
SEMI-CLASSICAL ANALYSIS ON GRADED LIE GROUPS

CLOTILDE FERMANIAN KAMMERER

Abstract. This text consists in the lecture of a Spring Class given in Göttingen in April 2024.
The material is taken from works started with Véronique Fischer and extended in collaborations
with Cyril Letrouit, Steven Flynn and Lino Benedetto. We explain how the semi-classical approach
that has been widely used in the Euclidean setting since the 70s can be extended to the case of
nilpotent Lie groups.
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1. Introduction

Semi-classical analysis has its roots in the foundations of quantum mechanics. Simultaneously
with this new theory arose the question of understanding the links between classical and quantum
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mechanics. It turned out that the Planck constant ~ can be understood as the obstruction to give
a classical description of a quantum particule by the simultaneous knowledge of its position and its
impulsion. This is expressed by the Heisenberg uncertainty principle that we first discuss.

1.1. Uncertainty principle. In quantum mechanics, a particule is described by a probability
measure |ψ(x)|2dx, with ψ a normalized square integrable function on the configuration space Rdx,
called its wave function. Denoting by xj the coordinates of x ∈ Rd, the average position of the
particule is the expectation value of the observables xj

〈xj〉ψ =

∫
Rd
xj |ψ(x)|2dx, 1 ≤ j ≤ d.

Similarly, the average impulsion is

〈ξj〉ψ =

∫
Rd

~Dxjψ(x)ψ(x)dx =

∫
Rd

~ξj |ψ̂(ξ)|2 dξ

(2π)d
, Dxj =

1

i
∂xj ,

where we have used the Plancherel theorem for the Fourier transform. Considering the variance of
these expectation values,

(dψxj)
2 = 〈(xj − 〈xj〉ψ)2〉ψ =

∫
Rd

(xj − 〈xj〉ψ)2|ψ(x)|2dx,

(dψξj)
2 = 〈(ξj − 〈ξj〉ψ)2〉ψ =

∫
Rd

(ξj − 〈ξj〉ψ)2|ψ̂(ξ)|2 dξ

(2π)d
,

the Heisenberg uncertainty principle reads

(1.1) dψxj dψξj ≥
~
2
, 1 ≤ j ≤ d.

The Planck constant ~ reflects the difference between quantum and classical mechanics, since,
in the latter, the position and the impulsion are deterministic variables that can be known with
precision. The subject of semi-classical analysis is to understand how one can derive classical
mechanics from quantum mechanics, by letting the obstruction ~ go to 0, even though ~ is a physical
constant. Semi-classical analysis has led to the development of asymptotic technics that are now
used in various fields of applied mathematics. For this reason, we will skip the notation ~ and
denote ε a small parameter that is present in some problems of interest involving PDEs. Carrying
a semi-classical analysis of a problem consists in investigating the properties of a phenomenon of
interest in the limit ε→ 0, when ε is a small parameter present in the equation.

1.2. Gaussian wave packets. The uncertainty principle is optimal in the sense that there exists a
unique family among L2-functions that saturates the uncertainty principle. This family consists in
Gaussian wave packets. They are wave functions associated with a classical state z = (q, p) ∈ R2d

according to

gεz(x) = (πε)−d/4 exp(− 1
2ε |x− q|

2 + i
εp · (x− q)), x ∈ Rd.

It is normalized, ‖gεz‖L2 = 1, and centered in z,

〈xj〉gεz = qj and 〈ξj〉gεz = pj , 1 ≤ j ≤ d,
and saturates the uncertainty principle:

dgεzxj = dgεzξj =

√
ε

2
, 1 ≤ j ≤ d.

Gaussian wave packets have the property of being very localized in the sense that if φ ∈ C∞c (Rd),

(1.2)

∫
Rd
φ(x)|gεz(x)|2dx = φ(q) +O(

√
ε).
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They also have this property in Fourier variable

(1.3)

∫
Rd
φ(εDx)gεz(x)gεz(x)dx = φ(p) +O(

√
ε),

where φ(εD) is the Fourier multiplier defined by φ̂(εD)f = φ(εξ)f̂(ξ). This results from the fact
that, after rescaling , the Fourier transform of gεz has the same Gaussian structure

ε−
d
2 ei

p·q
2ε ĝεz

(
ξ

ε

)
= ei

(−p)·q
2ε gεJz, Jz = (−p, q) ∈ R2d.

The relations (1.2) and (1.3) suggest that the phase-space point z = (q, p) is the only obstruction to
the strong convergence to 0 in L2(Rd) of the sequence gεz: if φ(q) = 0, then φgεz converges strongly
to 0, and similarly, if φ(p) = 0, then φ(εD)gεz too.

We close this short description of Gaussian wave packets by mentioning their additional frame
property: any wave function can be written as a superposition of Gaussian wave packets according
to the Bargmann formula: for all f ∈ L2(Rd)

f = (2πε)−
d
2

∫
R2d

Bε[f ](z)gεzdz,

where the Bargmann transform [3] is the isometry from L2(Rd) into L2(R2d) defined by

Bε[f ] = (2πε)−
d
2 (f, gεz)L2 , z ∈ R2d.

This formula has been used to construct approximated propagators for Schrödinger equations
(see [25, 24]). We refer to the book [3] for more about wave packets.

1.3. Semiclassical pseudodifferential operators. The previous analysis of the Gaussian wave
packets suggests that the description of oscillating families requires a simultaneous analysis in
position and in a rescaled Fourier variables. The theory of semi-classical pseudodifferential operators
provided a tool for performing such a program. The quantization problem, or how to associate an
operator to an energy, also called Hamiltonian, is a question from quantum mechanics. It gives a
mathematical setting for exploring the correspondence between classical and quantum mechanics,
and analyzing oscillating phenomena.

Let a(x, ξ) be a semi-classical observable, i.e. a function of the Schwartz space S(R2d). The
semi-classical pseudodifferential operator of symbol a is the operator opε(a) defined on functions
f ∈ S(Rd) by

opε(a)f(x) = (2πε)−d
∫
R2d

a
(
a, ξ
)
e
i
ε
ξ·(x−y)f(y)dy dξ.(1.4)

This form is called the classical quantization, also called Kohn-Niremberg quantization, of the sym-
bol a [5, 27]. Other types of quantizations are possible like the, ‘left’ quantizations, where the
symbol appears in the form a(y, ξ), or the Weyl quantization that has the advantage to be a
symmetric quantization [17, 27].

The operator opε(a) maps S(Rd) into itself and, by duality, S ′(Rd) into itself. Its kernel kε can
be expressed in terms of the inverse Fourier transform of a in the variable ξ

(1.5) κ(x, v) = (2π)−d
∫
Rd
a(x, ξ)eiξ·vdξ, (x, v) ∈ R2d.

Indeed, one has

kε(x, y) =
1

εd
κ

(
x,
x− y
ε

)
, (x, y) ∈ R2d.
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As a consequence of the Schur Lemma, the operator opε(a) maps L2(Rd) into itself and

‖opε(a)‖L(L2(Rd)) ≤
∫
Rd

sup
x∈Rd

|κ(x, v)|dv

for C > 0 independent of a and ε.

Moreover, the set of pseudos is an algebra that enjoys symbolic calculus: if a, b ∈ S(R2d), then
in L(L2(Rd)),

opε(a)opε(b) = opε(ab) +
ε

i
opε (∇ξa · ∇xb) +O

(
ε2
)
.

Regarding the adjoint, one has opε(a)∗ = opε(a) +O(ε) in L(L2(Rd)).

1.4. Semi-classical measures. Even though the quantization is not positive, the G̊arding in-
equality gives positivity in the semi-classical limit: if a ≥ 0, there exists a constant C > 0 such that
for all f ∈ L2(Rd),

(opε(a)f, f)L2 ≥ −Cε‖f‖L2 .

As a consequence if (f ε)ε>0 is a bounded family in L2(Rd), there exists subsequences εk −→
k→+∞

0

and a positive measure µ on R2d such that for all a ∈ S(R2d,

(opε(a)f εk , fεk)L2 −→
k→+∞

∫
R2d

a(x, ξ)µ(dx, dξ).

Such measures are called semi-classical measures of the family (f ε)ε>0. They characterize the
obstruction to the strong convergence of f ε. For example, when considering Gaussian wave packets,
one has

(opε(a)gεz, g
ε
z)L2 −→

ε→0
a(z).

The family (gεz)ε>0 has only one semi-classical measure which is the Dirac mass in z = (q, p).

1.5. Correspondence principle. The tools developed above can be combined with evolution
problems. Consider a real-valued Hamiltonian H, for example

H =
|ξ|2

2
+ V (x),

for some ice function V . At the classical level, one associates with h the Newtonian trajectories
z 7→ Φt(z) = (q(t), p(t)) such that

q̇(t) = ∇ξH(q(t), p(t)), ṗ(t) = −∇xH(q(t), p(t)),

with initial value (q(0), p(0)) = z = (q, p) ∈ R2d. At the quantum level, one considers the operator
opε(H). The following property connects the classical and the quantum picture.

