AlgDynQua Hybrid Meeting 2020 (CIRM, Marseille, France)

Semiclassical Scaling in Quantum Dynamics: "Who is epsilon?"

Benjamin Lasorne

(CNRS & U. Montpellier, France)

benjamin.lasorne@umontpellier.fr

Introduction: objective? "Semiclassical rescaling" of the nuclear timedependent Schrödinger equation for a molecule within the Born-Oppenheimer approximation

Numerical analysis (maths)

- set epsilon (small parameter) and rescale variables
- assume semiclassical wavepacket ansatz
- determine error estimate wrt. epsilon power

Computational physics/chemistry

- set model Hamiltonian and initial condition/datum (mimic experiments)
- propagate approximate solution with numerical algorithm (integrator)
- check convergence of the solution (empirically)

Central problem: the error of an approximation

When can we pass to the semiclassical limit?

What are the conditions of validity?

What is the time when the approximation breaks enough?

- \rightarrow Find out order of magnitude of <u>error</u> for given problem and final time (theory).
- → Determine <u>final time</u> for given problem within tolerance threshold on error (practice).

Point 1 (addressed here): who is epsilon in real life? (from system Hamiltonian / model)

Point 2 (to be further investigated): dependence on the initial condition? (dynamical regime)

Theoretical chemistry / molecular physics

$$i\hbar \frac{\partial}{\partial t} \psi^{\mathrm{v}}(Q,t) = \left(-\frac{\hbar^2}{2\mu}\Delta_Q + \frac{k}{2}Q^2\right)\psi^{\mathrm{v}}(Q,t).$$

Numerical / semiclassical analysis

$$i\varepsilon \frac{\partial}{\partial \tau} \psi^{\varepsilon}(Q, \tau) = \left(-\frac{\varepsilon^2}{2} \Delta_Q + \frac{k}{2} Q^2\right) \psi^{\varepsilon}(Q, \tau).$$

Formally looks as if only $\mu \rightsquigarrow 1$ and $\hbar \rightsquigarrow \varepsilon$, but not so simple...

 \rightarrow Semiclassical regime: $\varepsilon \ll 1$ ($\approx 10^{-2}$) and $k \sim 1$ ($\delta Q \sim \sqrt{\varepsilon}$ and $\delta \tau = \varepsilon \delta t \sim 1$).

Natural atomic/electronic scaling

Hydrogen atom \rightarrow define system of <u>atomic units</u>.

Galilean frame for the electron \sim centred at the proton ($m_{\rm e} \ll M_{\rm H}$).

Nonrelativistic electrostatic Hamiltonian in position representation

(position vector $\vec{r}_{\rm e}$, Laplacian operator $\Delta_{\vec{r}_{\rm e}}$, Euclidean norm $||\vec{r}_{\rm e}||$),

$$\hat{h}_{\rm e} = -\frac{\hbar^2}{2m_{\rm e}} \Delta_{\vec{r}_{\rm e}} - \frac{e^2}{4\pi\varepsilon_0 ||\vec{r}_{\rm e}||}.$$

Bound stationary states / discrete energies: eigensolutions, for $j \in \mathbb{N}^*$,

$$\hat{h}_{\rm e}\varphi_{j}^{\rm e}(\vec{r}_{\rm e}) = \epsilon_{j}^{\rm e}\varphi_{j}^{\rm e}(\vec{r}_{\rm e}).$$

One-particle Hilbert space $\mathcal{L}^2(\mathbb{R}^3 \to \mathbb{C})$ with orthonormal metric such that, for $j, k \in \mathbb{N}^*$,

$$\langle \varphi_j^{\mathrm{e}} | \varphi_k^{\mathrm{e}} \rangle = \iiint_{\{\mathbb{R}^3\}} \varphi_j^{\mathrm{e}*}(\vec{r}_{\mathrm{e}}) \varphi_k^{\mathrm{e}}(\vec{r}_{\mathrm{e}}) d\tau_{\mathrm{e}} = \delta_{jk}.$$

Physical constants / S.I. units (macroscopic values close to 1 on <u>human scales</u>, not for atoms):

- elementary charge $e = 1.60 \ 10^{-19} \ \text{C}$,
- electron mass $m_e = 9.11 \ 10^{-31} \ \text{kg}$,
- dielectric permittivity of vacuum $\varepsilon_0 = 8.85 \ 10^{-12} \ \mathrm{F m^{-1}}$,
- reduced Planck constant (action quantum) $\hbar = \frac{h}{2\pi} = 1.05 \ 10^{-34} \ J \ s \rightarrow "stupidly" small...!$

Get rid of them

→ better for numerical computations; easier for qualitative orders of magnitude.

