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Solving ODEs

General first order ODE with given data: consider f : R× R→ R
continuous and

(∗) u̇(t) = f (t, u(t)) , u(0) = u0, t ∈]− T ,T [⊂ R.

→ is called “Cauchy problem”. Solving locally the Cauchy problem is
finding T > 0 and u ∈ C 1(]− T ,T [) such that (∗) is true.
If T = +∞, we have a global solution.

Cauchy-Lipschitz theorem gives (local) existence of unique solution for
each choice of u0 under conditions on f .

As a consequence, it ensures (local) existence of the flow Φ on ]− T ,T [,
where Φ is the application u0 7→ u(t), and for all t ∈]− T ,T [,
Φ(u0, t) = u(t) the solution associated to initial data u0.
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Fixed point or Contraction Mapping Theorem

Consider X a Banach space with norm ‖ · ‖ and T : I → R a contraction,
that is

‖T (x)− T (y)‖ ≤ c‖x − y‖, 0 ≤ c < 1.

Then T has a unique fixed point in I and all sequences
x0 ∈ I , xn+1 = T (xn) converge to this unique fixed point.
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Example: consider

u̇ = a(t)u, u(0, ·) = u0, a is continuous.

Then U(t)u0 = exp

(∫ t

0
a(s) ds

)
u0 is solution.

We can deduce solutions to:

u̇ = a(t)u + b(t), u(0, ·) = u0, a, b are continuous.

Then a solution is given by

(Duhamel formula) Φ (u0, t) = U(t)u0 +

∫ t

0
U(t − s)b(s) ds

= general solution + particular solution.
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The Nonlinear Schrödinger equation

(S): i∂tu + ∆u = λ|u|αu ; u(0, .) = u0 ∈ H,
where :

I (t, x) ∈ R× Rd , d ≥ 1,

I u = u(t, x) ∈ C,

I λ ∈ {−1, 0, 1} ,
I H a Hilbert space.

I. Immediate information : conserved quantities.

Mass conservation: ‖u(t)‖L2 = ‖u0‖L2 .

Energy conservation: ‖∇u(t)‖L2 +
λ

α + 2
‖u(t)‖Lα+2 = E (u(t)) = E (u0) .

Sobolev space H1(Rd) is appearing naturally; H1 ⊂ Lq for all q ∈ [2, 2d
d−2 ].
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II. λ = 0 : The fundamental solution
i∂tu = −∆u, “taking Fourier” : i∂tF(u) = 4π2|ξ|2F(u).

∂tF(u) = −4π2i |ξ|2F(u)⇒ F(u)(t, ξ) = e−4π
2it|ξ|2F(u0)(ξ)

u(t, x) =: U(t)u0 = F−1
(
e−4π

2it|·|2F(u0)(·)
)

(x)

U(t)u0 =: F−1
(
e−4π

2it|·|2F(u0)
)

= (4πit)−1/2e i |x |
2/(4t) ∗ u0

III. Some properties of the fundamental solution U(t).

Young : p, q, r ∈ [1,∞],
1

p
+

1

q
= 1 +

1

r
‖f ∗ g‖Lr ≤ ‖f ‖Lp‖g‖Lq . With

p = r =∞, q = 1, we have

Dispersion : ‖U(t)f ‖L∞ ≤ (4π|t|)−d/2‖f ‖L1

Unitary: ‖U(t)f ‖L2 = ‖f ‖L2
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Consequence 1. For all compact region K ⊂ Rd , lim|t|→∞ ‖1Ku(t)‖L2 = 0.

Remark on this property on compact manifold (on board. Sorry people
outside the CIRM).

Consequence 2: Strichartz estimates.“Interpolation” between unitary and
dispersion gives: “for admissible couples (p, q), (p, q)”

1. ‖U(t)f ‖Lpt Lqx ≤ C (q)‖f ‖L2x
2. ‖U(t) ∗t f ‖Lpt Lqx ≤ C (q, q)‖f ‖

Lp
′

t Lq
′

x

VERY VERY VERY IMPORTANT to deal with many nonlinear
problems.
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IV. λ 6= 0 : about ±|u|αu

Important features?
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I -1 : focusing case

Criticality

I Existence problem: α not too big, α below αc =
4

d − 2
(d ≥ 3).

I Long time behaviour (scattering): α not too small, α above αc =
4

d
.

Dealing with αc and αc can be tedious !
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V. λ 6= 0 : Existence of solution(s)

Local/global solutions

Consider a data in H. We are looking for

1. local existence in a Banach X ,

2. uniqueness of the solution in X ,

3. The flow Φ : u0 7→ u(t) is continuous,

4. global existence in a Banach X .

−→ locally/globally well-posed problem in X .

Fixed point method gives (1, 2, 3). Conservation laws gives (4).
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An example

d = 3, α = 2, λ = ±1. We write

Φu(t) = U(t)u0 − i

∫ t

0
U(t − s)(|u|2u)(s) ds

and (NLS) is equivalent to Φ(u(t)) = u(t).

Aim: apply the fixed point theorem in a Banach space X , by proving

I Φ(X ) ⊂ X ,

I ‖Φ (u(t))− Φ (v(t)) ‖X < c‖u − v‖X , c < 1.

