Quantum Dynamics: curvilinear coordinates and Smolyak sparse scheme.

Schrödinger Equation for N-particles

N particles => 3N coordinates, Q

Schrödinger Equations

$$\widehat{H}(Q)\psi(Q) = E \ \psi(Q)$$

with $\widehat{H}(Q) = \widehat{T}(Q) + \widehat{V}(Q)$

Time-dependent:

$$\hbar \frac{\partial \psi(\boldsymbol{Q},t)}{\partial t} = \widehat{\boldsymbol{H}}(\boldsymbol{Q}) \psi(\boldsymbol{Q},t)$$

The wave function:

- We need to know, the $\psi(\mathbf{Q})$ or $\psi(\mathbf{Q}, t)$ over the whole of space !!
- How to represent ψ ? -

It is important to represent ℒin a compact form.

The Hamiltonian can be timedependent

Direct-product basis and grid

Number of basis functions

 $NB = nb_1 \times nb_2 \dots nb_n$

$$\Psi(Q_1, Q_2) = \sum_{i_2=1}^{nb_2} \sum_{i_1=1}^{nb_1} \Psi_{i_1i_2}^{bb} b_{i_2}(Q_2) b_{i_1}(Q_1)$$

Expansion on a grid in nD:

Expansion on a basis in nD: *

$$G_{DP}^{nD} = G_{\ell_1}^1 \otimes G_{\ell_2}^2 \cdots \otimes G_{\ell_n}^n$$

 $B_{DP}^{nD} = b_{\ell_1}^1 \otimes b_{\ell_2}^2 \cdots \otimes b_{\ell_n}^n$

Number of grid points: $NQ = nq_1 \times nq_2 \times \cdots nq_n$

For the basis, one needs some contraction schemes. For the grid, one needs another approach than the usual direct-product grid....

in 6D : NB~NQ ~ 10⁶ in 9D : NB~NQ ~ 10⁹ The "curse" of dimensionality

How can we reduce NB and NQ?

Two steps:

- 1. Electronic motions \Rightarrow PES 2. Atomic motions
- 1. Chose a good model / approximation :
 - The Born-Oppenheimer separation of the electrons and nuclei
 - Adiabatic separation between fast and slow motions
 - Eckart conditions: good vibration/rotation separation
 - Do we need all degrees of freedom?

2. Chose a good set of nuclear (atomic) coordinates:

- Choose coordinates well adapted to the process (rotation, dissociation ...)
- Kinetic energy operator, \widehat{T}

3. Chose a compact basis set (grid):

- Basis set well adapted to the process
- With direct-products, the basis or the grid sizes
 - grow exponentially!

Overview:

- 1. Chose a good model / approximation :
 - The Born-Oppenheimer separation of the electrons and nuclei
 - Adiabatic separation between fast and slow motions
 - Eckart conditions: good vibration/rotation separation
 - Do we need all degrees of freedom?

2. Chose a good set of nuclear (atomic) coordinates :

- Choose coordinates well adapted to the process (rotation, dissociation ...)
- Kinetic energy operator, \widehat{T}
- **3.** Chose a compact basis set (grid) :
 - Basis set well adapted to the process
 - With direct-products, the basis or the grid sizes grow exponentially!

Chose a good set of coordinates example: Methanol in 2D

Comparison between two sets of coordinates to describe the OH torsion:

- 1. Cartesian coordinates (x,y) of H (z is fixed)
- **2.** Polar coordinates $(\mathbf{R}, \mathbf{0})$ of H

Using a simple but realistic 2D-model

Chose a good set of coordinates example: Methanol in 2D (x,y)

Wave functions

2D potential

Chose a good set of coordinates example: Methanol in 2D (R, θ)

2D potential

Wave functions

With those coordinates we can avoid more easily the physically "non-accessible" regions.

