Uniqueness, regularity, compactness and inversion of the potential-to-density map $v\mapsto \rho(v)$ of quantum mechanics

Louis Garrigue

September 15, 2020

Non relativistic quantum mechanics at equilibrium (static)

- Non relativistic quantum mechanics at equilibrium (static)
- Fermions and bosons, condensed matter, superconductivity, electrons, Bose-Einstein condensates, quantum chemistry, cold atoms, nuclear physics, dense plasmas

- Non relativistic quantum mechanics at equilibrium (static)
- Fermions and bosons, condensed matter, superconductivity, electrons, Bose-Einstein condensates, quantum chemistry, cold atoms, nuclear physics, dense plasmas
- Density functional theory (DFT) is the most efficient method to probe matter at microscopic scale (five to hundreds of electrons)

- Non relativistic quantum mechanics at equilibrium (static)
- Fermions and bosons, condensed matter, superconductivity, electrons, Bose-Einstein condensates, quantum chemistry, cold atoms, nuclear physics, dense plasmas
- Density functional theory (DFT) is the most efficient method to probe matter at microscopic scale (five to hundreds of electrons)
- Very few mathematical works on the foundations of DFT

ullet No spin, static, space \mathbb{R}^d

- No spin, static, space \mathbb{R}^d
- States are $\Psi \in H^1\left(\mathbb{R}^d, \mathbb{C}\right)$, $\int |\nabla \Psi|^2 < +\infty$, $\int |\Psi|^2 = 1$, $|\Psi|^2$ accessible

- No spin, static, space \mathbb{R}^d
- States are $\Psi \in H^1\left(\mathbb{R}^d, \mathbb{C}\right)$, $\int |\nabla \Psi|^2 < +\infty$, $\int |\Psi|^2 = 1$, $|\Psi|^2$ accessible
- ullet Hamiltonian : operator of $L^2\left(\mathbb{R}^d,\mathbb{C}
 ight)$ (particle in E=abla v) $H(v)=-\Delta+v$

- No spin, static, space \mathbb{R}^d
- States are $\Psi \in H^1\left(\mathbb{R}^d, \mathbb{C}\right)$, $\int |\nabla \Psi|^2 < +\infty$, $\int |\Psi|^2 = 1$, $|\Psi|^2$ accessible
- ullet Hamiltonian : operator of $L^2\left(\mathbb{R}^d,\mathbb{C}
 ight)$ (particle in E=abla v) $H(v)=-\Delta+v$
- Energy of Ψ :

$$\langle \Psi, H(v)\Psi \rangle = \int_{\mathbb{R}^d} |\nabla \Psi|^2 + \int_{\mathbb{R}^d} v |\Psi|^2$$

- No spin, static, space \mathbb{R}^d
- States are $\Psi \in H^1\left(\mathbb{R}^d, \mathbb{C}\right)$, $\int |\nabla \Psi|^2 < +\infty$, $\int |\Psi|^2 = 1$, $|\Psi|^2$ accessible
- ullet Hamiltonian : operator of $L^2\left(\mathbb{R}^d,\mathbb{C}
 ight)$ (particle in E=abla v) $H(v)=-\Delta+v$
- Energy of Ψ :

$$\langle \Psi, H(v)\Psi \rangle = \int_{\mathbb{R}^d} |\nabla \Psi|^2 + \int_{\mathbb{R}^d} v |\Psi|^2$$

• Ground (equilibrium) states : minimizers of $\langle \Psi, H(\nu)\Psi \rangle$

- No spin, static, space \mathbb{R}^d
- States are $\Psi \in H^1\left(\mathbb{R}^d, \mathbb{C}\right)$, $\int |\nabla \Psi|^2 < +\infty$, $\int |\Psi|^2 = 1$, $|\Psi|^2$ accessible
- ullet Hamiltonian : operator of $L^2\left(\mathbb{R}^d,\mathbb{C}
 ight)$ (particle in E=abla v)

$$H(v) = -\Delta + v$$

• Energy of Ψ:

$$\langle \Psi, H(v)\Psi \rangle = \int_{\mathbb{R}^d} |\nabla \Psi|^2 + \int_{\mathbb{R}^d} v |\Psi|^2$$