First, rescale lengths in space wrt. a_0 ($\vec{r}_{\rm e}=a_0\vec{r}_{\rm e}'$, $d\tau_{\rm e}=a_0^3d\tau_{\rm e}'$) such that

$$\hat{h}_{e} = -\frac{\hbar^{2}}{2m_{e}a_{0}^{2}}\Delta_{\vec{r}_{e}'} - \frac{e^{2}}{4\pi\varepsilon_{0}a_{0}\|\vec{r}_{e}'\|'}$$

$$\varphi'_{j}^{e}(\vec{r}_{e}') = a_{0}^{3/2} \varphi_{j}^{e}(\vec{r}_{e}),$$

$$\langle \varphi_j^{\mathrm{e}} | \varphi_k^{\mathrm{e}} \rangle = \iiint_{\{\mathbb{R}^3\}} \varphi_j^{\prime \mathrm{e}*}(\vec{r}_{\mathrm{e}}^{\prime}) \varphi_k^{\prime \mathrm{e}}(\vec{r}_{\mathrm{e}}^{\prime}) d\tau_{\mathrm{e}}^{\prime} = \delta_{jk}.$$

Now, rescale energies wrt. $E_{\rm h}$ from factors in kinetic and potential energy operators such that

$$\hat{h}_{e} = -\frac{\hbar^{2}}{2m_{e}a_{0}^{2}}\Delta_{\vec{r}'_{e}} - \frac{e^{2}}{4\pi\varepsilon_{0}a_{0}\|\vec{r}'_{e}\|'}$$

$$\hat{h}_{e} = E_{h} \left(-\frac{1}{2} \Delta_{\vec{r}_{e}'} - \frac{1}{\|\vec{r}_{e}'\|} \right).$$

Hence,

$$\frac{\hbar^2}{m_{\rm e}a_0^2} = \frac{e^2}{4\pi\varepsilon_0 a_0} = E_{\rm h}.$$

Thus,

$$a_0 = \frac{4\pi\varepsilon_0\hbar^2}{m_{\rm e}e^2},$$

$$E_{\rm h} = \frac{m_{\rm e}e^4}{(4\pi\varepsilon_0)^2\hbar^2}.$$

Ground-state energy,

$$\epsilon_1^{\rm e} = -\frac{E_{\rm h}}{2}$$

with (1s orbital)

$$\varphi_{1}^{\prime e}(\vec{r}_{e}^{\prime}) = \frac{1}{\sqrt{\pi}} e^{-\|\vec{r}_{e}^{\prime}\|},$$

i.e.,

$$\varphi_1^{\mathrm{e}}(\vec{r}_{\mathrm{e}}) = \frac{1}{\sqrt{\pi}a_0^{3/2}}e^{-\frac{\|\vec{r}_{\mathrm{e}}\|}{a_0}}.$$

Excited-state energies, for $j \in \mathbb{N}^*$,

$$\epsilon_j^{\rm e} = -\frac{E_{\rm h}}{2j^2}.$$

 \rightarrow natural length (a_0 : bohr, atomic unit of length) and natural energy (E_h : Hartree, atomic unit of energy) scales: <u>typical variations close to 1</u>.

Virial theorem
$$\left[V\sim r^n\Longrightarrow\langle T\rangle=rac{n}{2}\langle V
angle; n=-1
ight]$$
 (detailed here for the ground state):

$$r_{\rm e} = \|\vec{r}_{\rm e}\|$$

$$\langle V \rangle_{1} = -\frac{e^{2}}{4\pi\varepsilon_{0}} \frac{1}{\pi a_{0}^{3}} \int_{0}^{\infty} e^{-\frac{r_{e}}{a_{0}}} \left(\frac{1}{r_{e}}\right) e^{-\frac{r_{e}}{a_{0}}} 4\pi r_{e}^{2} dr_{e} = -\frac{e^{2}}{\pi\varepsilon_{0}} a_{0}^{3} a_{0}^{2} \int_{0}^{\infty} \left(\frac{r_{e}}{a_{0}}\right) e^{-2\left(\frac{r_{e}}{a_{0}}\right)} d\left(\frac{r_{e}}{a_{0}}\right) = -E_{h},$$