Choice of coordinates

Optimal coordinates must give an almost separable Hamiltonian:

$$\widehat{H}(Q_1, Q_2 \cdots) = \widehat{H}_1(Q_1) + \widehat{H}_2(Q_2) + \cdots$$

They have to be adapted to the process, the energy ...:

Collisions:

Jacobi, polyspherical

Reactive scattering:

Hyperspherical

 Spectroscopy: Normal modes, polyspherical,

Valence, z-matrix

Choice of coordinates

Optimal coordinates must give an almost separable Hamiltonian:

$$\widehat{H}(Q_1, Q_2 \cdots) = \widehat{H}_1(Q_1) + \widehat{H}_2(Q_2) + \cdots$$

They have to be adapted to the process, the energy ...:

Collisions:

Jacobi, polyspherical

Reactive scattering:

Hyperspherical

 H_1

Ha

When curvilinear coordinates are used, the analytical expression of KEO can be extremely intricate (number of terms, complexity of the expression).

Sn

Choice of coordinates: difficulties

The kinetic energy operator (KEO), *T*, is a Laplacian.
Example : Polar coordinates

$$\begin{split} \mathbf{y} & \overbrace{\mathbf{x}}^{\mathbf{y}} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} \\ \widetilde{\Psi} &= \sqrt{r} \cdot \Psi \end{split} \qquad \Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \qquad d\tau = r dr d\theta \\ \Delta &= \frac{\partial^2}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{1}{4r^2} \qquad d\tilde{\tau} = dr d\theta \end{split}$$

When curvilinear coordinates, Q, are used, the analytical expression of T can be extremely intricate (number of terms, complexity of the expression).

It can be obtained analytically (Jacobi, polysherical, TANA ...) It can be expressed numerically (TNUM)

How to get the KEO, \widehat{T} ?

 $\widehat{\boldsymbol{T}} = -\frac{\hbar^2}{2} \sum_{i=1}^{n} \frac{1}{\rho(\boldsymbol{Q})} \frac{\partial}{\partial Q^i} \rho(\boldsymbol{Q}) \widehat{\boldsymbol{G}}^{ij}(\boldsymbol{Q}) \frac{\partial}{\partial Q^j} + V_{extra}(\boldsymbol{Q})$

• Using the Jacobian matrices to get the metric tensors^[1,2]:

Contravariant components of metric tensor

Used for the numerical implementation^[3] (*TNUM*^[4]).

non-Euclidean volume element

Using the conjugate momenta, $\vec{\hat{P}}_j$, associated with the vectors, \vec{R}_j ^[5,6]:

Used for the analytical expression / implementation (TANA^[7]).

M is diagonal for Jacobi vectors: $M_{ij} = \frac{1}{m} \delta_{ij}$

[1] B. Podolsky, Phys. Rev. 32, 812 (1928).

 $\widehat{T} = \frac{1}{2} \sum_{i=1}^{N} M_{ij} \overrightarrow{\widehat{P}}_{i}^{\dagger} \cdot \overrightarrow{\widehat{P}}_{j}$

- [2] A. Nauts and X. Chapuisat, Mol. Phys. 55, 1287 (1985).
- [3] J. Laane et al., JMS 1982, 91, p286

 $\mathrm{d}\tau = \rho(\boldsymbol{Q})dQ^1\cdots dQ^n$

•

[4] D. Lauvergnat et A. Nauts, JCP 116, p8560 (2002).

[5] X. Chapuisat, C. lung, Phys. Rev. A 45, 6217–6235 (1992).

[6] F. Gatti, C. lung Phys. Rep. 484 1–69 (2009).
[7] M. Ndong, L. Joubert-Doriol, H.-D. Meyer, A. Nauts, F. Gatti, D. Lauvergnat, JCP 136, p034107, (2012).

Numerical vs Analytical KEO

Analytical KEO (TANA):

- Sum of products of 1D-functions => analytical integrations
- Restricted to some "kind" of coordinates: polyspherical ones
 - ⇒Some flexibility (vector definitions, subsystems ...)
 - ⇒Few transformations are possible (without loosing the sum of product structure)
- Jacobi, Radau coordinate types

Numerical KEO (TNUM):

- No analytical expression: nD-numerical integrations.
- Numerical but exact G(Q) values
- High flexibility: It is very easy to add coordinates transformations
 - ⇒z-matrix, polyspherical
 - ⇒ linear combinations, curvilinear normal modes
 - \Rightarrow Reaction Path (RPH)

 \Rightarrow

Numerical vs Analytical KEO

Analytical KEO (TANA):