- Ground (equilibrium) states : minimizers of $\langle \Psi, H(v)\Psi \rangle$
- To have $\langle \Psi, H(v)\Psi \rangle \geqslant -c \langle \Psi, \Psi \rangle$, need $v \in (L^p + L^{\infty})(\mathbb{R}^d, \mathbb{R})$ with

$$\left\{ \begin{array}{ll} p=1 & \text{ for } d=1 \\ p>1 & \text{ for } d=2 \\ p=d/2 & \text{ for } d\geqslant 3. \end{array} \right.$$

Framework: hydrogen atom

• Example : the hydrogen atom, d = 3, $v(x) = -\frac{1}{|x|}$,

Framework: hydrogen atom

• Example : the hydrogen atom, d = 3, $v(x) = -\frac{1}{|x|}$,

$$\langle \Psi, H(v)\Psi \rangle = \int_{\mathbb{R}^3} |\nabla \Psi|^2 - \int_{\mathbb{R}^3} \frac{|\Psi(x)|^2}{|x|} \mathrm{d}x.$$

By Sobolev's inequality, $\langle \Psi, H(v)\Psi \rangle \geqslant -c \langle \Psi, \Psi \rangle$. Unique minimizer $\Psi(x) = \frac{e^{i\theta}}{\sqrt{\pi}} e^{-|x|}$

Framework: hydrogen atom

• Example : the hydrogen atom, d=3, $v(x)=-\frac{1}{|x|}$,

$$\langle \Psi, H(v)\Psi \rangle = \int_{\mathbb{R}^3} |\nabla \Psi|^2 - \int_{\mathbb{R}^3} \frac{|\Psi(x)|^2}{|x|} \mathrm{d}x.$$

By Sobolev's inequality, $\langle \Psi, H(v)\Psi \rangle \geqslant -c \langle \Psi, \Psi \rangle$. Unique minimizer $\Psi(x) = \frac{e^{i\theta}}{\sqrt{\pi}} e^{-|x|}$

• n^{th} excited state φ_n is given by $\inf_{\substack{\int |\Psi|^2=1\\ \Psi \perp \operatorname{Span}(\varphi_0, \dots, \varphi_{n-1})}} \langle \Psi, H(\nu)\Psi \rangle$

• States are
$$\Psi\in \mathit{L}^{2}_{\mathsf{a}}\left(\left(\mathbb{R}^{d}\right)^{N},\mathbb{C}\right)$$
, with $\int_{\mathbb{R}^{dN}}\left|\Psi\right|^{2}=1$

- States are $\Psi \in L^2_{\mathsf{a}}\left(\left(\mathbb{R}^d\right)^N, \mathbb{C}\right)$, with $\int_{\mathbb{R}^{dN}} \left|\Psi\right|^2 = 1$ $\Psi(\dots, x_i, \dots, x_j, \dots) = -\Psi(\dots, x_j, \dots, x_i, \dots)$

- ullet States are $\Psi\in L^2_{\mathsf{a}}\left(\left(\mathbb{R}^d
 ight)^{\mathcal{N}},\mathbb{C}
 ight)$, with $\int_{\mathbb{R}^{d\mathcal{N}}}\left|\Psi
 ight|^2=1$
- $\Psi(\ldots,x_i,\ldots,x_i,\ldots) = -\Psi(\ldots,x_i,\ldots,x_i,\ldots)$
- One-body density $\rho \in L^1(\mathbb{R}^d, \mathbb{R}_+)$, experimentally measurable

$$\rho_{\Psi}(x) := N \int_{\mathbb{R}^{d(N-1)}} |\Psi|^2 (x, x_2, \dots, x_N) \mathrm{d}x_2 \cdots \mathrm{d}x_N$$

