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Schrödinger equation

i∂tψ = Hψ

H : D(H)→H is a self-adjoint linear operator.

H is a Hilbert space.

Given an approximation manifold M⊆ H.

B Seek u(t) ∈M with u(t) ≈ ψ(t).



Bilinear forms

The Hilbert space H is equipped with a complex inner product

H×H → C, (ϕ,ψ) 7→ 〈ϕ | ψ〉

B H×H → R, (ϕ,ψ) 7→ Re 〈ϕ | ψ〉 is a real inner product

(bilinear, symmetric, positive definite)

B H×H → R, (ϕ,ψ) 7→ Im 〈ϕ | ψ〉 is a symplectic form

(bilinear, alternating, non-degenerate)



Complex tangent spaces cf. Lubich, 2005

Assume that TuM is a complex subspace of H for all u ∈M.

Time-dependent Dirac–Frenkel variational principle:

Seek u(t) ∈M such that

1) ∂tu(t) ∈ Tu(t)M

2) 〈v | i∂tu(t)−Hu(t)〉 = 0 for all v ∈ Tu(t)M



Complex tangent spaces cf. Lubich, 2005

Assume that TuM is a complex subspace of H for all u ∈M.

Time-dependent Dirac–Frenkel variational principle:

Seek u(t) ∈M such that

i∂tu(t) = Pu(t)Hu(t),

where

Pu(t) : H → Tu(t)M

is the orthogonal projection on the tangent space.



Complex tangent spaces Mass conservation

Assume that u(t) ∈ Tu(t)M. Then,

d

dt
‖u(t)‖2 = 2 Re 〈u(t) | ∂tu(t)〉

= 2 Re 〈u(t) | 1
iHu(t)〉

= 0



Complex tangent spaces Energy conservation

Assume nothing. Then,

d

dt
〈u(t) | Hu(t)〉 = 2 Re 〈∂tu(t) | Hu(t)〉

= 2 Re 〈∂tu(t) | i∂tu(t)〉

= 0



Towards error estimates

i∂t (ψ(t)− u(t)) = Hψ(t)− Pu(t)Hu(t)

a posteriori
= H (ψ(t)− u(t)) +

(
H − Pu(t)H

)
u(t)

a priori
= Pu(t)H (ψ(t)− u(t)) +

(
H − Pu(t)H

)
ψ(t)



Towards error estimates

i∂t (ψ(t)− u(t)) = Hψ(t)− Pu(t)Hu(t)

a posteriori
= H (ψ(t)− u(t)) + P⊥u(t)Hu(t)

a priori
= Pu(t)H (ψ(t)− u(t)) + P⊥u(t)Hψ(t)



A posteriori error estimate

i∂t (ψ(t)− u(t)) = H (ψ(t)− u(t)) + P⊥u(t)Hu(t)

Variations of constants/Duhamel formula:

ψ(t)− u(t) =
1

i

t∫
0

e−iH(t−s)P⊥u(s)Hu(s) ds

implies

‖ψ(t)− u(t)‖ ≤
t∫

0

‖P⊥u(s)Hu(s)‖ds



A posteriori error estimate Interpretation

‖ψ(t)− u(t)‖ ≤
t∫

0

‖P⊥u(s)Hu(s)‖ds

‖P⊥u(s)Hu(s)‖ = dist
(
Hu(s), Tu(s)M

)



Gaussian wave packets References

R. Coalson, M. Karplus 1990:

variational Gaussian wave packets

E. Faou, C. Lubich 2006:

Poisson integrator for Gaussian wave packets



Gaussian wave packets d = 1

H = −
1

2

d2

dx2
+ V (x)

M =
{

exp(−γ2|x− q|
2 + ip(x− q) + ζ) | Re(γ) > 0, (q, p) ∈ R2, ζ ∈ C

}

For all u ∈M,

TuM =
{
πu | π complex polynomial of degree ≤ 2

}
.



Gaussian wave packets d = 1

For all u ∈M,

TuM =
{
πu | π complex polynomial of degree ≤ 2

}
.

Observe:

1) TuM is complex linear.

2) u ∈ TuM → mass conservation

3) −1
2

d2

dx2u ∈ TuM

4) If V is a polynomial of degree ≤ 2, then Hu ∈ TuM.

→ exact solution for harmonic oscillators



Gaussian wave packets d = 1

‖ψ(t)− u(t)‖ ≤
t∫

0

‖P⊥u(s)Hu(s)‖ds

For

H = −
1

2

d2

dx2
+ V (x)

with smooth potential V , the error is governed by ‖∂αV u(s)‖
with |α| ≥ 3.