- Sum of products of 1D-functions => analytical integrations
- Restricted to some "kind" of coordinates: pressure and the second sec
 - ⇒Some flexibility (vector definitions, subsy
 - ⇒Few transformations are possible (withous structure)
- Jacobi, Radau coordinate types

Numerical KEO (TNUM):

- No analytical expression: nD-numerical interview
- Numerical but exact G(Q) values
- High flexibility: It is very easy to add coordii
 - ⇒z-matrix, polyspherical
 - ⇒ linear combinations, curvilinear normal r
 - ⇒Reaction Path (RPH)

KEO (vibration, rotation): 4741 terms in 23 seconds Largest difference on G(Q) is 10⁻¹⁵ au (~10⁻¹⁰ cm-1)

⇒....

Numerical KEO (TNUM):

- No analytical expression: nD-numerical integrations.
- Numerical but exact G(Q) values
- High flexibility: It is very easy to add coordinates transformations
 - ⇒z-matrix, polyspherical
 - ⇒ linear combinations, curvilinear normal modes
 - ⇒Reaction Path (RPH)

⇒....

Coordinates: summary

Good coordinates help to reduce the coupling between modes

- 1. It enables to chose a good "primitive" basis along each coordinate
- 2. Even with good coordinates, the direct-product basis and grid sizes grow exponentially!!
- 3. The optimal choice is not obvious:
 - good for V, but bad for the KEO (or the reverse)
 - good at low energy and bad at high E
 - Try a set of coordinates, run a calculation ... try againⁿ ...

Cartesian coordinates can be good, when a compact basis set can be found:

The atomic basis sets are used in Cartesian coordinates!!

Overview:

- 1. Chose a good model / approximation :
 - The Born-Oppenheimer separation of the electrons and nuclei
 - Adiabatic separation between fast and slow motions
 - Eckart conditions: good vibration/rotation separation
 - Do we need all degrees of freedom?
- 2. Chose a good set of nuclear (atomic) coordinates :
 - Choose coordinates well adapted to the process (rotation, dissociation ...)
 - Kinetic energy operator, \widehat{T}
- **3.** Chose a compact basis set (grid) :
 - Basis set well adapted to the process
 - With direct-products, the basis or the grid sizes grow exponentially!

Do we need the direct-product form?

In 2D: for the 2 Si-H stretches of H₂SiN:

$$\Psi_{I}(Q_{1},Q_{2}) = \sum_{i_{1},i_{2}} \Psi_{i_{1}i_{2}}^{bb} \cdot \boldsymbol{b}_{i_{1}}^{1}(Q_{1}) \cdot \boldsymbol{b}_{i_{2}}^{2}(Q_{2})$$

ZPE = 2261.4 cm⁻¹ E₁,E₂ = 2202.0, 2226.8 cm⁻¹ To converge these 3 levels, we need 9 basis functions (HO) and 9 grid points for each coordinate. => 81 2D-basis functions and 81 grid points

1st Smolyak scheme in 1D: useless!!

AlgDynQua, 14-18 Sept 2020, Marseille

1st Smolyak scheme in 2D

$ \begin{array}{c} \Delta \boldsymbol{B}_2^2 \\ \ell_2 = 2 \end{array} $	$\{b_1^1\} {\otimes} \left\{b_3^2\right\}$	$\{b_2^1\} \otimes \{b_3^2\}$	$\{b_3^1\} \bigotimes \left\{b_2^2\right\}$
$ \begin{array}{c} \Delta \boldsymbol{B}_{1}^{2} \\ \ell_{2} = 1 \end{array} $	$\{b_1^1\} \bigotimes \{b_2^2\}$	$\{b_2^1\} \bigotimes \{b_2^2\}$	$\{b_3^1\} \bigotimes \{b_2^2\}$
$ \begin{array}{c} \Delta \boldsymbol{B}_{\boldsymbol{0}}^{2} \\ \ell_{2} = 0 \end{array} $	$\{b_1^1\} \bigotimes \{b_1^2\}$	$\{b_2^1\} \bigotimes \{b_1^2\}$	$\{b_3^1\} \bigotimes \{b_1^2\}$
\otimes	$\Delta \boldsymbol{B}_{0}^{1} = \{b_{1}^{1}\}$ $\boldsymbol{\ell}_{1} = 0$	$\Delta \boldsymbol{B_1^1} = \{b_2^1\}$ $\boldsymbol{\ell}_1 = 1$	$\Delta \boldsymbol{B}_{2}^{1} = \{b_{3}^{1}\} \\ \boldsymbol{\ell}_{1} = 2$

