Moreover, any accumulation point µ of this sequence

is a positive Radon measure on R×R2d. It follows from (2.26) that the projection of µ onto the t-variable
is absolutely continuous with respect to the Lebesgue measure on R. Therefore, we conclude using the
disintegration theorem (see Theorem 9.1 in [1] or Section 2.5 of [2]) the existence of a measurable map
from t ∈ R to positive, finite, matrix-valued Radon measures µt on R2d such that

µ(dt, dx, dξ) = µt(dx, dξ)dt.

Summing up, for every sequence (ε`)`∈N going to 0 as ` goes to +∞ such that (W ε`
ψε` ) converges in

the sense of distributions the following holds: for all θ ∈ L1(R) and a ∈ C∞c (R2d),

(2.27)
∫
R

∫
R2d

θ(t)a(x, ξ)W ε`
ψε` (t, x, ξ)dx dξ dt −→

`→∞

∫
R

∫
R2d

θ(t)a(x, ξ)µt(dx, dξ)dt.

If the sequence (ψε`(t, ·)) is in addition ε-oscillating for almost every t ∈ R, the projections of the
measures µt on the ξ-variable are the limits of the energy densities: for every θ ∈ L1(R), φ ∈ C0(Rd),

(2.28)
∫
R

∫
Rd
θ(t)φ(x)|ψε`(t, x)|2dx −→

`→∞

∫
R

∫
Rd
θ(t)φ(x)µt(dx, dξ) dt.

Remark 2.25. Time-dependent analogues of (2.23), (2.24) also hold after replacing µi,j by µti,j and
averaging in the t-variable.
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3. FLOQUET-BLOCH THEORY

.
In this section, we consider the operator on L2(Td) defined by

P (ξ) =
1

2
|ξ +Dy|2 + Vper(y), ξ ∈ Rd.

In the next sections, we focus on the spectral analysis of the operator P (ξ) for ξ ∈ Rd (Section 3.1).
It turns out that much more can be said in dimension 1 (see Section 3.2) than in higher dimension. We
discuss regularity issues in Section 3.3.

3.1. Spectral analysis of the operator P (ξ). One associates with the lattice Zd its dual lattice 2πZd.
The centered fundamental domain of 2πZd is called the Brillouin zone:

B = [−π, π[
d
.

Note that if ξ ∈ Rd, there exists a unique decomposition

ξ = η + 2πk, k ∈ Zd and η ∈ B.

The operator P (ξ) has the important property that, for k ∈ Zd and ξ ∈ Rd, the operator P (ξ + 2πk) is
unitarily equivalent to P (ξ). More precisely, one has

(3.1) P (ξ + 2πk) = e−i2π〈k,·〉P (ξ)ei2π〈k,·〉, ∀ξ ∈ Rd, ∀k ∈ Zd.

Therefore, we can restrict our analysis to ξ ∈ B.

For ξ ∈ Rd, we shall denote by P0(ξ) the operator P0(ξ) = |Dy + ξ|2 acting on the space L2(Td)

L2(Td) =

f(y) =
∑
k∈Zd

cke2iπk·y,
∑
k∈Zd

|ck|2 < +∞

 .

Both P (ξ) and P0(ξ) have ξ-independent domainH2(Td) ⊂ L2(Td) where for s > 0 the spacesHs(Td)
are defined by

Hs(Td) =

f(y) =
∑
k∈Zd

cke2iπk·y,
∑
k∈Zd
〈k〉s|ck|2 < +∞

 .

It is also interesting to link the operator P0(ξ) with the operator −∆(ξ), which consists in the Laplace
operator on the cube C̄ = [0, 1]d with boundary conditions

f(y + `) = eiξ·`f(y), ∂nf(y + `) = −∂nf(y)eiξ`, ∀(y, `) ∈ ∂C × Zd such that y + ` ∈ ∂C.

This operator is unitarily equivalent to P0(ξ) by the map which associates to any function f ∈ L2(Td)
the function fξ of L2(C) defined by

(3.2) ∀y ∈ [0, 1]d, fξ(y) = f(y)eiξ·y.

One has ‖fξ‖L2([0,1]d) = ‖f‖L2(Td) and ‖∆fξ‖L2([0,1]d) = ‖P0(ξ)f‖L2(Td).

Theorem 3.1. Assume that the operator Vper is smooth. Then, for all ξ ∈ B, the operator P (ξ) is self-
adjoint and its spectrum is bounded from below. Besides it has a compact resolvent, thus a non-decreasing
sequence of eigenvalues

%1(ξ) ≤ %2(ξ) ≤ · · · ≤ %n(ξ) ≤ · · · −→ +∞,

and there exists an orthonormal basis of L2(Td) consisting of eigenfunctions (ϕn(ξ, ·))n∈N of P (ξ):

ϕn(ξ) ∈ H2(Td), P (ξ)ϕn(y, ξ) = %n(ξ)ϕn(y, ξ), for y ∈ Td.
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Remark 3.2. If the potential Vper is in Lp(Td) with

p = 2 if d = 1, 2, 3, p > 2 if d = 4 or p =
d

2
if d ≥ 5,

then Theorem 3.1 holds (see [32] and Appendix A). This includes 3d potentials developing Coulombian
singularity in a point, Vper(y) ∼ a0

|y−y0| close to some y = y0, a0 > 0 and y0 ∈ Td.

Definition 3.3. The functions defined on Rd, ξ 7→ %n(ξ) are called Bloch energies or Bloch modes and
the functions on Td × Rd defined by (y, ξ) 7→ ϕn(ξ) are called Bloch waves.

Remark 3.4. The property (3.1) yields that the Bloch energies %n(ξ) are 2πZd-periodic functions whereas
the Bloch waves satisfy

ϕn(y, ξ + 2πk) = e−i2πk·yϕn(y, ξ), for every k ∈ Zd.

The Bloch modes have a MinMax characterization (see Appendix C)

(3.3) %1(ξ) = min
‖f‖=1

(
1

2
‖(Dy + ξ)f‖2L2(Td) + (Vperf, f)L2(Td)

)
and, for n ∈ N \ {1},

(3.4) %n(ξ) = min
dimM=n, M⊂H1(Td)

max
f∈M, ‖f‖=1

(
1

2
‖(Dy + ξ)f‖2L2(Td) + (Vperf, f)L2(Td)

)
One defines the crossing sets of two distinct Bloch energies as the sets;

(3.5) Σn,n′ := {ξ ∈ Rd : %n(ξ) = %n′(ξ)}, n, n′ ∈ N∗, %n 6= %n′ .

It is proved in [47] that the Bloch energies %n are continuous and piecewise analytic functions of ξ ∈ Rd,
and that the Bloch waves ϕn can be chosen in such a way there exists a subset Z of the Brillouin zone
B of zero Lebesgue measure such that each ϕn is analytic in ξ ∈ B \ Z . However, in the following, we
shall only use the Lipschitz regularity of the Bloch modes, together with the smoothness of the Bloch
modes and of their associated eigenprojectors outside the crossing sets. These properties are proved in
Sections 3.2 (for d = 1) and Section 3.3 (in general);

Let us prove Theorem 3.1.
Proof
We first observe that P0(ξ) is self-adjoint with domain H2(Td), spectrum { 1

2 |ξ + 2kπ|2, k ∈ Zd} and
eigenvectors y 7→ e2iπk·y . Moreover, Vper being bounded, the Kato-Rellich criterium is satisfied (see [33]
and Appendix A): there exists a constant C = ‖V ‖L∞(Td), such that for all α ∈ (0, 1) and all ξ ∈ Rd,

∀f ∈ H2(Td), ‖Vperf‖L2(Td) ≤ C‖f‖L2(Td) + α‖P0(ξ)f‖L2(Td).

Therefore P (ξ) = P0(ξ) + V Bper is self-adjoint with domain H2(Td).
The second step consists in observing that the operator (P0(ξ)− i)−1 is compact as the limit of finite

rank operators in the strong topology.
To close the proof, we choose µ large enough so that the operator Vper(P0(ξ) + iµ)−1 has a norm

strictly smaller than 1. As a consequence, the operator
(
1 + Vper(P0(ξ) + iµ)−1

)
is invertible and we

can write
(P (ξ) + iµ)−1 = (P0(ξ) + iµ)−1

(
1 + Vper(P0(ξ) + iµ)−1

)−1
.

We conclude by observing that the (P0(ξ) + iµ)−1 is compact and
(
1 + Vper(P0(ξ) + iµ)−1

)−1
is

bounded, thus their composition is compact. In view of Appendix B, the spectral properties of the opera-
tor P (ξ) follow.



24 CLOTILDE FERMANIAN KAMMERER

3.2. One dimensional Bloch modes and Bloch waves. When d = 1, the equation satisfied by the
eigenfunctions of the operator P (ξ) are second order differential equations, which simplifies the analysis.
The material of this section mainly comes from the books [37, 43] or the articles [31, 38, 21] among
others for additional details. Let us consider φ ∈ L2(T), φ solves P (ξ)φ = λφ for some ξ, λ ∈ R if and
only if f(y, λ) := eiξyφ(y) is a solution to the ODE

(3.6) − 1

2
∂2
yf(y, λ) + Vper(y)f(y, λ) = λf(y, λ), y ∈ R,

satisfying the conditions derived from (3.2)

(3.7) f(1, λ) = eiξf(0, λ) and ∂yf(1, λ) = eiξ∂yf(0, λ).

Given λ ∈ R, the solutions of (3.6) are linear combinations of two solutions f1(y, λ) and f2(y, λ) satis-
fying

f1(0, λ) = ∂yf2(0, λ) = 1, f2(0, λ) = ∂yf1(0, λ) = 0.

Define the matrix

Mλ(y) :=

(
f1(y, λ) f2(y, λ)
∂yf1(y, λ) ∂yf2(y, λ)

)
;

then the existence of a solution to (3.6) satisfying (3.7) is equivalent to the fact that eiξ is an eigenvalue
of Mλ(1). One can check that detMλ(y) = 1 for every y, λ ∈ R; therefore, letting ∆(λ) := TrMλ(1),
we find that eiξ ∈ SpMλ(1) if and only if:

(3.8) ∆(λ) = 2 cos ξ.

It can be shown that solutions to (3.6) depend analytically on λ, and that moreover, ∆ extends to an entire
function of order 1/2. The real solutions to equations ∆(λ) = ±2 form infinite increasing sequences
(a±i ) that tend to infinity.

The following facts hold (the reader may find helpful to consult [38, Figure 1, p. 145] or [43, Section
XIII.16]) (note also that complete study of ∆(λ) in one dimension is found in [36] and some figures
in [15]):

• The sequences (a±i ) are intertwined. More precisely, one has:

(3.9) a+
1 < a−1 ≤ a

−
2 < a+

2 ≤ a
+
3 < a−3 · · · ,

• Let be I2i−1 = (a+
2i−1, a

−
2i−1) and I2i = (a−2i, a

+
2i). Then Ii has non-empty interior and ∆| Ii is

strictly decreasing for i odd and strictly increasing for i even.
• If aσi = aσi+1 for some i ∈ N, σ ∈ {+,−} then ∆′(aσi ) = 0.

These properties have important implications on the behavior of Bloch energies. For every n ∈ N the
following hold.

(1) The nth Bloch energy is the solution to ∆| In(%n(ξ)) = 2 cos ξ.



SEMI-CLASSICAL ANALYSIS AND BLOCH-FLOQUET THEORY 25

(2) %n is 2πZ-periodic (we knew this already), and moreover

%n(ξ) = %n(2π − ξ), ∀ξ ∈ R.

(3) %n| [0,π] is strictly increasing if n is odd (resp. strictly decreasing if n is even) and analytic in the
interior of the interval. If it is differentiable at ξ = 0, π then necessarily %′n(ξ) = 0 and %n is
analytic around that point.

(4) A crossing can happen only at two consecutive Bloch energies. Let n ∈ N be such that

Σn := {ξ ∈ R : %n(ξ) = %n+1(ξ)} 6= ∅;

then Σn = πZ \ 2πZ if n is odd, Σn = 2πZ if n is even. Moreover

(3.10) ∆′(%n(ξ)) = 0, ∀ξ ∈ Σn.

In addition, critical points of Bloch energies in the one dimensional case are never degenerate nor can
occur at a crossing point, as stated in the next lemma.

Lemma 3.5. The set of critical points of any Bloch energy %n is contained in πZ and all the critical
points are non-degenerate. Moreover, the crossing set Σn associated with two consecutive Bloch modes
%n and %n+1 does not contain any critical points of the Bloch energies %n and %n+1.

Proof
The first assertion on the critical points is property (3) above, whereas the second follows from differen-
tiating twice equation (3.8) and evaluating at a critical point ξ = kπ, k ∈ Z to get:

∆′(%n(kπ))%′′n(kπ) = 2 (−1)k+1.

This relation also shows that ∆′(λ) cannot vanish at λ = %n(kπ). Together with (3.10) this shows that a
critical point cannot be a crossing point.

Remark 3.6. In the free case (Vper = 0) there is only a Bloch band of infinite multiplicity. More generally,
it has been proved in [10] that the absence of spectral gap is equivalent to the periodic potential Vper being
constant.

3.3. Regularity of Bloch modes and waves.

3.3.1. Lipchitz properties of the Bloch modes. Using MinMax formula (3.3) and (3.4), we prove the
Lipschitz regularity of the Bloch modes (%n(ξ))n∈N.

Proposition 3.7. For all n ∈ N, there exists a constant Cn such that

∀ξ, ξ′ ∈ B, |%n(ξ)− %n(ξ′)| ≤ Cn|ξ − ξ′|.

Therefore, the functions ξ 7→ %n(ξ) are Lipschitz continuous.

Remark 3.8. Recall that it is proved in [47] that the Bloch energies %n are continuous and piecewise
analytic functions of ξ ∈ Rd.

Proof
We associate with P (ξ) the positive quadratic form

Qξ(f) =
1

2
‖(Dy + ξ)f‖2L2(Td) + (Vperf, f)L2(Td) +K‖f‖2L2(Td).

where K is chosen such that for all ξ ∈ B, the spectrum of P (ξ) is included in ] −K + 1,+∞[. Note
that the Proposition is equivalent to proving the Lipschitz property of the functions

λn(ξ) = %n(ξ) +K + 1.
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which we are going to do now. We observe first that for ξ, ξ′ ∈ B and f ∈ L2(′Td), we have

Qξ′(f)−Qξ(f) =
1

2

∫
Td

(
|Dyf(y) + ξf(y)|2 − |Df(y) + ξ′f(y)|2

)
dy

= 2

d∑
j=1

Re

(
(ξj − ξ′j)

(
f , Dyjf −

ξj + ξ′j
2

f

)
L2(Td)

)
.