We’ll see how Strichartz are used in (1, 2, 3). Believe me :(8/3, 4) is
admissible, and so is (trivially) (∞, 2).
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Let T > 0. Maybe T small (we’ll see later). Strichartz estimates on Φ on
[0,T ] yield

‖Φu(t)‖L∞L2∩L8/3L4 ≤C
[
‖u0‖L2 + ‖ |u|2u‖L5/3L4/3

]
≤C

[
‖u0‖L2 + ‖u‖2LθL4‖u‖L8/3L4

]
≤C

[
‖u0‖L2 + ‖u‖2LθH1‖u‖L8/3L4

]
≤C

[
‖u0‖L2 + T 2/θ‖u‖2L∞H1‖u‖L8/3L4

]
,

with Hölder, H1 ⊂ L4.

The green term makes us handle ∇u too.

i∂t∇u + ∆∇u = κ∇(|u|2u) ; ∇u(0, .) = ∇u0 ∈ H1,

and again

‖∇Φu(t)‖L∞L2∩L8/3L4 ≤ C
[
‖∇u0‖L2 + T 2/θ‖u‖2L∞H1‖∇u‖L8/3L4

]
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i. We sum everything

‖Φu(t)‖XT
+ ‖∇Φu(t)‖XT

≤ C
[
‖u0‖H1 + T 2/θ‖u‖3XT

]
.

ii. We restrict the analysis to the ball B =
{
u ∈ XT

∣∣‖u‖XT
≤ 2C‖u0‖H1

}
.

Why ? Because then

2C‖u0‖H1

(
1/2 + T 2/θ‖u0‖2H1

)
≤ 2C‖u0‖H1 ⇔ T 2/θ‖u0‖2H1 ≤ 1/2,

is true for somme T1 small enough.

iii. Same computations to prove
‖Φ (u(t))− Φ (v(t)) ‖B < c‖u − v‖B , c < 1, and it gives a small T2.

iv. We take T = min(T1,T2) and the windmill turns ! A continuity
argument extends the solution from B to XT .
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→ We have local existence of a unique solution in XT .

The solution is either global (T =∞), or it blows up in finite time:
there is a maximal time Tmax < +∞ s.t. ‖u(t)‖H1 is not bounded on
[0,T [.

NB : if the solution blows up at finite time Tmax in H1, knowing that
‖u(t)‖L2 is conserved, ‖∇u(t)‖L2 is the quantity that blows up.

A simple example: λ = +1. Energy conservation gives

‖∇u(t)‖L2 ≤ ‖∇u(t)‖L2 +
1

4
‖u‖4L4 = 2E (t) = 2E0 < +∞.

So T = +∞.
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VI. Qualitative study of long-time behaviour

(∗∗) lim
|t|→±∞

‖u(t)− U(t)u±‖H1 = 0.

Definitions

Every u0 in H1 gives a unique global solution u to (NLS), with

u,∇u ∈ C (R, L2) ∩ Lp(R, Lq), for some (p, q).

Moreover

Asymptotic completeness: For all u0 ∈ H1, one can produce a u± ∈ H1

s.t. (∗∗) is satisfied.

Existence of the wave operator: For all u± ∈ H1, one can associate a
solution u(t) to (NLS), satisfying (∗∗).
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Why are global in time Strichartz estimates crucial here ?

(∗∗) lim
|t|→±∞

‖u(t)− U(t)u±‖H1 = 0

is equivalent to

(∗∗) lim
|t|→±∞

‖U(−t)u(t)− u±‖H1 = 0.

So U(−t)u(t) has to converge in H1.

Duhamel →

u(t) = U(t)u0 − iλ

∫ t

0
U(t − s)|u|αu(s) ds

U(−t)u(t) = u0 − iλ

∫ t

0
U(−s)|u|αu(s) ds.

H1−scattering if and only if λ

∫ ∞
0

U(−s)|u|αu(s) ds converges in H1.
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VII. Small initial data.

“There is a E0 > 0 s.t. for all u0 ∈ H1, ‖u0‖H1 ≤ E0, (∗∗) holds.”

Idea: If the data is small enough (E0), then GWP comes easily and it
gives ‖u‖LpLq < +∞.

Then prove that ‖U(−t)u(t)− U(−τ)u(τ)‖H1 tends to zero as t, τ tend
to infinity (“Cauchy sequence”).

Thanks to Strichartz (and other tools),

‖U(−t)u(t)− U(−τ)u(τ)‖H1 ≤ C ‖u‖θX · ‖u‖1−θLp
[t,τ ]

Lq
.
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VIII. One famous machinery for arbitrarily large data.
Example in an easy case (for example defocusing subcritical, for which we
expect scattering on whole H1). Performed by contradiction.

0

E0

Ec > E0

uc•

H1

all u0 here produce a scattering u(t)
17/18



The Kenig-Merle machinery

i . Small data scattering : “There is a E0 > 0 s.t. for all
u0 ∈ H1, ‖u0‖H1 ≤ E0, (∗∗) holds.”

ii . We suppose there is a level Ec > E0 s.t. there is no
scattering : “there is at least ONE u0 ∈ H1, ‖u0‖H1 = E0”
and the associated solution uc(t) does not scatter.
→ so s.t. ‖uc‖LpLq is not bounded.

iii . Construction of this uc (technical part !) and study of its
properties.

iv . The properties cannot be fulfilled unless uc = 0 which is
impossible because of i .
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iii . Construction of this uc (technical part !) and study of its
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iv . The properties cannot be fulfilled unless uc = 0 which is
impossible because of i .

Gamebook/“talk dont vous êtes le héros”:
* if you want to have details about iii ., please ask (but will be on
blackboard).
* if you want to stop, blink very fast.
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