- Without constraint, we obtain a direct-product with 9 (3x3) 2D-basis functions.
- With a constraint: $\ell_1 + \ell_2 \leq 2$

1st Smolyak schemes in 2D

$\Delta \boldsymbol{B}_2^2 \\ \boldsymbol{\ell}_2 = 2$	$\{b_1^1\} {\otimes} \left\{b_3^2\right\}$		
$\Delta \boldsymbol{B}_1^2 \\ \boldsymbol{\ell}_2 = 1$	$\{b_1^1\} \otimes \{b_2^2\}$	$\{b_2^1\} \otimes \{b_2^2\}$	
$ \begin{array}{c} \Delta \boldsymbol{B}_{\boldsymbol{0}}^{2} \\ \ell_{2} = 0 \end{array} $	$\{b_1^1\} \otimes \{b_1^2\}$	$\{b_2^1\} \bigotimes \{b_1^2\}$	$\{b_3^1\} \bigotimes \{b_1^2\}$
8	$\Delta \boldsymbol{B_0^1} = \{b_1^1\}$ $\boldsymbol{\ell_1} = 0$	$\Delta \boldsymbol{B_1^1} = \{b_2^1\}$ $\boldsymbol{\ell}_1 = 1$	$\Delta \boldsymbol{B}_{2}^{1} = \{b_{3}^{1}\} \\ \boldsymbol{\ell}_{1} = 2$

- Without constraint, we obtain a direct product with 3x3 2D-basis functions.
- With a constraint: $\ell_1 + \ell_2 \leq 2$, we obtain a basis set with 6 2D-basis functions.

Smolyak Scheme: 1st summary:

 This is equivalent to a selection (in terms of excitations) of the basis functions.

• The Smolyak scheme, with this selection $(|\ell| = \sum \ell_k \le L)$ and with a simple sequence $(nb_{\ell_k}^k = 1 + \ell_k)$, the number of basis functions is $NB = \frac{(n+L)!}{n! \cdot L!}$.

 The Smolyak scheme can be use also for the grid => NB and NQ do not grow exponentionaly with n.

• One can use on L for the basis (L_B) and another one (larger) for the grid (L_G) .

Do we need the direct-product form? NO

In 2D: for the 2 Si-H stretches of H₂SiN:

$$\boldsymbol{\Psi}_{l}(Q_{1},Q_{2}) = \sum_{\boldsymbol{i}_{1},\boldsymbol{i}_{2}} \Psi_{\boldsymbol{i}_{1}\boldsymbol{i}_{2}}^{bb} \cdot \boldsymbol{b}_{\boldsymbol{i}_{1}}^{1} (Q_{1}) \cdot \boldsymbol{b}_{\boldsymbol{i}_{2}}^{2} (Q_{2}) \boldsymbol{\longleftarrow}$$

ZPE = 2261.4 cm⁻¹ E₁,E₂ = 2202.0, 2226.8 cm⁻¹ To converge these 3 levels, we need 9 basis functions (HO) and 9 grid points for each coordinate. => 81 2D-basis functions and 81 grid points

Potential: D. Lauvergnat, M. L. Senent, L. Jutier, and M. Hochlaf JCP 135, 074301 (2011)

Back to the origin: 2 Smolyak schemes

Back to the origin: 2 Smolyak schemes

Back to the origin: 2 Smolyak schemes

2^d Smolyak scheme in 2D

Smolyak Scheme in 14D

Example in 14D: $L_B = L_G = 9$ ($nq_{\ell_k}^k = nb_{\ell_k}^k = 1 + \ell_k$):

2^d Smolyak scheme: computer representation

WF are stored on the basis set No memory problem (almost)

With 2^d Smolyak scheme, the computer size (basis or grid) of a WF can be very large. \Rightarrow A WF is never stored on the full representation (only one term), even for operation on a WF.