Therefore, there exists a constant C > 0 such that for all ξ, ξ′ ∈ B and for all f ∈ L2(Td),

(3.11) |Qξ(f)−Qξ′(f)| ≤ C|ξ − ξ′|
(
‖f‖2L2(Td) +

1

2
(Qξ(f) +Qξ′(f))

)
.

We are going to use the Min-Max characterization of the eigenvalues (see (3.3) and (3.4)). Let M be
a subset of H1(Td) of dimension n. We deduce from (3.11), that for any f ∈ M , ‖f‖L2(Td) = 1 and
f ∈ H1(Td),

Qξ′(f) ≤ Qξ(f) + C|ξ − ξ′|(1 +
1

2
(Qξ(f) +Qξ′(f))).

We deduce

min
dimM=n, M⊂H1(Td)

max
f∈M, ‖f‖=1

Qξ′(f) ≤ (1 + C|ξ − ξ′|) max
f∈M, ‖f‖=1

Qξ(f) + C|ξ − ξ′|,

and

min
dimM=n, M⊂H1(Td)

max
f∈M, ‖f‖=1

Qξ′(f)

≤ (1 + C|ξ − ξ′|) min
dimM=n, M⊂H1(Td)

max
f∈M, ‖f‖=1

Qξ(f) + C|ξ − ξ′|.

Therefore, we obtain the first relation:

(3.12) λn(ξ′)− λn(ξ) ≤ C|ξ − ξ′|(1 + λn(ξ)).

We now fix α > 0 and we assume |ξ − ξ′| < α, then

λn(ξ′)− (1 + Cα)λn(ξ) ≤ C|ξ − ξ′|
which writes

(1 + Cα)(λn(ξ′)− λn(ξ)) ≤ C|ξ − ξ′|+ Cαλn(ξ′).

We deduce the second relation

λn(ξ′)− λn(ξ) ≤ C

1 + Cα
|ξ − ξ′|+ Cα

1 + Cα
λn(ξ′) ≤ C|ξ − ξ′|+ Cαλn(ξ′).

Exchanging the roles of ξ and ξ′, we obtain

(3.13) λn(ξ)− λn(ξ′) ≤ C|ξ − ξ′|+ Cαλn(ξ).

Combining (3.12) and (3.13), we obtain

|λn(ξ)− λn(ξ′)| ≤ C|ξ − ξ′|+ Cαλn(ξ).

Let us now fix ξ ∈ B and consider η > 0, we choose α such thatCα(1+λn(ξ)) < η. Then if |ξ−ξ′| < α,
we have |λn(ξ)−λn(ξ′)| < η. We deduce that the function λn is continuous in any point ξ of the compact
B. Thus, this function is bounded on B. Let Λn = supξ∈B λn(ξ), equation (3.12) implies that for all
ξ, ξ′ ∈ B,

λn(ξ)− λn(ξ′) ≤ C(1 + Λn)|ξ − ξ′|,
which yields

|λn(ξ)− λn(ξ′)| ≤ C(1 + Λn)|ξ − ξ′|,
by exchanging the roles of ξ and ξ′. As a conclusion, ξ 7→ λn(ξ) is Lipschitz.
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3.3.2. Smoothness of the Bloch modes and associated eigenprojectors outside the crossing sets. We con-
sider here the eigenprojector on a Bloch mode isolated from the remainder of the spectrum. Denote by
SpP (ξ) the spectrum of P (ξ), we suppose that there exists n0 ∈ N, an open subset U ⊂ B and δ0 > 0
such that

(3.14) d (%n0(ξ),SpP (ξ) \ {%n0(ξ)}) ≥ δ0, ∀ξ ∈ U.

Then, since the map %n is continuous on the compact U , there exists a contour C of the complex plane
which delimitates an open set Ω ⊂ C such that

{%n0(ξ), ξ ∈ U} ⊂ Ω and Ω ∩ SpP (ξ) = {%n0(ξ), ξ ∈ U}, ∀ξ ∈ Rd.

Then, applying the residue formula applied to the resolvent written as

R(z, ξ) = (z − P (ξ))−1 =
∑
n∈N

(z − %n(ξ))−1|ϕn(·, ξ)〉〈ϕn(·, ξ)|,

one gets

(3.15) Πn0
(ξ) =

1

2πi

∮
C

R(z, ξ)dz, ∀ξ ∈ U.

Besides, we have

(3.16) ∀z ∈ C, ‖(z − P (ξ))−1‖L(L2(Td) ≤ δ−1
0 .

One deduces the following proposition.

Proposition 3.9. Let n0 ∈ N, U an open subset of B and δ0 such that (3.14) holds. Then, the function
ξ 7→ Πn0

(ξ) is smooth in U , and therefore is of constant rank.

Corollary 3.10. Assume that the eigenmodes %n0
(ξ) is isolated from the remainder of the spectrum, then

the function %n0(ξ) = (RkΠn0(ξ))
−1

tr (Πn0(ξ)P (ξ)) is smooth.

Proposition 3.11. If they exist, the derivatives of Πn0 satisfy the following properties :

(1) They are off-diagonal operators with respect to P (ξ):

∀ξ ∈ Rd, ∀k ∈ {1, · · · d}, ∂ξkΠn0
(ξ) =

∑
n∈N

(Πn(ξ)∂ξkΠn0
(ξ) Πn0

(ξ) + Πn0
(ξ) ∂ξkΠn0

(ξ) Πn(ξ)) .

(2) They are bounded operators:

(3.17) ∃C0 > 0, ∀ξ ∈ Rd, ∀j ∈ {1, · · · , d},
∥∥∂ξjΠn0

(ξ)
∥∥
L(L2(Td),H2(Td))

≤ C0.

Proof
Point 1 comes from the derivation of Πn0

(ξ)2 = Πn0
(ξ). Indeed, the later relation yields

Πn0(ξ)∂ξkΠn0(ξ) + ∂ξkΠn0(ξ) Πn0(ξ) = ∂ξkΠn0(ξ).

Multiplying the left hand side of the above equality by Πn(ξ) with n 6= n0 and the right hand-side by
Πn′(ξ) with n′ 6= n0 gives

Πn(ξ)∂ξkΠn0
(ξ)Πn′(ξ) = 0,

whence the above decomposition.

The second relation comes from equation (3.15). Taking f ∈ L2(Td), we write

∂ξjΠn(ξ) =
1

2πi

∮
C

(z − P (ξ))−1∂ξjP (ξ)(z − P (ξ))−1dz.
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In view of (3.16), it is enough to prove that the operator ∂ξjP (ξ)(z − P (ξ))−1 is uniformly bounded in
L(L2(Td)) with respect to z for z ∈ C. Let f ∈ L2(Td) and set uz = (z − P (ξ))−1f , then for z ∈ C,
we have

‖uz‖L2(Td) ≤ δ−1
0 ‖f‖L2(Td).

Besides, by (3.16), and with C = ‖Vper‖L∞(Td),∥∥∂ξjP (ξ)(z − P (ξ)−1)f
∥∥2

L2(Td)
=
∥∥∂ξjP (ξ)uz

∥∥2

L2(Td)
≤ ‖(ξ +Dξ)uz‖2L2(Td)

≤ (P (ξ)uz, uz)L2(Td) + C‖uz‖2L2(Td)

≤ |(f − zuz, uz)L2(Td)|+ C‖uz‖2L2(Td)

≤ δ−1
0 (1 + |z|δ−1

0 + Cδ−1
0 ) ‖f‖2L2(Td).

3.3.3. Singularities of the Bloch modes at crossing points. We are interested here in the properties of the
Bloch modes close to the sets Σn,n′ (see (3.5)). We assume that these sets are union of closed connected
submanifolds of Rd.

We will use the geometric notion of the normal bundle to a manifold. If Σn,n′ is a manifold, its tangent
bundle TΣn,n′ is defined by its fiber above σ ∈ Σn,n′ which is the tangent space TσΣn,n′ at σ to Σn,n′ .
The normal bundle NΣn,n′ to Σn,n′ has fiber NσΣn,n′ = TσRd/TσΣn,n′ . If moreover Σn,n′ is a closed
connected manifold, the geodesic coordinates give a mapping from a tubular neighborhood U of Σn,n′

into Σn,n′

σΣn,n′ : ξ ∈ U 7→ σΣn,n′ (ξ) ∈ Σn,n′

such that for all ξ ∈ U , ξ − σΣn,n′ (ξ) ∈ Nσ(ξ)Σn,n′ .
We consider crossings between two successive Bloch modes %n and %n+1.

Definition 3.12. Let n ∈ N∗. We say that the crossings of the set Σn,n+1 are conic if and only if there
exists a neighborhood U of Σn,n+1 such that %n and %n+1 are of multiplicity 1 outside Σn,n+1 in U and
there exists c > 0 such that for all (σ, η) ∈ NΣn,n+1,

|%n+1(σ + rη)− %n(σ + rη)| ≥ c|η|.

Conical crossings are in some sense generic in view of the next Lemma which gives a normal form for
the expression of two Bloch modes %n(ξ) and %n+1(ξ) close to the crossing set Σn,n+1.

Lemma 3.13. Let σ0 be a point in the crossing set Σn,n+1 of two consecutive Bloch energies %n and
%n+1 having neighborhood U with the following properties:

(i) Σn,n+1 ∩ U is a smooth manifold.
(ii) The multiplicities of %n, %n+1 are constant on each connected component of U \ Σn,n+1.

(iii) There exists δ0 > 0 such that for all ξ ∈ U ,

d ({%n(ξ), %n+1(ξ)},SpP (ξ) \ {%j(ξ), %j(ξ) = %n(ξ) or %j(ξ) = %n+1(ξ)}) ≥ δ0.

Then, there exist Ω ⊆ U , a neighborhood of σ0 that is 2πZd-invariant, two functions λn ∈ C∞(Ω) and

gn ∈ C∞
(
tξ∈Ω

(
{ξ} ×NσΣn,n+1

(ξ)Σn,n+1

))
, and a function m ∈ L∞(U) which is constant on each

connected component of U such that for all ξ ∈ Ω \ Σn,n+1,

%n(ξ) = λn(ξ)− gn(ξ, ξ − σΣn,n+1
(ξ)),

%n+1(ξ) = λn(ξ) +m(ξ)gn(ξ, ξ − σΣn,n+1
(ξ)).

Moreover,
(1) If the crossing set Σn,n+1 is conical in U , then for all ξ ∈ U , the map Nσ(ξ)ση 7→ gn(ξ, η) is

homogeneous of degree 1 and gn(σ, η) 6= 0 when (σ, η) ∈ Nσn with η 6= 0,
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(2) If none of the points of Σn,n+1 are conical crossings in U , then there exists θn ∈ C∞(Rd) such
that gn(ξ, η) = |η|2θn(ξ), which implies that %n, %n+1 ∈ C1,1(Rd),

(3) If the multiplicities of %n, %n+1 are equal on U \ Σn,n+1 then m = 1.
(4) If d = 1 and σ ∈ πZ \ 2Z, then ∇λn(σ)∓ g′(ω) 6= 0 or ω = ±1.

Remark 3.14. Note that in case (2), the function θn can be zero on Σn,n+1.

Proof
We denote by j−(ξ), j+(ξ) the functions valued in N and constant on connected component of U \Σn,n+1

such that for all ξ ∈ U \ Σn,n+1 %n−j+1(ξ) = %n(ξ) for 1 ≤ j ≤ j−(ξ) and %n+j(ξ) = %n+1(ξ) for
1 ≤ j ≤ j+(ξ). We denote by Π(ξ) the projector on

Fξ = Ker(P (ξ)− %n(ξ))⊕Ker(P (ξ)− %n+1(ξ)).

By the assumption (iii) on U , the pair {%n(ξ), %n+1(ξ)} is isolated from the remainder of the spectrum
of P (ξ) when ξ ∈ U , this implies that the map Uξ 7→ Π(ξ) ∈ L(L2(Td)) is analytic and the function
dimFξ is constant for ξ ∈ U . We denote by `0 this constant and we have `0 = j−(ξ) + j+(ξ) for all ξ ∈
U \ Σn,n+1. Moreover, %n(ξ) and %n+1(ξ) are the two only eigenvalues of the operator Π(ξ)P (ξ)Π(ξ)
which maps Fξ onto Fξ for any ξ ∈ Rd.

Let us first show that it is possible to find Ω ⊆ U , with σ0 ∈ Ω and construct, for every ξ ∈ Ω,
an orthonormal basis (φj(ξ, ·))1≤j≤`0 of Fξ such that the maps ξ 7→ φj(ξ, ·) are analytic for all j ∈
{1, · · · `0}. To see this, consider (ϕi(σ0, ·))1≤i≤`0 , a basis of Fσ0

. Chose a neighborhood Ω of σ0 small
enough to ensure that the vectors

Π(ξ)ϕj(σ0, ·), j ∈ {1, . . . , `0}
form a rank `0 family. Then apply the standard Schmidt orthonormalization process to this family.

Let A(ξ), ξ ∈ Ω, be the matrix of the operator Π(ξ)P (ξ)Π(ξ) in the basis we just constructed. This is
a `0 × `0 analytic matrix that we can write

A(ξ) = λn(ξ)Id +A0(ξ)

with λn(ξ) := 1
`0

TrC`0A(ξ) andA0(ξ) analytic and trace-free. Moreover, A(ξ) is diagonalizable and has
only two eigenvalues %n(ξ) and %n+1(ξ) that we write

%n(ξ) = λn(ξ)− g(ξ), %n+1(ξ) = λn(ξ) +m(ξ)g(ξ),

with g(ξ) > 0 and where, for ξ ∈ Ω \ Σn,n+1, m(ξ) is the ratio between the multiplicities of %n(ξ) and
%n+1(ξ),

m(ξ) =
j−(ξ)

j+(ξ)

and m is constant in the connected component of U \ Σn,n+1.