$$\begin{split} \langle T \rangle_1 &= -\frac{\hbar^2}{2m_{\rm e}} \frac{1}{\pi a_0^3} \int\limits_0^\infty e^{-\frac{r_{\rm e}}{a_0}} \left(\frac{1}{r_{\rm e}^2} \frac{\partial}{\partial r_{\rm e}} r_{\rm e}^2 \frac{\partial}{\partial r_{\rm e}} \right) e^{-\frac{r_{\rm e}}{a_0}} 4\pi r_{\rm e}^2 dr_{\rm e} \\ &= \underbrace{\frac{4\hbar^2}{m_{\rm e} a_0^4} a_0^2} \int\limits_0^\infty \left(\frac{r_{\rm e}}{a_0} \right) e^{-2\left(\frac{r_{\rm e}}{a_0}\right)} d\left(\frac{r_{\rm e}}{a_0}\right) - \underbrace{\frac{2\hbar^2}{m_{\rm e} a_0^5} a_0^3} \int\limits_0^\infty \left(\frac{r_{\rm e}}{a_0} \right)^2 e^{-2\left(\frac{r_{\rm e}}{a_0}\right)} d\left(\frac{r_{\rm e}}{a_0}\right) = \underbrace{\frac{E_{\rm h}}{2}}, \end{split}$$

$$\epsilon_1^{\rm e} = \langle H \rangle_1 = \langle T \rangle_1 + \langle V \rangle_1 = \frac{E_{\rm h}}{2} - E_{\rm h} = -\frac{E_{\rm h}}{2}.$$

Now, introduce atomic unit of time (consistent with Heisenberg/Fourier relationships),

$$\tau_{\rm e} = \frac{\hbar}{E_{\rm h}} = \frac{(4\pi\varepsilon_0)^2\hbar^3}{m_{\rm e}e^4}.$$

S.I. values are $E_{\rm h}=4.36~10^{-18}$ J, $a_0=5.29~10^{-11}$ m, and $\tau_{\rm e}=2.42~10^{-17}$ s.

→ System of atomic units (mechanical: [M], [L], [T]),

$$a_0 = 1$$
 [L], $E_h = 1$ [ML²T⁻²], $\tau_e = 1$ [T],

with

$$e^{2}/4\pi\varepsilon_{0} = 1 \text{ [ML}^{3}\text{T}^{-2}\text{]},$$

$$\hbar = 1 \text{ [ML}^{2}\text{T}^{-1}\text{]},$$

$$m_{e} = 1 \text{ [M]}.$$

N.B.: electrical [I] hidden in ratio $e^2/4\pi\varepsilon_0$, but add e=1 [TI] and $4\pi\varepsilon_0=1$ [M⁻¹L⁻³T⁴I²].

Effect of time rescaling? Getting rid of \hbar and E_h in the time-dependent Schrödinger equation,

$$i\hbar \frac{\partial}{\partial t} \psi'^{e}(\vec{r}'_{e}, t) = E_{h} \left(-\frac{1}{2} \Delta_{\vec{r}'_{e}} - \frac{1}{\|\vec{r}'_{e}\|} \right) \psi'^{e}(\vec{r}'_{e}, t).$$

Setting

$$t = \tau_e t' = \frac{\hbar}{E_h} t', \qquad \frac{\partial}{\partial t} = \frac{1}{\tau_e} \frac{\partial}{\partial t'} = \frac{E_h}{\hbar} \frac{\partial}{\partial t'} \quad \text{and} \quad \psi'^e(\vec{r}_e', t) = \psi''^e(\vec{r}_e', t'),$$

yields

$$i\frac{\partial}{\partial t'}\psi''^{e}(\vec{r}_{e}',t') = \left(-\frac{1}{2}\Delta_{\vec{r}_{e}'} - \frac{1}{\|\vec{r}_{e}'\|}\right)\psi''^{e}(\vec{r}_{e}',t').$$

- → <u>Physical constants are all removed</u>: dimensionless differential equation wrt. energy variation, length in space, and duration in time.
- \rightarrow Every significant variation is <u>close to 1</u> within the system of atomic units.

Natural vibrational/nuclear scaling

Quantum linear harmonic oscillator (e.g., vibration of H₂ molecule).