Proposition 1.1. Assume (ψε)ε>0 is a bounded family in L2(Rd). Let µ be one of its semi-classical
measures. Then,

(1) If opε(H)ψε = o(1) then µ is supported on {H(x, ξ) = 0}.
(2) If opε(H)ψε = o(ε) then µ is invariant by the flow Φt.

Property (1) is refered to as localization of the semiclassical measure and Property (2) as its
invariance. The proof comes from the analysis of (opε(aH)ψε, ψε) and of (opε({a,H})ψε, ψε) for
a ∈ S(R2d). Both quantities are related to the equation satisfied by (ψε)ε>0.

In this lecture, our objective is to extend the semiclassical approach in the setting of graded Lie
groups. We will devote the first section to preliminaries on these groups. Then, we will introduce the
semi-classical calculus, discuss wave packets, G̊arding inequality, construct semi-classical measures,
and state an Egorov theorem in a simple case. We will not discuss geometric invariance of the
calculus with respect to filtration preserving diffeomorphisms and we point out the reference [?]
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on this subject. The reader interested in the semiclassical approach in the Euclidean setting will
benefit from the references [27, 24, 5].

2. Preliminaries on graded nilpotent groups

The material of this section is taken from [13], we also refer to [26]. A graded group G is
a connected simply connected nilpotent Lie group whose (finite dimensional, real) Lie algebra g
admits an N-gradation into linear subspaces,

g = ⊕∞j=1gj with [gi, gj ] ⊆ gi+j , 1 ≤ i ≤ j,

where all but a finite number of subspaces gj are trivial. We denote by r = rG the smallest integer j
such that all the subspaces gj , j > r, are trivial. If the first stratum g1 generates the whole Lie
algebra, then gj+1 = [g1, gj ] for all j ∈ N0 and r is the step of the group; the group G is then said
to be stratified, and also (after a choice of basis or inner product for g1) Carnot.

Example 2.1. The first examples we give below are stratified, not the last one.

(1) The Heisenberg group H. Its Lie algebra has two strata: h = v⊕ z with

v = vect(Xj , Yj , , 1 ≤ j ≤ d), z = vectZ, Z = [Xj , Yj ], 1 ≤ j ≤ d.

(2) H-type groups. These groups are generalizations of the Heisenberg group. They are step 2
stratified groups with Lie algebra h = v ⊕ z, characterized by the following property: for
any λ ∈ z∗, the matrix B(λ) of the skew-symmetric bilinear defined on v × v by (U, V ) 7→
λ([U, V ]) is such that B(λ)2 = −|λ|2Id.

(3) The Engel group E. It is a 3 step group with Lie algebra E = E1 ⊕ E2 ⊕ E3,

E1 = vect(X1, X2), E2 = vectX3, E3 = vectX4,

with [X1, X2] = X3 and [X1, X3] = X4.
(4) A non-stratified graded group G can be constructed by adding a direction V to the 3d

Heisenberg Lie algebra of example (1): one sets g = g1 ⊕ g2 with

g1 = vect(X,Y ), g2 = vect(Z, V ), Z = [X,Y ], [V,X] = [V, Y ] = [V,Z] = 0.

2.1. The exponential map and functional spaces. The product law on G is derived from the
exponential map

expG : g→ G

which is a global diffeomorphism from g onto G. Let n = dim g. Once a basis X1, . . . , Xn for g has
been chosen, we may identify the point (x1, . . . , xn) ∈ Rn with the element x = exp(x1X1 + · · · +
xnXn) ∈ G.

The exponential map allows us to define the (topological vector) spaces C∞(G), Cc(G) and
S(G) of, respectively, smooth, continuous and compactly supported, and Schwartz functions on G,
identified with Rn. The resulting spaces are intrinsically defined as spaces of functions on G and
do not depend on a choice of basis.

The exponential map also induces a Haar measure dx on G which is invariant under left and
right translations and defines Lebesgue spaces on G. The non-commutative convolution is given via

(2.1) (f1 ∗ f2)(x) :=

∫
G
f1(y)f2(y

−1x)dy, x ∈ G

for f1, f2 ∈ Cc(G).
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2.2. Adapted basis and dilations. We now construct a basis adapted to the gradation. Set dj =
dim gj for 1 ≤ j ≤ r. We choose a basis {X1, . . . , Xd1} of g1 (this basis is possibly reduced to ∅), then
{Xd1+1, . . . , Xd1+d2} a basis of g2 (possibly {0}) and so on. Such a basis B = (X1, · · · , Xd1+···+dr)
of g is said to be adapted to the gradation; and we have n = d1 + · · ·+ dr. The integer r is the step
of the gradation.

The Lie algebra g is a homogeneous Lie algebra equipped with the family of dilations {δt, t > 0},
δr : g → g, defined by δtX = t`X for every X ∈ g`, ` ∈ N [14, 13]. We re-write the set of integers
` ∈ N such that g` 6= {0} into the increasing sequence of positive integers υ1, . . . , υn, counted with
multiplicity, the multiplicity of g` being its dimension. The associated group dilations are defined
by

δt(x) = tx := (tυ1x1, t
υ2x2, . . . , t

υnxn), x = (x1, . . . , xn) ∈ G, t > 0.

In this way, the integers υ1, . . . , υn become the weights of the dilations and we have δtXj = tυjXj ,
j = 1, . . . , n, on the chosen basis of g.

In a canonical way, this leads to the notions of homogeneity for functions and operators. For
instance, the Haar measure is homogeneous of degree

Q :=
∑

1≤`≤r
w` dim g`,

which is called the homogeneous dimension of the group. Here, the w`, 1 ≤ ` ≤ r are the weights of
the gradation counted with multiplicity and the vector fields corresponding to an element X ∈ g`
are w`-homogeneous.

An important class of homogeneous map are the homogeneneous quasi-norms, that is, a 1-
homogeneous non-negative map G 3 x 7→ |x| which is symmetric and definite in the sense that
|x−1| = |x| and |x| = 0⇐⇒ x = 0. In fact, all the homogeneous quasi-norms are equivalent in the
sense that if | · |1 and | · |2 are two of them, then

∃C > 0, ∀x ∈ G, C−1|x|1 ≤ |x|2 ≤ C|x|1.

Examples may be constructed easily, such as

|x| = (
n∑
j=1

|xj |N/υj )1/N for any N > 0,

with the convention above.

In the rest of the paper, we will assume that we have fixed a basis X1, . . . , Xn of g adapted to
the gradation. We keep the same notation for the associated left-invariant vector fields on G. For
a multi-index α = (α1, . . . , αn) ∈ Nn0 , we set Xα = Xα1

1 . . . Xαn
n . The differential operators Xα are

homogeneous of degree

[α] = υ1α1 + . . .+ υnαn.

2.3. Fourier analysis. Recall that a (unitary) representation (Hπ, π) of G is a pair consisting
in a Hilbert space Hπ and a group morphism π from G to the set of unitary operators on Hπ.
In this paper, the representations will always be assumed (unitary) strongly continuous, and their
associated Hilbert spaces separable. A representation is said to be irreducible if the only closed
subspaces of Hπ that are stable under π are {0} and Hπ itself. Two representations π1 and π2 are
equivalent if there exists a unitary transform U called an intertwining map that sends Hπ1 on Hπ2
with

π1 = U−1 ◦ π2 ◦ U.
The dual set Ĝ is obtained by taking the quotient of the set of irreducible representations by this

equivalence relation. We may still denote by π the elements of Ĝ and we keep in mind that different
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representations of the class are equivalent through intertwining operators. The dilations extend to

the dual set Ĝ via
δtπ(x) = π(δtx), x ∈ G, π ∈ Ĝ, t > 0.

The Fourier transform of an integrable function f ∈ L1(G) at a representation π of G is the
operator acting on Hπ via

f̂(π) := F(f)(π) :=

∫
G
f(z) (π(z))∗ dz.

Note that if f1, f2 ∈ Cc(G) then

(2.2) f̂1 ∗ f2 = f̂2f̂1.

If π1, π2 are two equivalent representations of G with π1 = U−1 ◦ π2 ◦ U for some intertwining
operator U, then

F(f)(π1) = U−1 ◦ F(f)(π2) ◦ U.
Hence, this defines the measurable field of operators {F(f)(π), π ∈ Ĝ} modulo equivalence. The

unitary dual Ĝ is equipped with its natural Borel structure, and the equivalence comes from quo-
tienting the set of irreducible representations of G together with understanding the resulting fields
of operators modulo intertwiners.

