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Schrodinger equation

10 = Hp

H : D(H) — H is a self-adjoint linear operator.

H is a Hilbert space.

Given an approximation manifold M C H.

> Seek u(t) € M with u(t) ~ ¥ (t).



Bilinear forms

The Hilbert space ‘H is equipped with a complex inner product

HXH—=>C, (o) (o)

> HXH—=R, (p,v) — Re(p| ) is a real inner product

(bilinear, symmetric, positive definite)

> HXH-—=R, (p,v) —Im{p]|) is a symplectic form

(bilinear, alternating, non-degenerate)



Complex tangent spaces cf. Lubich, 2005

Assume that 7, M is a complex subspace of H for all v &€ M.

Time-dependent Dirac—Frenkel variational principle:
Seek u(t) € M such that

1) Oru(t) € %(t)M

2) (v |i0wu(t) — Hu(t)) = 0 for all v € Tu)M



Complex tangent spaces cf. Lubich, 2005

Assume that 7,M is a complex subspace of H for all v € M.

Time-dependent Dirac—Frenkel variational principle:
Seek u(t) € M such that

0 (t) = Pu(t)Hu(t>7
where
Pu(t) T H — %(t)M

IS the orthogonal projection on the tangent space.



Complex tangent spaces Mass conservation

Assume that u(t) € 7, M. Then,

%”u(t)”? = 2Re (u(t) | Opu(t))
= 2Re(u(t) | 1Hu(t))

= 0



Complex tangent spaces Energy conservation

Assume nothing. Then,

() | Hu(®)) = 2Re(du(t) | Hu(®))

dt
2 Re (Oru(t) | id:u(t))

= 0



Towards error estimates

0 (P(t) —u(t)) = HY(t) — Py Hu(t)

a pos_teriori

=" H (1) —u(®) + (H = Py H) u(®)

a pLiori

=" PyH @) —u(®) + (H = Py H) v (®)



Towards error estimates

10, (%(8) — u(t)) = Hp(t) — PyrpyHu(t)

a posteriori

— H (y(t) —u(t)) + P, (t)HU(t)

a priori

= P,pyH ($(t) —ult)) + P (t)Hw(t)



A posteriori error estimate

i (9 (1) — u(t)) = H (1(t) — u(t)) + Py Hu(t)
Variations of constants/Duhamel formula:

t
B(t) — u(t) =%/ ~iH=) pL | (s ds
O

implies

t
[(®) = u(®) | < [ 1Py Hu(s)l| ds
0



A posteriori error estimate Interpretation

t
[ (®) = u(®)| < [ 1Py Hu(s)]| ds
0

1P )Hu(s)|| = dist (Hu(s),%(s)./\/o

u(s



Gaussian wave packets References
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|

Gaussian wave packets d

1 d?
H=--—-4V
2dx2 + Vi)

M = {exp(=3z — g +ip(z — q) + ¢) | Re(7) > 0, (g,p) €R?, ¢ € C}

For all uw € M,

TuM = {wu | m complex polynomial of degree < 2}.



Gaussian wave packets d=1

For all uw € M,

TuM = {wu | m complex polynomial of degree < 2}.

Observe:

1) TuM is complex linear.
2) u € TyM — mass conservation
3) —1d& e TaM

2dzx? u

4) If V is a polynomial of degree < 2, then Hu € T, M.

— exact solution for harmonic oscillators



|
[ —

Gaussian wave packets d

t
[(®) = u(®)| < [ 1Py Hu(s)]| ds
0

For
1 d?
H=———4+YV
> a2 + V(x)
with smooth potential V, the error is governed by |[0%Vu(s)||

with |a] > 3.



A posteriori error Burghardt, Martinazzo 2020

t
(8 = (Ol < [ 1Pk Hu()] ds
0

with

: 2
1Py Hu(s)|? = dist (Hu(s), T, M)

min  |lw — Hu(s)|?
wE%(S)M

[Hu(s)|? — |9su(s)||?