The functions −g(ξ) and m(ξ)g(ξ) are the two eigenvalues of A0(ξ). Therefore, they are homoge-
neous function of degree 1 of the coefficients of A0(ξ) = (ai,j(ξ))1≤i,j≤`0 : we write g(ξ) = G(A0(ξ))

where G is a homogeneous function on R
`20−1

2 . Here, we have considered that a `0 × `0 trace-free Her-
mitian matrix is a function of `0 − 1 real-valued diagonal coefficients and of `0(`0−1)

2 complex-valued
coefficients (those under the diagonal being the conjugate of those above the diagonal), and we have
observed that (`0 − 1) + `0(`0−1)

2 =
`20−1

2 .

By the definition of the crossing set, A0(ξ) = 0 if and only if ξ ∈ σn. Since the map ξ 7→ A0(ξ) is
analytic, it vanishes on Σn,n+1 at finite order q ∈ N and the crossing set is conical if and only if q = 1
for all points of σn. Therefore, in case (1), there exists a smooth tensor T `0,1(ξ) such that

A0(ξ) = T `0,1(ξ)[ξ − σΣn,n+1
(ξ)],
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with
∀σ ∈ Σn,n+1 ∩ Ω, ∀η ∈ NσΣn,n+1 \ {0}, T `0,1(σ)η 6= 0C`0×`0 .

We deduce that

g(ξ) = gn(ξ, ξ − σΣn,n+1(ξ)), with gn(ξ, η) := G
(
T `0,1(ξ) [η]

q)
where gn is homogeneous of degree 1 in the variable η. Besides, if none of the crossing points are conical,
we write A0(ξ) = T `0,2(ξ)[ξ − σΣn,n+1

(ξ)]2 with T `0,2(ξ) a smooth tensor, which allows to prove Point
(2) with

θn(ξ) = |ξ − σΣn,n+1(ξ)|−2G(T `0,2(ξ)[ξ − σσn(ξ)]2).

Since Point (3) is obvious, it remains to examine the case d = 1. At a crossing point σ = kπ,
k ∈ Z, we have m(σ) = 1. Moreover, the function gn can be written in a simple manner: there exists
α−, α+ ∈ R such that

gn(η) = α− η1η<0 + α+ η1η>0, α± = g′(η)1±η>0.

Let η < 0, then %′n(σ+η) = λ′n(σ+η)−α−. and %′′n(σ+η) has a limit when η go to 0−. Differentiating
twice (3.8), we obtain

∆′(%n(σ + η))%′′n(σ + η) + ∆′′(%n(σ + η))%′n(σ + η) = 2(−1)k+1.

Letting η go to O−, we obtain
∆′′(%n(σ))(λ′n(σ)− α−) 6= 0.

Arguing similarly with %n(σ+η with η > 0, we deduce λ′n(σ)−α+ 6= 0. Therefore, λ′n(σ)−g′(ω) 6= 0
for ω ∈ {−1,+1}. Considering now the Bloch mode %n+1, we obtain in the same manner λ′n(σ) +
g′(ω) 6= 0 for ω ∈ {−1,+1}, which finishes the proof.
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4. WIGNER MEASURES AND BLOCH MODES

We resume with the family (ψε(t))ε>0 solution to (1.1). We look for the solution as

ψε(t, x) = Uε(t, x,
x

ε
), (t, x) ∈ R× Rd,

with (Uε(t))ε>0 solution to equation (1.9) in L2(Rd × Td) and

Uε0

(
x,
x

ε

)
= ψε0(x).

Using the spectral resolution of the operator P (ξ) we write

Uε(t, x, y) =
∑
n∈N

ϕn(y, εDx)Uεn(t, x),

with

Uεn(t, x) :=

∫
Td
ϕn(y, εDx)Uε(t, x, y)dy =

∫
Td

∫
Rd×Rd

ϕn(y, εξ)Uε(t, w, y)eiξ·(x−w) dwdξ

(2π)d
dy.

We deduce a (formal) representation formula for the solution of the equation (1.1):

(4.1) ψε(t, x) =
∑
n∈N

ψεn(t, x), ψεn(t, x) = ϕn

(x
ε
, εDx

)
Uεn(t, x).

We work under the assumption that (ψε0)ε>0 is uniformly bounded in Hs
ε (Rd) for some s > d

2 and we
choose

(4.2) Uε0 (x, y) = ψε0(x)1Td(y), (x, y) ∈ Rd × Td.

The formula (4.1) implies that the solutions of (1.1) can be decomposed as a countable superposition of
waves whose dependence on the fast variable is given by a Bloch wave, whereas the profile Uεn describing
the dependence on the slow variable is given by a time-evolution whose dispersion relation involves Bloch
energies. Several questions then are in order:

(i) Are the families (ψεn)ε>0 bounded in L2(Rd) ?
(ii) Is the series converging and in which space ?

(iii) Is the function (ψε)ε>0 ε-oscillating so that a semi-classical analysis is adapted ?
Answering those questions is the subject of that chapter. A key point is the understanding of the restriction
operator Lε defined on functions F on Rd × Td by

(LεF )(x) := F
(
x,
x

ε

)
.

Of course, to define LεF , the function F needs to enjoy enough Sobolev regularity, which motivates the
introduction of adapted functional spaces on Rd × Td.

4.1. The functional framework and the restriction operator. Recall that via the decomposition in
Fourier series in the second variable, any function U ∈ L2(Rdx × Tdy) can be written as:

U(x, y) =
∑
k∈Zd

Uk(x)ei2πk·y with ‖U‖2L2(Rd×Td) =
∑
k∈Zd

‖Uk‖2L2(Rd).

We denote byHs
ε (Rd×Td), for s ≥ 0, the Sobolev space consisting of those functions U ∈ L2(Rd×Td)

such that there exists ε0, C > 0 for which we have

(4.3) ∀ε ∈ (0, ε0), ‖U‖2Hsε (Rd×Td) :=
∑
k∈Zd

∫
Rd

(1 + |εξ|2 + |k|2)s|Ûk(ξ)|2dξ ≤ C,

where Ûk(ξ) =

∫
Rd

e−ix·ξUk(x)dx.
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Note that the data (Uε0 )ε>0 defined in (4.2) with (ψε0)ε>0 uniformly bounded in Hs
ε (Rd), then is

uniformly bounded in Hs
ε (Rd × Td).

It turns out that Lε acts continuously from Hs
ε (Rd × Td) to L2(Rd) provided s > d

2 and that the
equation (1.9) satisfied by (Uε(t))ε>0 can be solved in these spaces. The following results are proved
in [14] (Sections 6.1 and 6.2) and in [15] (Section 2).

Proposition 4.1. (1) There exists C > 0 such that, for every F ∈ L2(Rd, Hs(Td)), uniformly in
ε > 0,

(4.4) ‖LεF‖L2(Rd) ≤ C‖F‖L2(Rd,Hs(Td)).

Moreover if ξ 7→ %(ξ) is 2πZd-periodic, then Lε commutes with %(εDx).
(2) If (Uε)ε>0 is a bounded family in L2(Rdx;Hs(Tdy)) and satisfies the estimate:

(4.5) limsup
ε→0+

‖1|εDx|>RU
ε‖L2(Rd;Hs(Td)) −→

R→∞
0,

then the sequence (LεUε)ε>0 is bounded in L2(Rd) and ε-oscillating (see Definition 2.19).
(3) Assume Vext ∈ L∞(R, C1(Rd)) with ∇xVext ∈ L∞(R × Rd) and suppose that the potential

Vper is such that the operator P (εD) with domain H2(Td) is self-adjoint. Then, there exists
Cs > 0 such that for every t ∈ R, ε > 0 and Uε0 ∈ Hs

ε (Rd × Td), the solution Uε(t) of (1.9)
satisfies

(4.6) ‖Uε(t, ·)‖Hsε (Rd×Td) ≤ ‖Uε0‖Hsε (Rd×Td) + Csε|t|,

Note that in Point 3, it is enough to assume that the operator P (ξ), with domain H2(Td), is self-
adjoint for all ξ ∈ B, which is possible with less restrictive assumptions on Vper than smoothness (see
Remark 3.2).

Proof
Point 1 comes from the Sobolev embedding Hs(Td) ⊂ L∞(Td): we use the Fourier resolution of F and
write for x ∈ Rd and y ∈ Td,

F (x, y) =
∑
k∈Zd

Fk(x)e2iπk·y.

Then, by Cauchy-Schwartz inequality

|F (x, y)| ≤

∑
k∈Zd

|Fk(x)|2〈k〉2s
 1

2
∑
k∈Zd
〈k〉−2s

 1
2

Since s > d
2 , we have

∑
k∈Zd〈k〉−2s < c0 < +∞ and we deduce

‖LεF‖2L2(Rd) =

∫
Rd
|F (x,

x

ε
)|2dx ≤ c0

∫
R2d

∑
k∈Zd

|Fk(x)|2〈k〉2sdx = c0‖F‖2L2(Rd;Hs(Td)),

whence the result. Moreover,

%(εDx)(LεF )(x) =
∑
k∈Zd

%(εDx)
(

e
2iπ
ε k·xFk

)
(x)

=
∑
k∈Zd

e
2iπ
ε k·x%(εDx − 2kπ)Fk(x)

=
∑
k∈Zd

e
2iπ
ε k·x%(εDx)Fk(x)

= Lε (%εDx)F ) (x).
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For Point 2, we take δ > 0, since s > d/2, there exists Nδ > 0 such that∑
|k|>Nδ

|k|−2s < δ2.

Define
vεδ(x) =

∑
|k|≤Nδ

Uεk(x)ei2πk·
x
ε .

Then,
‖LεUε − vεδ‖L2(Rd) ≤ δ‖Uε‖L2(Rd;Hs(Td)).

Therefore, it suffices to show that for any δ > 0 the sequence (vεδ) is ε-oscillating. The Fourier transform
of vεδ is:

v̂εδ(ξ) =
∑
|k|≤Nδ

Ûεk

(
ξ − 2πk

ε

)
.

Therefore,
‖1|εDx|>Rv

ε
δ‖L2(Rd) ≤

∑
|k|≤Nδ

‖1|εDx+2πk|>RU
ε
k‖L2(Rd).

If R > R0 for R0 > 0 large enough, one has 1R(·+ 2πk) ≤ 1R/2 for every |k| ≤ Nδ . This allows us to
conclude that for R > R0:

‖1|εDx|>Rv
ε
δ‖L2(Rd) ≤

∑
|k|≤Nδ

‖1|εDx|>R/2U
ε
k‖L2(Rd) ≤ Cd,s‖1|εDx|>R/2U

ε‖L2(Rd;Hs(Td))

and the conclusion follows.
The proof of Point 3 uses that modulo the addition of a positive constant to equation (1.1), we may

assume that P (εDx) is a non-negative operator (this will modify the solutions only by a constant phase
in time). In that case there exists constants ε0, c > 0 such that:

(4.7) c−1‖U‖Hsε (Rd×Td) ≤ ‖ 〈εDx〉s U‖L2(Rd×Td) + ‖P (εDx)s/2U‖L2(Rd×Td) ≤ c‖U‖Hsε (Rd×Td),

for every U ∈ L2(Rd × Td) and 0 < ε < ε0. Moreover, P (εDx)k and 〈εDx〉s commutes with P (ε)
while

‖[P (εDx)s/2, V (t, x)]Uε‖L2(Rd×Td) ≤ εC sup
0≤r≤s−1

‖P (εDx)
r
2Uε‖L2(Rd×Td)

and a similar estimate holds for [〈εDx〉s, V (t, x)]Uε. We then conclude by a recursive argument and
energy estimate.

4.2. Decomposition of the Wigner transform on Bloch modes. We focus on the families (ψεn(t))ε>0.
They satisfy

(4.8) ψεn(t, x) := LεP εϕnU
ε(t, x) = ϕn

(x
ε
, εDx

)∫
Td
ϕn(y, εDx)Uε(t, x, y)dy,

where we define for j ∈ N∗ the operator

(4.9) P εϕjW (x, y) := ϕj (y, εDx)

∫
Td
ϕj(z, εDx)W (x, z)dz, ∀W ∈ L2(Td × Rd).

Since [P (εDx)s/2, P εϕj ] = [〈εDx〉s , P εϕj ] = 0, if follows from (4.7) that there exists c1 > 0 such that for
all W ∈ Hs

ε (Rd × Td),
‖P εϕjW‖Hsε (Rd×Td) ≤ c1‖W‖Hsε (Rd×Td),

and, more generally, that every W ∈ Hs
ε (Rd×Td) can be expressed in the topology of Hs

ε (Rd×Td) as:

W =
∑
n∈N∗

P εϕnW.
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As a corollary of Proposition 4.1, we have the following result.

Corollary 4.2. Assume Vext ∈ L∞(R, C1(Rd)) with ∇xVext ∈ L∞(R × Rd) and suppose that the
potential Vper is such that the operator P (εD) with domain H2(Td) is self-adjoint. Assume (ψε0) is
uniformly bounded inHs

ε (Rd) for some s > d/2. Then, for every t ∈ R, we have the following properties
(i) The series (4.1) is uniformly convergent

(4.10) limsup
ε→0+

∥∥∥∥∥∑
n>N

ψεn(t, ·)

∥∥∥∥∥
L2(Rd)

−→
N→∞

0.

(ii) The family (ψε(t))ε>0 is ε-oscillating, locally uniformly in time, i.e. for all T ∈ R,

limsup
ε→0+

sup
t∈[0,T ]

‖1|εD|>Rψε(t)‖L2(Rd) −→
R→∞

0.

(iii) Any Wigner measure ςt of (ψε(t))ε>0 writes

ςt =
∑

n,n′∈N∗
µtn,n′ ,

where the signed measures µtn,n′ are joint Wigner measures of the pair (ψεn(t), ψεn′(t))ε>0,
n, n′ ∈ N∗, and the convergence of the series being understood in the weak-∗ topology of the
space of Radon measures on R2d.

(iv) For all n ∈ N∗, the family ψεn(t) satisfies

(4.11) iε2∂tψ
ε
n = %n(εD)ψεn + ε2fεn(t),

with

(4.12) fεn(t, x) := ϕn

(x
ε
, εDx

)∫
Td
ϕn(y, εDx)(Vext(t, x)Uε(t, x, y))dy.