We now recall the Plancherel Theorem due to Dixmier [6, Ch. 18]. It states the existence and

uniqueness of the Plancherel measure, that is, the positive Borel measure µ on Ĝ such that the
Plancherel formula

(2.3) ‖f‖2L2(G) =

∫
G
|f(x)|2dx =

∫
Ĝ
‖f̂(π)‖2HS(Hπ) dµ(π),

or equivalently

(f1, f2)L2(G) =

∫
G
f1(x)f2(x)dxdx =

∫
Ĝ

TrHπ

(
f̂1(π)f̂2(π)∗)

)
dµ(π)

holds for any f ∈ Cc(G). Here ‖ · ‖HS(Hπ) denotes the Hilbert-Schmidt norm on Hπ. This implies

that the group Fourier transform is a unitary map from L1(G)∩L2(G) equipped with the norm of
L2(G) to the Hilbert space

L2(Ĝ) :=

∫
Ĝ
Hπ ⊗H∗π dµ(π).

We identify L2(Ĝ) with the space of µ-square integrable Hilbert-Schmidt fields on Ĝ; its Hilbert
norm and scalar products are then given by

‖τ‖2
L2(Ĝ)

=

∫
Ĝ
‖τ(π)‖2HS(Hπ) dµ(π), τ ∈ L2(Ĝ),

(τ1, τ2)L2(Ĝ)
=

∫
Ĝ

TrHπ(τ1(π) τ2(π)∗) dµ(π), τ1, τ2 ∈ L2(Ĝ).

Here TrHπ denotes the trace of operators on the Hilbert space Hπ. The group Fourier transform F
extends unitarily from L2(G) onto L2(Ĝ). The dual set Ĝ and the Plancherel measure µ can be
explicitly described via Kirillov’s orbit method [4].

Finally, we denote by L∞(Ĝ) the space of measurable fields (modulo equivalence) of bounded

operators σ = {σ(π) ∈ L (Hπ) : π ∈ Ĝ} on Ĝ such that

‖σ‖
L∞(Ĝ)

:= sup
π∈Ĝ
‖σ(π)‖L (Hπ)
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is finite; here the supremum refers to the essential supremum with respect to the Plancherel mea-

sure µ of Ĝ. In fact, L∞(Ĝ) is naturally a Banach space and moreover a von Neumann algebra,
sometimes called the von Neumann algebra of the group G.

The set L∞(Ĝ) acts naturally on L2(Ĝ) by composition on the left:

(στ)(π) = σ(π) τ(π), π ∈ Ĝ, σ ∈ L∞(Ĝ) and τ ∈ L2(Ĝ),

(it also acts on the right) and this action is continuous

‖στ‖
L2(Ĝ)

≤ ‖σ‖
L∞(Ĝ)

‖τ‖
L2(Ĝ)

.

Dixmier’s Plancherel theorem implies that L∞(Ĝ) is isomorphic to the von Neumann algebra
L (L2(G))G of linear bounded operators on G that are invariant under left translations. The
isomorphism is given by the fact that the Fourier multiplier with symbol σ, i.e. the operator

f 7→ F−1(σf̂), is an operator in L (L2(G))G.

Note that FL1(G) ⊆ L∞(Ĝ) with ‖f̂‖
L∞(Ĝ)

≤ ‖f‖L1(G) for all f ∈ L1(G).

2.4. Rockland operators. We associate with the left-invariant vector fields Xj , 1 ≤ j ≤ n, their
Fourier symbol π(Xj) = dπ(Xj). They satisfy

(2.4) F(Xjf) = π(Xj)F(f), f ∈ S(G), 1 ≤ j ≤ n.
this definition extends to any left-invariant differential operator.

A Rockland operator R on G is a left-invariant differential operator which is homogeneous of
positive degree and satisfies the Rockland condition:

(R) for each unitary irreducible representation π on G, except for the trivial representation,
the operator π(R) is injective on H∞π , that is,

∀v ∈ H∞π , π(R)v = 0 =⇒ v = 0.

In the stratified case, any (left-invariant negative) sub-Laplacian, that is

L = Z2
1 + . . .+ Z2

n′ with Z1, . . . , Zn′ forming any basis of the first stratum g1,

is a positive Rockland operator.
More generally, on any graded group G, the operator

(2.5) R =
n∑
j=1

(−1)
νo
υj cjX

2 νo
υj

j with cj > 0,

is a positive Rockland operator of homogeneous degree 2νo if νo is any common multiple of
υ1, . . . , υn.

3. Semi-classical pseudodifferential calculus

In this section, we introduce a semi-classical pseudodifferential calculus on graded Lie groups.
Main ideas are taken from [10, 11, 12, 1].

3.1. The algebra of semi-classical symbols. We define A0, the space of regularizing symbols

σ = {σ(x, π) : (x, π) ∈ G× Ĝ} of the form

σ(x, π) = Fκx(π) =

∫
G
κx(y)(π(y))∗dy,

where (x, y) 7→ κx(y) is a function of the topological vector space S(G×G) of Schwartz functions on
G×G. The function x 7→ κx is called the convolution kernel of σ. The notation A0 is reminiscent
to the set of symbols A introduced in [21] in the Euclidean setting.
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We endow A0 with the norm

(3.1) ‖σ‖A0 = ‖ sup
x∈G
|κx(·)|‖L1(G).

In view of (2.2), the set A0 is an algebra. Moreever, it is stable via the action of the left-invariant
vector fields Xj , and via the difference operator ∆q associated to q ∈ C∞(G) and defined by:

(3.2) ∆qκ̂ = F(qκ), κ ∈ Cc(G).

We set ∆j := ∆xj .

3.2. Semi-classical quantization. With the symbol σ ∈ A0, we associate the (family of) semi-
classical pseudodifferential operators

Opε(σ) =

∫
π∈Ĝ

TrHπ (π(x)σ(x, δεπ)Ff(π)) dµ(π).

In other words, we have

Opε(σ)f(x) =

∫
π∈Ĝ

TrHπ (π(x)σ(x, δεπ)Ff(π)) dµ(π), f ∈ S(G), x ∈ G.

In terms of the convolution kernel κx = F−1σ(x, ·), we have

Opε(σ)f(x) = f ∗ κ(ε)x (x), f ∈ S(G), x ∈ G.

Above, κ
(ε)
x is the convolution kernel of σ(·, δε ·) and is given by a rescaling of the convolution kernel

of σ:

κ(ε)x (z) := ε−Qκx(δ−1ε z), x, z ∈ G.

Proposition 3.1. Let σ ∈ A0, then Opε(σ) is bounded in L2(G). Moreover, there exists a constant
C > 0 such that for all

∀σ ∈ A0, ∀ε > 0, ‖Opε(σ)‖L(L2(G)) ≤ C ‖σ‖A0 .

We point out that other estimates can be useful, in particular those implying the symbol norms
introduced in [13].

Proof. We observe that if f ∈ S(G) then

|Opε(σ)f(x)| = |
∫
G
f(y)κεx(y−1x)dy| ≤

∫
G
|f(y)| sup

x1∈G
|κεx1(y−1x)| dy = |f | ∗ sup

x1∈G
|κεx1(·)|(x),

so the Young convolution inequality implies

‖Opε(σ)f‖L2(G) ≤ ‖f‖L2(G)‖ sup
x1∈G

|κεx1(·)|‖L1(G).

We recognise this L1-norm as ‖σ‖A0 :

‖ sup
x1∈G

|κεx1(·)|‖L1(G) = ‖ sup
x1∈G

|κx1(·)|‖L1(G) = ‖σ‖A0 .

�
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3.3. Symbolic calculus. The semi-classical pseudodifferential operators enjoy a symbolic calculus.
In the next statement, if α = (α1, · · · , αn) ∈ Nn, we denote by ∆α the difference operator ∆qα

associated with the function qα(x) = xα1
1 · · ·xαnn . We recall that d1 denotes the dimension of the

first strata of he group G. The homogeneous length of the multi-index α is the integer

[α] = α1υ1 + · · ·+ αnυn.

Theorem 3.2. Let σ ∈ A0. Then, in L(L2(G)), for ε ∈ (0, 1],

Opε(σ)∗ = Opε(σ
∗)− ευ1

d1∑
j=1

Opε(Xj∆jσ
∗) +O(ευ1+1).

Let σ1, σ2 ∈ A0. Then in L(L2(G)),

Opε(σ1) ◦Opε(σ2) = Opε(σ1 σ2)− ευ1
d1∑
j=1

Opε (∆jσ1 ·Xj σ2) +O(ευ1+1).

The proof of this result requires Taylor estimates adapted to graded groups (see [14] and its
extension to graded groups in Theorem 3.1.51 in [13]). We associate with a function f ∈ C∞(G)
its Taylor polynomial of order N at x, Pf,x,N , i.e. the unique linear combination of monomials of
homogeneous degree ≤ N satisfying

XβPf,x,N (0) = Xβf(x)

for any β ∈ Nn0 with [β] ≤ N . With these notations in hands, we have the following result.

Theorem 3.3 (Folland & Stein’s Taylor formula). We fix a quasi-norm |·| on G and take ε ∈ (0, 1].