Normal coordinate, Q, reduced mass, μ , force constant, k.

Vibrational Hamiltonian in position representation,

$$\hat{h}_{\mathrm{v}} = -\frac{\hbar^2}{2\mu} \Delta_Q + \frac{k}{2} Q^2.$$

Ground-state eigensolution,

$$\omega = \sqrt{\frac{k}{\mu'}},$$

$$\varphi_0^{\rm v}(Q) = \left(\frac{\mu\omega}{\pi\hbar}\right)^{1/4} \exp\left(-\frac{\mu\omega Q^2}{2\hbar}\right),$$

$$\epsilon_0^{\rm v} = \frac{\hbar\omega}{2}.$$

Bound stationary states / discrete energies: eigensolutions, for $j \in \mathbb{N}$,

$$\hat{h}_{\mathbf{v}}\varphi_{j}^{\mathbf{v}}(Q) = \epsilon_{j}^{\mathbf{v}}\varphi_{j}^{\mathbf{v}}(Q).$$

One-particle Hilbert space $\mathcal{L}^2(\mathbb{R} \to \mathbb{C})$ with orthonormal metric such that, for $j, k \in \mathbb{N}$,

$$\langle \varphi_j^{\mathrm{v}} | \varphi_k^{\mathrm{v}} \rangle = \int_{\{\mathbb{R}\}} \varphi_j^{\mathrm{v}*}(Q) \varphi_k^{\mathrm{v}}(Q) dQ = \delta_{jk}.$$

Excited-state energies, for $j \in \mathbb{N}$,

$$\epsilon_j^{\mathrm{v}} = \hbar\omega\left(j + \frac{1}{2}\right).$$

Ground-state probability density: square-modulus of $\varphi_0^{\rm v}(Q)$,

$$\rho_0^{\mathrm{v}}(Q) = |\varphi_0^{\mathrm{v}}(Q)|^2 = \sqrt{\frac{\mu\omega}{\pi\hbar}} \exp\left(-\frac{\mu\omega Q^2}{\hbar}\right) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{Q}{\sigma}\right)^2}.$$

ightarrow Normal distribution with a zero mean (centred at $Q=\langle Q\rangle_0=0$) and a standard deviation (width) $\sigma=\sqrt{\langle Q^2\rangle_0-\langle Q\rangle_0^2}=\sqrt{\frac{\hbar}{2\mu\omega}}$.

First usual rescaling: mass weighting (isoinertial normal coordinates in many dimensions)

Mass-weighted coordinates, $q = \sqrt{\mu}Q$, such that

$$\hat{h}_{\rm v} = -\frac{\hbar^2}{2} \Delta_q + \frac{\omega^2}{2} q^2.$$

Many dimensions: unitary diagonalisation of the matrix generalisation of $\omega^2=k/\mu$

→ normal modes.

Ground-state wavefunction, now normalised using $dq=\sqrt{\mu}dQ$, i.e.,

$$\varphi_0^{\prime \mathrm{v}}(q) = \mu^{-1/4} \varphi_0^{\mathrm{v}}(Q) = \left(\frac{\omega}{\pi \hbar}\right)^{1/4} \exp\left(-\frac{\omega q^2}{2\hbar}\right).$$

Standard deviation (width),

$$\sigma' = \sqrt{\frac{\hbar}{2\omega}}.$$

Second usual rescaling: adimensionalisation (so-called frequency-mass-weighted normal coordinates)

Introduce natural length unit,

$$\beta = \sqrt{\frac{\hbar}{\mu\omega}},$$

such that, for $Q = Q/\beta$,

$$\hat{h}_{\rm v} = \hbar\omega \left(-\frac{1}{2}\Delta_{\mathcal{Q}} + \frac{1}{2}\mathcal{Q}^2 \right).$$

Natural unit of energy: $\hbar\omega$.

Ground-state wavefunction, normalised using $dQ = \frac{1}{\beta}dQ$,

$$\varphi''_0^{\mathsf{v}}(Q) = \sqrt{\beta}\varphi_0^{\mathsf{v}}(Q) = \frac{1}{\pi^{1/4}}e^{-\frac{Q^2}{2}}.$$

Standard deviation (width): $\sigma'' = \frac{1}{\sqrt{2}}$, i.e., $\sigma = \beta \sigma'' = \frac{\beta}{\sqrt{2}}$.