This corollary motivates the analysis of the Wigner measures associated with the families (ψεn(t))ε>0,
n ∈ N∗, that will be performed in the next section and will allow to obtain a complete description of the
weak-limits of the density measure |ψε(t, x)|2 (as stated in Theorem 1.3 when d = 1).

Proof
(i) The boundedness inHs

ε (Td×Rd) of the operator Pϕj and the boundedness of Lε fromHs
ε (Td×Rd) to

L2(Rd) for s > d/2 imply that (4.1) holds in L2(Rd). Besides, in view of (4.6), (4.4), for proving (4.10).
it is enough to show that if (V ε)ε>0 is a bounded family in Hs

ε (Rd × Td), s > d/2, we have, for
d/2 < r < s,

limsup
ε→0+

∥∥∥∥∥∑
n>N

P εϕnV
ε

∥∥∥∥∥
Hrε (Rd×Td)

−→
N→∞

0.

Remark 4.7 implies that we only have to prove
(4.13)

limsup
ε→0+

∥∥∥∥∥∑
n>N

P (εDx)r/2P εϕnV
ε

∥∥∥∥∥
2

L2(Rd×Td)

+ limsup
ε→0+

∥∥∥∥∥∑
n>N

〈εDx〉rP εϕnV
ε

∥∥∥∥∥
2

L2(Rd×Td)

−→
N→∞

0.

We thus focus on proving (4.13).
Let us consider the series

∑
n>N P (εDx)r/2P εϕnV

ε (the proof for
∑
n>N 〈εDx〉rP εϕnV

ε is similar).
In view of (4.9),

P (εDx)P εϕnV
ε(x, y) = ϕn(y, εDx)%n(εDx)

∫
Td
ϕn(z, εDx)V ε(x, z)dz,
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This implies ∥∥∥∥∥∑
n>N

P (εDx)r/2P εϕnV
ε

∥∥∥∥∥
2

L2(Rd×Td)

=
∑
n>N

∥∥∥P (εDx)r/2P εϕnV
ε
∥∥∥2

L2(Rd×Td)
.

We decompose V ε in Fourier series and write V ε(x, y) =
∑
j∈Zd V

ε
j (x)e2iπj·y , whence

P (εDx)P εϕnV
ε(x, y) = ϕn(y, εDx)

∑
j∈Zd

%n(εDx)

(∫
Td
ϕn(z, εDx)e2iπj·zdz

)
V εj (x)

and by functional calculus

P (εDx)r/2P εϕnV
ε(x, y) = ϕn(y, εDx)

∑
j∈Zd

dn(εDx, j)V
ε
j (x)

with

dn(ξ, j) = %n(ξ)r/2
(∫

Td
ϕn(z, εDx)e2iπj·zdz

)
We use three observations.

(1) First, if δ > 0 is fixed, there exists J0 such that

limsup
ε→0+

∑
|j|>J0

∫
Rd

(1 + |εξ|2 + |j|2)r|V̂ εj (ξ)|2dξ < δ.

To see this note that:∑
|j|>J0

∫
Rd

(1 + |εξ|2 + |j|2)r|V̂ εj (ξ)|2dξ ≤ (1 + |J0|2)r−s‖V ε‖2Hs(Rd×Td),

due to the definition of the Hs
ε -norm (4.3). Since (V ε)ε>0 is uniformly bounded in Hs

ε (Rd), the
claim follows.

(2) Second, given δ > 0 and J0 ∈ N, one can find R = R(δ, J0) > 0 such that,

limsup
ε→0+

∑
|j|<J0

∫
|εξ|>R

(1 + |εξ|2 + |j|2)r|V̂ εj (ξ)|2dξ < δ.

This follows from the estimate:∫
|εξ|>R

(1 + |εξ|2 + |j|2)r|V̂ εj (ξ)|2dξ ≤ (1 +R2)r−s‖V ε‖2Hs(Rd×Td),

and again from the fact that (V ε)ε>0 is uniformly bounded in Hs
ε (Rd × Td).

(3) Third, given J0, R > 0,

DN (R, J0) := sup
|j|≤J0

sup
|ξ|≤R

∑
n>N

|dn(ξ, j)|2 −→
N→∞

0.

To see why this holds note that, for j ∈ Zd, the map

(4.14) ξ 7−→
∑
n∈N∗

|dn(ξ, j)|2 =
∥∥∥P (ξ)r/2e2iπj·

∥∥∥2

L2(Td)
∈ (0,∞)

is a non-negative continuous function. The claim then follows from Dini’s theorem, which en-
sures that for every R > 0, j ∈ Zd one has:

sup
|ξ|≤R

∑
n>N

|dn(ξ, j)|2 −→
N→∞

0.
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We now use these observations to treat the series whose terms are∥∥∥P (εDx)r/2P εϕnV
ε
∥∥∥2

L2(Rd×Td))
=
∑
j∈Zd

∫
Rd
|dn(εξ, j)|2|V̂ εj (ξ)|2dξ.

Fix δ > 0, and consider J0 given by Point (1) and R = R(δ, J0) given by Point (2). Decompose the sum
of integrals in three terms∑

j∈Zd

∫
Rd

=
∑
|j|≤J0

∫
|εξ|≤R

+
∑
|j|≤J0

∫
|εξ|>R

+
∑
|j|>J0

∫
Rd
.

We start by analyzing the third term. Note that∑
n∈N∗

|dn(ξ, j)|2 =
∥∥∥P (ξ)r/2e2iπj·

∥∥∥2

L2(Td)
≤ cr(1 + |ξ|2 + |j|2)r

Therefore,

limsup
ε→0+

∑
n>N

∑
|j|>J0

∫
Rd
|dn(εξ, j)|2|V̂ εj (ξ)|2dξ ≤limsup

ε→0+

∑
|j|>J0

∫
Rd

∑
n∈N∗

|dn(εξ, j)|2|V̂ εj (ξ)|2dξ

≤ cr limsup
ε→0+

∑
|j|>J0

∫
Rd

(1 + |εξ|2 + |j|2)r|V̂ εj (ξ)|2dξ < crδ,

using observation (1).
The second term is analyzed using observation (2):

limsup
ε→0+

∑
n>N

∑
|j|≤J0

∫
|εξ|>R

|dn(εξ, j)|2|V̂ εj (ξ)|2dξ

≤ cr limsup
ε→0+

∑
|j|≤J0

∫
|εξ|>R

(1 + |εξ|2 + |j|2)k|V̂ εj (ξ)|2dξ < crδ.

Observation (3) ensures that∑
n>N

∑
|j|≤J0

∫
|εξ|≤R

|dn(εξ, j)|2|V̂ εj (ξ)|2dξ ≤ DN (R, J0)‖V ε‖2L2(Rd×Td).

As a consequence of this analysis:

limsup
N→+∞

limsup
ε→0+

∑
n>N

∑
j∈Zd

∫
Rd

∣∣∣∣∫
Td
%n(εξ)r/2ϕn(z, εξ)e2iπj·zdz

∣∣∣∣2 |V̂ εj (ξ)|2dξ < 2crδ.

Since δ is arbitrary, the result follows.

(ii) By Point 2 of Proposition 4.1, it is enough to prove that for all T > 0,

(4.15) limsup
ε→0+

sup
t∈[0,T ]

‖1|εD|>RUε(t)‖Hsε (Rd×Td) −→
R→∞

0.

Because of the choice of Uε0 = ψε0 ⊗ 1Td and of Remark 2.20 we have

limsup
ε→0+

‖1|εD|>RUε0‖Hsε (Rd×Td) −→
R→∞

0.

We set UεR(t, x) = χ(εD/R)Uε(t) where χ ∈ C∞(Rd) is such that 0 ≤ χ ≤ 1, χ(ξ) = 1 for |ξ| > 2
and χ(ξ) = 0 for |ξ| ≤ 1. The family UεR solves

(4.16) iε2∂tU
ε
R = P (εD)UεR + ε2Vext(t, x)UεR + ε2[χ(εD/R), Vext(t, x)]Uε
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with initial data UεR(0) = χ(εD/R)Uε(0). Besides, the Using operator
1

ε
[χ(εD/R), Vext(t, x)] is uni-

formly bounded in L(L2(Rd)) with respect to ε and R, which yields

‖UεR(t)‖L2(Rd×Td) ≤ ‖UεR(0)‖L2(Rd×Td) +O(ε)

and gives the result for s = 0. We then assume s ∈ N∗ and consider the operators P (εD)s/2 and 〈εD〉s.
We are going to prove that uniformly with respect to R,

‖〈εD〉sUεR(t)‖L2(Rd×Td) ≤ ‖〈εD〉sUεR(0)‖L2(Rd×Td) +O(ε),

‖P (εD)s/2UεR(t)‖L2(Rd×Td) ≤ ‖P (εD)s/2UεR(0)‖L2(Rd×Td) +O(ε).

The families 〈εD〉sUεR(t) and P (εD)s/2UεR(t) satisfy an equation similar to (4.16). One observes that
the families of operators

1

ε
〈εD〉s[χ(εD/R), Vext(t, x)]〈εD〉−s and

1

ε
P (εD)s/2[χ(εD/R), Vext(t, x)]P (εD)−s/2

are uniformly bounded in L(L2(Rd × Td)). And so is the operator
1

ε
[〈εD〉s, Vext(t, x)]〈εD〉s−1. These

two properties allow to use a recursive argument on s, which gives the expected result for values of s
which are in N. One then extends the result to any s by interpolation.

(iii) We proceed to a first extraction to have

(4.17)
∫
R

∫
R2d

θ(t)a(x, ξ)W ε` [ψε` ](t, x, ξ)dx dξ dt −→
`→∞

∫
R

∫
R2d

θ(t)a(x, ξ)ςt(dx, dξ)dt.

and we keep denoting by ε the resulting subsequence. We put

Ψε
N := (ψε1, . . . , ψ

ε
N ) ∈ C(Rt;L2(Rdx,CN ))

and we are left with a vector-valued family as in Section 2.3.4. Any accumulation point of (W ε[Ψε
N (t)])

obtained along some subsequence (ε`)`∈N is a time-dependent family of positive matrix-valued Radon
measures µtN . By diagonal extraction, we can find a sequence (ε`)`∈N such that (W ε` [Ψε`

N (t)])ε>0

converge for every N ∈ N∗. We denote by (µtN )N∈N∗ their respective limits and we have for every
n, n′ ≤ N ≤ N ′ one has:

(µtN )n,n′ = (µtN ′)n,n′ = µtn,n′ ,

where µtn,n′ is obtained through (4.19). This shows that we can find a sequence (ε`)`∈N as claimed.

Define now ψN,ε :=
∑N
n=1 ψ

ε
n. One has that for a ∈ C∞c (R2d) and t ∈ R,∫

R2d

a(x, ξ)W ε` [ψN,ε`(t)](t, x, ξ)dx dξ =

∫
R2d

a(x, ξ)Tr CN×N (QW ε` [Ψε`
N ](t, x, ξ)) dx dξ,

whereQ is theN×N matrix whose all entries are equal to one. Therefore, (W ε` [ψN,ε`(t)])`∈N converges
to the semi-classical measure given, for a.e. t ∈ R, by

ςtN =
∑

1≤n,n′≤N

µtn,n′ .

Finally, (i) implies that for every θ ∈ L1(R),

limsup
`→∞

∫
R
θ(t)‖ψε`(t, ·)− ψN,ε`(t, ·)‖2L2(Rd)dt −→

N→∞
0;

which in turn guarantees that ςt =
∑
n,n′∈N∗ µ

t
n,n′ .

(iv) The result comes from the observation that since %n(ξ) is 2πZd-periodic, Lε commutes with
%(εDx) (cf. point 1 of Proposition 4.1.
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4.3. Semi-classical analysis of Bloch components. By the definition of (ψεn(t))ε>0 (see (4.1)), we de-
duce from the equation (1.9) that for all n ∈ N∗, we have the pseudo-differential equation

(4.18)

{
iε2∂tψ

ε
n(t, x) = %n(εDx)ψεn(t, x) + ε2fεn(t, x), (t, x) ∈ R× Rd,

ψεn(0, x) = ϕn
(
x
ε , εDx

) ∫
Td ϕn(y, εDx)ψε0(x)dy,

with fεn given by (4.12). By Proposition 4.1 (1), the family (fε(t))ε>0 is bounded in L∞([0, T ], L2(Rd))
for all T > 0.

Our aim is to obtain information about the measures µtn,n′ satisfying for all θ ∈ L1(R), a ∈ C∞c (R2d),

(4.19)
∫
R

∫
R2d

θ(t)a(x, ξ)W εn,n
′

` [ψεn, ψ
ε
n′ ](t, x, ξ)dx dξ dt −→

`→∞

∫
R

∫
R2d

θ(t)a(x, ξ)µtn,n′(dx, dξ))dt,

Proposition 4.3. Suppose Vper is smooth and Vext ∈ C1(Rd) with ∇Vext bounded, consider (ψε0)ε>0 a
bounded family in Hs

ε (Rd) for some s > d/2. For any n, n′ ∈ N∗, let (ψεn) and (ψεn′) be defined by (4.1)
and let µtn,n′ be given by (4.19). Let Ω ⊆ Rd be open and invariant by translations by 2πZd. Then the
following hold.

(1) If ∇%n ∈ Lip(Rd) on Ω and ∇ξ%n|Ω 6= 0, then µtn,n(Rd × Ω) = 0 for almost every t ∈ R.
(2) Let δ > 0 and suppose that Ω ⊂ {ξ ∈ Rd : |%n(ξ)− %n′(ξ)| ≥ δ}, then |µtn,n′ |(Rd × Ω) = 0

for almost every t ∈ R.

This result shows that µtn,n can only charge the set of critical points of %n or the sets where %n has
a conical crossing with another Bloch energy (i.e. where %n ceases to be C1,1(Rd)). It also shows
that Σn,n′ is the only region where the measures µtn,n′ can be non-zero. The analysis of these measures
will be performed in the following sections by means of a two-scale analysis.

The proof of this proposition uses the calculus of semi-classical pseudo-differential operators with low
regularity of Lemma 2.12 and the following result.

Lemma 4.4. Let Ω ⊂ Rd and Φs : Rd×Ω→ Rd×Ω a flow satisfying: for every compact K ⊂ Rd×Ω
such that K contains no stationary points of Φ there exist constants α, β > 0 such that:

α|s| − β 6 |Φs(x, ξ)| 6 α|s|+ β, ∀(x, ξ) ∈ K.
Let µ be a finite, positive Radon measure on Rd×Ω that is invariant by the flow Φs. Then µ is supported
on the set of stationary points of Φs.

