# The nonlinear Schrödinger equation A little bit of pop culture

Lysianne Hari LMB, University of Bourgogne Franche Comté





## Solving ODEs

General first order ODE with given data: consider  $f : \mathbf{R} \times \mathbf{R} \to \mathbf{R}$  continuous and

(\*)  $\dot{u}(t) = f(t, u(t)), \quad u(0) = u_0, \ t \in ] - T, T[\subset \mathbf{R}.$ 

 $\rightarrow$  is called **"Cauchy problem"**. Solving locally the Cauchy problem is finding T > 0 and  $u \in C^1(] - T, T[)$  such that (\*) is true. If  $T = +\infty$ , we have a **global** solution.

**Cauchy-Lipschitz theorem** gives (local) existence of unique solution for each choice of  $u_0$  under conditions on f.

As a consequence, it ensures (local) existence of the flow  $\Phi$  on ] - T, T[, where  $\Phi$  is the application  $u_0 \mapsto u(t)$ , and for all  $t \in ] - T$ , T[,  $\Phi(u_0, t) = u(t)$  the solution associated to initial data  $u_0$ .

## Solving ODEs

General first order ODE with given data: consider  $f : \mathbf{R} \times \mathbf{R} \to \mathbf{R}$  continuous and

(\*)  $\dot{u}(t) = f(t, u(t)), \quad u(0) = u_0, \ t \in ] - T, T[\subset \mathbf{R}.$ 

 $\rightarrow$  is called **"Cauchy problem"**. Solving locally the Cauchy problem is finding T > 0 and  $u \in C^1(] - T, T[)$  such that (\*) is true. If  $T = +\infty$ , we have a **global** solution.

**Cauchy-Lipschitz theorem** gives (local) existence of unique solution for each choice of  $u_0$  under conditions on f.

As a consequence, it ensures (local) existence of the flow  $\Phi$  on ] - T, T[, where  $\Phi$  is the application  $u_0 \mapsto u(t)$ , and for all  $t \in ] - T$ , T[,  $\Phi(u_0, t) = u(t)$  the solution associated to initial data  $u_0$ .

## Solving ODEs

General first order ODE with given data: consider  $f : \mathbf{R} \times \mathbf{R} \to \mathbf{R}$  continuous and

(\*)  $\dot{u}(t) = f(t, u(t)), \quad u(0) = u_0, \ t \in ] - T, T[\subset \mathbf{R}.$ 

 $\rightarrow$  is called **"Cauchy problem"**. Solving locally the Cauchy problem is finding T > 0 and  $u \in C^1(] - T, T[)$  such that (\*) is true. If  $T = +\infty$ , we have a **global** solution.

**Cauchy-Lipschitz theorem** gives (local) existence of unique solution for each choice of  $u_0$  under conditions on f.

As a consequence, it ensures (local) existence of the flow  $\Phi$  on ] - T, T[, where  $\Phi$  is the application  $u_0 \mapsto u(t)$ , and for all  $t \in ] - T$ , T[,  $\Phi(u_0, t) = u(t)$  the solution associated to initial data  $u_0$ .

### Fixed point or Contraction Mapping Theorem

Consider X a Banach space with norm  $\|\cdot\|$  and  $T: I \to \mathbf{R}$  a contraction, that is

$$|T(x) - T(y)|| \le c||x - y||, \ 0 \le c < 1.$$

Then T has a unique fixed point in I and all sequences  $x_0 \in I$ ,  $x_{n+1} = T(x_n)$  converge to this unique fixed point.

### Example: consider

$$\dot{u} = a(t)u, \quad u(0, \cdot) = u_0, \quad a \text{ is continuous.}$$

Then 
$$U(t)u_0 = \exp\left(\int_0^t a(s) ds\right) u_0$$
 is solution.

We can deduce solutions to:

$$\dot{u} = a(t)u + b(t), \quad u(0, \cdot) = u_0, \quad a, b \text{ are continuous.}$$

Then a solution is given by

(Duhamel formula) 
$$\Phi(u_0, t) = U(t)u_0 + \int_0^t U(t-s)b(s) ds$$

= general solution + particular solution.

### The Nonlinear Schrödinger equation

(S): 
$$i\partial_t u + \Delta u = \lambda |u|^{\alpha} u$$
;  $u(0,.) = u_0 \in \mathcal{H}$ ,

where :

- ►  $(t,x) \in \mathbf{R} \times \mathbf{R}^d, \ d \ge 1$ ,
- $\blacktriangleright \ u = u(t, x) \in \mathbf{C},$
- ▶  $\lambda \in \{-1, 0, 1\}$ ,
- $\blacktriangleright$   $\mathcal{H}$  a Hilbert space.