There exists η > 1 such that for any N ∈ N0, there exists CN > 0 such that for any f ∈ CdNc(G)
we have

∀x, y ∈ G, |f(xy)− Pf,x,N (y)| ≤ CN
∑

[α]≤dNc+1
[α]>N

|y|[α] sup
|z|≤ηdNc+1|y|

|(Xαf)(xz)|,

where dNc = max{[α] : α ∈ Nn0 with [α] ≤ N}.

Proof of Theorem 3.2. Let us start with the adjoint. Let σ ∈ A0 with convolution kernel κx. The
kernel of Opε(σ) is the function (x, y) 7→ ε−Qκ∗ε,x(δ−1ε (y−1x)) with

κ∗ε,x(z) = κxδε(−z)(−z).
Therefore Opε(σ)∗ = Opε(σ∗ε) with σ∗ε = Fκ∗ε,x. We thus focus on the asymptotics in ε of the
symbol σ∗ε for the norm ‖ · ‖A0 . By Theorem 3.3 applied with N = 1, there exists C,C ′ > 0 such
that for x, z ∈ G,∣∣∣∣∣∣κεx,σ∗(z)− κx(−z) + ευ1

d1∑
j=1

zjXj,xκx(−z)

∣∣∣∣∣∣ ≤ Cευ1+1
∑

[α]≤d2c+1
[α]≥2

sup
|z′|≤ηdNc+1|z|

|z|[α]|Xα
x κxδεz′(−z)|

≤ C ′ευ1+1
∑

[α]≤d2c+1

|z|[α] sup
x′∈G
|Xα

x κx′(−z)|.

Using the properties of κx, we deduce that for all N ∈ N there exists a constant cN > 0 such that
for all x, z ∈ G

(1 + |z|N )

∣∣∣∣∣∣κεx,σ∗(z)− κx(−z) + ευ1
d1∑
j=1

zjXj,xκx(−z)

∣∣∣∣∣∣ ≤ cNευ1+1.

10



We then recognize in κx(−z) the convolution kernel of the the symbol σ∗ and in
∑d1

j=1 zjXj,xκx(−z)
the convolution kernel of the symbol

∑d1
j=1 ∆jXjσ and we conclude to the boundedness of the

quantity ε−υ1−1‖σ∗ε − σ∗ + ευ1
∑d1

j=1 ∆jXjσ‖A0 .

We argue in a similar manner for the composition. Denote by κ1 and κ2 the convolution kernels
of the symbols σ1 and σ2. The kernel of the operator Opε(σ1) ◦Opε(σ2) is the function

(x, y) 7→ ε−2Q
∫
G
κ1,x(δ−1ε (u−1x))κ2,u(δ−1ε (y−1u))du.

Therefore, Opε(σ1) ◦Opε(σ2) = Opε(σε) with σε = Fκε,x,

κε,x(z) = ε−Q
∫
G
κ1,x(δ−1ε (u−1x))κ2,u(zδ−1ε (x−1u))du

=

∫
G
κ1,x(v)κ2,xδε(−v)(zv

−1)dv

We now use the Taylor formula of Theorem 3.3 and write

κ2,xδε(−v)(zv
−1) = κ2,x(zv−1)− ευ1

d1∑
j=1

vjXj,xκ2,x(zv−1) + rε(x, zv−1)

with

|rε(x, zv−1)| ≤ Cευ1+1
∑

[α]≤d2c+1
[α]≥2

sup
|v′|≤ηd2c+1|v|

|v|[α]|Xα
x κ2,xδεv′(zv

−1)|, z, v, x ∈ G,

for some constant C > 0. Using the properties of κ2,σ, we obtain the existence of C ′ > 0, and then
of cN associated to N ∈ N, such that for all z, v, x ∈ G, we have

|rε(x, zv−1)| ≤ C ′ευ1+1
∑

[α]≤d2c+1

sup
x′∈G
|v|[α]|Xα

x κ2,x′(zv
−1)|

≤ cNευ1+1(1 + |zv−1|2)−N |v|d2c+1

We now identify
∫
G κ1,x(v)κ2,x(zv−1)dv as the convolution kernel of the symbol σ1σ2, and in the

function
∫
G vjκ1,x(v)Xj,xκ2,x(zv−1)dv as the convolution kernel of the symbol ∆jσ1Xjσ2. We

deduce

‖σε − σ1σ2 + ευ1
d1∑
j=1

∆jσ1Xjσ2‖A0 =

∫
z∈G

sup
x∈G
|
∫
G
κ1,x(v)rε(x, v)dv|dz

≤ cNευ1+1 sup
x,v′
|(1 + |v′|2)Nκ1,x(v′)|

∫
z∈G

∫
v∈G

(1 + |v|2)−N (1 + |zv−1|2)−N |v|d2c+1dvdz,

whence the conclusion. �

Remark 3.4. The reader will have noticed that one could have used Taylor formula at higher
order and obtain asymptotics at any order for both the adjoint or the composition of semiclassical
pseudodifferential operators.

3.4. Differential operators and the symbolic calculus. The symbolic calculus of the preceding
section extends to the product of differential operators and pseudodifferential ones. Indeed, the
notation Opε allows to write for all α ∈ Nn0 ,

ε[α]Xα = Opε(π(Xα)),
11



where π(Xα) = π(X1)
α1 · · ·π(Xn)αn and the operators π(Xj) are defined in (2.4). Moreover,

differential operators of the form

P ε =
∑

[α]≤N

cα(x)ε[α]Xα

can be written in a symbolic way:

P ε =
∑

[α]≤N

ε[α]Opε (cα(x)π(Xα)) .

The formula of Theorem 3.2 then also hold.

Proposition 3.5. Consider the operator Hε given by

Hε = ε2
∑

[α]=[β]=1

Xα (bα,β(x)Xβ.) + iε2
∑

[α]=2, |α|=1

(
cα(x)Xα −

1

2
Xαcα(x)

)
,

where the functions cα and bα,β are smooth, real-valued and bounded, have bounded derivatives, and
satisfy bα,β(x) = bβ,α(x) for all x ∈ G. Then, the operator Hε is formally self-adjoint and

Hε = Opε(h0 + εh1 + ε2h2)

with

h0(x, π) =
∑

[α]=[β]=1

bα,β(x)π(Xα)π(Xβ) + i
∑

[α]=2, |α|=1

cα(x)π(Xα),

h1(x, π) =
∑

[α]=[β]=1

Xαbα,β(x)π(Xβ),

h2(x, π) = − i
2

∑
[α]=2, |α|=1

Xαcα(x).

Proof. We take α and β of homogeneous length 2 and of length 1. Then, for f ∈ S(G),

ε2Xα(bα,βXβf) = ε2bα,βXαXβf + ε2Xαbα,βXβf

Opε(bα,βπ(Xα)π(Xβ))f + εOpε(X
αbα,βπ(Xβ))f.

The result follows. �

Let us now consider a Rockland operator R of homogeneous degree 2ν0 as in (2.5). Then

ε2ν0R = Opε(π(R)).

Lemma 3.6. Let χ ∈ C∞c (R) and consider the operator χ(R) defined by the functional calculus.
Therefore, for any φ ∈ S(G), the symbol φ(x)χ(π(R)) is in A0 and one has

Opε(φ(x)χ(π(R))) = φ(x)χ(ε2ν0π(R)).

Proof. It is proved in [19] that the operator χ(R) has a Schwartz convolution kernel symbol χ(R)δ0.
Moreover, one has Opε(φ(x)χ(π(R))) = φ(x)Opε(χ(π(R))) and, by homogeneity of R, δεπ(R) =
ε2ν0π(R), whence Opε(χ(π(R))) = χ(ε2ν0π(R))). �

4. Bargman transform and applications

In this section, following [1], we introduce a Bargmann transform on the group G and derive con-
sequences of the introduction of this concept: a notion of Wick quantization, a G̊arding inequality,
and a families of wave packets that realize a frame of L2(G).

12



4.1. The Bargman transform. Let a ∈ S(G) such that ‖a‖L2(G) = 1. We set

aε := ε−
Q
4 a ◦ δ

ε−
1
2
, ε > 0,

so that aε ∈ S(G) with ‖aε‖L2(G) = 1. All the quantities we are going to define in the following will
depend on the choice of the function a. In the Euclidean case, one chooses the normalized centered

Gaussian function: a(x) = 1√
π
e−
|x|2
2 , x ∈ Rn. To mimic this case, we could ask that

a(x) = a(x−1) ≥ 0, ∀x ∈ G.

We will mention it whenever we make additional assumptions on a.

For each (x, π) ∈ G× Ĝ, we define an operator on Hπ depending on the point y ∈ G,

(4.1) WPεx,π[a](y) = aε(x
−1y)δε−1π(y).

The function y 7→WPεx,π[a](y) is a smooth map from G to the set of fields of operators on G× Ĝ.
Moreover,

(4.2)

∫
G
‖WPεx,π[a]‖2L(Hπ)dxdµ(π) = ‖a‖2L2(G) = 1.

The Bargmann transform on G is the operator Bε defined on S(G) via

(4.3) Bε[f ](x, π) = ε−
Q
2

∫
G
f(y)WPεx,π[a](y)∗dy, f ∈ S(G), (x, π) ∈ G× Ĝ.

