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- Solving ODEs

General first order ODE with given data: consider f : R x R —+ R
continuous and

(%) a(t) ="~ (t,u(t)), wu(0)=uwy, te]—T,T[CR.

— is called “Cauchy problem”. Solving locally the Cauchy problem is
finding T > 0 and u € C}(] — T, T[) such that (x) is true.
If T =400, we have a global solution.
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General first order ODE with given data: consider f : R x R —+ R
continuous and

(%) a(t) ="~ (t,u(t)), wu(0)=uwy, te]—T,T[CR.

— is called “Cauchy problem”. Solving locally the Cauchy problem is
finding T > 0 and u € C}(] — T, T[) such that (x) is true.
If T =400, we have a global solution.

Cauchy-Lipschitz theorem gives (local) existence of unique solution for
each choice of up under conditions on f.

As a consequence, it ensures (local) existence of the flow ® on | — T, T|,
where @ is the application ug — u(t), and for all t €] — T, T],
®(up, t) = u(t) the solution associated to initial data wup.
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Fixed point or Contraction Mapping Theorem
Consider X a Banach space with norm || - || and T : | — R a contraction,
that is

[TC) =TI <cllx—yll, 0<e<1.

Then T has a unique fixed point in / and all sequences
x0 € I, xpt1 = T(x,) converge to this unique fixed point.
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Example: consider

u=a(t)u, u(0,-)=up, ais continuous.

ot

Then U(t)up = exp (/
Jo

a(s) ds> ug is solution.
We can deduce solutions to:

u=a(t)u+ b(t), u(0,-)=ug, a,b arecontinuous.
Then a solution is given by
ot

(Duhamel formula) & (up,t) = U(t)ug + / U(t — s)b(s) ds
0

= general solution + particular solution.
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- | he Nonlinear Schrodinger equation

(S): idru+ Au=Au|"u ; u(0,.)=uy € H,
where :
> (t,x) ERxRY d>1,

» u=u(t,x)eC,
» \e{-1,0,1},

» 7{ a Hilbert space.
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- | he Nonlinear Schrodinger equation

(S): idru+ Au=Au|"u ; u(0,.)=uy € H,
where :
> (t,x) ERxRY d>1,

» u=u(t,x)eC,
» \e{-1,0,1},
» 7{ a Hilbert space.

. Immediate information : conserved quantities.

Mass conservation: ||u(t)||2 = ||uo|.2-

Energy conservation: ||Vu(t)]|;2 +o

5 lu(O)l] ez = E (u(t)) = E (wo) -

Sobolev space H(R?) is appearing naturally; H* C L9 for all g € [2, 2%
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II. A =0 : The fundamental solution
i0ru = —Au, “taking Fourier” : i0,F(u) = 42|12 F(u).

O+ F(u) = —4772i|§]2]:(u)
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II. A =0 : The fundamental solution
i0ru = —Au, “taking Fourier” : i0,F(u) = 42|12 F(u).

0, F (u) = —472i|¢PF(u) = F(u)(£,€) = e ¢ F(uo)(€)
u(t,x) = U(t)ug = F~L (e*47r2"t|"2.7-"(u0)(-)) (x)
U(t)uo =: F~* (e‘4“2it"|2.7-"(uo)) = (4mit)~/2elx?/(4) 4 g

I1l. Some properties of the fundamental solution U(t).

Young : p,q,r € [1,], ;—i- :7 =1 —1—% \f % gller < ||fllLellgllLa. With
p=r=o00,qg=1, we have

Dispersion : [|U(t)f[|i= < (4]e])*| ]

Unitary: [[U(t)f||2 = [|f]] .2
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—

Consequence 1. For all compact region K C RY, lim ¢ ooo [ Lk u(t)]| 2 = 0.

Remark on this property on compact manifold (on board. Sorry people
outside the CIRM).
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Consequence 1. For all compact region K C RY, lim ¢ ooo [ Lk u(t)]| 2 = 0.

Remark on this property on compact manifold (on board. Sorry people
outside the CIRM).

Consequence 2: Strichartz estimates. “Interpolation” between unitary and
dispersion gives: “for admissible couples (p, q), (p,q)"
L U@)fll s < C(@)NIF ]2

2. |U(t) % Fllizrs < C(a, DN 7 7

VERY VERY VERY IMPORTANT to deal with many nonlinear
problems.
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IV. A # 0 : about +|u|*u
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IV. A # 0 : about £|u|*u
Important features?

Sign of \:
> +1 : defocusing case

> -1 : focusing case

Criticality
4
» Existence problem: « not too big, a below @ = 95 (d > 3).

: . : 4
» Long time behaviour (scattering): a not too small, & above ac = 7

Dealing with a¢ and a. can be tedious !
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V. A # 0 : Existence of solution(s)

Local/global solutions

Consider a data in H. We are looking for
1. local existence in a Banach X,
2. uniqueness of the solution in X,
3. The flow ® : ug — u(t) is continuous,
4. global existence in a Banach X.

— locally/globally well-posed problem in X.

Fixed point method gives (1,2, 3). Conservation laws gives (4).
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d=3 a=2, \==+1. We write

An example

du(t) = U(t)uo — //0 U(t — s)(JulPu)(s) ds

and (NLS) is equivalent to ®(u(t)) = u(t).
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I

d=3, a=2 A==1. We write

An example

du(t) = U(t)uo — //O U(t — s)(JulPu)(s) ds

and (NLS) is equivalent to ®(u(t)) = u(t).