I. Immediate information : conserved quantities.

Mass conservation:  $||u(t)||_{L^2} = ||u_0||_{L^2}$ . Energy conservation:  $||\nabla u(t)||_{L^2} + \frac{\lambda}{\alpha+2} ||u(t)||_{L^{\alpha+2}} = E(u(t)) = E(u_0)$ .

Sobolev space  $H^1(\mathbb{R}^d)$  is appearing naturally;  $H^1 \subset L^q$  for all  $q \in [2, \frac{2d}{d-2}]$ .

### The Nonlinear Schrödinger equation

(S): 
$$i\partial_t u + \Delta u = \lambda |u|^{\alpha} u$$
;  $u(0,.) = u_0 \in \mathcal{H}$ ,

where :

- ►  $(t,x) \in \mathbf{R} \times \mathbf{R}^d, \ d \ge 1$ ,
- $\blacktriangleright \ u = u(t, x) \in \mathbf{C},$
- ▶  $\lambda \in \{-1, 0, 1\}$ ,
- $\blacktriangleright$   $\mathcal{H}$  a Hilbert space.

### I. Immediate information : conserved quantities.

<u>Mass conservation</u>:  $||u(t)||_{L^2} = ||u_0||_{L^2}$ . <u>Energy conservation</u>:  $||\nabla u(t)||_{L^2} + \frac{\lambda}{\alpha+2} ||u(t)||_{L^{\alpha+2}} = E(u(t)) = E(u_0)$ .

Sobolev space  $H^1(\mathbf{R}^d)$  is appearing naturally;  $H^1 \subset L^q$  for all  $q \in [2, rac{2d}{d-2}]$ .

### The Nonlinear Schrödinger equation

(S): 
$$i\partial_t u + \Delta u = \lambda |u|^{\alpha} u$$
;  $u(0,.) = u_0 \in \mathcal{H}$ ,

where :

- ►  $(t,x) \in \mathbf{R} \times \mathbf{R}^d, \ d \ge 1$ ,
- $\blacktriangleright \ u = u(t, x) \in \mathbf{C},$
- ▶  $\lambda \in \{-1, 0, 1\}$ ,
- $\blacktriangleright$   $\mathcal{H}$  a Hilbert space.

### I. Immediate information : conserved quantities.

<u>Mass conservation</u>:  $||u(t)||_{L^2} = ||u_0||_{L^2}$ . <u>Energy conservation</u>:  $||\nabla u(t)||_{L^2} + \frac{\lambda}{\alpha+2} ||u(t)||_{L^{\alpha+2}} = E(u(t)) = E(u_0)$ . Sobolev space  $H^1(\mathbf{R}^d)$  is appearing naturally;  $H^1 \subset L^q$  for all  $q \in [2, \frac{2d}{d-2}]$ . II.  $\lambda = 0$ : The fundamental solution  $i\partial_t u = -\Delta u$ , "taking Fourier":  $i\partial_t \mathcal{F}(u) = 4\pi^2 |\xi|^2 \mathcal{F}(u)$ .

 $\partial_t \mathcal{F}(u) = -4\pi^2 i |\xi|^2 \mathcal{F}(u) \Rightarrow \mathcal{F}(u)(t,\xi) = e^{-4\pi^2 i t |\xi|^2} \mathcal{F}(u_0)(\xi)$ 

$$u(t,x) =: U(t)u_0 = \mathcal{F}^{-1}\left(e^{-4\pi^2 it|\cdot|^2}\mathcal{F}(u_0)(\cdot)\right)(x)$$

$$U(t)u_0 =: \mathcal{F}^{-1}\left(e^{-4\pi^2 it|\cdot|^2}\mathcal{F}(u_0)\right) = (4\pi it)^{-1/2}e^{i|x|^2/(4t)} * u_0$$

**III. Some properties of the fundamental solution** U(t). Young :  $p, q, r \in [1, \infty], \frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r} ||f * g||_{L^r} \le ||f||_{L^p} ||g||_{L^q}$ . With  $p = r = \infty, q = 1$ , we have

Dispersion :  $\|U(t)f\|_{L^{\infty}} \le (4\pi|t|)^{-d/2} \|f\|_{L^{1}}$ Unitary:  $\|U(t)f\|_{L^{2}} = \|f\|_{L^{2}}$  **II.**  $\lambda = 0$  : **The fundamental solution**  $i\partial_t u = -\Delta u$ , "taking Fourier" :  $i\partial_t \mathcal{F}(u) = 4\pi^2 |\xi|^2 \mathcal{F}(u)$ .