2^d Smolyak scheme: operations on $|\Psi\rangle$

On the Smolyak sum, all operations are almost independent !! → parallelization: openmp, MPI (Ahai Chen)

Almost no communication except:

- transformation from the Smolyak representation to the basis one (mapping)

Smolyak Scheme: applications

Smolyak Scheme: Summary

The Gⁱ_{ℓi} and the corresponding basis, Bⁱ_{ℓi}, are not necessary in 1D: Spherical harmonics can be used Other DP basis/Grid

 With those sparse grids (HO basis set), the edge or the corner of a cube (hyper) can be avoided.

Example 3D, with avec L_G =5 et B=4

I = Polynomial Scaling in*n*of degree*L* $System / bath separation <math>\Rightarrow$ Several *L* (*L*_{sys} and *L*_{bath})

$H_2@(H_2O)_n$:

Experimental transitions (cm⁻¹):

[1] L. Ulivi, M. Celli, A. Gianiassi, A. J. Ramirez-Cuesta, D. J. Bull, and M. Zoppi, Phys. Rev. B **76**, 161401 2007 [2] T.A. Strobel et al. Chemical Physics Letters 478 (2009) 97–109

$H_2@(H_2O)_n$:

Experimental transitions (cm⁻¹):

Translations [1]
 71,0 80,2 101.1

Rotations [1] (gas: J=1, 3x 118.4. J=2, 5x 354.2)
 J=1, ortho: 110.0 116.6 122.1
 J=2, para: 343.2 – 356.2

Vibration [2] (gas: 4161.2)
 v = 4126

[1] L. Ulivi, M. Celli, A. Gianiassi, A. J. Ramirez-Cuesta, D. J. Bull, and M. Zoppi, Phys. Rev. B 76, 161401 2007
[2] T.A. Strobel et al. Chemical Physics Letters 478 (2009) 97–109

Models (Crystal geometry: 1st shell + other shells)

- Hamiltonian:

$$\widehat{H}_{6D} = \frac{1}{2 \, mH_2} \left(\widehat{P}_x^2 + \widehat{P}_y^2 + \widehat{P}_z^2 \right) + \frac{1}{mH R^2} \widehat{I}$$
$$\frac{1}{2 \, \mu H_2} \widehat{P}_R^2 + V(x, y, z, \theta, \varphi, R)$$

- Potentials (frozen cage):
 - SPC/E, 5D: translation + rotation
 - Valiron 5D (+ adiabatic separation => vibrational shift) or 6D
 Ab intio (CCSD(T)) with 2 body terms
- Base / grids with Smolyak scheme (L_B, L_G) :
 - Translation: $HO_{ix}(x), HO_{iy}(y), HO_{iz}(z)$
 - Rotation: $Y_{\ell}^{m}(\theta, \varphi) \leftarrow$
 - Vibration H_2 : $HO_{iR}(R)$

Enables to check our numerical implementation

+

2D-basis set and 2D-Grid (Lebedev)

Rigid cage: 6D + cluster size

cm⁻¹	Exp.	6D H ₂ @(H ₂ 0) ₂₀	6D H ₂ @(H ₂ 0) ₄₀	6D H ₂ @(H ₂ 0) ₇₆
Trans.	71.0	66.8	66.5	66.2
	80.2	76.1	75.5	75.3
	101.1	93.3	92.5	92.3
Rotation	110.0	85.4	93.5	97.7
ortho,	116.6	121.2	121.2	118.4
L=1	122.1	147.6	140.2	137.7
ν	-34/-37	4120.9	4119.4	4119.2
Δν		-40.2	-41.7	-41.9

Smolyak parameters : L_B=6 and L_G=7 NB=8246 and NQ=460 000.

3h30 on 12 cores (3h for the PES evaluation on the grid).

Remarks, with a single direct product: NB~2.0 10⁶ and NQ~6.4 10⁶

DL et al. JCP 150, 154303 (2019) Potential: P. Valiron et al., JCP 129, 134306 (2008) Translation: $nb^{T}(\ell_{T}) = 1 + 2\ell_{T}$ Rotation: $j_{max}(\ell_{R}) = \ell_{R}$ Vibration: $nb^{V}(\ell_{V}) = 1 + 3\ell_{V}$

Models with flexible cage

Potentials:

SPC/E (H₂-H₂O potential) + SPC/Fw (H₂O-H₂O potential)

Cage:

