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Introduction: objective? “Semiclassical rescaling” of the nuclear time-
dependent Schrédinger equation for a molecule within the Born-Oppenheimer
approximation

Numerical analysis (maths)

e set epsilon (small parameter) and rescale variables
e assume semiclassical wavepacket ansatz

e determine error estimate wrt. epsilon power

Computational physics/chemistry

e set model Hamiltonian and initial condition/datum (mimic experiments)
e propagate approximate solution with numerical algorithm (integrator)
e check convergence of the solution (empirically)
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Central problem: the error of an approximation
When can we pass to the semiclassical limit?
What are the conditions of validity?
What is the time when the approximation breaks enough?
— Find out order of magnitude of error for given problem and final time (theory).

- Determine final time for given problem within tolerance threshold on error (practice).

Point 1 (addressed here): who is epsilon in real life? (from system Hamiltonian / model)

Point 2 (to be further investigated): dependence on the initial condition? (dynamical regime)
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Theoretical chemistry / molecular physics

2
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Numerical / semiclassical analysis
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Formally looks as if only i «» 1 and i w» &, but not so simple...

- Semiclassical regime: ¢ < 1 (= 1072) and k~1 (§Q~+/€ and 6t = 6t~1).
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Natural atomic/electronic scaling

Hydrogen atom —> define system of atomic units.
Galilean frame for the electron ~ centred at the proton (m, < My).
Nonrelativistic electrostatic Hamiltonian in position representation

(position vector 7., Laplacian operator Az , Euclidean norm 17211,

- h? e?
ho = ——A;
e Zme Te

meo|I7e Il

Bound stationary states / discrete energies: eigensolutions, for j € N¥,
heo$ (1) = €/ @; (7).

One-particle Hilbert space L2(R3 — C) with orthonormal metric such that, for j, k € N*,

(w5lo) = [[[ o Gaos G, = 8

{R3}
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Physical constants / S.I. units (macroscopic values close to 1 on human scales, not for atoms):

e elementary charge e = 1.60 1071° C,
e electron massm, = 9.11 10731 kg,

dielectric permittivity of vacuum &5 = 8.85 10712 Fm™,

H h’ -_ o H 7
reduced Planck constant (action quantum) A = = 1.051073% J s & “stupidly” small...!

Get rid of them
- better for numerical computations; easier for qualitative orders of magnitude.

First, rescale lengths in space wrt. a, (. = ao7/, dt, = agdtl) such that

. h? e?

e 7o

2meaZ e Ameqaoll|

rer=1 3/2 -
9'S(F) = ad? s (),

(w5lot) = [[[ o5 GDosGDaz = 53

{R3}
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Now, rescale energies wrt. E}, from factors in kinetic and potential energy operators such that

- h? e?
e T amead T Amegao T
h,=E 1A - )
- h<‘z S
Hence,
h? e?
meas N Areqag = En
Thus,
_ Amegh?
o = mee? ’
E, = mee” .
(4mey)2h?
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Ground-state energy,

€ = —%,
with (1s orbital)
p's(#) = —=elI%l,
[
ie.,
. 1 _lI7ell
p1(7) = \/Eag'/z e “o
Excited-state energies, for j € N7,
— Eh
€ = _ﬁ'

=> natural length (ay: bohr, atomic unit of length) and natural energy (E},: Hartree, atomic
unit of energy) scales: typical variations close to 1.
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Virial theorem [V~r" = (T) = E(V); n= —1] (detailed here for the ground state):

e = lI%l,
2 [ regly n N A
(V) =— ° — | e %o (—) e Y4nridr, = — ° 2 a%j (E) e 2(ao)d (E) = —Ey,
dmey mag ) Te TEYA Ao Ao
1
4
) ht 1 _;_e<1 J 6) ‘2_84 2,
= — —_— O\ —F— - 0
1 2m. mag € 2 0r, e or, ¢ e Gle
0
2 w 2 -
] (2 a2 2 (2 () -
meag ° J \a ay/ mead "’ J \ao ag) 2’
10 1 2! 1
2274 2374
Ey Ep/2
. Ey Ey
e =(H)y =(T)y +{V)1 = 7_Eh =5
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Now, introduce atomic unit of time (consistent with Heisenberg/Fourier relationships),