- ullet States are $\Psi\in L^2_{\mathsf{a}}\left(\left(\mathbb{R}^d
 ight)^N,\mathbb{C}
 ight)$, with $\int_{\mathbb{R}^{dN}}\left|\Psi
 ight|^2=1$
- $\Psi(\ldots,x_i,\ldots,x_j,\ldots) = -\Psi(\ldots,x_j,\ldots,x_i,\ldots)$
- One-body density $\rho \in L^1(\mathbb{R}^d, \mathbb{R}_+)$, experimentally measurable

$$\rho_{\Psi}(x) := N \int_{\mathbb{R}^{d(N-1)}} |\Psi|^2 (x, x_2, \dots, x_N) dx_2 \cdots dx_N$$

• Hamiltonian : operator of $L^2_a((\mathbb{R}^d)^N,\mathbb{C})$ $(w \in L^p + L^\infty)$

$$H^{N}(v) = \sum_{i=1}^{N} -\Delta_{x_{i}} + \sum_{1 \leq i < j \leq N} w(x_{i} - x_{j}) + \sum_{i=1}^{N} v(x_{i})$$

- States are $\Psi \in \mathit{L}^{2}_{\mathsf{a}}\left(\left(\mathbb{R}^{d}\right)^{N},\mathbb{C}\right)$, with $\int_{\mathbb{R}^{dN}}\left|\Psi\right|^{2}=1$
- $\Psi(\ldots,x_i,\ldots,x_i,\ldots) = -\Psi(\ldots,x_i,\ldots,x_i,\ldots)$
- One-body density $\rho \in L^1(\mathbb{R}^d, \mathbb{R}_+)$, experimentally measurable

$$\rho_{\Psi}(x) := N \int_{\mathbb{R}^{d(N-1)}} |\Psi|^2 (x, x_2, \dots, x_N) \mathrm{d}x_2 \cdots \mathrm{d}x_N$$

• Hamiltonian : operator of $L^2_{\mathsf{a}}(\left(\mathbb{R}^d\right)^N,\mathbb{C})$ $(w\in L^p+L^\infty)$

$$H^{N}(v) = \sum_{i=1}^{N} -\Delta_{x_{i}} + \sum_{1 \leq i < N} w(x_{i} - x_{j}) + \sum_{i=1}^{N} v(x_{i})$$

• The energy of Ψ is :

$$\left\langle \Psi, H^{N}(v)\Psi \right\rangle = \int_{\mathbb{R}^{dN}} |\nabla \Psi|^{2} + W(\Psi) + \int_{\mathbb{R}^{d}} v \rho_{\Psi}$$

$$W(\Psi) := \sum_{i < i} \int_{\mathbb{R}^{dN}} w(x_{i} - x_{j}) |\Psi|^{2} (x_{1}, \dots, x_{N}) dx_{1} \cdots dx_{N}$$

• Molecules :
$$w = |\cdot|^{-1}$$
, $v(x) = -\sum_{j=1}^{M} \frac{Z_j}{|x - R_j|}$

- Molecules : $w = |\cdot|^{-1}$, $v(x) = -\sum_{j=1}^{M} \frac{Z_j}{|x R_j|}$
- Ground (equilibrium) states : minimizers of

$$E^N(v) := \inf_{\substack{\Psi \in L^2_a\left(\mathbb{R}^{dN}
ight) \\ \int |\Psi|^2 = 1}} \left\langle \Psi, H^N(v)\Psi \right
angle$$

- Molecules : $w = |\cdot|^{-1}$, $v(x) = -\sum_{j=1}^{M} \frac{Z_j}{|x R_j|}$
- Ground (equilibrium) states : minimizers of

$$E^N(v) := \inf_{\substack{\Psi \in L^2_{\mathsf{a}}\left(\mathbb{R}^{dN}
ight) \\ \int |\Psi|^2 = 1}} \left\langle \Psi, H^N(v)\Psi \right
angle$$

Curse of dimensionality

- Molecules : $w = |\cdot|^{-1}$, $v(x) = -\sum_{j=1}^{M} \frac{Z_j}{|x R_j|}$
- Ground (equilibrium) states: minimizers of

$$E^{N}(v) := \inf_{\substack{\Psi \in L_{a}^{2}\left(\mathbb{R}^{dN}\right) \\ \int |\Psi|^{2} = 1}} \left\langle \Psi, H^{N}(v)\Psi \right\rangle$$