- Only the first shell (20 water molecules) is flexible.
- Cage coordinates (normal modes):
 - Full normal modes: to reduce the coupling between all cage modes (no quadratic couplings)

Base / grids :

- Cage basis sets: $HO_k(Q_i)$
- System (H₂) / Bath (H₂O) separation

Bath: water molecules with L_{Bath} << L_B

System: H_2 motions with L_B/L_G

The full potential is used (no harmonic approximation)

⇒ Separation between the vibrations and the translation-rotation modes of the waters.
 ⇒ The KEO is simple

Fexible cage: 5+48D

Cm⁻¹	Exp.	5+0D H ₂ @(H ₂ 0) ₂₀₊₂₀ L _B =3	5+48D H ₂ @(H ₂ 0) ₂₀₊₂₀ L _B =3, B=2	5+48D H ₂ @(H ₂ 0) ₂₀₊₂₀ L _B =3, B=3	
Trans.	71.0 80.2 101.1	83.7 88.6 100.0	85.7 90.6 103.5	85.9 90.6 103.0	
Rotation ortho, L=1	110.0 116.6 122.1	109.4 125.1 131.6	107.0 122.6 129.0	107.1 122.6 129.0	With one large direct-product:
NB NQ			9.7 10 ⁴ 54 10 ⁶	2.1 10 ⁵ 121 10 ⁶	NB~5 10 ⁵⁸

Smolyak parameters : $L_B=3$ ($L_G=L_B+1$), $L_{BBath}=2$ and $L_{BBath}=3$

Translation: Rotation: Cage (bath): $\begin{aligned} nb^{T}(\ell_{T}) &= 1 + 3\ell_{T} \\ j_{max}(\ell_{R}) &= 2\ell_{R} \\ nb^{B}(\ell_{B}) &= 1 + B\ell_{B} \quad (B=2 \text{ or } 3) \end{aligned}$

17 h with 12MPI threads

Perspectives

Applications

Clathrates:

- Several H₂ in large cages
- H₂ tunneling between cages
- CH₄ or CO₂ in a cage

Application on reactive scattering

- with L. Dupuy and Y. Scribano
- ANR coord. Y. Scribano

Smolyak scheme:

- MPI/OpenMP parallelization
- Propagation scheme
 => Time-Dependent basis
- Spectroscopy: difficulties with large density of states

Some tunneling effect!!

Thanks

AlgDynQua, 14-18 Sept 2020, Marseille

Test on Pyrazine vibronic model

Several simulations with MCTDH from 4D to 24D¹

Vibronic model between the S₁ and S₂ states¹:

$$\mathbf{H} = \begin{pmatrix} -\Delta & 0\\ 0 & \Delta \end{pmatrix} + \mathbf{I} \sum_{i=1}^{n} \frac{\omega_{i}}{2} \left(\hat{P}_{i}^{2} + Q_{i}^{2} \right) + \begin{pmatrix} 0 & \lambda Q_{1}\\ \lambda Q_{1} & 0 \end{pmatrix} + \sum_{i=2}^{n} \begin{pmatrix} k_{i}^{1} & 0\\ 0 & k_{i}^{2} \end{pmatrix} Q_{i}$$

- Primitive basis sets and grids: Harmonic oscillator (HO) + gauss Hermite quadrature
- Initial WP: gaussian WP (first nD-basis function) on S₂

Smolyak parameters (L_B = L_G up to 7):
$$nb_{\ell_i}^i = nq_{\ell_i}^i = 1 + 4\ell_i \qquad i=1,2$$

$$nb_{\ell_i}^i = nq_{\ell_i}^i = 1 + 3\ell_i \qquad i=3,4$$

$$nb_{\ell_i}^i = nq_{\ell_i}^i = 1 + 2\ell_i \qquad i>4 \text{ (bath modes)}$$

Parameters optimized for the 4D model

1) G. Worth, H.-D. Meyer, and L.S. Cederbaum.JCP 109 (1998), 3518

Pyrazine in 4+8D: autocorrelation function

Propagation with Chebyshev scheme, with 10 fs time step. Autocorrelation function every 0.1 fs.