A posteriori error Burghardt, Martinazzo 2020

Indeed,

min w — Hu(s)||? = ||i0su(s) — Hu(s)||?
L = Hu) | = idsu(s) — Hu(s)|

= ||8su(s)||® — 2 Re (idsu(s) | Hu(s)) + ||[Hu(s)||*

= ||8su(s)||® — 2 Re (idsu(s) | idsu(s)) + ||Hu(s)]|?

= ||Hu(s)||? = ||0su(s)]2,

since dsu(s) € Ty M.



Expectation and standard deviation: For ¢ = 0 set

(o | Hp)

E(H.p) =
(H, ) o2

E(H,p) = |[(H - E(H,p))ell

Note that
E(H,)* = ||Hol|* — BE(H, ¢)?|l¢|l.



A posteriori error Burghardt, Martinazzo 2020

t
[(®) = u(®)| < [ 1Py Hu(s)]| ds
0

with
|PL oy Hu(s)|? = dist (Hu(s), TyM)
= [|[Hu(s)||* — [|8su(s) ||

= E(H,u(s)) — S(PU(S)HPU(S)7 u(s)),

where we assume that u(s) € 7,5 M.



Indeed,

min fw - Hu(s)|? = [|Hu(s)[? - [|0su(s)|

wE%(S)M

IHu(s)[|? = 1Py () H Py syu(s)|?

and

(u(s) | i0su(s))
lu(s)]2

_ {u(s) | Hu(s))
[u(s)I2

E(PU(S)HPU(S), u(s)) ==

= FE(H,u(s)).



Non-complex manifolds Wave packets

M = {exp(—3lz — qI* +ip(z — ) +¢) | Re(7) > 0, (¢,p) €R?, ¢ € C}

IS generalized to

M = {a(ﬁ(x —q)) eP@=D+C | 4 > 0, (¢,p) €R?, (€ C}

for some smooth, decaying function a : R — C.



Non-complex manifolds Hartree version

The tangent spaces of
M = {u(z1,22) = p1(21)02(z2) | @; € L2(R), |lgjll = 1}

are not complex subspaces of LQ(RQ).



Complex tangent spaces

Assume that 7, M is a complex subspace of H for all v &€ M.

Time-dependent Dirac—Frenkel variational principle:
Seek u(t) € M such that

1) Oru(t) € %(t)M

2) (v |i0wu(t) — Hu(t)) = 0 for all v € Tu)M



McLachlan variational principle:
Seek u(t) € M such that

1) owu(t) € 7;(75)./\/[

2) [li0pu(t) — Hu(t)|| = minyer, , a lliw — Hu(t)]



McLachlan variational principle:
Seek u(t) € M such that

1) owu(t) € %(t)M

2) Im{v | idwu(t) — Hu(t)) = 0 for all v € TuyM



Variational principles References

(Dirac) Frenkel 1934: book on wave mechanics
McLachlan, 1964: paper on Schrodinger equation

Kramer, Saraceno 1981: Springer lecture notes on the time-
dependent variational principle



McLachlan variational principle:
Seek u(t) € M such that

1
oru(t) = Pu(t) ;Hu(t) ;

where
Pu(t) T H — %(t)‘/\/l

IS the orth. projection with respect to the real inner product.



Time-dependent variational principle:
Seek u(t) € M such that

1) owu(t) € %(t)M

2) Re (v |idwu(t) — Hu(t)) = 0 for all v € TuyM



Time-dependent variational principle:
Seek u(t) € M such that

iOru(t) = Pu(t)Hu(t>7
where
Pu(t) CH — %(t)./\/l

IS the orth. projection with respect to the real inner product.



Conservation properties

> The imaginary part variational principle conserves norm if
u € TuM for all uw € M.

> T he real part variational principle conserves energy.



Current agenda with Chunmei Su

> Work out the error estimates for explicit examples
(Hartree, wave packets, multi-configuration Hartree)

> Use the error estimates for adaptivity



Thank you.