The Bargmann transform associates with a function f ∈ S(G) a field of operators on the set G× Ĝ.

In the following, it will be convenient to consider the ε-Fourier transform that we write

Fεκ(π) = ε−
Q
2 Fκ(δε−1π) = ε−

Q
2

∫
G
f(y)δε−1π(y)∗, κ ∈ S(G), π ∈ Ĝ.

Then, for all f ∈ S(G), we have the Plancherel relation

‖f‖2L2(G) = ε−Q
∫
Ĝ
‖Fεf(π‖2HSdµ(π),

and Bε[f ] is the field of operators on G× Ĝ given by

(4.4) Bε[f ](x, π) = Fε
(
f aε(x

−1 ·)
)

(π), (x, π) ∈ G× Ĝ.

The Bargmann transform on the group G enjoys properties similar to those of the Bargmann
transform in the Euclidean setting.

Proposition 4.1. (1) The map Bε extends uniquely to an isometry from L2(G) to L2(G× Ĝ)
for which we keep the same notation.

(2) The adjoint map Bε,∗ : L2(G× Ĝ)→ L2(G) is given by

Bε,∗[τ ](y) = ε−
Q
2

∫
G×Ĝ

TrHπ
(
τ(x, π)WPεx,π[a](y)

)
dxdµ(π), τ ∈ L2(G× Ĝ), y ∈ G.

(3) Moreover Bε,∗Bε = idL2(G) while BεBε,∗ is a projection on a closed subspace of L2(G× Ĝ).

Proof. Point 1. From (4.4) and the Plancherel formula (2.3), we obtain∫
Ĝ
‖Bε[f ](x, π)‖2HS(Hπ)dµ(π) = ‖f aε(x−1 ·)‖2L2(G), x ∈ G.

13



Integrating against dx yields Point (1). Point (2) follows from∫
G×Ĝ

TrHπ (τ(x, π) (Bε[f ](x, π))∗) dxdµ(π) =

∫
G×Ĝ

TrHπ

(
τ(x, π)

(
Fε
(
faε(x

−1 ·)
)

(π)
)∗)

dxdµ(π),

by (4.4). By Plancherel Theorem, if τ(x, π) = Fκx(π),∫
G×Ĝ

TrHπ

(
τ(x, π)

(
Fε
(
faε(x

−1 ·)
)

(π)
)∗)

dxdµ(π)

= ε−
Q
2

∫
G×G

f(y)aε(x
−1y)κx(δε−1y)dydx

= ε−
Q
2

∫
G×G

f(y)TrHπ(π(ε−1y)τ(x, π))aε(x
−1y)dydx,

and one gets Point (2).
Finally, Part (3) follows from Parts (1) and (2) since they imply for any f, g ∈ L2(G)

(f, g)L2(G) = (Bε[f ],Bε[g])
L2(G×Ĝ)

= (Bε,∗Bε[f ], g)L2(G).

�

In the next sections, we use the Bargmann transform for defining a positive quantization that
we will compare to the semi-classical quantization introduced in the previous Section 3. That will
allow us to prove positivity in the limit ε → 0 for semi-classical pseudodifferential operators with
non-negative symbols. Finally, we will construct wave packets that consists in ε-dependent families
microlocalized in the phase space.

4.2. Wick quantization. We define the semi-classical Wick quantization for σ ∈ L∞(G× Ĝ)

OpWick
ε (σ) := Bε,∗σ Bε.

Proposition 4.2. The symbolic quantization OpWick
ε is well defined on L∞(G× Ĝ) and satisfies

∀σ ∈ L∞(G× Ĝ), ‖OpWick
ε (σ)‖L (L2(G)) ≤ ‖σ‖L∞(G×Ĝ)

.

Moreover, it is a positive quantization in the sense that if σ ≥ 0, then OpWick
ε (σ) ≥ 0.

Proof. We have for any f ∈ L2(G):

‖OpWick
ε (σ)f‖L2(G) = ‖Bε,∗σB[f ]‖L2(G)

≤ ‖Bε,∗‖L (L2(G×Ĝ),L2(G))
‖σ‖

L∞(G×Ĝ)
‖Bε‖L (L2(G),L2(G×Ĝ))

‖f‖L2(G).

Since Bε is an isometry, the operator norms of Bε and Bε,∗ are equal to 1.

Let us now suppose that σ(x, π) ≥ 0 for all (x, π) ∈ G× Ĝ. Then(
OpWick

ε (σ)f, f
)
L2(G)

= (σBε[f ],Bε[f ])
L2(G×Ĝ)

≥ 0, ∀f ∈ L2(G).

�

We can also compute the convolution kernel of OpWick
ε (σ) in order to compare it with a semi-

classical pseudodifferential operator.

Lemma 4.3. If σ ∈ A0, then
OpWick

ε (σ) = Opε(σ
ε,Wick),

where σε,Wick ∈ A0 has the convolution kernel

κε,Wick
x (w) =

∫
G
ā(z′δ√εw

−1)a(z′)κxδ√εz′−1(w)dz′.

14



Moreover, for all σ ∈ A0, ‖σε,Wick‖A0 ≤ ‖σ‖A0.

Proof. Let f ∈ S(G). By the definition of the Bargmann operator and Properties (2.2) and by
Part (2) of Proposition 4.1, we obtain

OpWick
ε (σ)f(x) = ε−

Q
2

∫
G×Ĝ

TrHπ
(
σ(z, π)Bε[f ](z, π)WPεz,π[a](x)

)
dzdµ(π)

= ε−Q
∫
G
f(y)aε(z

−1y)aε(z
−1x)

(∫
Ĝ

TrHπ
(
σ(z, π)π(δε−1(y−1x)

)
dµ(π)

)
dx

= ε−Q
∫
G
f(y)aε(z

−1y)aε(z
−1x)κx(δε−1(y−1x))dx.

We recognize f ∗
(
ε−Qκε,Wick

x (δε−1 ·)
)

for the function

κε,Wick
x (w) =

∫
G
aε(z

−1xδεw
−1)aε(z

−1x)κz(w)dz

=

∫
G
aε(z

′δεw
−1)aε(z

′)κxz′−1(w)dz′(4.5)

=

∫
G
a(z′δ√εw

−1)ā(z′)κxδ√εz′−1(w)dz′.

For concluding the proof, we check that κε,Wick ∈ S(G×G) and we observe, using (4.5),∫
G

sup
x∈G
|κε,Wick
x (w)|dw ≤

∫
G

sup
x′∈G
|κx′(w)|

(∫
G
aε(z

′w−1)aε(z
′)dz′

)
dw

≤
∫
G

sup
x′∈G
|κx′(w)|dw,

by the Cauchy-Schwartz inequality (we have also used aε ≥ 0 and ‖aε‖L2(G) = ‖a‖L2(G) = 1). �

As a corollary, we obtain that the semi-classical Wick quantization coincides at leading order
in ε with the standard quantization.

Corollary 4.4. We choose a function a ∈ D(G) that is even, i.e. a(x−1) = a(x). Then for any
σ ∈ A0, there exists C > 0 such that for all ε ∈ (0, 1],

‖Opε(σ)−OpWick
ε (σ)‖L (L2(G)) ≤ Cε.

Proof. By Proposition 3.1, using the A0-norm defined in (3.1), we have

‖Opε(σ)−OpWick
ε (σ)‖L (L2(G)) ≤ ‖σ − σε,Wick‖A0 ≤ I1(ε) + I2(ε),

where

I1(ε) :=

∫
G

sup
x∈G

∣∣∣∣∫
G
|a(z)|2

(
κx(w)− κxδ√εz−1(w)

)
dz

∣∣∣∣ dw,
I2(ε) :=

∫
G

sup
x∈G

∣∣∣∣∫
G

(ā(z)− ā(zδ√εw
−1))a(z)κxδ√εz−1(w)dz

∣∣∣∣ dw.
15



By the Taylor estimates due to Folland and Stein (see Theorem 3.3), we have:

I1(ε) = ε
υ1
2

∫
G

sup
x∈G

∣∣∣∣∣∣
n1∑
j=1

∫
G

(−zj)|a(z)|2dz Xj,xκx(w)

∣∣∣∣∣∣ dw +O(ε),

I2(ε) = ε
υ1
2

∫
G

sup
x∈G

∣∣∣∣∣∣
n1∑
j=1

∫
G

(−wj)a(z)Xj ā(z)κx(w)dz

∣∣∣∣∣∣ dw +O(ε)

≤ ε
υ1
2

n1∑
j=1

∣∣∣∣∫
G
a(z)Xj ā(z)dz

∣∣∣∣ ∫
G
|wj | sup

x′∈G
|κx′(w)| dw +O(ε).