Proof
It suffices to show that µ(K) = 0 for every compact set K ⊂ Rd × Ω as in the statement of the lemma.
By the assumption made on Φs, it is possible to find sk → +∞ such that Φsk(K), k ∈ N, are mutually
disjoint. The invariance property of µ implies that µ(Φsk(K)) = µ(K) and therefore, for every N > 0:

µ

(
N⋃
k=1

Φsk(K)

)
= Nµ(K).

Since µ is finite, we must have µ(K) = 0.

Proof
For proving Point 1, we write

iε2 d

dt
(ψεn(t), opε(a)ψεn(t)L2(Rd) = (ψεn(t), [opε(a), %n(εDx)]ψεn(t)L2(Rd) +O(ε2).

By Lemma 2.12 (2), we deduce

−ε d
dt

(ψεn(t), opε(a)ψεn(t)L2(Rd) = (ψεn(t), opε(∇ξ%n · ∇xa)ψεn(t)L2(Rd) +O(ε).
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Therefore, for every θ ∈ C∞c (R) and a ∈ C∞c (Rd × Ω),∫
R
θ(t)(ψεn(t), opε(∇ξ%n · ∇xa)ψεn(t)L2(Rd)dt−→

ε→0
0.

By (4.19), this implies that, for almost every t ∈ R,∫
Rd×Ω

∇ξ%n(ξ) · ∇xa(x, ξ)µtn,n(dx, dξ) = 0,

or equivalently that the measure µtn,n1Rd×Ω is invariant by the flow (x, ξ) 7→ (x + s∇%n(ξ), ξ). Since
the measure µtn,n is positive and finite, necessarily it is identically 0, thanks to the Lemma 4.4.

For proving Point 2, we write

(4.20) iε2 d

dt
(ψεn(t), opε(a)ψεn′(t))L2(Rd)

= (ψεn(t), (%n′(εDx)opε(a)− opε(a)%n(εDx))ψεn′(t))L2(Rd) + ε2Rε(t),

where |Rε(t)| ≤ C‖fεn(t, ·)‖2L2(Rd) is locally uniformly bounded in t ∈ R for every ε > 0. By
Lemma 2.12 (1), the following holds with respect to the L(L2(Rd)) norm:

%n′(εDx)opε(a)− opε(a)%n(εDx) = opε ((%n′ − %n)a) +O(ε).

This identity together with integration by parts transforms (4.20) into∫
R
θ(t) (ψεn(t), opε(%n′ − %n)a)ψεn′(t))L2(Rd) dt =

ε2

i

∫
R
θ′(t) (ψεn(t), opε(a)ψεn′(t))L2(Rd) dt+O(ε).

Taking limits ε→ 0, which is possible by Remark 2.9, we obtain∫
R

∫
R2d

θ(t)(%n′(ξ)− %n(ξ))a(x, ξ)µtn,n′(dx, dξ)dt = 0.

By density, this relation holds for all a ∈ C∞c (Rd ×Ω), in particular for ã = (%n − %n′)−1a. This shows
that, as we wanted to prove

∀θ ∈ C∞c (R), ∀a ∈ C∞c (Rd × Ω),

∫
R

∫
R2d

θ(t)a(x, ξ)µtn,n′(dx, dξ)dt = 0.
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5. TWO-SCALE WIGNER ANALYSIS

We develop in this section a two scale method for analyzing more precisely the concentration of
a family on a point of the phase space. The two-scale Wigner measures (or two-scale semi-classical
measures) that we describe here, have been first introduced in [17, 40, 41] (see also [18, 19]). The use of
two-microlocal semiclassical measures for dispersive equations was initiated in [35], in the context of the
Schrödinger equation on the torus. We restrict ourselves to the analysis of concentration on submanifolds
of the space of impulsion (the ξ variable).

5.1. Two-scale Wigner measures.

5.1.1. Two-scale observables. We extend the phase space T ∗Rd := Rdx × (Rd)∗ξ with a new variable
η ∈ Rd, where Rd is the compactification of Rd obtained by adding a sphere Sd−1 at infinity. The test
functions associated with this extended phase space are functions a ∈ A where A is defined as follows.

Definition 5.1. The function a ∈ C∞(T ∗Rdx,ξ × Rdη) belongs to the set A of two-scale observables if it
satisfies the two following properties:

(1) There exists a compact K ⊂ T ∗Rd such that, for all η ∈ Rd, the map (x, ξ) 7→ a(x, ξ, η) is a
smooth function compactly supported in K;

(2) There exists a smooth function a∞ defined on T ∗Rd × Sd−1 and R0 > 0 such that, if |η| > R0,
then a(x, ξ, η) = a∞(x, ξ, η/|η|).

In other words, Point 2 means that, in the set {|η| > R0}, a coincides with a function a∞ that is
homogeneous of degree 0 in η. The data of a ∈ A, defines a smooth function a∞ on R2d × Sd−1 and a
function a on R2d × Rd obtained by setting

(5.1) a(x, ξ, η) = a(x, ξ, η) if |η| < +∞ and a(x, ξ, η) = a∞(x, ξ, ω) if η =∞ω, ω ∈ Sd−1.

If a ∈ A, the compact K of Point 1 of Definition 5.1 is called the support of the symbol a.
The set A is a subspace of C∞(R3d) and of the space of smooth bounded functions with bounded

derivatives. Indeed, for any k ∈ N,

sup
β∈N3d

sup
(x,ξ,η)∈R3d

∣∣∣∂βx,ξ,ηa(x, ξ, η)
∣∣∣ < +∞.

We shall consider the semi-norm

(5.2) Ñd(a) := sup
ξ,η∈Rd

sup
|β|≤d+1

‖∂βxa(·, ξ, η)‖L1(Rd)

that appear in (2.13).

5.1.2. Quantization of two-scale observables and two-scale Wigner transforms. We introduce first here
a two-scale quantization associated with a point ξ0 of the space of the impulsions. We denote by εκ, for
κ ∈ (0, 1], the second scale of observation. The two-scale Wigner transform acts on two-scale observables
a ∈ A according to

(5.3) 〈W ε,κ
{ξ=ξ0}[f ] , a〉 =

(
f, opε

(
a(x, ξ,

ξ − ξ0
εκ

)
f

)
L2(Rd)

.

One then defines the two-scale semi-classical pseudodifferential operator

op{ξ=ξ0}ε,κ (a) := opε

(
a

(
x, ξ,

ξ − ξ0
εκ

))
, a ∈ A,

and one has
〈W ε,κ
{ξ=ξ0}[f ] , a〉 =

(
f, op{ξ=ξ0}ε,κ (a)f

)
L2(Rd)

, ∀a ∈ A.
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The latter formula shows the zoom effect obtained by adding this new variable η. Indeed, when
|η| ≤ R for some R > 0, one restricts the domain of a to points (x, ξ) that are at a distance smaller
than Rεκ from the set {ξ = ξ0}). When |η| > R is large, one considers larger domains, namely rings
{Rεκ < |ξ− ξ0| < M} where the constant M is related with the compact K in which a takes his values.
The fact that |η| can go to +∞ allows to investigate all the directions and to visit all the compact K.

In the following, we shall use the operator of multiplication by the phase e−
i
ε ξ0·x

Proposition 5.2. Let a ∈ A, we have the following properties.
(1) Suppose that the compact K associated to a by Point 1 of Definition 5.1 does not contain ξ0.

Then, there exists ε0 > 0 such that for all ε ∈ (0, ε0),

op{ξ=ξ0}ε,κ (a) = opε

(
a∞

(
x, ξ,

ξ − ξ0
|ξ − ξ0|

))
.

(2) The family of operators
(

op
{ξ=ξ0}
ε,κ (a)

)
ε>0

is a bounded family in L(L2(Rd)) satisfying

(5.4) op{ξ=ξ0}ε,κ (a) = e
i
ε ξ0·xopε1−κ (a(x, ξ0 + εκξ, ξ)) e−

i
ε ξ0·x.

(3) There exists C > 0 such that for all f ∈ S(Rd)∣∣∣〈W ε,κ
{ξ=ξ0}[f ], a〉

∣∣∣ ≤ C ‖f‖2L2 Ñd(a),

where the semi-norm Ñd is defined in (5.2).
(4) If (fε)ε>0 is a bounded family in L2(Rd), the functionals

a 7→ 〈W ε,κ
{ξ=ξ0}[f

ε], a〉

are linear maps on A that are continuous uniformly in ε for the semi norm Ñd.

Proof
Point 1. The first part of the proposition comes from the observation that for such compactK, there exists
ε0 > 0 such that all ε ∈ (0, ε0), |ξ−ξ0| > R0ε

κ, whereR0 is associated to a by Point 2 of Definition 5.1.
Therefore,

a

(
x, ξ,

ξ − ξ0
εκ

)
= a∞

(
x, ξ,

ξ − ξ0
|ξ − ξ0|

)
and the result follows.
Point 2 comes from an explicit calculus.
Points 3 and 4 are consequences of Point 2.

Remark 5.3. Equation (5.4) shows a fundamental difference between the case κ ∈ (0, 1) and κ = 1.
Indeed, when κ ∈ (0, 1) and a ∈ C∞c (R3d), the operator op

{ξ=ξ0}
ε,κ (a) is unitarily equivalent to the

operator opε1−κ (a(x, ξ0 + εκξ, ξ)) that coincides (at leading order) with a semi-classical operator of the
same style than those studied in the preceding chapters, but for the scale ε1−κ. Indeed one has

(5.5) opε1−κ (a(x, ξ0 + εκξ, ξ)) = opε1−κ (a(x, ξ0, ξ)) +O(εκR),

where |η| ≤ R on the support of a. This comes from a Taylor estimate: there exists a constant C > 0
such that

Nd
(
a(x, ξ0 + εκξ, ξ)− a(x, ξ0, ξ)

)
≤ εκNd

(∫ 1

0

x · ∇xa(x, ξ0 + εκsξ, ξ)ds

)
≤ C Rεκ.

However, if κ = 1, the latter relation relates the operator op
{ξ=ξ0}
ε,1 (a) with the operator op1(a(x, ξ0, ξ))

which is no longer a semi-classical operator.



42 CLOTILDE FERMANIAN KAMMERER

5.1.3. Two-scale Wigner measures. We now pass to the limit on the two-scale Wigner transform of a
bounded family in L2(Rd). We focus here on the scale κ = 1 and we omit the index 1 in the notation
op
{ξ=ξ0}
ε .

Theorem 5.4. Let (fε)ε>0 be a bounded family in L2(Rd), there exists a sequence (ε`)`∈N which tends
to 0 when ` goes to +∞ and a positive measure ν∞ on R2d

x,ξ × Sd−1 such that for all a ∈ A,(
fε` , op{ξ=ξ0}εn (a)fε`

)
L2(Rd)

−→
`→+∞

∫
Rd×Sd−1

a∞(x, ξ0, η)ν∞(dξ, dη) +
(
f, aW (x, ξ0, Dx)f

)
L2(Rd)

+

∫
R2d\{ξ=ξ0}

a∞

(
x, ξ,

ξ − ξ0
|ξ − ξ0|

)
µ(dx, dξ),

where µ is a Wigner measure of the family (fε)ε>0 for the scale (ε`)`∈N and f a weak limit in L2(Rd) of

the family
(

e
− i
ε`
x·ξ0fε`

)
n∈N

.

The term
(
f, aW (x, ξ0, Dx)f

)
L2(Rd)

writes(
f, aW (x, ξ0, Dx)f

)
L2(Rd)

= Tr(aW (x, ξ0, Dx)Mf )

where Mf is the orthogonal projector on the subspace Vect(f) of L2(Rd). It will be more convenient to
use the operator Mf .

Definition 5.5. We call the pair (ν∞,Mf ) a two-scale Wigner measure, or two-scale semi-classical
measure, associated with the concentration of (fε)ε>0 on the vector space {ξ = ξ0}.

We set for a ∈ A,

Iε`(a) =
(
fε` , op{ξ=ξ0}ε`

(a)fε`
)
L2(Rd)

.

Consider a function χ ∈ C∞c (Rd, [0, 1]) such that χ = 1 in a neighborhood of 0 and set for a ∈ A,

(5.6)


aδ(x, ξ, η) = a(x, ξ, η)

(
1− χ

(
ξ−ξ0
δ

))
,

aRδ (x, ξ, η) = a(x, ξ, η)
(
1− χ

(
η
R

))
χ
(
ξ−ξ0
δ

)
,

aR(x, ξ, η) = a(x, ξ, η)χ
(
η
R

)
χ
(
ξ−ξ0
δ

)
.

Then, we have a = aR + aRδ + aδ and

limsup
δ→0

limsup
R→+∞

limsup
`→+∞

Iε(aRδ ) =

∫
Rd×Sd−1

a∞(x, ξ0, η)ν(dξ, dη),

limsup
δ→0

limsup
R→+∞

limsup
`→+∞

Iε(aR) =
(
f, aW (x, ξ0, Dx)f

)
L2(Rd)

,

limsup
δ→0

limsup
R→+∞

limsup
`→+∞

Iε(aδ) =

∫
{ξ 6=ξ0}×Rd

a∞

(
x, ξ,

ξ − ξ0
|ξ − ξ0|

)
µ(dx, dξ),

We obtain a description of the semi-classical measure above ξ = ξ0

µ(x, ξ)1ξ=ξ0 = δξ0(ξ)⊗
(
|f(x)|2dx+

∫
Sd−1

ν∞(x, dη)

)
.

The knowledge of the two-scale Wigner measures determine µ above ξ0.
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Example 5.6. Let ϕ ∈ S(Rd), ξ0, η0 ∈ Rd, β > 0 and consider the family

uεβ(x) = ϕ(x)e
i
εx·(ξ0−ε

βη0), x ∈ Rd.

Then, the pair (ν
(β)
∞ , fβ) describing the concentration of (uεβ)ε>0 on {ξ = ξ0} is given by

ν
(β)
∞ = 0 and fβ = ϕ if β > 1,

ν
(β)
∞ = 0 and fβ(x) = e−ix·η0ϕ(x) if β = 1,

ν
(β)
∞ (x, η) = δ η0

|η0|
∞ (η)⊗ |ϕ(x|2dx and fβ = 0 if β < 1.