 $\partial_t \mathcal{F}(u) = -4\pi^2 i |\xi|^2 \mathcal{F}(u) \Rightarrow \mathcal{F}(u)(t,\xi) = e^{-4\pi^2 i t |\xi|^2} \mathcal{F}(u_0)(\xi)$ 

$$u(t,x) =: U(t)u_0 = \mathcal{F}^{-1}\left(e^{-4\pi^2 it|\cdot|^2}\mathcal{F}(u_0)(\cdot)\right)(x)$$

$$U(t)u_0 =: \mathcal{F}^{-1}\left(e^{-4\pi^2 it|\cdot|^2}\mathcal{F}(u_0)\right) = (4\pi it)^{-1/2}e^{i|x|^2/(4t)} * u_0$$

**III. Some properties of the fundamental solution** U(t). Young :  $p, q, r \in [1, \infty], \frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r} ||f * g||_{L^r} \le ||f||_{L^p} ||g||_{L^q}$ . With  $p = r = \infty, q = 1$ , we have

Dispersion :  $\|U(t)f\|_{L^{\infty}} \le (4\pi|t|)^{-d/2} \|f\|_{L^{1}}$ Unitary:  $\|U(t)f\|_{L^{2}} = \|f\|_{L^{2}}$  **II.**  $\lambda = 0$  : **The fundamental solution**  $i\partial_t u = -\Delta u$ , "taking Fourier" :  $i\partial_t \mathcal{F}(u) = 4\pi^2 |\xi|^2 \mathcal{F}(u)$ .

 $\partial_t \mathcal{F}(u) = -4\pi^2 i |\xi|^2 \mathcal{F}(u) \Rightarrow \mathcal{F}(u)(t,\xi) = e^{-4\pi^2 i t |\xi|^2} \mathcal{F}(u_0)(\xi)$ 

$$u(t,x) =: U(t)u_0 = \mathcal{F}^{-1}\left(e^{-4\pi^2 it|\cdot|^2}\mathcal{F}(u_0)(\cdot)\right)(x)$$

$$U(t)u_0 =: \mathcal{F}^{-1}\left(e^{-4\pi^2 it|\cdot|^2}\mathcal{F}(u_0)\right) = (4\pi it)^{-1/2}e^{i|x|^2/(4t)} * u_0$$

III. Some properties of the fundamental solution U(t). Young :  $p, q, r \in [1, \infty]$ ,  $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r} ||f * g||_{L^r} \le ||f||_{L^p} ||g||_{L^q}$ . With  $p = r = \infty, q = 1$ , we have

Dispersion :  $\|U(t)f\|_{L^{\infty}} \le (4\pi|t|)^{-d/2} \|f\|_{L^{1}}$ Unitary:  $\|U(t)f\|_{L^{2}} = \|f\|_{L^{2}}$  **II.**  $\lambda = 0$  : **The fundamental solution**  $i\partial_t u = -\Delta u$ , "taking Fourier" :  $i\partial_t \mathcal{F}(u) = 4\pi^2 |\xi|^2 \mathcal{F}(u)$ .

 $\partial_t \mathcal{F}(u) = -4\pi^2 i |\xi|^2 \mathcal{F}(u) \Rightarrow \mathcal{F}(u)(t,\xi) = e^{-4\pi^2 i t |\xi|^2} \mathcal{F}(u_0)(\xi)$ 

$$u(t,x) =: U(t)u_0 = \mathcal{F}^{-1}\left(e^{-4\pi^2 it|\cdot|^2}\mathcal{F}(u_0)(\cdot)\right)(x)$$

$$U(t)u_0 =: \mathcal{F}^{-1}\left(e^{-4\pi^2 it|\cdot|^2}\mathcal{F}(u_0)\right) = (4\pi it)^{-1/2}e^{i|x|^2/(4t)} * u_0$$

III. Some properties of the fundamental solution U(t). Young :  $p, q, r \in [1, \infty]$ ,  $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r} ||f * g||_{L^r} \le ||f||_{L^p} ||g||_{L^q}$ . With  $p = r = \infty, q = 1$ , we have

Dispersion :  $||U(t)f||_{L^{\infty}} \le (4\pi|t|)^{-d/2} ||f||_{L^{1}}$ Unitary:  $||U(t)f||_{L^{2}} = ||f||_{L^{2}}$  Consequence 1. For all compact region  $K \subset \mathbf{R}^d$ ,  $\lim_{|t|\to\infty} \|1_K u(t)\|_{L^2} = 0$ .

Remark on this property on compact manifold (on board. Sorry people outside the CIRM).

**Consequence** 2: Strichartz estimates. "Interpolation" between unitary and dispersion gives: "for admissible couples (p, q),  $(\overline{p}, \overline{q})$ "

1.  $||U(t)f||_{L_t^p L_x^q} \le C(q) ||f||_{L_x^2}$ 2.  $||U(t) *_t f||_{L_t^p L_x^q} \le C(q, \overline{q}) ||f||_{L_t^{\overline{p'}} L_x^{\overline{q'}}}$ 

VERY VERY VERY IMPORTANT to deal with many nonlinear problems.