Effect of time rescaling? Getting rid of \hbar and $\hbar\omega$ in the time-dependent Schrödinger equation,

$$i\hbar \frac{\partial}{\partial t} \psi^{\prime\prime v}(Q,t) = \hbar \omega \left(-\frac{1}{2}\Delta_Q + \frac{1}{2}Q^2\right) \psi^{\prime\prime v}(Q,t).$$

Setting

$$t = \tau_{\rm v} t' = \frac{\hbar}{\hbar \omega} t', \qquad \frac{\partial}{\partial t} = \frac{1}{\tau_{\rm v}} \frac{\partial}{\partial t'} = \frac{\hbar \omega}{\hbar} \frac{\partial}{\partial t'} \quad \text{and} \quad \psi''^{\rm v}(Q, t) = \psi'''^{\rm v}(Q, t'),$$

yields

$$i\frac{d}{dt'}\psi'''^{\mathsf{v}}(Q,t') = \left(-\frac{1}{2}\Delta_{\mathcal{Q}} + \frac{1}{2}Q^{2}\right)\psi'''^{\mathsf{v}}(Q,t').$$

Alternatively: use period, $T = \frac{2\pi}{\omega} (\tau_{\rm v} = \frac{\hbar}{\hbar \omega} = \frac{T}{2\pi})$, t = Tt', and $\psi''^{\rm v}(Q,t) = \psi'''^{\rm v}(Q,t')$, yields

$$i\frac{d}{dt'}\psi'''^{\mathrm{v}}(Q,t')=2\pi\left(-\frac{1}{2}\Delta_{Q}+\frac{1}{2}Q^{2}\right)\psi'''^{\mathrm{v}}(Q,t').$$

→ <u>Physical constants are all removed</u>: dimensionless differential equation wrt. energy variation, length in space, and duration in time.

Virial theorem $\left[V\sim Q^n\Longrightarrow\langle T\rangle=rac{n}{2}\langle V
angle; n=2
ight]$ (detailed here for the ground state):

$$\langle V \rangle_0 = \frac{\mu \omega^2}{2} \left(\frac{\mu \omega}{\pi \hbar}\right)^{1/2} \int_{-\infty}^{+\infty} e^{-\frac{\mu \omega Q^2}{2\hbar}} (Q^2) e^{-\frac{\mu \omega Q^2}{2\hbar}} dQ = \frac{\mu \omega^2}{2} \left(\frac{\mu \omega}{\pi \hbar}\right)^{1/2} \int_{-\infty}^{+\infty} (Q^2) e^{-\frac{\mu \omega Q^2}{\hbar}} dQ = \frac{\hbar \omega}{4},$$

$$\begin{split} \langle T \rangle_0 &= -\frac{\hbar^2}{2\mu} \left(\frac{\mu\omega}{\pi\hbar}\right)^{\frac{1}{2}} \int\limits_{-\infty}^{+\infty} e^{-\frac{\mu\omega Q^2}{2\hbar}} \left(\frac{\partial^2}{\partial Q^2}\right) e^{-\frac{\mu\omega Q^2}{2\hbar}} dQ \\ &= \frac{\hbar^2}{2\mu} \left(\frac{\mu\omega}{\pi\hbar}\right)^{\frac{1}{2}} \frac{\mu\omega}{\hbar} \int\limits_{-\infty}^{+\infty} e^{-\frac{\mu\omega Q^2}{\hbar}} dQ - \frac{\hbar^2}{2\mu} \left(\frac{\mu\omega}{\pi\hbar}\right)^{\frac{1}{2}} 4 \left(\frac{\mu\omega}{2\hbar}\right)^2 \int\limits_{-\infty}^{+\infty} (Q^2) e^{-\frac{\mu\omega Q^2}{\hbar}} dQ = \frac{\hbar\omega}{4}, \end{split}$$

$$\epsilon_0^{\text{V}} = \langle H \rangle_0 = \langle T \rangle_0 + \langle V \rangle_0 = \frac{\hbar \omega}{4} + \frac{\hbar \omega}{4} = \frac{\hbar \omega}{2}.$$

H₂ protype: orders of magnitude for energy, length, and time

Reduced atomic mass: $\mu = \frac{M_{\rm H}}{2} = 918.6 \ m_{\rm e}$.

(usual approximation: atomic mass rather than bare nuclear mass, 918.1 $m_{\rm e}$).