In the three cases, the semi-classical measure is µ(x, ξ) = δξ0(ξ)⊗ |ϕ(x)|2dx.

Remark 5.7. (1) As for the standard Wigner measures, the definition of two-scale Wigner measures
can be extended to vector-valued families and to time-dependent ones.

(2) The notion can also be extended to the concentration of families on submanifolds of the cotangent
space of the form Rd ×M (see [14]).

Let us now prove Theorem 5.4.

Proof
We use the decomposition a = aR+aRδ +aδ of (5.6). We first observe that if µ is a semiclassical measure
of (fε)ε>0 for a subsequence that we denote ε`, ` ∈ N. Then, we have

(5.7) limsup
`→+∞

(
fε` , op{ξ=ξ0}ε`

(aδ)fε`
)
L2(Rd)

−→
δ→0

∫
R2d

a∞

(
x, ξ,

ξ − ξ0
|ξ − ξ0|

)
µ(dx, dξ).

Moreover, by (5.5)(
fε, op{ξ=ξ0}ε (aR)fε

)
L2(Rd)

=
(
f̃ε, op1(aR(x, ξ0, ξ))f̃

ε
)
L2(Rd)

+O(Rε)

with f̃ε = e−
i
ε ξ0·xfε. Since the operator op1(aR(x, ξ0, ξ)) = aWR (x, ξ0, Dx) is a compact operator,

independent of ε, if f is a weak limit in L2(Rd) of f̃ε for the subsequence ε`, one has(
f̃ε` , op1(aR(x, ξ0, ξ))f̃

ε`
)
L2(Rd)

−→
`→+∞

(
f, aWR (x, ξ0, Dx)f

)
L2(Rd)

.

We deduce

(5.8) limsup
`→+∞

(
fε` , op{ξ=ξ0}ε`

(a)fε`
)
L2(Rd)

−→
R→+∞

(
f, aW (x, ξ0, Dx)f

)
L2(Rd)

.

Finally, we consider the symbol aR that is supported in the zone R > |η|. We consider the quantity

Jε,R(a) :=
(
f̃ε, op1(aR(x, ξ0 + εξ, ξ))f̃ε

)
L2(Rd)

.

We are interested in the limit where ε goes to 0 first and then R goes to +∞. This quantity is uniformly
bounded in ε > 0 and R > 1. Besides, for all a ∈ A, Jε,R(a) = Jε,R(a∞) as soon as R is large
enough. We then deduce by a diagonal extraction argument that one can find two sequences ε` −→

`→+∞
0

and R` −→
`→+∞

+∞, and a linear form I defined on C∞(Rd × Rd × Sd−1), such that for all a ∈ A,

Jε`,R`(a) −→
`→+∞

J(a∞).

It remains to prove that a∞ 7→ J(a∞) is a measure, which will define ν1|η|=∞. For this, we prove that
a∞ 7→ J(a∞) is a positive distribution. Let us start with the distribution argument: we observe that there
exists a constant C > 0 such that for all a ∈ A,

Jε`,R`(a) ≤ CÑd(aR`),
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and we deduce from Nd(a
R`) −→

n→+∞
Nd(a∞) that J(a∞) ≤ Nd(a∞). Therefore a∞ 7→ J(a∞) is a

distribution. To prove the positivity, we observe that the operators a 7→ op1(aR(x, ξ0 + εξ, ξ) satisfy a
semi-classical calculus in the parameters ε and 1/R. Indeed, we have the following observations: for all
a, a1, a2 ∈ Ad

(i) op1(aR(x, ξ0 + εξ, ξ)∗ = op1(aR(x, ξ0 + εξ, ξ)),
(ii) in L(L2(Rd)),

op1(aR1 (x, ξ0 + εξ, ξ) ◦ op1(aR2 (x, ξ0 + εξ, ξ))

= op1((a1a2)R(x, ξ0 + εξ, ξ)) +O

(
ε+

1

R

)
Therefore, one has the following Gårding inequality

(iii) if a ≥ 0, then for all δ > 0 there exists Cδ > 0 such that for all f ∈ L2(Rd),(
f, op1(aR(x, ξ0 + εξ, ξ)f

)
L2(Rd)

≥ −

(
δ + Cδ

(
ε+

1

R

)2
)
‖f‖L2 .

One can then conclude to the positivity of the map a∞ 7→ J(a∞), whence it defines a positive measure
on R2d × Sd−1, that we denote by ν∞, such that, after extraction of subsequences R`, ε`, we have

(5.9) limsup
`→+∞

(
fε` , op{ξ=ξ0}ε`

(aR`δ )fε`
)
L2(Rd)

−→
δ→0

∫
Rd×Sd−1

a∞(x0, ξ, η)ν∞(dξ, dη).

Putting together (5.7), (5.8) and (5.9) concludes the proof.

Let us conclude this paragraph by a comment about the case κ ∈ (0, 1), for which one has the following
Theorem.

Theorem 5.8. Let (fε)ε>0 be a bounded family in L2(Rd), there exists a sequence (ε`)`∈N which tends
to 0 when n goes to +∞ and a positive measure ν on Rdx × Rdη such that for all a ∈ A,(

fε` , op{ξ=ξ0}ε`,κ
(a)fε`

)
−→
`→+∞

∫
Rd×Rd

a(x, ξ0, η)ν(dx, dη)

+

∫
R2d\{ξ=ξ0}

a∞

(
x, ξ,

ξ − ξ0
|ξ − ξ0|

)
µ(dx, dξ),

where µ is a Wigner measure of the family (fε)ε>0 for the scale (ε`)`∈N.

Thus illustrates the criticality of the concentration at semi-classical scale, as already mentioned in
Remark 5.3, in the case κ = 1 some quantum effects remain.

5.2. Concentration of Bloch components on critical points. We resume with the families (ψεn(t))ε>0

satisfying the equation (4.11). We denote by Λn the set of critical points of the Bloch mode %n.

(5.10) Λn := {ξ ∈ Rd \ ∪n′ 6=nΣn,n′ : ∇%n(ξ) = 0}.
According to the analysis of Chapter 3.2, when d = 1, Λn consists in isolated non degenerate critical
points. Our aim in this section is to compute the two-scale Wigner measures associated with the concen-
tration of (ψεn(t))ε>0 on such a point.

We fix n > 0 such that %n is isolated from the remainder of the spectrum in an open subset Ω of Rd (as
in (3.14)). Note that Ω can be chosen so that it does not contain any crossing point of Σn,n′ . Therefore,
by Proposition 4.3, any semi-classical measure of (ψεn(t))ε>0 satisfies µtn1ξ∈Ω = µtn1ξ∈Ω∩Λn .

The equation (4.11) writes

iε2∂tψ
ε
n(t, x) = %n(εD)ψεn(t, x) + ε2Vext(t, x)ψεn(t, x) + ε2rεn(t, x)
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with rε(t, x) = Lε[Vext(t, x),Πn(εD)]Uε(t, x, ·), uniformly bounded in L2(Rd). Moreover, since in Ω,
the map ξ 7→ Πn(ξ) is smooth, for all θ ∈ Cc(Ω) and t ∈ R, θ(εD)rε(t) = O(ε). Observing that any
microlocal symbol a = a(x, ξ) with support in Rd × Ω satisfies opε(a) = opε(a)θ(εD) + O(εN ), in
L(L2(Rd) for any function θ ∈ Cc(Ω) such that θ = 1 on the support of a, and for any N ∈ N, we
deduce that for all a ∈ A with support in Rd × Ω, and uniformly for t ∈ [0, T ], T > 0,

op{ξ=ξ0}ε (a)rε(t) = O(ε) in L2(Rd).

The strategy being independent of the dimension of the space, we state the result in any dimension,
assuming that Λn contains an isolated point ξn and we focus on this point.

Theorem 5.9 ([14]). Let n > 0 such that %n is isolated from the remainder of the spectrum in an open
subset Ω of Rd (as in (3.14)), assume that Ω ∩ Λn = {ξn}. Then, any pair (νtn,M

t
n) of two-microlocal

items associated with the concentration of (ψεn(t))ε>0 above ξn satisfies:

(1) The operator Mt
n is the orthogonal projection of L2(Rd) along the function ψ(n)

ξn
(t) which solves

the Schrödinger equation (1.12), namely

i∂tψ
(n)
ξn

(t, x) =
1

2
d2%n(ξ)Dx ·Dxψ

(n)
ξn

(t, x) + Vext(t, x)ψ
(n)
ξn

(t, x),

with initial data ψ(n)
ξn

(0) which is a weak limit of
(

e−
i
ε ξn·xLεΠn(εDx)(ψε0(x)1y∈T)

)
ε>0

.

(2) The measure νtn is invariant by the flow φsn,

φsn : (x, ω) 7→ (x+ s d2%n(σ)ω, ω),

which implies by Lemma 4.4, that, if ξn is a non degenerate critical point, then νtn = 0.

Note that the operator Mt
n satisfies the von Neumann equation

(5.11) i∂tM
t
n =

1

2

[
d2%n(ξ)Dx ·Dx + Vext(t, x),Mt

n

]
.

Besides, the map t 7→Mt
n is continuous.

Theorem 5.9 has the following consequence when d = 1.

Corollary 5.10. Assume d = 1 and let ξn be a critical point of %n. Then, in Ω

µtn,n(x, ξ)1ξ∈Ω = δξn(ξ)⊗ |ψ(n)
ξn

(t, x)|2dx

where ψ(n)
ξn

(t) solves (1.12), with ξ = ξn.

Proof
The proof consists in two parts corresponding to the two zones defined by the scale ε around ξn. We
consider a pair (νtn,M

t
n) and we denote by ε the subsequence associated with them.

Part 1: Analysis at finite distance. For computing Mt
n, we analyze for a ∈ C∞c (Rd×Ω×Rd) the time

evolution of the quantity
〈
W ε
{ξ=ξn}[ψ

ε
n(t)], a

〉
, as defined in (5.3), and omitting the mention of κ = 1.

We have
d

dt

〈
W ε
{ξ=ξn}[ψ

ε
n(t)], a

〉
=

1

iε2

(
ψεn(t),

[
op{ξ=ξn}ε (a), %n(εD)

]
ψεn(t)

)
(5.12)

+
1

i

(
ψε(t) ,

[
op{ξ=ξn}ε (a), Vext(t, x)

]
ψε(t)

)
+O(ε).

Since %n is smooth in Ω, we can use the standard symbolic calculus for Weyl quantization and we obtain
that in L(L2(Rd))

1

iε2

[
op{ξ=ξn}ε (a), %n(εD)

]
=

1

ε
op{ξ=ξn}ε (∇%n(ξ) · ∇xa) +O(ε).
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Besides, by Taylor formula and by use of∇%n(ξn) = 0, we have

(5.13) ∇%n(ξ) = d2%n(ξn) (ξ − ξn) +B(ξ) (ξ − ξn) · (ξ − ξn) ,

where ξ 7→ B(ξ) is a smooth matrix-valued map. This yields

1

ε
∇%n(ξ) · ∇xa

(
x, ξ,

ξ − ξn
ε

)
= b

(
x, ξ,

ξ − ξn
ε

)
with

b(x, ξ, η) = d2%n(ξn)η · ∇xa(x, ξ, η) +B(ξ) (ξ − ξn) · η∇xa(x, ξ, η).

At this stage of the proof, we see that d
dt

〈
W ε
{ξ=ξn}[ψ

ε
n(t)], a

〉
is uniformly bounded in ε. Thus using a

suitable version of Ascoli’s theorem and a standard diagonal extraction argument, we can find a sequence
(εk) such that the limit exists for all a ∈ C∞c (Rd×Ω×Rd) and all time t ∈ [0, T ] (for some T > 0 fixed)
with a limit that is a continuous map in time. The transport equation that we are now going to prove shall
guarantee the independence of the limit from T > 0 and imply the characterization of Mt

n. Moreover,
the continuity of t 7→Mt

n implies that at t = 0, M0
n has to coincide with the projector on a weak limit of(

e−
i
ε ξn·xLεΠn(εDx)(ψε0(x)1y∈T)

)
ε>0

.

It remains to prove the transport equation (5.11). We rewrite (5.12) as

d

dt

〈
W ε
{ξ=ξn}[ψ

ε
n(t)], a

〉
=
(
ψεn(t), op{ξ=ξn}ε (b)ψεn(t)

)
+

1

i

(
ψε(t) ,

[
op{ξ=ξn}ε (a), Vext(t, x)

]
ψε(t)

)
+O(ε),

and pass to the limit. We obtain

d

dt
TrL2(Rd)

(
aW (x, ξn, Dx)Mt

n

)
= TrL2(Rd)

(
bW (x, ξn, Dx)Mt

n

)
+ TrL2(Rd)

(
[aW (x, ξn, Dx), Vext(t, x)]Mt

n

)
.

Moreover

bW (x, ξn, Dx) = op1

(
d2%n(ξn)ξ · ∇xa(x, ξn, ξ)

)
=

1

2

[
d2%nDx ·Dx, a

W (x, ξ,Dx)
]
.

We deduce, using the cyclicity of the trace

d

dt
TrL2(Rd)

(
aW (x, ξn, Dx)Mt

n

)
= TrL2(Rd)

([
aW (x, ξn, Dx),

1

2
d2%nDx ·Dx + Vext(t, x)

]
Mt

n

)
= TrL2(Rd)

(
aW (x, ξn, Dx)

[
1

2
d2%nDx ·Dx + Vext(t, x),Mt

n

])
,

whence the equation (5.11).

Part 2: Analysis at infinity. Let a ∈ A with support in Rd × Ω × Rd. We use a cut-off function
χ ∈ C∞c (Rd, [0, 1]) identically equal to 1 close to 0, and we set (as in (5.6))

aRδ (x, ξ, η) = a(x, ξ, η)χ

(
ξ − ξn
δ

)(
1− χ

( η
R

))
.

We introduce the symbol

bRδ (s, x, ξ, η) = aRδ

(
x+ sd2%n(ξ)

η

|η|
, ξ, η

)
.
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We have bRδ ∈ A and

(bRδ )∞(s, x, ξ, ω) = a∞ ◦ φsn(x, ξ, ω)χ

(
ξ − ξn
δ

)
.