Consequence 1. For all compact region  $K \subset \mathbf{R}^d$ ,  $\lim_{|t|\to\infty} \|1_K u(t)\|_{L^2} = 0$ .

Remark on this property on compact manifold (on board. Sorry people outside the CIRM).

Consequence 2: Strichartz estimates. "Interpolation" between unitary and dispersion gives: "for admissible couples (p, q),  $(\overline{p}, \overline{q})$ "

1.  $\|U(t)f\|_{L^p_t L^q_x} \le C(q) \|f\|_{L^2_x}$ 2.  $\|U(t) *_t f\|_{L^p_t L^q_x} \le C(q, \overline{q}) \|f\|_{L^{\overline{p'}}_t L^{\overline{q'}}_x}$ 

# **VERY VERY IMPORTANT** to deal with many nonlinear problems.



**IV.** 
$$\lambda \neq 0$$
 : about  $\pm |u|^{\alpha} u$ 

### Important features?

IV.  $\lambda \neq 0$  : about  $\pm |u|^{\alpha} u$ 

Important features?

Sign of  $\lambda$ :

 $\blacktriangleright$  +1 : defocusing case



### ► -1 : focusing case



IV.  $\lambda \neq 0$  : about  $\pm |u|^{\alpha} u$ 

Important features?

- Sign of  $\lambda$ :
  - ► +1 : defocusing case
  - -1 : focusing case

### Criticality

• Existence problem:  $\alpha$  not too big,  $\alpha$  below  $\overline{\alpha_c} = \frac{4}{d-2}$   $(d \ge 3)$ .

• Long time behaviour (scattering):  $\alpha$  not too small,  $\alpha$  above  $\underline{\alpha_c} = \frac{4}{d}$ .

Dealing with  $\overline{\alpha_c}$  and  $\alpha_c$  can be tedious

IV.  $\lambda \neq 0$  : about  $\pm |u|^{\alpha} u$ 

Important features?

- Sign of  $\lambda$ :
  - ► +1 : defocusing case
  - -1 : focusing case

### Criticality

- Existence problem:  $\alpha$  not too big,  $\alpha$  below  $\overline{\alpha_c} = \frac{4}{d-2}$   $(d \ge 3)$ .
- Long time behaviour (scattering):  $\alpha$  not too small,  $\alpha$  above  $\underline{\alpha_c} = \frac{4}{d}$ .

Dealing with  $\overline{\alpha_c}$  and  $\alpha_c$  can be tedious !

### V. $\lambda \neq 0$ : Existence of solution(s)

### Local/global solutions

Consider a data in  $\mathcal{H}$ . We are looking for

- 1. local existence in a Banach X,
- 2. uniqueness of the solution in X,
- 3. The flow  $\Phi: u_0 \mapsto u(t)$  is continuous,
- 4. global existence in a Banach X.
- $\rightarrow$  locally/globally **well-posed** problem in X.

Fixed point method gives (1, 2, 3). Conservation laws gives (4).

### An example

d= 3, lpha= 2,  $\lambda=\pm 1$ . We write

$$\Phi u(t) = U(t)u_0 - i \int_0^t U(t-s)(|u|^2 u)(s) \ ds$$

and (NLS) is equivalent to  $\Phi(u(t)) = u(t)$ .

Aim: apply the fixed point theorem in a Banach space X, by proving
 Φ(X) ⊂ X,

 $\blacktriangleright \|\Phi(u(t)) - \Phi(v(t))\|_X < c\|u - v\|_X, \quad c < 1.$ 

We'll see how Strichartz are used in (1,2,3). Believe me :(8/3,4) is admissible, and so is (trivially)  $(\infty, 2)$ .

### An example

d= 3,  $\alpha=$  2,  $\lambda=\pm 1$ . We write

$$\Phi u(t) = U(t)u_0 - i \int_0^t U(t-s)(|u|^2 u)(s) ds$$

and (NLS) is equivalent to  $\Phi(u(t)) = u(t)$ .

Aim: apply the fixed point theorem in a Banach space X, by proving

- ►  $\Phi(X) \subset X$ ,
- $\blacktriangleright \|\Phi(u(t)) \Phi(v(t))\|_X < c\|u v\|_X, \quad c < 1.$

We'll see how Strichartz are used in (1,2,3). Believe me :(8/3,4) is admissible, and so is (trivially)  $(\infty, 2)$ .