A posteriori error Burghardt, Martinazzo 2020

‖ψ(t)− u(t)‖ ≤
t∫

0

‖P⊥u(s)Hu(s)‖ds

with

‖P⊥u(s)Hu(s)‖2 = dist
(
Hu(s), Tu(s)M

)2

= min
w∈Tu(s)M

‖w −Hu(s)‖2

= ‖Hu(s)‖2 − ‖∂su(s)‖2



A posteriori error Burghardt, Martinazzo 2020

Indeed,

min
w∈Tu(s)M

‖w −Hu(s)‖2 = ‖i∂su(s)−Hu(s)‖2

= ‖∂su(s)‖2 − 2 Re 〈i∂su(s) | Hu(s)〉+ ‖Hu(s)‖2

= ‖∂su(s)‖2 − 2 Re 〈i∂su(s) | i∂su(s)〉+ ‖Hu(s)‖2

= ‖Hu(s)‖2 − ‖∂su(s)‖2,

since ∂su(s) ∈ Tu(s)M.



Expectation and standard deviation: For ϕ 6= 0 set

E(H,ϕ) =
〈ϕ | Hϕ〉
‖ϕ‖2

, E(H,ϕ) = ‖(H − E(H,ϕ))ϕ‖.

Note that

E(H,ϕ)2 = ‖Hϕ‖2 − E(H,ϕ)2‖ϕ‖2.



A posteriori error Burghardt, Martinazzo 2020

‖ψ(t)− u(t)‖ ≤
t∫

0

‖P⊥u(s)Hu(s)‖ds

with

‖P⊥u(s)Hu(s)‖2 = dist
(
Hu(s), Tu(s)M

)2

= ‖Hu(s)‖2 − ‖∂su(s)‖2

= E(H,u(s))− E(Pu(s)HPu(s), u(s)),

where we assume that u(s) ∈ Tu(s)M.



Indeed,

min
w∈Tu(s)M

‖w −Hu(s)‖2 = ‖Hu(s)‖2 − ‖∂su(s)‖2

= ‖Hu(s)‖2 − ‖Pu(s)HPu(s)u(s)‖2

and

E(Pu(s)HPu(s), u(s)) =
〈u(s) | i∂su(s)〉
‖u(s)‖2

=
〈u(s) | Hu(s)〉
‖u(s)‖2

= E(H,u(s)).



Non-complex manifolds Wave packets

M =
{

exp(−γ2|x− q|
2 + ip(x− q) + ζ) | Re(γ) > 0, (q, p) ∈ R2, ζ ∈ C

}

is generalized to

M =
{
a(
√
γ(x− q)) eip(x−q)+ζ | γ > 0, (q, p) ∈ R2, ζ ∈ C

}

for some smooth, decaying function a : R→ C.



Non-complex manifolds Hartree version

The tangent spaces of

M =
{
u(x1, x2) = ϕ1(x1)ϕ2(x2) | ϕj ∈ L2(R), ‖ϕj‖ = 1

}

are not complex subspaces of L2(R2).



Complex tangent spaces

Assume that TuM is a complex subspace of H for all u ∈M.

Time-dependent Dirac–Frenkel variational principle:

Seek u(t) ∈M such that

1) ∂tu(t) ∈ Tu(t)M

2) 〈v | i∂tu(t)−Hu(t)〉 = 0 for all v ∈ Tu(t)M



McLachlan variational principle:

Seek u(t) ∈M such that

1) ∂tu(t) ∈ Tu(t)M

2) ‖i∂tu(t)−Hu(t)‖ = minw∈Tu(t)M ‖iw −Hu(t)‖



McLachlan variational principle:

Seek u(t) ∈M such that

1) ∂tu(t) ∈ Tu(t)M

2) Im 〈v | i∂tu(t)−Hu(t)〉 = 0 for all v ∈ Tu(t)M



Variational principles References

(Dirac) Frenkel 1934: book on wave mechanics

McLachlan, 1964: paper on Schrödinger equation

Kramer, Saraceno 1981: Springer lecture notes on the time-

dependent variational principle



McLachlan variational principle:

Seek u(t) ∈M such that

∂tu(t) = Pu(t)
1

i
Hu(t),

where

Pu(t) : H → Tu(t)M

is the orth. projection with respect to the real inner product.



Time-dependent variational principle:

Seek u(t) ∈M such that

1) ∂tu(t) ∈ Tu(t)M

2) Re 〈v | i∂tu(t)−Hu(t)〉 = 0 for all v ∈ Tu(t)M



Time-dependent variational principle:

Seek u(t) ∈M such that

i∂tu(t) = Pu(t)Hu(t),

where

Pu(t) : H → Tu(t)M

is the orth. projection with respect to the real inner product.



Conservation properties

B The imaginary part variational principle conserves norm if

u ∈ TuM for all u ∈M.

B The real part variational principle conserves energy.



Current agenda with Chunmei Su

B Work out the error estimates for explicit examples

(Hartree, wave packets, multi-configuration Hartree)

B Use the error estimates for adaptivity



Thank you.