Our aim is to prove that for θ ∈ C∞c (R) and s ∈ R,

limsup
δ→0

limsup
R→+∞

limsup
ε→0

∫
R
θ(t)〈W ε

{ξ=ξn}[ψ
ε
n(t)], bR,δs 〉dt = 0.

We observe

d

ds
bRδ

(
s, x, ξ,

ξ − ξn
ε

)
= ∇xaRδ

(
x+ sd2%n(ξ)

ξ − ξn
|ξ − ξn|

, ξ,
ξ − ξn
ε

)
· d2%n(ξ)

ξ − ξn
|ξ − ξn|

.

Since d2%n(ξ)(ξ − ξn) = ∇%n(ξ) +O(|ξ − ξn|2), we have

d

ds
bRδ

(
s, x, ξ,

ξ − ξn
ε

)
= ∇%n(ξ) · ∇xcRδ

(
s, x, ξ,

ξ − ξn
ε

)
+ δ rε(x, ξ)

with

cRδ (s, x, ξ, η) =
1

|ξ − ξn|
bRδ (s, x, ξ, η)

and rε such that for all α ∈ Nd, (x, ξ) 7→ ∂αx r
ε(x, ξ) is bounded uniformly in ε and R. Note that

regarding cRδ , we have

(5.14) ∀α, β ∈ Nd, ∃Cα > 0, ∀R > 1, ∀δ, ε ∈ (0, 1), ‖xβ∂αx cRδ ‖L∞ ≤
Cα
Rε

,

in particular Ñd(cRδ ) = O(1/(Rε). Let us now conclude the proof. We first write, uniformly in ε ∈ (0, 1),
R ∈ [1,+∞) and s ∈ R(

ψεn(t), op{ξ=ξn}ε

(
d

ds
bRδ (s)

)
ψεn(t)

)
L2(Rd)

=

(
ψεn(t),

i

ε

[
%n(εD), op{ξ=ξn}ε

(
cRδ (s)

])
ψεn(t)

)
L2(Rd)

+O(δ).

Then, taking into account equation (4.11), we deduce that uniformly in ε ∈ (0, 1), R ∈ [1,+∞) and
s ∈ R(

ψεn(t), op{ξ=ξn}ε

(
d

ds
bRδ (s)

)
ψεn(t)

)
L2(Rd)

= −ε d
dt

(
ψεn(t), op{ξ=ξn}ε

(
cRδ (s)

)
ψεn(t)

)
L2(Rd)

− iε
(
ψεn(t), op{ξ=ξn}ε

(
cRδ (s)

)
fεn(t)

)
L2(Rd)

+ iε
(
fεn(t), op{ξ=ξn}ε

(
cRδ (s)

)
ψεn(t)

)
L2(Rd)

+O(δ) +O(ε).

The estimate (5.14) gives ‖op
{ξ=ξn}
ε

(
cRδ (s)

)
‖L(L2(Rd)) = O

(
1
εR

)
. Therefore, for any θ ∈ C∞c (R), we

have ∫
R
θ(t)

(
ψεn(t), op{ξ=ξn}ε

(
d

ds
bRδ (s)

)
ψεn(t)

)
L2(Rd)

dt = O

(
1

R

)
+O(ε) +O(δ),

which concludes the proof.
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5.3. Concentration above crossing points. In this section, we analyze the semi-classical measure of
(ψεn(t))ε>0 above crossing points. Here again, we work in any dimension under the assumption that
crossing points are isolated points of the space of impulsions, which is the case when d = 1. We also
assume that for all n ∈ N∗, the multiplicity of the Bloch energy %n is one, except at crossing points,
where it is two. This implies that a global labeling of the band functions exists such that Σn,n′ 6= ∅
implies |n− n′| = 1. We write

(5.15) Σn := Σn,n+1, n ∈ N∗.
We additionally assume that in an open set Ω, we have Σn ∩ Ω = {σn} and we aim at calculating the
two-microlocal semi-classical measures associated with the concentration of (ψεn(t))ε>0 above σn. All
these assumptions are satisfied when d = 1.

Finally, we assume that the crossing is conical above the point σn in the sense that there exists an
homogeneous function of degree 1, gn, such that

∀ξ ∈ Ω, (%n+1 − %n)(ξ) = gn(ξ − σn).

We set
λn(ξ) =

1

2
(%n+1(ξ) + %n(ξ)) .

We recall that when d = 1,∇λn(σn)± gn(ω) 6= 0 for ω ∈ {−1,+1} (see Lemma 3.13 (4)).

Theorem 5.11. Assume ∇gn(ω) 6= ∇λn(σn) for all ω ∈ Sd−1. Then, with the preceding assump-
tions, any pair (γtn,Γ

t
n) of two-microlocal semi-classical measures associated with the concentration of

(ψεn(t))ε>0 on {ξ = σn} is (0, 0) dt-almost everywhere.
If moreover ∇gn(ω) 6= −∇λn(σn) for all ω ∈ Sd−1. Then, any pair (γtn+1,Γ

t
n+1) of two-microlocal

semi-classical measures associated with the concentration of the family (ψεn+1(t))ε>0 on {ξ = σn} is
also (0, 0) dt-almost everywhere.

Corollary 5.12. When d = 1, the assumptions of Theorem 5.11 are satisfied and, assuming that Ω does
not contain any critical points of %n and %n+1 (which is always possible), we have

µtn,n1ξ∈Ω = µtn+1,n+11ξ∈Ω = 0, whence µtn,n+11ξ∈Ω = 0 as well.

Proof
Here again, we prove Theorem 5.11 in two steps: first we focus on the part of the two-scale Wigner
measure that comes from infinity, then we concentrate on the part at finite distance.
Part 1: The two-scale Wigner measure at infinity. Let a ∈ A supported in Rd × Ω × Rd and χ ∈
C∞c (Rd, [0, 1]) χ ∈ C∞0 (Rd, [0, 1]) identically equal to 1 close to 0. We set for R, δ > 0 (as in (5.6))

aRδ (x, ξ, η) = a(x, ξ, η)χ

(
ξ − ξn
δ

)(
1− χ

( η
R

))
.

Then, in view of equation (4.18),

(5.16) iε
d

dt

〈
W ε
{ξ=σn}[ψ

ε
n(t)], a

〉
= ε−1

(
ψεn(t), [op{ξ=σn}ε (aRδ ), %n(εD)]ψεn(t)

)
+O(ε).

Using the homogeneity of gn, we write

%n(εD) = λn(εD)− gn(εD − σn) = λn(εD)− ε op{ξ=σn}ε (gn).

Therefore, we have

ε−1
[
op{ξ=σn}ε (aRδ ), %n(εD)

]
= op{ξ=σn}ε (∇λn · ∇xaRδ )−

[
op{ξ=σn}ε (aRδ ), op{ξ=σn}ε (gn)

]
+O(ε).

We apply Lemma 2.12 and we obtain

ε−1
[
op{ξ=σn}ε (aRδ ), %n(εD)

]
= op{ξ=σn}ε ((∇λn −∇ηgn) · ∇xaRδ ) +O(ε) +O(R−1) +O(δ).
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Let θ ∈ C∞c (R), equation (5.16) gives, passing to the limits ε→ 0, then R→ +∞, and finally δ → 0∫
R×Rd×Sd−1

θ(t)(∇λn(σ)−∇gn(ω)) · ∇xa∞(x, σ, ω)dγt
n
(x, σ, ω) = 0.

This implies that the measure γtn(x, σ, ω) is invariant by the flow

(x, σ, ω) 7→ (x+ s(∇λn(σ)−∇gn(ω)), σ, ω).

As a consequence, by Lemma 4.4, γtn is supported on {∇λn(σ)−∇ηgn(σ, ω) = 0}.
Part 2: The two-scaled semiclassical measures coming from finite distance. We now choose θ ∈
C∞c (R), a ∈ C∞c (Rd × Ω× Rd). Arguing as in (5.16), we observe∫

R
θ(t)

(
ψεn(t), [opε(aε), ε

−1%n(εDx)]ψεn(t)
)

= O(ε).

Using that a is compactly supported in the variable η and taking advantage of the homogeneity of g, we
obtain in L(L2(Rd)),

1

ε
[op{ξ=σn}ε (a), %n(εDx)] = i op{ξ=σn}ε (∇λn(ξ) · ∇xa)− [op{ξ=σn}ε (a), op{ξ=σn}ε (gn)] +O(ε).

Passing to the limit ε→ 0, we obtain

0 =

∫
R
θ(t)TrL2(Rd)

(
(i∇λn(σn) · ∇xaW (x, σn, Dx)− [aW (x, σn, Dx), g(Dx)])Γtn

)
dt = 0

=

∫
R
θ(t)TrL2(Rd)

(
[aW (x, σn, Dx),∇λn(σn) ·Dx − g(Dx)]Γtn

)
dt

=

∫
R
θ(t)TrL2(Rd)

(
aW (x, σn, Dx)

[
∇λn(σn) ·Dx − g(Dx),Γtn

])
dt.

We deduce that for almost all t ∈ R,[
∇λn(σn) ·Dx − g(Dx),Γtn

]
= 0.

Recall that the operator Γtn is a rank one projector of L2(Rd), Γtn = |ψσn(t)〉〈ψσn(t)|. We deduce that
there exists a measurable function t 7→ c(t) ∈ C such that

(∇λn(σn) ·Dx − g(Dx))ψσn(t) = c(t)ψσn(t).

Therefore the L2-function ξ 7→ ψ̂σn(t, ξ) is supported on the set {∇λn(σn) · ξ − g(ξ) = c(t)}. Since
∇λn(σn)− g(ξ) 6= 0 for ξ 6= 0, this set is a hypersurface and thus is of Lebesgue measure 0. We deduce
ψtσn = 0, dt⊗ dx-almost everywhere, whence Γt = 0, dt-almost everywhere.
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6. CONCLUSION

In this conclusive chapter, we comment how the material displayed till now allow to prove the Theo-
rem 1.3 which was our objective. Then, we discuss the multidimensional case.

6.1. Effective mass theory in 1d. We are now able to prove Theorem 1.3]. By Corollary 4.2 (ii), the
family (ψε(t))ε>0 is ε-oscillating. Thus, (1.13) is a consequence of (1.11). For proving (1.11), we have
to determine the semi-classical measures ςt of (ψε(t))ε>0.

By Corollary 4.2 (iii), we have

(6.1) ςt =
∑

n,n′∈N∗
µtn,n′ ,

where µtn,n′ are joint measures of the pair (ψεn(t), ψεn′(t))ε>0, solutions to (4.11). Moreover, if Λn is the
set of critical points of the Bloch modes %n and Σn,n′ the set of crossing points between %n and %n′ , by
Proposition 4.3, for n ∈ N∗,

µtn,n(x, ξ) = 1ξ∈Λ̃n
µtn,n(x, ξ), Λ̃n = Λn ∪

⋃
n′ 6=n

Σn,n′ ,

and for n′ 6= n

µtn,n′(x, ξ) = 1ξ∈Σn,n′µ
t
n,n′(x, ξ).

By Lemma 3.5, Λn ⊂ πZ and Σn = πZ \ Λn, in particular, both sets consist in isolated points.
The two-microlocal analysis of the concentration of the pair (ψεn(t), ψεn′(t))ε>0 above this point give via
Corollaries 5.10 and 5.12

µtn,n(x, ξ) =
∑
ξ∈Λn

δξn(ξ)⊗ |ψ(n)
ξ (t, x)|2dx, µtn,n′ = 0, n, n′ ∈ N∗, n 6= n′,

with ψ(n)
ξ solution to (1.12). This terminates the proof.

6.2. What happens in higher dimension ? In higher dimension, the precise structure of the sets of crit-
ical points and of crossing points are rather open problems. One could have degenerate critical points and
manifolds of critical points instead of isolated points. One could also have intersections between Bloch
modes on critical points. One then has to exhibit a set of reasonable assumptions, allowing to perform a
two-scale semi-classical analysis. Indeed, the approach of Chapter 5 can be extended to analyze the con-
centration of bounded families in L2(Rd) on manifolds. This strategy is developed in [15]. We shortly
describe the assumptions made therein and the adaptation to make for obtaining a complete description
of the semi-classical measure of the solution (ψε(t))ε>0 of the Schrödinger equation (1.1).

6.2.1. Assumptions on the sets of critical and crossing points. Regarding the set of critical points of the
Bloch modes, the following assumption is introduced in [14].

H1 For n ∈ N∗, we assume that d2%n is of constant maximal rank over each connected component
of Λn.

This assumption has the advantage to be generic. It consists in saying that for all ξ ∈ Λn,

Rank d2%n(ξ) = codim Λn

or equivalently Ker d2%n(ξ) = TξΛn. It implies in particular that each connected component X ⊆ Λn is
a closed submanifold of Rd, which will give a good setting to perform a two-scale semi-classical analysis
above Λn.

Regarding the crossing sets between Bloch modes, different sets of assumptions offer a comfortable
framework. The assumptions H2 and H3 below are introduced in [15].
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H2 For n ∈ N∗, the multiplicity of the Bloch energy %n is one, except at crossing points, where it is
two. This implies that a global labeling of the band functions exists such that Σn,n′ 6= ∅ implies
|n− n′| = 1.

Hypothesis H2 is generic, as follows from the variational characterization of the Bloch modes (see (3.3)
and (3.4)) As stated, it prevents from having simultaneous crossings of more than two Bloch energies,
and higher multiplicities (both scenarii are non-generic). In particular, one can use the normal forms of
Lemma 3.13. We introduce moreover a geometric assumption

H3 For n ∈ N∗, we assume that the crossing set Σn is a smooth closed submanifold of Rd. Moreover,
the crossing is of conic type in the sense of Definition 3.12 and for all σ ∈ Σn, η ∈ NσΣn with
η 6= 0,

1

2
∇ξ(%n+1 + %n)(σ)±∇ηgn(σ, η) 6= 0.

Assuming H2 and H3 implies that the crossings involve only two modes %n and %n+1 and that the crossing
set Σn (see (5.15)) is a manifold. Because of the periodicity of the Bloch modes, it is thus the union of
connected, closed embedded submanifold of (Rd)∗, which allows the use of a two-microlocal approach
on each of these connected components.

We point out that the assumption H3 may fail and there could be crossings above critical points. Such
a situation has been studied in [15], showing that some mass may be trapped above these non conical
crossing sets, leading to the presence of non-zero terms µtn,n′ in (6.1) with n 6= n′.