Experimentally, $\bar{\sigma}=4401~{\rm cm}^{-1}$: $\hbar\omega=0.02005~E_{\rm h}$.

Corresponding oscillation period $T=2\pi\tau_{\rm v}=$ 313.3 $\tau_{\rm e}.$

Natural length: $\beta = 0.2330 \ a_0$.

Organic molecules

Reduced masses $\mu \sim 2000$ to 20000 $m_{\rm e}$.

Vibrational modes with $\bar{\sigma}\sim 300$ to 3000 cm⁻¹ ($\hbar\omega\sim 0.0015$ to 0.015 $E_{\rm h}$).

Electronic transition energies, UV-visible, ~ 0.05 to 0.5 $E_{\rm h}$ (1.4 \sim 14 eV).

Representative ratio of time scales $\sim 10^{-2} \rightarrow \text{semiclassical epsilon}$

Semiclassical scaling

Back to

$$i\hbar \frac{d}{dt}\psi^{\mathrm{v}}(Q,t) = \hat{h}_{\mathrm{v}}\psi^{\mathrm{v}}(Q,t),$$

where

$$\hat{h}_{\mathrm{v}} = -\frac{\hbar^2}{2\mu} \Delta_Q + \frac{k}{2} Q^2.$$

Rescale to atomic units:

$$\frac{\mu}{m_{\rm e}}$$
, $\frac{Q}{a_0}$, $\frac{t}{\tau_{\rm e}}$, $\frac{\hat{h}_{\rm v}}{E_{\rm h}}$, $\frac{\hbar}{\hbar}$, $\frac{k}{E_{\rm h}a_0^{-2}}$.

→ Small parameter:

$$\varepsilon = \sqrt{\frac{m_{\rm e}}{\mu}} \approx 10^{-2}.$$

Using implicit atomic units yields

$$i\frac{d}{dt}\psi^{\mathrm{v}}(Q,t) = \left(-\frac{\varepsilon^{2}}{2}\Delta_{Q} + \frac{k}{2}Q^{2}\right)\psi^{\mathrm{v}}(Q,t).$$

Rescaling time,

$$\tau = \varepsilon t$$
,

further yields

$$i\varepsilon \frac{d}{d\tau} \tilde{\psi}^{\mathrm{v}}(Q,\tau) = \left(-\frac{\varepsilon^2}{2} \Delta_Q + \frac{k}{2} Q^2\right) \tilde{\psi}^{\mathrm{v}}(Q,\tau).$$

where $\tilde{\psi}^{\text{v}}(Q, \tau) = \psi^{\text{v}}(Q, t)$.

→ Semiclassical formulation.

Powers of epsilon within the Born-Oppenheimer approximation

System-dependent parameters: reduced mass μ and force constant k

 $ightarrow rac{\mu}{m_{
m e}}$ determines the definition of arepsilon:

$$\mu = \varepsilon^{-2} m_{\rm e} = \varepsilon^{-2}$$
 a.u.

 $\rightarrow \frac{\sqrt{k}}{E_h^{1/2}a_0^{-1}}$ is usually close to 1 (see later on)

Harmonic oscillator:

$$\omega = \sqrt{\frac{k}{\mu}}, \qquad \Delta E_{\rm v} = \hbar \omega = \varepsilon \hbar \sqrt{\frac{k}{m_{\rm e}}} \approx \varepsilon \frac{\hbar}{a_0} \sqrt{\frac{E_{\rm h}}{m_{\rm e}}} = \varepsilon \frac{\hbar^2}{m_{\rm e} a_0^2} = \varepsilon E_{\rm h}.$$

owing to
$$E_{\rm h}=rac{\hbar^2}{m_{
m e}a_0^2}=rac{e^2}{4\pi\varepsilon_0 a_0}.$$

$$\Delta E_{
m v} pprox arepsilon E_{
m h} = arepsilon ext{ a.u.} \quad ext{and} \quad au_{
m v} = rac{\hbar}{E_{
m v}} pprox arepsilon^{-1} au_{
m e} = arepsilon^{-1} ext{ a.u.}$$

Example 1: H₂ (1 mode / GS)

$$\mu=900~m_{
m e}$$
 $arepsilon=0.03$

$$\sqrt{k}=0.6~E_{
m h}^{1/2}a_{
m o}^{-1}$$

$$\Delta E_{
m v}=0.02~E_{
m h}$$
 $au_{
m v}=50~ au_{
m e}$

Example 2: pyrazine (24 modes / GS)