### An example

d= 3, lpha= 2,  $\lambda=\pm 1$ . We write

$$\Phi u(t) = U(t)u_0 - i \int_0^t U(t-s)(|u|^2 u)(s) \, ds$$

and (NLS) is equivalent to  $\Phi(u(t)) = u(t)$ .

Aim: apply the fixed point theorem in a Banach space X, by proving

- $\blacktriangleright \ \Phi(X) \subset X,$
- $\blacktriangleright \|\Phi(u(t)) \Phi(v(t))\|_X < c\|u v\|_X, \quad c < 1.$

We'll see how Strichartz are used in (1,2,3). Believe me :(8/3,4) is admissible, and so is (trivially)  $(\infty, 2)$ .

Let T > 0. Maybe T small (we'll see later). Strichartz estimates on  $\Phi$  on [0, T] yield

$$\begin{split} \|\Phi u(t)\|_{L^{\infty}L^{2}\cap L^{8/3}L^{4}} &\leq C \left[ \|u_{0}\|_{L^{2}} + \||u|^{2}u\|_{L^{5/3}L^{4/3}} \right] \\ &\leq C \left[ \|u_{0}\|_{L^{2}} + \|u\|_{L^{\theta}L^{4}}^{2} \|u\|_{L^{8/3}L^{4}} \right] \\ &\leq C \left[ \|u_{0}\|_{L^{2}} + \|u\|_{L^{\theta}H^{1}}^{2} \|u\|_{L^{8/3}L^{4}} \right] \\ &\leq C \left[ \|u_{0}\|_{L^{2}} + T^{2/\theta} \|u\|_{L^{\infty}H^{1}}^{2} \|u\|_{L^{8/3}L^{4}} \right], \end{split}$$

with Hölder,  $H^1 \subset L^4$ .

The green term makes us handle  $\nabla u$  too.

$$i\partial_t \nabla u + \Delta \nabla u = \kappa \nabla (|u|^2 u) \quad ; \quad \nabla u(0,.) = \nabla u_0 \in H^1,$$

and again

$$\|\nabla \Phi u(t)\|_{L^{\infty}L^{2} \cap L^{8/3}L^{4}} \leq C \left[\|\nabla u_{0}\|_{L^{2}} + T^{2/\theta}\|u\|_{L^{\infty}H^{1}}^{2}\|\nabla u\|_{L^{8/3}L^{4}}\right]$$

$$\|\Phi u(t)\|_{X_{T}} + \|\nabla \Phi u(t)\|_{X_{T}} \leq C \left[ \|u_{0}\|_{H^{1}} + T^{2/\theta} \|u\|_{X_{T}}^{3} \right].$$

ii. We restrict the analysis to the ball  $B = \{ u \in X_T | ||u||_{X_T} \le 2C ||u_0||_{H^1} \}$ . Why ? Because then

$$2C\|u_0\|_{H^1}\left(1/2+T^{2/\theta}\|u_0\|_{H^1}^2\right) \leq 2C\|u_0\|_{H^1} \Leftrightarrow T^{2/\theta}\|u_0\|_{H^1}^2 \leq 1/2,$$

is true for somme  $T_1$  small enough.

#### iii. Same computations to prove

 $\|\Phi\left(u(t)
ight)-\Phi\left(v(t)
ight)\|_B < c\|u-v\|_B, \quad c<1, ext{ and it gives a small } T_2.$ 

iv. We take  $T = \min(T_1, T_2)$  and the windmill turns ! A continuity argument extends the solution from *B* to  $X_T$ .

$$\|\Phi u(t)\|_{X_{T}} + \|\nabla \Phi u(t)\|_{X_{T}} \le C \left[ \|u_{0}\|_{H^{1}} + T^{2/\theta} \|u\|_{X_{T}}^{3} \right]$$

ii. We restrict the analysis to the ball  $B = \{ u \in X_T | ||u||_{X_T} \le 2C ||u_0||_{H^1} \}$ . Why ? Because then

$$2C\|u_0\|_{H^1}\left(1/2+T^{2/\theta}\|u_0\|_{H^1}^2\right) \le 2C\|u_0\|_{H^1} \Leftrightarrow T^{2/\theta}\|u_0\|_{H^1}^2 \le 1/2,$$

is true for somme  $T_1$  small enough.

iii. Same computations to prove

 $\|\Phi\left(u(t)
ight)-\Phi\left(v(t)
ight)\|_B < c\|u-v\|_B, \quad c<1, ext{ and it gives a small } \mathcal{T}_2.$ 

iv. We take  $T = \min(T_1, T_2)$  and the windmill turns ! A continuity argument extends the solution from *B* to  $X_T$ .