h (4mep)*h’
E,  mee*

Te =

S.l.values are E;, = 436 10718 ), a, = 5.29107 ' m,and 7, = 2.42 10717 s,

- System of atomic units (mechanical: [M], [L], [T]),

ao = 1[L],
E, =1 [MI2T2],
Te = 1[T],
with
e?/4mey = 1 [ML3T 2],
h=1[MAT 1),
m, = 1 [M].

N.B.: electrical ||| hidden in ratio e?/4me,, butadd e = 1 [T!] and 4wy = 1 [M1L73T417].
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Effect of time rescaling? Getting rid of 77 and E}, in the time-dependent Schrodinger equation,

1
lh l/)’e(re; t) = Ey, (_EA 7 ” ”)lp’e(re; )
Setting
! h !/ a 1 a Eh a le e =21 /
t =Tt —E—ht, E‘Eat" PRET and Y'*(7,t) =y¢""e @, t),
yields

e ) = (5 Ay o | WG )

277 7

- Physical constants are all removed: dimensionless differential equation wrt. energy

variation, length in space, and duration in time.

- Every significant variation is close to 1 within the system of atomic units.
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Natural vibrational/nuclear scaling

Quantum linear harmonic oscillator (e.g., vibration of H, molecule).
Normal coordinate, Q, reduced mass, u, force constant, k.

Vibrational Hamiltonian in position representation,

h, = th +k 2
A 2[1 Q ZQ .
Ground-state eigensolution,
k
w= |-
U
, wy\1/% wQ*
@ =) e (— - )

v hw
€p = >
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Bound stationary states / discrete energies: eigensolutions, forj € N,

h,@}(Q) = €/ 9] (Q).

One-particle Hilbert space L2(R — C) with orthonormal metric such that, for j, k € N,

(Y] o) = j oV (Q@l(Q)dQ = 5.
{R}

\% : 1
€j = hw (] +§).

Ground-state probability density: square-modulus of @{(Q),

YNy v _ [pw poQ?\ 1 L@y
Po(Q)—I%(Q)IZ—\/%eXp<— ! >_U )

Excited-state energies, forj € N,

- Normal distribution with a zero mean (centred at Q = (Q), = 0) and a standard

h

deviation (width) o = \/(QZ)O —(Q)5 = vy
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First usual rescaling: mass weighting (isoinertial normal coordinates in many dimensions)

Mass-weighted coordinates, ¢ = +/1Q, such that

Many dimensions: unitary diagonalisation of the matrix generalisation of w? = k/u

- normal modes.

Ground-state wavefunction, now normalised using dqg = \/udQ, i.e.,
w\1/4 wq?
v — y—1/4 v — -
9'5(q) = u""95(Q) (ﬂh) eXp< T )

Standard deviation (width),
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Second usual rescaling: adimensionalisation (so-called frequency-mass-weighted normal
coordinates)

Introduce natural length unit,

such that, forQ = Q/p,

R 1 1
hv = hw <—§AQ +EQ )

Natural unit of energy: hw.

. . : 1
Ground-state wavefunction, normalised using dQ = EdQ’

0"5(0) = VBOYQ) = —ze T

. : Lo 1 o _ B
Standard deviation (width): o'’ \/_,le o= Lo =7
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Effect of time rescaling? Getting rid of 72 and 7w in the time-dependent Schrodinger equation,

ha Iy _h 1A 1 2 A

Setting

t =1t = n ¢! J _ 10 _hw 0 d /lv( t) . ///V( t/)
_TV _h(,() ) at_TVat,_ h atl an l/} Ql _lp Ql )

yields

. d 1y N _ 1 1 2 1y /

Alternatively: use period, T = %ﬂ (1, = % = %), t=Tt,and"V(Q,t) =¢""V(Q,t), yields