For LB=7 NB=4. 10⁶ NQ=53. 10⁶ HPsi>: 178s (3 cores) # cheby: 147 Total Time: 116h

Direct product: NB= 10¹⁵

Comparison with MCTDH is not perfect, but

Pyrazine in 4+8D: spectrum

Comparison with MCTDH is not perfect, but

•••

Pyrazine in 4+8D: spectrum with a filter

Pyrazine in 4+20D: spectrum with a filter

NB=4M NQ=26M HPsi>: 185s (3 cores) # cheby: 113 Total Time: 93h

Comparison with MCTDH is not perfect, but the principal features are reproduced

AlgDynQua, 14-18 Sept 2020, Marseille

Modèles 5D/6D avec ELVIBROT :

- Base (non-produit direct) :
 - Translation : $HO_{ix}(x), HO_{iy}(y), HO_{iz}(z)$
 - Rotation :
 - Vibration :

 $Y_{\ell}^{m}(\theta, \varphi)$ $HO_{iR}(R)$

et $ix \le 1 + B \cdot \ell_x$ (id y,z) et $\ell \le B_{rot} \cdot \ell_{rot}$ et $iR \le 1 + B_R \cdot \ell_R$

Sélection :

 $\ell_x + \ell_y + \ell_z + \ell_{rot} (+\ell_R) \le L_B$

plus une sélection similaire pour les grilles (paramètre L_G)

• Exemple 3D (x, y, z)avec : $L_B = 2$ et B = 1

> Nb fonctions : $N_B = 10$ $N_B = (1 + 2)^3$ (produit direct)

• En général nD et B=1:

 $N_B = \frac{(n+L_B)!}{n! \cdot L_B!}$

AlgDynQua, 14-18 Sept 2020, Marseille

L =	$\ell_x + \ell_y + \ell_z$	$oldsymbol{i}_x$, $oldsymbol{i}_y$, $oldsymbol{i}_z$
0	0 + 0 + 0	1 , 1 , 1
1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2 , 1 , 1 1 , 2 , 1 1 , 1 , 2
2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 , 1 , 1 1 , 3 , 1 1 , 1 , 3 1 , 2 , 2 2 , 1 , 2 2 , 2 , 1

Potentiel + états 2D (x,y)

Fonctions d'ondes

Résultats théoriques (5D) :

AlgDynQua, 14-18 Sept 2020, Marseille

Résultats théoriques, 6D :

Pot. Bowman (basé sur du CCSD(T)-F12)

Cm⁻¹	Exp.	ELVIBROT 3 corps cluster	ELVIBROT 3 corps cristal	ELVIBROT 2 corps cristal	• NonDP : L _B =5, L _G =6
Trans.	71.0 80.2 101.1	92.25 98.20 125.59	89.90 98.90 114.63	62.59 75.37 90.34	B _t =4, B _{rot} =2, B _R =3
Rotation ortho, L=1	110.0 116.6 122.1	72.63 132.34 168.82	97.55 117.04 137.49	96.24 119.98 137.10	N _B = 28 076 N _Q = 891 060

• Effet de la géométrie de la cage important.

Minimum du cluster H₂@(H₂O)₂₀ différent dans le cristal !

Prise en compte d'autres molécules d'eau (vers le cristal) : en projet Prise en compte de la flexibilité de la cage : faible (< 5 cm⁻¹)

Primitive basis set

Basis sets are adapted to the coordinates and orthonormal.

 Periodic coordinate (dihedral angle) : Fourier basis $\int b_u(q)b_v(q)d\tau = \delta_{uv}$

- Coordinate associated to a localized motion (distance, angles...): sine basis (particle-in-a-box) Harmonic Oscillator basis (Hermite polynomials)
- Coordinate associated to a dissociation (distance) : plane wave basis
- Overall rotation : Spherical Harmonics (linear conformation) Wigner basis

How to represent Ψ in nD?

How to represent Ψ in nD?

Expansion on a grid in 2D: ←

$$G_{DP}^{2D} = G_{\ell_1}^1 \otimes G_{\ell_2}^2$$

2. Expansion on a grid in 3D:

Number of grid points: $NQ = nq_1 \times nq_2 \times nq_3$

Number of grid points:

$$G_{DP}^{3D} = G_{\ell_1}^1 \otimes G_{\ell_2}^2 \otimes G_{\ell_3}^3$$

in 6D : NQ ~ 10⁶ in 9D : NQ ~ 10⁹ The "curse" of dimensionality

How to represent Ψ in nD?