 μ ranges from 2000 to 16000 a.u. (ave. 6000)

 ε from 0.008 to 0.02 (ave. 0.02)

 \sqrt{k} from 0.1 to 0.9 a.u. (ave. 0.4)

 $\Delta E_{\rm v}$ from about 0.002 to 0.01 a.u. (ave. 0.006)

Length scale?

$$\hat{h}_{\mathrm{v}} = -\frac{\hbar^2}{2\mu} \Delta_Q + \frac{k}{2} Q^2,$$

$$\varphi_0^{V}(Q) = \frac{1}{\pi^{1/4}} \frac{1}{\sqrt{\beta}} e^{-\frac{1}{2} \left(\frac{Q}{\beta}\right)^2},$$

$$\beta = \sqrt{\frac{\hbar}{\mu\omega}} = \varepsilon \sqrt{\frac{\hbar}{m_{\rm e}\omega}} \approx \varepsilon \sqrt{\frac{\hbar^2}{m_{\rm e}\varepsilon E_{\rm h}}} = \sqrt{\varepsilon}a_0,$$

$$\delta Q = \beta \approx \sqrt{\varepsilon} a_0 = \sqrt{\varepsilon}$$
 a.u.

H₂ example: $\varepsilon = 0.03$ and $\beta = 0.2$ a.u.

Pyrazine example: ε ranges from 0.008 to 0.02 (ave. 0.02), β from 0.1 to 0.4 (ave. 0.2) a.u.

Momentum scale?

Unitary Fourier transform,

$$\tilde{\varphi}_0^{\mathrm{V}}\left(\frac{P}{\hbar}\right) = \frac{1}{\pi^{1/4}} \sqrt{\beta} e^{-\frac{1}{2}\left(\beta \frac{P}{\hbar}\right)^2}.$$

Natural momentum size,

$$\frac{\hbar}{\beta} = \sqrt{\hbar\mu\omega}.$$

$$\delta P = \frac{\hbar}{\beta} \approx \frac{1}{\sqrt{\varepsilon}} \hbar a_0^{-1} = \frac{1}{\sqrt{\varepsilon}} \text{ a.u.}$$

N.B.: Heisenberg uncertainty "limit" in terms of standard deviations,

$$\sigma = \frac{\beta}{\sqrt{2}}, \qquad \tilde{\sigma} = \frac{\hbar}{\sqrt{2}\beta}, \qquad \sigma\tilde{\sigma} = \frac{\hbar}{2}.$$

Rescaled time, momentum, and action

Assuming atomic units and rescaling,

$$t \to \tau = \varepsilon t$$
,
 $P \to p = \varepsilon P$,
 $S \to s = \varepsilon S$.

 \rightarrow Same effect as $\hbar \rightarrow \varepsilon$ ("grain" of phase space):

$$i\hbar \frac{\partial}{\partial t} \to i\varepsilon \frac{\partial}{\partial \tau'},$$

$$\hat{P} = \frac{\hbar}{i} \frac{\partial}{\partial Q} \to \hat{p} = \frac{\varepsilon}{i} \frac{\partial}{\partial Q'},$$

$$e^{i\frac{S(t)}{\hbar}} \to e^{i\frac{S(\tau)}{\varepsilon}}.$$

Summary

Semiclassical wavepacket ansatz:

$$\tilde{\psi}^{\mathrm{V}}(Q,\tau) = \frac{1}{\varepsilon^{1/4}} u\left(\frac{Q - \langle Q_{\tau} \rangle}{\sqrt{\varepsilon}}, \tau\right) e^{i\frac{\langle p_{\tau} \rangle (Q - \langle Q_{\tau} \rangle)}{\varepsilon}} e^{i\frac{S(\tau)}{\varepsilon}},$$

$$i\varepsilon \frac{d}{d\tau} \tilde{\psi}^{\mathrm{v}}(Q,\tau) = \left(-\frac{\varepsilon^2}{2} \Delta_Q + \frac{k}{2} Q^2\right) \tilde{\psi}^{\mathrm{v}}(Q,\tau).$$

$$Q \sim \sqrt{\varepsilon}, \qquad E \sim \varepsilon,$$
 $t \sim \frac{1}{\varepsilon} \to \tau \sim 1,$
 $P \sim \frac{1}{\sqrt{\varepsilon}} \to p \sim \sqrt{\varepsilon},$
 $PQ \sim 1 \to pQ \sim \varepsilon,$
 $S \sim 1 \to S \sim \varepsilon.$

Controversy?