$$\|\Phi u(t)\|_{X_{T}} + \|\nabla \Phi u(t)\|_{X_{T}} \le C \left[ \|u_{0}\|_{H^{1}} + T^{2/\theta} \|u\|_{X_{T}}^{3} \right]$$

ii. We restrict the analysis to the ball  $B = \{ u \in X_T | ||u||_{X_T} \le 2C ||u_0||_{H^1} \}$ . Why ? Because then

$$2C\|u_0\|_{H^1}\left(1/2+T^{2/\theta}\|u_0\|_{H^1}^2\right) \leq 2C\|u_0\|_{H^1} \Leftrightarrow T^{2/\theta}\|u_0\|_{H^1}^2 \leq 1/2,$$

is true for somme  $T_1$  small enough.

iii. Same computations to prove  $\|\Phi(u(t)) - \Phi(v(t))\|_B < c\|u - v\|_B$ , c < 1, and it gives a small  $T_2$ . iv. We take  $T = \min(T_1, T_2)$  and the windmill turns ! A continuity argument extends the solution from B to  $X_T$ .

$$\|\Phi u(t)\|_{X_{T}} + \|\nabla \Phi u(t)\|_{X_{T}} \le C \left[ \|u_{0}\|_{H^{1}} + T^{2/\theta} \|u\|_{X_{T}}^{3} \right]$$

ii. We restrict the analysis to the ball  $B = \{ u \in X_T | ||u||_{X_T} \le 2C ||u_0||_{H^1} \}$ . Why ? Because then

$$2C\|u_0\|_{H^1}\left(1/2+T^{2/\theta}\|u_0\|_{H^1}^2\right) \leq 2C\|u_0\|_{H^1} \Leftrightarrow T^{2/\theta}\|u_0\|_{H^1}^2 \leq 1/2,$$

is true for somme  $T_1$  small enough.

iii. Same computations to prove  $\|\Phi(u(t)) - \Phi(v(t))\|_B < c \|u - v\|_B, \quad c < 1$ , and it gives a small  $T_2$ .

iv. We take  $T = \min(T_1, T_2)$  and the windmill turns ! A continuity argument extends the solution from *B* to  $X_T$ .

$$\|\Phi u(t)\|_{X_{T}} + \|\nabla \Phi u(t)\|_{X_{T}} \le C \left[ \|u_{0}\|_{H^{1}} + T^{2/\theta} \|u\|_{X_{T}}^{3} \right]$$

ii. We restrict the analysis to the ball  $B = \{ u \in X_T | ||u||_{X_T} \le 2C ||u_0||_{H^1} \}$ . Why ? Because then

$$2C\|u_0\|_{H^1}\left(1/2+T^{2/\theta}\|u_0\|_{H^1}^2\right) \leq 2C\|u_0\|_{H^1} \Leftrightarrow T^{2/\theta}\|u_0\|_{H^1}^2 \leq 1/2,$$

is true for somme  $T_1$  small enough.

#### iii. Same computations to prove

 $\|\Phi\left(u(t)\right) - \Phi\left(v(t)\right)\|_B < c\|u-v\|_B, \quad c < 1, \text{ and it gives a small } \mathcal{T}_2.$ 

iv. We take  $T = \min(T_1, T_2)$  and the windmill turns ! A continuity argument extends the solution from B to  $X_T$ .

The solution is either global ( $T = \infty$ ), or it blows up in finite time: there is a maximal time  $T_{max} < +\infty$  s.t.  $||u(t)||_{H^1}$  is not bounded on [0, T[.

NB : if the solution blows up at finite time  $T_{max}$  in  $H^1$ , knowing that  $||u(t)||_{L^2}$  is conserved,  $||\nabla u(t)||_{L^2}$  is the quantity that blows up.

$$\|
abla u(t)\|_{L^2} \leq \|
abla u(t)\|_{L^2} + rac{1}{4} \|u\|_{L^4}^4 = 2E(t) = 2E_0 < +\infty.$$
  
=  $+\infty.$ 

The solution is either global ( $T = \infty$ ), or it blows up in finite time: there is a maximal time  $T_{max} < +\infty$  s.t.  $||u(t)||_{H^1}$  is not bounded on [0, T[.

NB : if the solution blows up at finite time  $T_{max}$  in  $H^1$ , knowing that  $||u(t)||_{L^2}$  is conserved,  $||\nabla u(t)||_{L^2}$  is the quantity that blows up.

$$\|
abla u(t)\|_{L^2} \le \|
abla u(t)\|_{L^2} + rac{1}{4} \|u\|_{L^4}^4 = 2E(t) = 2E_0 < +\infty.$$
  
=  $+\infty.$ 

The solution is either global ( $T = \infty$ ), or it blows up in finite time: there is a maximal time  $T_{max} < +\infty$  s.t.  $||u(t)||_{H^1}$  is not bounded on [0, T[.