We recall that n1 denotes the dimension of the first strata (see Section 2.2 where the basis (Xj)1≤j≤n
has been introduced), and υ1 the associated weight. We have used that υ1 ≥ 1 to estimate the rest
as O(ε). If υ1 > 1, then the result holds. If υ1 = 1, we have to analyze the first term given by the
Taylor formula. We then observe the following facts

(i) As a is even, for any polynomial q satisfying q(z−1) = −q(z) we have
∫
G |a(z)|2q(z)dz = 0.

This holds in particular for the coordinate polynomials zj .
(ii) As a is real valued, for any left or right invariant vector field X, an integration by parts

shows
∫
GXja(z)ā(z)dz = 0.

Consequently, I1(ε) = O(ε) and I2(ε) = O(ε) if υ1 = 1. �

4.3. G̊arding inequality. Let us now state G̊arding inequality.

Theorem 4.5. Let σ ∈ A0. If σ is non-negative, then there exists a constant C > 0 such that

(4.6) ∀f ∈ L2(G), ∀ε ∈ (0, 1], < (Opε(σ)f, f)L2(G) ≥ −Cε‖f‖
2
L2(G).

This inequality is typical from the semiclassical setting. For G̊arding inequality on groups in a
non semi-classical setting, the reader can refer to [2].

Proof. We choose a even and consider the associated Wick quantization. We write

< (Opε(σ)f, f)L2(G) ≥
(

OpWick
ε (σ)f, f

)
L2(G)

− ‖Opε(σ)−OpWick
ε (σ)‖L (L2(G))‖f‖2L2(G)

≥ −‖Opε(σ)−OpWick
ε (σ)‖L (L2(G))‖f‖2L2(G).

By Corollary 4.4, ‖OpKNε (σ) − OpWick
ε (σ)‖L (L2(G)) = O(ε). This concludes the proof of Theo-

rem 4.5. �

4.4. Wave packets. In this section, we use the operator WPεx,π[a](y) in order to define some
families of Wave packets satisfying a frame relation analogue to the Bargmann formula (1.2). We
will not always need strong hypothesis on a, which was supposed to satisfy a ≥ 0, a is symmetric
and ‖a‖L2(G) = 1 in the preceding section. We now only assume a ∈ S(G) with ‖a‖L2(G) = 1.

We set for (x, π) ∈ G× Ĝ,

(4.7) gεx,π,k,`(y) :=
(
WPεx,π[a](y)ϕk(π), ϕ`(π)

)
Hπ

, y ∈ G,

where (·, ·)Hπ denotes the inner product of Hπ and (ϕk(π))k∈Iπ , Iπ ⊂ N is an orthonormal basis
of Hπ.

We shall call such a family a wave packet on G with core (x0, λ0), profile a and harmonics
(ϕk, ϕ`).

The frame properties in Proposition 4.1 (3) implies the following decomposition.
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Corollary 4.6. Assume ‖a‖L2(G) = 1. Then any function f ∈ L2(G) decomposes in L2(G) as

f =

∫
G×Ĝ

∑
k,`∈Iπ

(
f, gεx,π,k,`

)
L2(G)

gεx,π,k,` dxdµ(π),

in the sense that

‖f‖2L2(G) =

∫
G×Ĝ

∑
k,`∈Iπ

|
(
f, gεx,π,k,`

)
L2(G)

|2dxdµ(π),

or equivalently for any f1, f2 ∈ L2(G)

(f1, f2)L2(G) =

∫
G×Ĝ

∑
k,`∈Iπ

(
f1, g

ε
x,π,k,`

)
L2(G)

(
f2, gεx,π,k,`

)
L2(G)

dxdµ(π).

Note that wavelets have been constructed on stratified groups in [15] (see also [20]).

Proof. By Proposition 4.1, we have for any f ∈ L2(G)

‖f‖2L2(G) = ‖B[f ]‖2
L2(G×Ĝ)

=

∫
G×Ĝ

‖B[f ](x, π)‖2HS(Hπ)dxdµ(π).

The Hilbert-Schmidt norms may be written in the basis (ϕk) as

‖Bε[f ](x, π)‖2HS(Hπ) =
∑
k,`

|(Bε[f ](x, π)ϕk, ϕ`)Hπ |2

with (Bε[f ](x, π)ϕk, ϕ`)Hπ =

∫
G
f(y)(WPεx,π(y)∗[a]ϕk, ϕ`)Hπdy

=

∫
G
f(y)(ϕ`,WPεx,π[a](y)∗ϕk)Hπ

dy

=

∫
G
f(y)(WPεx,π[a](y)ϕ`, ϕk)Hπ

dy = (f, gx,π,`,k)L2(G).

We then conclude on (f1, f2)L2(G) by considering ‖f1 ± f2‖2 and ‖f1 ± if2‖2. �

The frame of wave packets provides with a family of functions that enjoy smoothness properties
that we will analyze in the next section. These properties also depend on the properties of the
functions (ϕ`)`∈N.

5. Semi-classical measures

The semi-classical pseudodifferential theory developed in Section 3 may be used to analyse the
oscillations of families (uε)ε>0 that are bounded in L2(G). Following ideas developed in the Eu-
clidean setting [16] and adapted in [10] to the group setting, we develop in this section a manner
to analyze the obstruction to strong convergence of families of square integrable functions on G
that have oscillations no larger than some fixed scale 1

ε in a sense that we will make precise. The
semi-classical pseudodifferential calculus is then particularly adapted and provided with a picture

of the obstructions in the phase space G× Ĝ.
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5.1. Definitions. Let (uε)ε>0 be a bounded family in L2(G). One considers the functionals `ε
defined on A0 by

`ε(σ) = (Op(σ)uε, uε)L2(G) , σ ∈ A0.

The limit points of `ε as ε goes to 0 have some structures. When the family (uε)ε>0 is L2-normalized,
and after possibly further extraction of subsequences, the limit points of `ε define states of the C∗-
algebra A obtained by completion of A0 for the norm

‖σ‖
L∞(G×Ĝ)

:= sup
(x,π)∈G×Ĝ

‖σ(x, π)‖L(Hπ).

For describing the structure of these limit points, we consider the set of pairs (γ,Γ) where γ is

a positive Radon measure on G× Ĝ and

Γ = {Γ(x, π) ∈ L(Hπ) : (x, π) ∈ G× Ĝ}

is a positive γ-measurable field of trace-class operators satisfying∫
G×Ĝ

TrHπ (Γ(x, π)) dγ(x, π) < +∞.

This set is then equipped with the equivalence relation: (γ,Γ) ∼ (γ′,Γ′) if there exists a measurable

function f : G× Ĝ→ C \ {0} such that

dγ′ = fdγ and Γ′ = f−1Γ

for γ-almost every (x, π) ∈ U × Ĝ. The equivalence class of (γ,Γ) is denoted by Γdγ, it is called

a positive vector-valued measure. We denote by M+
ov(G × Ĝ) the set of these equivalence classes.

The positive continuous linear functionals of the C∗-algebra A is naturally identified withM+
ov(G×

Ĝ). We will choose representants (Γ, γ) of the class Γdγ with TrHπΓ(x, π) = 1, dγ(x, π) almost
everywhere.

Theorem 5.1. If (uε)ε>0 is a bounded family of L2(G), there exist a sequence (εk)k∈N in (0,+∞)

with εk −→
k→+∞

0 and a pair Γdγ ∈M+
ov(G× Ĝ) such that we have

∀σ ∈ A0,
(
Opεk(σ)uεk , uεk

)
L2(G)

−→
k→+∞

∫
G×Ĝ

TrHπ (σ(x, π)Γ(x, π)) dγ(x, π).

Moreover, given the sequence (εk)k∈N, one has∫
U×Ĝ

TrHπ (Γ(x, π)) dγ(x, π) ≤ lim sup
ε>0

‖uε‖2L2(G).

The positive vector-valued measure Γdγ is called a semi-classical measure of the family (uε)ε>0 for
the sequence εk.

5.2. Link with the weak limits of the energy density. We want to link here the weak limits of
the measure |uε(x)|2dx and the semi-classical measures of the family (uε)ε>0. For this, we introduce
the definition of an ε-oscillating family of L2(G). We consider a positive Rockland operator R of
homogeneous degree 2ν0 (see for example in (2.5)).

Definition 5.2. Let (uε)ε>0 be a bounded family in L2(G). We say that (uε)ε>0 is ε-oscillating if

lim sup
ε→0

‖1ε2ν0R>Muε‖L2(G) −→M→+∞
0.
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Let χ ∈ C∞(R) such that

(5.1) 0 ≤ χ ≤ 1, χ = 0 on ]−∞, 1], and χ = 1 on [2,+∞[.

Equivalently, (uε)ε>0 is ε-oscillating if and only if

lim sup
ε→0

∥∥∥∥χ(ε2ν0RM
)
uε
∥∥∥∥
L2(G)

−→
M→+∞

0.

Intuitively, a family is ε-oscillating it its scale of oscillations are not larger than 1
ε . This can be

understood thanks to the following Lemma that links the size of the derivatives of a family with
its scale of oscillation.