The scales above are consistent with Bersuker and Polinger '89, p. 9 [DOI: 10.1007/978-3-642-83479-0] when they justify

$$k \sim \frac{e^2}{4\pi\varepsilon_0} \frac{1}{a_0^3} = 1$$
 u.a.

(from derivative of average electrostatic potential energy).

Consistent with the virial theorem.

→ Validity criterion of the Born-Oppenheimer adiabatic approximation

Electronic time scale $\sim \varepsilon$ vibrational time scale (except a crossings...)

They are inconsistent with Lubich '08, p. 27 [DOI: 10.4171/067],

$$E \sim \varepsilon$$
, $Q \sim \sqrt{\varepsilon}$, $P \sim \frac{1}{\sqrt{\varepsilon}}$, $v \sim \varepsilon \sqrt{\varepsilon}$
 $E \sim 1$, $Q \sim 1$, $P \sim \frac{1}{\varepsilon}$, $v \sim \varepsilon$???
 $t \sim \frac{1}{\varepsilon} \rightarrow \tau \sim 1$: OK

We are interested in solutions to the Schrödinger equation of bounded energy, and in particular of bounded kinetic energy

$$\langle \Psi | - \frac{\varepsilon^2}{2} \Delta_x | \Psi \rangle = \frac{1}{2} \| \varepsilon \nabla_x \Psi \|^2 = \mathcal{O}(1).$$

For a wavepacket $e^{ip\cdot x}a(x)$ this condition corresponds to a momentum $p\sim \varepsilon^{-1}$ and hence to a velocity $v=p/M\sim \varepsilon$. Motion of the nuclei over a distance ~ 1 can thus be expected on a time scale ε^{-1} . We therefore rescale time

$$t \to t/\varepsilon$$
,

so that with respect to the new time nuclear motion over distances ~ 1 can be expected to occur at time $\sim 1.$ The molecular Schrödinger equation in the rescaled time then takes the form

$$i\varepsilon \frac{\partial \Psi}{\partial t} = H_{\text{mol}}^{\varepsilon} \Psi.$$
 (2.9)

The Schrödinger equation (2.6) for the nuclei becomes

$$i\varepsilon \frac{\partial \psi}{\partial t} = H_N^{\varepsilon} \psi \quad \text{ with } \quad H_N^{\varepsilon} = -\frac{\varepsilon^2}{2} \Delta_x + E + \varepsilon B_1 + \varepsilon^2 B_2 \,, \quad (2.10)$$

$$B_1 = \operatorname{Im} \langle \nabla_x \Phi \, | \, \Phi \rangle_{L_y^2} \cdot p \,, \quad B_2 = \frac{1}{2} \, \| \nabla_x \Phi \|_{L_y^2}^2 \,,$$

with $p=-i\varepsilon\nabla_x$. We are interested in solutions over times $t=\mathcal{O}(1)$.

→ Does not seem compatible with small energy scale, but same semiclassical equations...

Numerical considerations

Practical simulations of quantum dynamics, for example with MCTDH + QVC Hamiltonian

- \rightarrow often with dimensionless normal coordinates, $Q = Q/\beta$
- \rightarrow values close to 1 (both Q and β are $\sim \sqrt{\varepsilon}$): numerically convenient
- \rightarrow always with time in atomic units: significant $t \sim \frac{1}{\varepsilon} \approx 100$ a.u. ≈ 2 fs $(\tau \sim 1)$
- ightharpoonup time step for numerical integration $t \to t + \delta t$: typically, $\delta t \sim \frac{1}{\sqrt{\varepsilon}} \approx 10$ a.u. ≈ 0.2 fs
- \rightarrow final time: $t = T \approx 10^4$ to 10^5 a.u. ≈ 200 to 2000 fs (100 to 1000 semiclassical τ)

To go beyond

Anharmonicity effects and/or coupled electronic states (breathing, branching...)

First- and second-order nonadiabatic couplings [see Teufel, Lubich, ...] (delta parameter)

System-bath partition (modes with distinct scales because different values of k and μ)

Influence of atomic numbers (hidden in k) together with masses?

Initial condition / dynamical regime (actual width vs. natural width vs. epsilon...)