. d 1y N =2 1A 1 2 1y /

- Physical constants are all removed: dimensionless differential equation wrt. energy

variation, length in space, and duration in time.
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Virial theorem [V~Q" = (T) = E(V); n= 2] (detailed here for the ground state):

+ 00 +0oo
2 1/2 Q2 wQ? 2 1/2 wQ? hw
Hw™ W _HOL” _HwQ” HW* W _kwQ*
= — | — 2h 2 2h = — | — 2 h = —
=57 [ e ae =525 [ @ a0 =
1 A3
2™
(T, = h? (,ua))z joo _Iv“gf?z 0% _Mszd
07 2u\mh ¢ aQ ¢ ¢
h? juw %ua) s pwQ? h? juw 5 UW 2 s wQ? hw
= B _ | — N 2Ne R -
21 (nh) h j aQ 21 (nh) 4(2h) j (Q%)e aQ 4"’
= —
— h
" 2 "(365)
v hw how ho
e§ = (o = (T + (Vg = o+ ==
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H, protype: orders of magnitude for energy, length, and time
Reduced atomic mass: u = % = 918.6 m,.

(usual approximation: atomic mass rather than bare nuclear mass, 918.1 m,).
Experimentally, & = 4401 cm™: Aw = 0.02005 E},.
Corresponding oscillation period T = 2nrt, = 313.3 7.

Natural length: f = 0.2330 a,.

Organic molecules
Reduced masses u ~ 2000 to 20000 m,.
Vibrational modes with @ ~ 300 to 3000 cm™ (Aw ~ 0.0015 to 0.015 E}).
Electronic transition energies, UV-visible, ~ 0.05 to 0.5 E}, (1.4 ~ 14 eV).

Representative ratio of time scales ~ 1072 = semiclassical epsilon
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Semiclassical scaling

Back to

where

Rescale to atomic units:

- Small parameter:
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Q t h, h k
a,’ T, E,’ h’ Enag®
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U
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Using implicit atomic units yields

82

d \% — k \Y%
(= ¥"(Q,0) —( A +§QZ>¢ Q.0

Rescaling time,

(\l
Il

et,

further yields

82

d . k -
e (Q. 1) = ( A +§QZ>¢V(Q,T)-

where ¥(Q,7) = ¢"(Q,1).

—> Semiclassical formulation.
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Powers of epsilon within the Born-Oppenheimer approximation

System-dependent parameters: reduced mass u and force constant k

> £ determines the definition of &:

me

2

U=¢e?*m, =¢e?au.

Vi .
> 721 is usually close to 1 (see later on)
h %o

Harmonic oscillator:

k k h |Ey
w= |-, AE, =hw =¢h |—=e— |[—=¢
H me Ao (| Me

2

owing to E}, = = :
g h meas  4meyag

82

h

m

2
az = EEh.
e*0

h
AE, ~ eE, =cau. and 71, = = e lr, =¢"
\"%

1au.
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Example 1: H, (1 mode / GS)

u =900 m,
£ =0.03
Vk =0.6 E/%aj?
AE, = 0.02 E;

T, =50 7,

Example 2: pyrazine (24 modes / GS)

u ranges from 2000 to 16000 a.u. (ave. 6000)

€ from 0.008 to 0.02 (ave. 0.02)

Vk from 0.1 to 0.9 a.u. (ave. 0.4)
AE, from about 0.002 to 0.01 a.u. (ave. 0.006)

AlgDynQua Hybrid Meeting — CIRM 14 Sept. 2020

22




Length scale?

h th +k 2
v 211 Q ZQ )
\4 1 _%<Q2
‘Po(Q)_W—ﬁe )
h h h?
p= u_a)_g mea)Ng megEh_\/EaO'

H, example: ¢ =0.03 and f = 0.2 a.u.

Pyrazine example: € ranges from 0.008 to 0.02 (ave. 0.02),  from 0.1 to 0.4 (ave. 0.2) a.u.
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Momentum scale?