Proposition 5.3. Let s > 0. Assume that there exists C > 0 such that

∀ε > 0, ‖(ε2ν0R)sψε‖L2(G) ≤ C.
Then (uε)ε>0 is ε-oscillating.

Proof. We use the Plancherel formula and the fact that for s > 0, we have

χ

(
ε2ν0R
M

)
≤ (ε2ν0R)s

M s
χ

(
ε2ν0

M
R
)
≤ (ε2ν0R)s

M s

as soon as the function χ is supported in [1,+∞) and satisfies 0 ≤ χ ≤ 1. �

The interest of the notion of ε-oscillation relies in the fact that it gives an indication of the
size of the oscillations that have to be taken into account. It legitimates the use of semi-classical
pseudodifferential operators and semi-classical measures. In particular, we have the following result.

Proposition 5.4. Let (uε)ε>0 be an ε-oscillating family admitting a semi-classical measure Γdγ
for the sequence (εk)k∈N, then for all φ ∈ S(G)

lim
k→+∞

∫
G
φ(x)|uεk(x)|2dx =

∫
G×Ĝ

φ(x)dγ(x, π).

Proof. Note that it is enough to prove the result for smooth compactly supported functions φ.
Consider the function χ defined in (5.1) We write for M > 0∫

G
φ(x)|uεk(x)|2dx = Ik,M0 + Ik,M1 ,

where

Ik,M0 :=

∫
G
φ(x) χ

(
M−1ε2ν0k R

)
uεk(x) uεk(x)dx,

Ik,M1 :=

∫
G
φ(x) (1− χ)

(
M−1ε2ν0k R

)
uεk(x) uεk(x)dx.

As (uε) is ε-oscillating, we have

lim
M→+∞

lim
k→+∞

Ik,M0 = 0.

For the other integral, it is known that φ(x) (1− χ)
(
M−1π(R)

)
∈ A0, see Section ??. So, by the

definition of Γdγ, Theorem 5.1 implies

lim
M→+∞

lim
k→+∞

Ik,M1 = lim
M→+∞

∫
G×Ĝ

φ(x)TrHπ
(
(1− χ)

(
M−1π(R)

)
Γ(x, π)

)
dγ(x, π)

=

∫
G×Ĝ

φ(x)TrHπ (Γ(x, π)) dγ(x, π).

Combining the limits shows the statement since TrHπ (Γ(x, π)) = 1. �
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5.3. Examples. Let us first describe different examples of bounded families of L2(Rd) with differ-
ent types of semi-classical measures.

5.3.1. Concentration on a given point of G. Let a ∈ S(G) and x0 ∈ G, we set

uε(x) = ε−
Q
2 a(δε−1(x−10 x)), x ∈ G.

Proposition 5.5 (Concentration). The family uε is a bounded family in L2(G) with ‖uε‖L2(G) =
‖a‖L2(G). Moreover, uε is ε-oscillating and any semi-classical measure of the family uε is equivalent
to the pair (Γ, γ) with

Γ(π) = Fa(π)Fa(π)∗, γ(x, π) = δx0(x)⊗ µ(π).

Proof. The calculus of ‖uε‖L2(G) is straightforward. Moreover, uε satisfies the Sobolev criterium
of Proposition 5.3 and thus is ε-oscillating. Let us now calculate its semi-classical measures in the
case x0 = 0. We have

(Op(σ)uε, uε)L2(G) = ε−2Q
∫
G×G

κx(δε−1(y−1x))a(δε−1y)a(δε−1x)dx dy.

The change of variable δε−1x→ x, δε−1y → y gives

(Op(σ)uε, uε)L2(G) =

∫
G×G

κδεx(y−1x)a(y)a(x)dxdy.

By Lebesgue dominated convergence, we obtain

lim
ε→0

(Op(σ)uε, uε)L2(G) =

∫
G×G

κ0(y
−1x)a(y)a(x)dxdy,

whence the result in view of∫
G×G

κ0(y
−1x)a(y)a(x)dxdy =

∫
G×G×Ĝ

TrHπ
(
π(y−1x)σ(0, π)

)
a(y)a(x)dxdydµ(π)

=

∫
Ĝ

TrHπ (σ(0, π)Fa(π)Fa(π)∗) dµ(π).

�

5.3.2. Spectral or dual concentration. We assume that the group G admits a (unitary irreducible)
representation π0 which is square integrable modulo its centre.

Let us introduce some notations. We may assume that the basis {X1, . . . , Xn} of the Lie algebra
g has been chosen so that a subset {Xj1 , . . . , Xjjnz

}, form a basis for the centre z of g. Therefore

we can write any element x as

x = expG(x1X1 + . . .+ xnXn) = x′xz = xzx
′,

where xz = expG(xj1Xj1 + . . .+ xnzXnz) and x′ = expG

 ∑
j /∈{j1,...,jnz}

xjXj

 .Naturally, we iden-

tify the centre of the Lie algebra z and the centre of the group Gz := expG z with Rnz . Note that
we still consider anisotropic dilations in those directions. The quotient group G′ := G/Gz is also
graded and we denote by Q′ its homogeneous dimensions, also given by

Q′ :=
∑

j /∈{j1,...,jnz}

υj .

Let ϕ ∈ Hπ0 , in the domain of π0(R) for a Rockland operator R, and set

e0(x) = (π0(x)ϕ,ϕ)Hπ0 .
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On the one hand, on the centreGz of the group, π0 coincides with a character eiλ0·, i.e. π(xz) = eiλ0xz

where we identify xz with an element of Rnz and where λ0xz denotes the standard scalar product
of the two elements λ0 and xz of Rnz . Thus for any x = x′xz in G we have

(5.2) e0(x) = (π0(x
′xz)ϕ,ϕ)Hπ0 = eiλ0xz(π0(x

′)ϕ,ϕ)Hπ0 = eiλ0xze0(x
′).

On the other hand, e0
∣∣
G′
∈ S(G′). See [4, p. 169 and Theorem 4.5.11].

We denote by dπ0 the formal degree of π0 for which we have for any ϕ1, ϕ2, ϕ3, ϕ4 ∈ Hπ0 :

(5.3) dπ0

∫
G/Z

(π0(x
′)ϕ1, ϕ2)Hπ0 (π0(x′)ϕ3, ϕ4)Hπ0dx

′ = (ϕ1, ϕ2)Hπ0 (ϕ3, ϕ4)Hπ0 ,

see again [4, p. 169 and Theorem 4.5.11].
Finally, we fix a ∈ S(Rnz). The family (vε)ε>0 is defined by

vε(x) = ε−
Q′
2 a(xz)e0(δε−1x).

Proposition 5.6. The family (vε)ε>0 is uniformly bounded in L2(G) and ε-oscillating. Moreover,
it has only one semi-classical measure Γdγ such that

γ(x, π) = ‖ϕ‖4Hπ0

(
|a(xz)|2

dπ0
dxz ⊗ δx′=0

)
⊗ δπ=π0 ,

and Γ being the orthogonal projection on Cϕ.

This example can be generalised (see Section 6.4 in [10]) in order to prove that one can find
families that admits as semi-classical measure a Dirac mass on a given representation. If the
representation is finite dimensional, then it is of dimension 1 (see [4]) and we may proceed as in
the Euclidean case. If π0 is any irreducible representation of infinite dimension, the properties of
square integrability can be replaced by concepts introduced by Pedersen [22] and general results
obtained therein about representations of nilpotent Lie groups

Proof. First let us show that each function vε is square integrable:

‖vε‖2L2(G) = ε−Q
∫
G′

∫
Rnz
|e0(δε−1x′δε−1xz)a(xz)|2dxzdx′

= ε−Q
′
∫
G′
|e0(δε−1x′)|2dx′

∫
Rnz
|a(xz)|2dxz

=

∫
G′
|e0(x′)|2dx′

∫
Rnz
|a(xz)|2dxz,

having used the change of variable x′ 7→ δε−1x′. As the functions e0 and a are Schwartz on G′

and Rnz respectively, the quantity above is finite, and vε ∈ L2(G). Moreover, by (5.3),∫
G′
|e0(x′)|2dx′ =

1

dπ0
‖ϕ‖4Hπ0 .

We deduce

‖vε‖L2(G) =
1√
dπ0
‖ϕ‖2Hπ0‖a‖L2(Gz).

Let us now consider the Rockland operator R for which ϕ ∈ Dom(π0(R))

ε2ν0Rvε = ε−Q
′
a(xz)(π0(δε−1x)π0(R)ϕ,ϕ)Hπ0 +O(ε)

in L2(G) and is thus bounded uniformly in ε therein. Therefore (vε)ε>0 satsifies the Sobolev
criterium of Proposition 5.3 and thus is ε-oscillating.
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Let us now compute the semi-classical measure of (vε)ε>0. Let σ ∈ A0 with convolution kernel κx.
We have

(Opε(σ)vε, vε)L2(G) = ε−Q−Q
′
∫
G×G

κx(δε−1(y−1x))v̄ε(x)vε(y)dxdy

= ε−Q−Q
′
∫
G×G

κx(δε−1(y−1x))e0(δε−1x)e0(δε−1y)ā(xz)a(yz)dxdy

= ε−Q
′
∫
G×G

κx(w)e0(δε−1x)e0((δε−1x)w−1)ā(xz)a((xδεw
−1)z)dxdw

= ε−Q
′
∫
G×G

κx(w)e0(δε−1x)e0((δε−1x)w−1)|a(xz)|2dxdw +O(ε).