On a basis, $|B_I\rangle$ and / or on a grid :

Overview: Quantum dynamics

1st Smolyak schemes in 1D!!!

Basis set/grid: $nb_{\ell}^1 = 1 + \ell^2$

	S ¹ ₀	S_{1}^{1}	S_2^1
Basis, $S^1_\ell = \boldsymbol{B}^1_\ell$	$\{b_1^1\}$	$\{b_1^1, b_2^1\}$	$\{b_1^1, b_2^1, b_3^1\}$
Grid, $S^1_\ell = G^1_\ell$	$\{Q_{1,0}^1\}$	$\left\{ Q_{1,1}^{1},Q_{2,1}^{1} ight\}$	$\left\{Q_{1,2}^1, Q_{2,2}^1, Q_{3,2}^1\right\}$

$$\boldsymbol{\Delta S}_{\ell_{i}}^{i} = \begin{cases} \boldsymbol{S}_{0}^{i} & \text{for } \ell_{i} = 0\\ \boldsymbol{S}_{\ell_{i}}^{i} - \boldsymbol{S}_{\ell_{i-1}}^{i} & \text{for } \ell_{i} > 0 \end{cases}$$

	$\Delta S_0^1 = S_0^1$	ΔS_1^1	ΔS_2^1
Basis, $\Delta \boldsymbol{B}_{\ell}^{i}$	$\{b_1^1\}$	$\{b_2^1\}$	$\{b_3^1\}$
Basis, $\Delta {oldsymbol{G}}^i_\ell$	$\{Q_{1,0}^1\}$	$\left\{Q_{1,1}^1, Q_{2,1}^1\right\}$ - $\left\{Q_{1,0}^1\right\}$	$ \{ Q_{1,2}^1, Q_{2,2}^1, Q_{3,2}^1 \}^{-} \\ \{ Q_{1,1}^1, Q_{2,1}^1 \} $

Comparison: numerical / analytical KEO

We can get the analytical expression of KEO of the benzopyran (48D) using polysherical coordinates with TANA.

For a given geometry the metric tensor (G) obtained analytically and numerically are identical. The largest difference is 10⁻¹⁸ au (~10⁻¹² cm⁻¹)

One TNUM evaluation: << 1 s One TANA calculation: 32 s

For this system, number of terms (MCTDH format): 5809

Example: Benzopyrane

2.2857496219414603d-005 1	q^-1 3	qs*dq 7 q^-1*dq*q 8 qs 9 cos
-2.2857496219414603d-005 1	q^-1 3	qs*dq 7 q^-1 8 dq*q*qs 9 cos
-2.2857496219414603d-005 1	q^-1 3	qs*dq 7 q^-1 8 q^2*qs^-1 9 dq*sin
-2.2857496219414603d-005 1	q^-1 3	qs*dq 7 q^-1 8 qs 9 dq*sin
2.2857496219414603d-005 1	q^-1 5	qs*dq 6 cos 7 q^-1*dq*q 8 qs 9 cos
-2.2857496219414603d-005 1	q^-1 5	qs*dq 6 cos 7 q^-1 8 dq*q*qs 9 cos
-2.2857496219414603d-005 1	q^-1 5	qs*dq 6
-2.2857496219414603d-005 1	q^-1 5	qs*dq 6
2.2857496219414603d-005 1	q^-1 5	q*qs^-1 6 sin*dq 7 q^-1*dq*q 8 qs 9 cos
-2.2857496219414603d-005 1	q^-1 5	q*qs^-1 6 sin*dq 7 q^-1 8 dq*q*qs 9 cos
-2.2857496219414603d-005 1	q^-1 5	q*qs^-1 6 sin*dq 7 q^-1 8 q^2*qs^-1 9 dq*sin
-2.2857496219414603d-005 1	q^-1 5	q*qs^-1 6 sin*dq 7 q^-1 8 qs 9 dq*sin
-4.5714992438829206d-005 1	q^-1 7	q^-1 8 q^3*qs^-2 9 dq^2
-4.5714992438829206d-005 1	q^-1 7	q^-1 8 q 9 dq^2

... and many more lines