Unitary Fourier transform,

Natural momentum size,

N.B.: Heisenberg uncertainty “limit” in terms of standard deviations,

p . h . h
0o=—= o 06 = —.

V2’ V2B’ 2
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Rescaled time, momentum, and action

Assuming atomic units and rescaling,

t > 1=¢€t,
P —->p=¢P,
S — s =&S.

- Same effect as A — € (“grain” of phase space):

ihi—u'ei
ot 0T’
. h oo €0
=700 P73
S S@

e h —>e €,
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Summary

Semiclassical wavepacket ansatz:

7@ =

€ e €

1 (Q—(QT) ) (PQ—(0r) s@)
/4u ,T]€

Ve

)

e g @0 = (

82

k -
A +§Qz>t/)v((2,r)-
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5

1
P~—- N\/E;
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PQ~1 - pQ~s¢,

S~1 - s~e.
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Controversy?

The scales above are consistent with Bersuker and Polinger ’89, p. 9 [DOI:

10.1007/978-3-642-83479-0] when they justify Eoed
e? 1 Mologules -
k~ — = 1 u.a. and Crystals
4rtey al

(from derivative of average electrostatic potential energy).

Consistent with the virial theorem.

—> Validity criterion of the Born-Oppenheimer adiabatic approximation

Electronic time scale ~¢ vibrational time scale (except a crossings...)
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They are inconsistent with Lubich '08, p. 27 [DOI: 10.4171/067], G
1

ENSJ Q~ V g) P~ ) v~€ V g Christian Lubich
V g From Quantum m_CIassiml

Molecular Dynamics:
1 Reduced Models and
Numerical Ana 4
— 27?77
EN]‘I QN]-; PN ) V~E {1 )
& \
t~——-1~1: 0K

&

We are interested in solutions to the Schrodinger equation of bounded energy, and
in particular of bounded kinetic energy

2 1 ,
(@] = FA:|0) = 5 leVa|* = O(1).

For a wavepacket e’?"“qa(z) this condition corresponds to a momentum p ~ £~ ! and
hence to a velocity v = p/M ~ £. Motion of the nuclei over a distance ~ 1 can
thus be expected on a time scale £~ *. We therefore rescale time

t—t/e,

so that with respect to the new time nuclear motion over distances ~ 1 can be
expected to occur at time ~ 1. The molecular Schrodinger equation in the rescaled
time then takes the form

ov
isﬁ =H,.7. (2.9)
The Schrodinger equation (2.6) for the nuclei becomes
. O . . . e 2
zsa =Hyy with Hy = —;AI +E+eB1 +£°B2, (2.10)

1 .
Bi=Im(V,®|®)13 p, Ba=j[Valli;,

with p = —ieV,. We are interested in solutions over times ¢ = O(1).

- Does not seem compatible with small energy scale, but same semiclassical equations...

AlgDynQua Hybrid Meeting — CIRM 14 Sept. 2020 28



Numerical considerations

Practical simulations of qguantum dynamics, for example with MCTDH + QVC Hamiltonian

—> often with dimensionless normal coordinates, @ = Q/f

- values close to 1 (both Q and f are ~+/¢): numerically convenient

- always with time in atomic units: significant t~§ ~ 100 a.u. = 2 fs (t~1)
- time step for numerical integration t — t + §t: typically, 6t~ \/—15 ~ 10a.u.= 0.2 fs

- final time: t = T ~ 10* to 10° a.u. =~ 200 to 2000 fs (100 to 1000 semiclassical )
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To go beyond

Anharmonicity effects and/or coupled electronic states (breathing, branching...)

First- and second-order nonadiabatic couplings [see Teufel, Lubich, ...] (delta parameter)

System-bath partition (modes with distinct scales because different values of k and u)

Influence of atomic numbers (hidden in k) together with masses?

Initial condition / dynamical regime (actual width vs. natural width vs. epsilon...)
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