We have taken advantage that the functions (x, z) 7→ κx(w) is Schwartz, which justifies the approx-
imation. We observe that for x, z ∈ G, we have∫

G
κx(w)e0(zw

−1)dw =

(
π0(z)

(∫
G
κx(w)π0(w)∗dw

)
ϕ,ϕ

)
Hπ0

= (π0(z)σ(x, π0)ϕ,ϕ)Hπ0
,

where we have used the Fourier inversion formula for the regular symbol σ. We are left with

(Opε(σ)vε, vε)L2(G) =

∫
G
|a(xz)|2e0(δε−1x) (π0(δε−1x)σ(x, π0)ϕ,ϕ)Hπ0

dx+O(ε).

The property (5.2) yields that for x = x′xz,

e0(δε−1x) (π0(δε−1x)σ(x, π0)ϕ1, ϕ2)Hπ0

= (π0(δε−1x′)ϕ,ϕ)Hπ0

(
π0(δε−1x′)σ(x′xz, π0)ϕ,ϕ

)
Hπ0

.

Therefore, after a change of variables, we obtain

(Opε(σ)vε, vε)L2(G) =

∫
G′×Gz

|a(xz)|2(π0(x′)ϕ1, ϕ2)Hπ0

(
π0(x

′)σ(δε(x
′)xz, π0)ϕ,ϕ

)
Hπ0

dx′dxz +O(ε)

−→
ε→0

∫
G′×Gz

|a(xz)|2(π0(x′)ϕ,ϕ)Hπ0

(
π0(x

′)σ(xz, π0)ϕ,ϕ
)
Hπ0

dx′dxz

=
1

dπ0
‖ϕ‖2Hπ0

∫
Gz

|a(xz)|2 (σ(xz, π0)ϕ,ϕ)Hπ0
dxz

where we have used (5.3), This terminates the proof. �

5.3.3. Wave packets. Let a ∈ S(G), (x0, π0) ∈ G × Ĝ, ϕ1, ϕ2 ∈ Hπ0 . We assume that there exists
a Rockland operator R of homogeneous degree 2ν0 such that the harmonics ϕ1 and ϕ2 are in the
intersection of the set H∞π0 defined as

H∞π0 =
⋂
`∈N

dom
(
π0(R)`

)
.

One defines gεx,π as in (4.7):

gεx0,π0(y) :=
(
WPεx0,π0 [a](y)ϕ1, ϕ2

)
Hπ0

, y ∈ G,

Note that we have made no assumption on the function a, such as being normalized is non-negative
or satisfies some symmetries relations. We are interested here in the properties of the function
gx0,π0 itself.
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Wave packets are bounded families in L2(Rd) that enjoy localisation properties. In the next
statement, we assume that ϕ1 and ϕ2 enjoy enough regularity so that everything makes sense,
which is meant by ϕ1, ϕ2 ∈ H∞π0 .

Lemma 5.7. Assume ϕ1, ϕ2 ∈ H∞π0. The family (gεx,π)ε>0 is a bounded ε-oscillating family in

L2(G) and satisfies the following properties

(1) For σ ∈ A0, we have in L2(G),

Opε(σ)gεx0,π0
=
(
WPεx0,π0 [a]σ(x0, π0)ϕ1, ϕ2

)
Hπ0

+O(
√
ε).

More precisely, if N ∈ N and Pa,0,N =
∑

[α]≤N cαz
αXαa(0) denotes the Taylor polynomial

associated with a in 0 at order N , then in L2(G),

Opε(σ)gεx0,π0 =
∑

[α]≤N

ε
[α]
2 cα

(
WPεx0,π0 [Xαa]∆ασ(x0, π0)ϕ1, ϕ2

)
Hπ0

+O
(
ε
dNc+1

2

)
.

(2) Let R a positive Rockland operator of order 2ν0, then

∀α ∈ Nn, ∀k ∈ N, ∃Cα,k > 0, ∀ε > 0, ‖xα(ε2ν0R)kgεx,π‖L2(G) ≤ Ck.

(3) Any semi-classical measure Γdγ of the family (gεx,π)ε>0 satisfies

γ = c δ(x− x0)⊗ δ(π − π0), c > 0.

Proof. In view of (4.2), we have

‖gεx0,π0‖L2 ≤ ‖a‖L2‖ϕ1‖Hπ0‖ϕ2‖Hπ0 .
Moreover, the ε-oscillation comes from the Sobolev criterium of Proposition 5.3, as for the dual
concentration of Proposition 5.6. Points (2) and (3) are consequences of the calculus of Point (1).

It remains to prove Point (1). We write

Opε(σ)gεx0,π0(x)

= ε−Qε−
Q
4

∫
G×Ĝ

TrHπ
(
π(δε−1(y−1x)σ(x, π)

)
a
(
δ
ε−

1
2
(x−10 y)

)
(π0(δε−1y)ϕ1, ϕ2)Hπ0

dydµ(π)

= ε−
Q
4

∫
G×Ĝ

TrHπ (π(z)σ(x, π)) a
(
δ
ε−

1
2
(x−10 x)δ

ε
1
2
z−1
) (
π0(δε−1x)π0(z

−1)ϕ1, ϕ2

)
Hπ0

dzdµ(π)

Set xε = δ
ε−

1
2
(x−10 x) and consider the Taylor polynomial Pa,xε,N of a at xε at order N . Then, the

function

rε(x) := Opε(σ)gεx0,π0

− ε−
Q
4

∫
G×Ĝ

TrHπ (π(z)σ(x, π))Pa,xε,N (−δ
ε
1
2
z)
(
π0(ε

−1x)π0(z
−1)ϕ1, ϕ2

)
Hπ0

dzdµ(π)

satisfies

|rε(x)| ≤ ε
dNc+1

2 ‖ϕ1‖Hπ0‖ϕ2‖Hπ0

∫
G
|z|dNc+1

∣∣∣∣∫
Ĝ

TrHπ(π(z)σ(x, π)dµ(π)

∣∣∣∣ dz
≤ ε

dNc+1
2 ‖ϕ1‖Hπ0‖ϕ2‖Hπ0

∫
G
|z|dNc+1 |κx(z)| dz

where Fκx(π) = σ(x, π). We deduce that ε−
dNc+1

2 ‖rε‖L2(G) is uniformly bounded and we observe

that, using π0(z
−1) = π0(z)

∗ and∫
G×Ĝ

zαTrHπ (π(z)σ(x, π))π0(z)
∗dµ(π)dz = ∆ασ(x, π0), α ∈ Nn,
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we obtain the result. �

5.4. Semi-classical measures and PDEs. We assume here that the family (ψε)ε>0 in which we
are interested satisfies a PDE. We consider a differential operator that reads

Hε = Opε(h0)

with the notations of Proposition 3.5. For (x, π) ∈ G× Ĝ, we denote by P the projector on Kerh0
and we assume h∗0 = h0.

Proposition 5.8. Let (ψε)ε>0 be a bounded family in L2(G).

(1) Assume Hεψε = o(1) in L2(G), then any semi-classical measure Γdγ of (ψε)ε>0 satisfies

Γ(x, π) = P(x, π)Γ(x, π)P(x, π), dγ(x, π)− a.e.

(2) Assume Hεψε = o(ευ1) in L2(G), then any semi-classical measure Γdγ of (ψε)ε>0 satisfies
the additional relation

d1∑
j=1

Xjh0∆jΓ(x, π)−XjΓ(x, π)∆jh0 = 0, dγ(x, π)− a.e.

Remark 5.9. The nature of the group plays a role in the information given by this equation and
property (ii) may reduce to 0 = 0. The case of step-2 stratified groups is treated in [?] for evolution
equations. The arguments therein can be easily adapted to the context of Proposition 5.8.

Proof. Point (1). Let σ ∈ A0, then

(Opε(σ)Hεψε, ψε) = o(1) and (Opε(σ)ψε, Hεψε) = o(1).

We deduce that if Γdγ is a semi-classical measure of Hε, then h0Γ = 0 and Γh0 = 0, which implies
RanΓ ⊂ Kerh0 and Γ(Id− P) = 0. The result follows.

Point (2). One chooses σ such that σ = PσP and observes that

1

ευ1
((Opε(σ)Hε − (Hε)∗Opε(σ))ψε, ψε) = o(1).

1

ευ1
[Opε(σ) , Hεψε] =

n1∑
j=1

Opε(∆jσXjh0 −∆jh0Xjσ) + o(1)

�
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