NB : if the solution blows up at finite time  $T_{max}$  in  $H^1$ , knowing that  $||u(t)||_{L^2}$  is conserved,  $||\nabla u(t)||_{L^2}$  is the quantity that blows up.

$$\|
abla u(t)\|_{L^2} \le \|
abla u(t)\|_{L^2} + rac{1}{4} \|u\|_{L^4}^4 = 2E(t) = 2E_0 < +\infty.$$
  
=  $+\infty.$ 

The solution is either global ( $T = \infty$ ), or it blows up in finite time: there is a maximal time  $T_{max} < +\infty$  s.t.  $||u(t)||_{H^1}$  is not bounded on [0, T[.

NB : if the solution blows up at finite time  $T_{max}$  in  $H^1$ , knowing that  $||u(t)||_{L^2}$  is conserved,  $||\nabla u(t)||_{L^2}$  is the quantity that blows up.

$$\|
abla u(t)\|_{L^2} \le \|
abla u(t)\|_{L^2} + rac{1}{4} \|u\|_{L^4}^4 = 2E(t) = 2E_0 < +\infty.$$
  
So  $T = +\infty$ .

VI. Qualitative study of long-time behaviour

$$(**)\lim_{|t|\to\pm\infty} \|u(t) - U(t)u_{\pm}\|_{H^1} = 0.$$

### Definitions

Every  $u_0$  in  $H^1$  gives a unique global solution u to (NLS), with

$$u, \nabla u \in C(\mathbf{R}, L^2) \cap L^p(\mathbf{R}, L^q), \quad \text{for some } (p, q).$$

#### Moreover

**Asymptotic completeness:** For all  $u_0 \in H^1$ , one can produce a  $u_{\pm} \in H^1$  s.t. (\*\*) is satisfied.

**Existence of the wave operator:** For all  $u_{\pm} \in H^1$ , one can associate a solution u(t) to (NLS), satisfying (\*\*).

Why are global in time Strichartz estimates crucial here ?

$$(**)$$
  $\lim_{|t|\to\pm\infty} ||u(t) - U(t)u_{\pm}||_{H^1} = 0$ 

is equivalent to

$$(**)$$
  $\lim_{|t|\to\pm\infty} \|U(-t)u(t)-u_{\pm}\|_{H^1}=0.$ 

So U(-t)u(t) has to converge in  $H^1$ .

**Duhamel**  $\rightarrow$ 

$$u(t) = U(t)u_0 - i\lambda \int_0^t U(t-s)|u|^{\alpha}u(s) \ ds$$
$$U(-t)u(t) = u_0 - i\lambda \int_0^t U(-s)|u|^{\alpha}u(s) \ ds.$$
ering if and only if  $\lambda \int_0^\infty U(-s)|u|^{\alpha}u(s) \ ds$  converges in *H*

Why are global in time Strichartz estimates crucial here ?

$$(**)$$
  $\lim_{|t|\to\pm\infty} ||u(t) - U(t)u_{\pm}||_{H^1} = 0$ 

is equivalent to

$$(**)$$
  $\lim_{|t|\to\pm\infty} \|U(-t)u(t)-u_{\pm}\|_{H^1}=0.$ 

So U(-t)u(t) has to converge in  $H^1$ .

 $\textbf{Duhamel} \rightarrow$ 

$$u(t) = U(t)u_0 - i\lambda \int_0^t U(t-s)|u|^{\alpha}u(s) ds$$
$$U(-t)u(t) = u_0 - i\lambda \int_0^t U(-s)|u|^{\alpha}u(s) ds.$$
$$H^1 - \text{scattering if and only if } \lambda \int_0^{\infty} U(-s)|u|^{\alpha}u(s) ds \text{ converges in } H^1.$$

#### VII. Small initial data.

"There is a  $E_0 > 0$  s.t. for all  $u_0 \in H^1$ ,  $||u_0||_{H^1} \le E_0$ , (\*\*) holds."

**Idea:** If the data is small enough ( $E_0$ ), then GWP comes easily and it gives  $||u||_{L^pL^q} < +\infty$ .

Then prove that  $||U(-t)u(t) - U(-\tau)u(\tau)||_{H^1}$  tends to zero as  $t, \tau$  tend to infinity ("Cauchy sequence").

Thanks to Strichartz (and other tools),

 $\|U(-t)u(t) - U(-\tau)u(\tau)\|_{H^1} \le C \|u\|_X^{\theta} \cdot \|u\|_{L^{\theta}_{[t,\tau]}L^q}^{1-\theta}.$ 

#### VII. Small initial data.

"There is a  $E_0 > 0$  s.t. for all  $u_0 \in H^1$ ,  $||u_0||_{H^1} \le E_0$ , (\*\*) holds."