Aim: apply the fixed point theorem in a Banach space X, by proving
> O(X) C X,
> [|®(u(t)) = @ (v(1) lIx <cllu—vlx, c<L

We’ll see how Strichartz are used in (1,2,3). Believe me :(8/3,4) is
admissible, and so is (trivially) (o0, 2).
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Let T > 0. Maybe T small (we'll see later). Strichartz estimates on ® on
[0, T] yield

2
[®u(t)]| o 2rpsrss <C [lluolliz + I Tulull 551005
<C [lluollz + l[ullo el ul o/3,4]
<C [luollz + l[ullZo pallull o/ 4]
<C [luolliz + T2 w0l sgs]
with Holder, H*  L*.
The green term makes us handle Vu too.

i0;Vu+ AVu = xV(luu) ; Vu(0,.) = Vu € H,
and again

IVOu(t)l| o r2rerse < € |1V tolliz + T2 ullfoc [Vl 730
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i. We sum everything

[Su()llxr + IVOu()llxr < C [luollis + T Nulk, ]
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i. We sum everything

[Su()llxr + IVOu()llxr < C [luollis + T Nulk, ]

ii. We restrict the analysis to the ball B = {u € Xr|||ullx, < 2C|lug|/pm}.
Why ? Because then

2C ol (1/2+ T2Plluoli3: ) < 2C uollem < T2 uol2s < 1/2,

is true for somme T7 small enough.

ili. Same computations to prove
[® (u(t)) —®(v(t)lls <cllu—vlp, c<1, anditgives a small T>.

iv. We take T = min(T1, T2) and the windmill turns ! A continuity
argument extends the solution from B to X7.

12/18



I

— We have local existence of a unique solution in X7.
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— We have local existence of a unique solution in X7.

The solution is either global (7T = o), or it blows up in finite time:
there is a maximal time Tpax < +00 s.t. ||u(t)||g1 is not bounded on
[0, TT.
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I

— We have local existence of a unique solution in X7.

The solution is either global (7T = o), or it blows up in finite time:
there is a maximal time Tpax < +00 s.t. ||u(t)||g1 is not bounded on
[0, TT.

NB : if the solution blows up at finite time T,.x in H1 knowing that
l|u(t)||,2 is conserved, |[Vu(t)||,2 is the quantity that blows up.

A simple example: A\ = +1. Energy conservation gives
1
IVu(@)llez < [IVu(®)lliz + Jllullie = 2E() = 2B < +oo.

So T = +o0.
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VI. Qualitative study of long-time behaviour

() fim _[[u(e) ~ U(e)uz] = 0.

Definitions
Every up in H' gives a unique global solution u to (NLS), with

u,Vu € C(R,?) N LP(R, LY), for some (p, q).

Moreover

Asymptotic completeness: For all ug € H, one can produce a ut € H!
s.t. (xx) is satisfied.

Existence of the wave operator: For all vy € H1, one can associate a
solution u(t) to (NLS), satisfying (s).
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Why are global in time Strichartz estimates crucial here ?
() lim Ju(t) — U(t)ugl|jn =0
|t|]—do0
is equivalent to
(%) lim JU(=t)u(t) — us|m = 0.

|t|] o0

So U(—t)u(t) has to converge in H*.
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Why are global in time Strichartz estimates crucial here ?

() lim Ju(t) — U(t)ugl|jn =0
|t|]—do0
is equivalent to

(x) lim JJU(=t)u(t) = utlln = 0.

|t|—=+o0
So U(—t)u(t) has to converge in H*.

Duhamel —

u(t) = U(t)uo — i)\/o U(t — )[ul”u(s) ds
U(=t)u(t) = uo — iX /Ot U(=s)|u[*u(s) ds.

o0
H! —scattering if and only if )\/ U(—s)|u|*u(s) ds converges in H.
0
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VII. Small initial data.
“There is a Ey > 0 s.t. for all ug € HY, |lug||r < Eo, (**) holds.”

Idea: If the data is small enough (Ep), then GWP comes easily and it
gives ||ul|rpra < +o0.

Then prove that ||U(—t)u(t) — U(—7)u(7)| y tends to zero as t, 7T tend
to infinity (“Cauchy sequence”).
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VII. Small initial data.
“There is a Ey > 0 s.t. for all ug € HY, |lug||r < Eo, (**) holds.”

Idea: If the data is small enough (Ep), then GWP comes easily and it
gives ||ul|rpra < +o0.

Then prove that ||U(—t)u(t) — U(—7)u(7)| y tends to zero as t, 7T tend
to infinity (“Cauchy sequence”).

Thanks to Strichartz (and other tools),

[U(=8)u(t) = U=m)u(m)ll < Cllullk - Jlully”

et
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VIIl. One famous machinery for arbitrarily large data.
Example in an easy case (for example defocusing subcritical, for which we
expect scattering on whole H'). Performed by contradiction.

all ug here produce a scattering u(t)

17/18



I

The Kenig-Merle machinery

i. Small data scattering : “There is a Eg > 0 s.t. for all
up € H, ||uo||r < Eo, (*x) holds.”
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The Kenig-Merle machinery

i. Small data scattering : “There is a Eg > 0 s.t. for all
up € HY, lluo|lgr < Eo, (x%) holds.”

ii. We suppose there is a level E. > Ep s.t. there is no
scattering : “there is at least ONE wup € HY, ||uo||r = Eo”
and the associated solution u(t) does not scatter.

— 50 s.t. ||uc||Lpre is not bounded.

iii. Construction of this u. (technical part !) and study of its
properties.

iv. The properties cannot be fulfilled unless u. = 0 which is
impossible because of /.

Gamebook/ “talk dont vous étes le héros":
* if you want to have details about Jii., please ask (but will be on
blackboard).

* if you want to stop, blink very fast.
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