6.2.2. Effective mass theory in dimension d ≥ 2. The main difference in dimension d ≥ 2 is the nature of
the two-scale Wigner measures involved in the description of the process. For stating the result, we need
to introduce other geometric objects associated with a submanifold X of (Rd)∗. We define its cotangent
bundle as the union of all cotangent spaces to X

(6.2) T ∗X := {(ξ, x) ∈ X × Rd : x ∈ T ∗ξX},

each fibre T ∗ξX is the dual space of the tangent space TξX . We shall denote byM+(T ∗X) the set of
non-negative Radon measures on T ∗X . We observe that every point x ∈ Rd can be uniquely written as

x = v + z where v ∈ T ∗ξX and z ∈ NξX.

Then, given a function φ ∈ L∞(Rd) and a point (ξ, v) ∈ T ∗X , we denote by mX
φ (ξ, v) the operator

acting on L2(NξX) by multiplication by φ(v + ·). We shall denote by L(L2(NξX)) the set of bounded
operators acting on L2(NξX) and by L1

+(L2(NξX)) the set of operators that are non-negative and trace-
class. When X = Λn and assumption H2 holds, we will consider the operator d2%n(ξ)Dz ·Dz acting on
NξΛn for any ξ ∈ Λn.

Theorem 6.1. [15] Assume H1, H2 and H3 are satisfied for all n ∈ N∗ and consider (ψε)ε>0 a family
of solutions to equation (1.1) with an initial data (ψε0)ε>0 that is uniformly bounded in Hs

ε (Rd) for some
s > d

2 . Then, there exist a subsequence (ψε`0 )`∈N of the initial data, a sequence of non negative measures
(νn)n∈N on T ∗Λn, and a sequence of measurable non negative trace-class operators (Mn)n∈N

Mn : T ∗ξ Λn(ξ, v) 7→Mn(ξ, v) ∈ L1
+(L2(NξΛn)), TrL2(NξΛn)Mn(ξ, v) = 1,

both depending only on (ψε`0 )`∈N, such that for every a < b and every φ ∈ C0(Rd) one has

lim
`→+∞

∫ b

a

∫
Rd
φ(x)|ψε`(t, x)|2dxdt(6.3)

=
∑
n∈N

∫ b

a

∫
T∗Λn

TrL2(NξΛn)

(
mΛn
φ (ξ, v)Mt

n(ξ, v)
)
νn(dξ, dv)dt,
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where t 7→Mt
n(ξ, v) ∈ C(R,L1

+(L2(NξΛn)) solves the von Neumann equation{
i∂tM

t
n(ξ, v) =

[
1
2 d

2%n(ξ)Dz ·Dz +mΛn
Vext

(ξ, v) , Mt
n(ξ, v))

]
M0

n = Mn.

(recall that mΛn
φ (ξ, v) (resp. mΛn

Vext
(ξ, v)) denotes the operator acting on L2(NξΛn) by multiplication by

φ(v + ·) (resp. Vext(v + ·))).

Theorem 1.3 is a consequence of Theorem 6.1 in the case where critical sets Λn consist in isolated
points. As Theorem 1.3, Theorem 6.1 tells that conical crossings do not trap energy. We emphasize
that (Mn)n∈N∗ and (νn)n∈N∗ are associated with the initial data. They are two-scale Wigner measures
associated with the concentration of (ψε0)ε>0 on the manifolds Λn.

The main difference with the case of the concentration on a point of Rdξ relies on the structure of
the two-scale Wigner measures describing the concentration at finite distance with respect to the second
scale ε. Indeed, if Λn = {ξ = ξn}, TξnΛ = {0} and NξnΛn = Rd. Thus, the measure νn reduces to a
scalar and the trace-class operator Mn only depends on ξn, it is no longer a function. Theorem 5.4 states
that in that special case, one can prove that Mn is a projector.

As a final conclusive remark, one can mention that, regarding the semi-classical analysis of equa-
tion (1.1), the main issue consists in the understanding of the behavior of the Bloch modes in dimension
d ≥ 1, which is a problem at the intersection between spectral theory and geometry.
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APPENDIX A. KATO-RELLICH’S THEOREM

Kato-Rellich’s Theorem offers a way to prove that an operator is self-adjoint by a comparison argu-
ment. The reader can refer to [33] or other books about Functional Analysis.

Theorem A.1. Let A be a self-adjoint operator on its domain D(A) and B a symmetric operator on
D(A). Let us assume that there exists 0 < α < 1 and C > 0 such that

∀v ∈ D(A), ‖Bv‖ ≤ α‖Av‖+ C‖v‖.
Then the operator A+B is self-adjoint on D(A).

As an example, we consider the Hilbert space L2([0, 1]d) and the operator −∆(ξ), which consists in
the Laplace operator on the cube C̄ = [0, 1]d with boundary conditions

f(y + `) = eiξ·`f(y), ∂nf(y + `) = −∂nf(y)eiξ` ∀(y, `) ∈ ∂C × Zd such that y + ` ∈ ∂C.
As mentioned in Section 3.1, this operator is unitarily equivalent to P0(ξ) and is self-adjoint.

Let us consider potentials Vper that are Zd-periodic and the operator −∆(ξ) + Vper(x). We make the
assumption:

(A.1) Vper ∈ Lp(Td), with


p = 2 if d = 1, 2, 3,
p > 2 if d = 4
p = d

2 if d ≥ 5

Theorem A.2. Assume that Vper satisfies Assumptions A.1. Then, the operator −∆(ξ) + Vper(x) is
self-adjoint for all ξ ∈ Rd, and its spectrum is bounded from below. Besides it has a compact resolvent.

The result comes from the application of Theorem A.1 to the operators A := −∆(ξ) and B := Vper,
the next Lemma shows that the hypothesis of Theorem A.1 are satisfied.

Lemma A.3. Let Vper satisfying Assumptions A.1, then for all ε > 0 there exists a constant Cε > 0 such
that,

‖Vperf‖L2([0,1]d) ≤ ε‖∆f‖L2([0,1]d) + Cε‖f‖L2([0,1]d), ∀f ∈ H2(]0, 1[]d),∣∣∣∣∣
∫

[0,1]d
Vper(y)|f(y)|2dy

∣∣∣∣∣ ≤ ε
∫

[0,1]d
|∇f(y)|2dy + Cε‖f‖2L2([0,1]d), ∀f ∈ H

1(]0, 1[d).

A potential satisfying this type of property is said to be infinitesimally bounded with respect to the
Laplacian. Note that the result is trivial if Vper(y) is bounded. Let us now prove Lemma A.3 when
d = 1, 2, 3.

Proof
Assume d = 1, 2, 3 and Vper ∈ L2(Td). Consider χ ∈ C∞c (Rd) such that 0 ≤ χ ≤ 1, χ = 1 on [0, 1]d

and supp(χ) ⊂ [−1, 2]d. We associate with any f ∈ H2(]0, 1[d) the function fχ = χf which is in
H2(Rd), and thus in L∞(Rd) since 2 > d/2. Note that Vper can be extended to Rd by periodicity.

‖Vperf‖L2([0,1]d) ≤ ‖Vperfχ‖L2(Rd)

≤ ‖fχ‖L∞(Rd)‖Vper1[−1,2]d‖L2(Rd)

≤ Cd‖fχ‖L∞(Rd)‖Vper‖L2([0,1]d),

The constant Cd depends on the numbers of cells which are included in [−1, 2]d and next to [0, 1]d. We
then uses the inverse Fourier transform to evaluate ‖fχ‖L∞(Rd):

‖fχ‖L∞(Rd) ≤ (2π)−d
∫
Rd
|f̂χ(ξ)|dξ.



54 CLOTILDE FERMANIAN KAMMERER

We choose β ∈
]
d
2 , 2
[

and use Cauchy-Schwartz inequality to write

‖fχ‖L∞(Rd) ≤ (2π)−d
(∫

Rd

dξ

(1 + |ξ|2)β

)1/2(∫
Rd

(1 + |ξ|2)β |f̂χ(ξ)|2dξ
)1/2

.

For all ε > 0, we can find Cε > 0 such that

∀ξ ∈ Rd, (1 + |ξ|2)β ≤ ε(1 + |ξ|2)2 + Cε.

Therefore, we have

‖fχ‖L∞(Rd) ≤ ε‖(1−∆)fχ‖L2(Rd) + Cε‖fχ‖L2(Rd)

≤ ε‖∆fχ‖L2(Rd) + (Cε + ε)‖fχ‖L2(Rd)

Besides, by the properties of χ,

‖∆fχ‖L2(Rd) ≤ ‖∆f‖L2([0,1]d) + 2‖∇f‖L2([0,1]d)‖∇χ‖L2(Rd) + ‖∆χ‖L2(Rd)‖f‖L2(Rd)

which gives the result.

APPENDIX B. COMPACT OPERATORS AND OPERATORS WITH COMPACT RESOLVENT

We close this elements of spectral theory with a few words about compact operators, that are used in
this book. Recall that A ∈ L(H) is said to be a compact operator if for any bounded family (fn)n∈N of
HN, the sequence (Afn) has a limit point. Compact operators enjoy lots of properties. In particular, the
structure of their spectrum is very rigid. The next Theorem is classic and proved in any book of functional
analysis.

Theorem B.1. AssumeH is of infinite dimension. LetA be a compact self-adjoint operator, then its spec-
trum consists in isolated eigenvalues of finite multiplicity, (λn)n∈N, which admits the only limit point 0.
Moreover, there exists an orthonormal basis (ϕn)n∈N ofH consisting of eigenvectors of A.

As a consequence of this result, we have the following description of the spectrum of self-adjoint
operators with compact resolvent.

Proposition B.2. Let A : D(A)→ H a self-adjoint operator the resolvent of which, (Aλ)−1 is compact
for some λ ∈ C. Then, there exists an orthonormal basis (ϕn)n∈N and a sequence (%n)n∈N ∈ RN such
that %n −→

n→+∞
+∞ and

Aϕn = %nϕn, ∀n ∈ N.

Proof
By hypothesis, there exists (ϕn)n∈N and (λn)n∈ N with λn −→

n→+∞
0 such that

(A− λ)−1ϕn = λnϕn, ∀n ∈ N.

Besides, λn 6= 0. Then, a simple computation gives ϕn = λ−1
n (A− λ)ϕn, whence

Aϕn = λ−1
n (λnλ+ 1)ϕn.

We thus obtain the result with %n = λ + λ−1
n . The fact that %n ∈ R for all n ∈ N comes from the

self-adjointness of A.
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APPENDIX C. MIN-MAX FORMULA

We give here a MinMax characterization of the eigenvalues %n(ξ) of the operators P (ξ). This comes
from the links between self-adjoint operator and quadratic forms. We associate with P (ξ) the positive
quadratic form

Qξ(f) =
1

2
‖(Dy + ξ)f‖2L2(Td) + (Vperf, f)L2(Td) +K‖f‖2L2(Td).

where K is chosen such that for all ξ ∈ B, the spectrum of P (ξ) is included in ] − K + 1,+∞[. The
quadratic form Qξ is associated with the operator P (ξ) + K, in the sense that for all f in the domain of
P (ξ) (which is included in the domain of Qξ)

Qξ(f) = ((P (ξ) +K)f, f)L2(Td) .

The domain of the quadratic form Qξ is H1(Td) and Qξ is coercive since

Qξ(f) ≥ ‖f‖L2(Td), ∀f ∈ L2(Td)

and thus defines a norm f 7→
√
Qξ(f) on H1(Td). The form Qξ and the operator P (ξ) + K are

linked by Riesz-Friedrichs theorem: Aξ = P (ξ) + K is the unique self-adjoint operator with domain
D(Aξ) ⊂ D(Qξ) and such that (Aξf, f) = Qξ(f) for all f ∈ D(Aξ). This is another way to define P (ξ)
as Aξ −K where Aξ is the self adjoint operator associated with the form Qξ.

Proposition C.1. The family of eigenvalues (%n(ξ))n∈N are given by the Courant-Fischer formula (also
called Min-Max formula),

(C.1) λ1(ξ) := %1(ξ) +K = min
‖f‖=1

Qξ(f),

and, for n ∈ N \ {1},

(C.2) λn(ξ) := %n(ξ) +K = min
dimM=n, M⊂H1(Td)

max
f∈M, ‖f‖=1

Qξ(f).

Note that the real numbers λn(ξ) are non negative for all ξ ∈ Rd.
Proof
Let us prove the Courant-Fischer formula. Recall that for any f ∈ L2(Td) such that

Qξ(f) =
∑
n∈N

λn(ξ)|〈f, ϕn(ξ)〉|2.

Therefore, since the λn(ξ) are non negative, one gets that if ‖f‖L2(Td) = 1, one has

Qξ(f) ≥ λ1(ξ)
∑
n∈N
|〈f, ϕn(ξ)〉|2 = λ1(ξ) = Qξ(ϕ1(ξ)),

which proves (C.1).
For proving (C.2), we consider the sets Mn = Vect (ϕ1(ξ), · · · , ϕn(ξ)) for n ∈ N∗. We first deduce

min
dimM=n, M⊂H1(Td)

max
f∈M, ‖f‖=1

Qξ(f) ≤ max
f∈Mn, ‖f‖=1

Qξ(f) = λn(ξ).

Let us now consider a vector space M ⊂ L2(Td) of dimension n. Since dimMn−1 = n− 1,

dimM ∩M⊥n−1 = dimM − dimM ∩Mn−1 ≥ n− (n− 1) = 1

and M ∩M⊥n−1 6= ∅. Let f ∈M ∩M⊥n−1 with ‖f‖L2(Td) = 1, then f has only components on ϕp(ξ) for
p ≥ n and

Qξ(f) =
∑
p≥n

λp(ξ)|〈f, ϕp(ξ)〉|2 ≥ λn(ξ)
∑
p≥n

|〈f, ϕp(ξ)〉|2 = λn(ξ).
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Therefore, for any vector space M ⊂ L2(Td) of dimension n

max
f∈M, ‖f‖=1

Qξ(f) ≥ λn(ξ)

and we obtain
min

dimM=n, M⊂H1(Td)
max

f∈M, ‖f‖=1
Qξ(f) ≥ λn(ξ),

which concludes the proof of (C.2).
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