**Idea:** If the data is small enough ( $E_0$ ), then GWP comes easily and it gives  $||u||_{L^pL^q} < +\infty$ .

Then prove that  $||U(-t)u(t) - U(-\tau)u(\tau)||_{H^1}$  tends to zero as  $t, \tau$  tend to infinity ("Cauchy sequence").

Thanks to Strichartz (and other tools),

 $\|U(-t)u(t) - U(-\tau)u(\tau)\|_{H^1} \leq C \|u\|_X^{ heta} \cdot \|u\|_{L^p_{[t,\tau]}L^q}^{1- heta}.$ 

VIII. One famous machinery for arbitrarily large data.

Example in an easy case (for example defocusing subcritical, for which we expect scattering on whole  $H^1$ ). Performed by contradiction.



- i. Small data scattering : "There is a  $E_0 > 0$  s.t. for all  $u_0 \in H^1$ ,  $||u_0||_{H^1} \le E_0$ , (\*\*) holds."
- ii. We suppose there is a level  $E_c > E_0$  s.t. there is no scattering : "there is at least ONE  $u_0 \in H^1$ ,  $||u_0||_{H^1} = E_0$ " and the associated solution  $u_c(t)$  does not scatter.  $\rightarrow$  so s.t.  $||u_c||_{L^pL^q}$  is not bounded.
- iii. Construction of this u<sub>c</sub> (technical part !) and study of its properties.
- *iv*. The properties cannot be fulfilled unless  $u_c = 0$  which is impossible because of *i*.

- *i*. Small data scattering : "There is a  $E_0 > 0$  s.t. for all  $u_0 \in H^1$ ,  $||u_0||_{H^1} \leq E_0$ , (\*\*) holds."
- ii. We suppose there is a level  $E_c > E_0$  s.t. there is no scattering : "there is at least ONE  $u_0 \in H^1$ ,  $||u_0||_{H^1} = E_0$ " and the associated solution  $u_c(t)$  does not scatter.  $\rightarrow$  so s.t.  $||u_c||_{L^pL^q}$  is not bounded.
- iii. Construction of this u<sub>c</sub> (technical part !) and study of its properties.
- *iv*. The properties cannot be fulfilled unless  $u_c = 0$  which is impossible because of *i*.

- *i*. Small data scattering : "There is a  $E_0 > 0$  s.t. for all  $u_0 \in H^1$ ,  $||u_0||_{H^1} \leq E_0$ , (\*\*) holds."
- ii. We suppose there is a level  $E_c > E_0$  s.t. there is no scattering : "there is at least ONE  $u_0 \in H^1$ ,  $||u_0||_{H^1} = E_0$ " and the associated solution  $u_c(t)$  does not scatter.  $\rightarrow$  so s.t.  $||u_c||_{L^pL^q}$  is not bounded.
- iii. Construction of this  $u_c$  (technical part !) and study of its properties.
- *iv*. The properties cannot be fulfilled unless  $u_c = 0$  which is impossible because of *i*.

- *i*. Small data scattering : "There is a  $E_0 > 0$  s.t. for all  $u_0 \in H^1$ ,  $||u_0||_{H^1} \leq E_0$ , (\*\*) holds."
- ii. We suppose there is a level  $E_c > E_0$  s.t. there is no scattering : "there is at least ONE  $u_0 \in H^1$ ,  $||u_0||_{H^1} = E_0$ " and the associated solution  $u_c(t)$  does not scatter.  $\rightarrow$  so s.t.  $||u_c||_{L^pL^q}$  is not bounded.
- iii. Construction of this  $u_c$  (technical part !) and study of its properties.
- *iv*. The properties cannot be fulfilled unless  $u_c = 0$  which is impossible because of *i*.

- i. Small data scattering : "There is a  $E_0 > 0$  s.t. for all  $u_0 \in H^1$ ,  $||u_0||_{H^1} \le E_0$ , (\*\*) holds."
- ii. We suppose there is a level  $E_c > E_0$  s.t. there is no scattering : "there is at least ONE  $u_0 \in H^1$ ,  $||u_0||_{H^1} = E_0$ " and the associated solution  $u_c(t)$  does not scatter.  $\rightarrow$  so s.t.  $||u_c||_{L^pL^q}$  is not bounded.
- iii. Construction of this  $u_c$  (technical part !) and study of its properties.
- *iv*. The properties cannot be fulfilled unless  $u_c = 0$  which is impossible because of *i*.

Gamebook/"talk dont vous êtes le héros":

\* if you want to have details about *iii*., please ask (but will be on blackboard).

\* if you want to stop, blink very fast.