- Curse of dimensionality
- If w=0, then $\Psi=\wedge_{i=0}^{N-1}\varphi_i$ where φ_i are the first eigenstates of $-\Delta+v$, $E^N(v)=\sum_{i=0}^{N-1}\left(\int_{\mathbb{R}^d}|\nabla\varphi_i|^2+\int_{\mathbb{R}^d}v\left|\varphi_i\right|^2\right)$, and $\rho_\Psi=\sum_{i=0}^{N-1}\left|\varphi_i\right|^2$

DFT in one slide

The ground state one-body density ρ has the central role

DFT in one slide

The ground state one-body density ρ has the central role

• Hohenberg-Kohn theorem (1964) : ρ contains everything . Main goal of DFT : express everything in terms of ρ

DFT in one slide

The ground state one-body density ρ has the central role

- Hohenberg-Kohn theorem (1964) : ρ contains everything . Main goal of DFT : express everything in terms of ρ
- Kohn-Sham (1965) : replace (v, w) by v_{ks} such that $\boxed{\rho_{w=0}(v_{ks}) = \rho(v)}$ where $\rho_{w=0}(v_{ks})$ is the ground state density of

$$H_{w=0}^N(v) = \sum_{i=1}^N \left(-\Delta_{x_i} + v_{ks}(x_i) \right)$$

Kohn-Sham orbitals φ_i , $\Psi_{ks} = \bigwedge_{i=0}^{N-1} \varphi_i$, $\sum_{i=0}^{N-1} |\varphi_i|^2 = \rho(v)$

ho contains everything

• Thomas-Fermi theory for $w = \left| \cdot \right|^{-1}$ (1927)

$$E^{N}(\rho) \simeq c_{\mathsf{TF}} \int_{\mathbb{R}^{3}} \rho^{5/3} + \frac{1}{2} \int_{\mathbb{R}^{6}} \frac{\rho(x)\rho(y)}{|x-y|} \mathrm{d}x \mathrm{d}y + \int_{\mathbb{R}^{3}} v \rho$$

ρ contains everything

• Thomas-Fermi theory for $w = |\cdot|^{-1}$ (1927)

$$E^{N}(\rho) \simeq c_{\mathsf{TF}} \int_{\mathbb{R}^{3}} \rho^{5/3} + \frac{1}{2} \int_{\mathbb{R}^{6}} \frac{\rho(x)\rho(y)}{|x-y|} \mathrm{d}x \mathrm{d}y + \int_{\mathbb{R}^{3}} v \rho$$

• Hohenberg-Kohn theorem (1964)

ho contains everything

• Thomas-Fermi theory for $w = |\cdot|^{-1}$ (1927)

$$E^N(\rho) \simeq c_{\mathsf{TF}} \int_{\mathbb{R}^3} \rho^{5/3} + \frac{1}{2} \int_{\mathbb{R}^6} \frac{\rho(x) \rho(y)}{|x - y|} \mathrm{d}x \mathrm{d}y + \int_{\mathbb{R}^3} \nu \rho$$

- Hohenberg-Kohn theorem (1964)
- Universal Levy-Lieb functional (1984), for $\rho \in L^1(\mathbb{R}^d)$ such that $\sqrt{\rho} \in H^1$ and $\int \rho = N$,

$$F(\rho) := \inf_{\substack{\Psi \in H^1(\mathbb{R}^{dN}) \\ \int |\Psi|^2 = 1 \\ \rho_{\Psi} = \rho}} \left(\int_{\mathbb{R}^{dN}} |\nabla \Psi|^2 + W(\Psi) \right)$$

$$E^N(v) = \inf_{\substack{\rho \in L^1(\mathbb{R}^d) \\ \int \rho = N \\ \sqrt{\rho} \in H^1}} \left(F(\rho) + \int_{\mathbb{R}^d} v \rho \right)$$

ho contains everything

• Thomas-Fermi theory for $w = |\cdot|^{-1}$ (1927)

$$E^N(\rho) \simeq c_{\mathsf{TF}} \int_{\mathbb{R}^3} \rho^{5/3} + \frac{1}{2} \int_{\mathbb{R}^6} \frac{\rho(x) \rho(y)}{|x-y|} \mathrm{d}x \mathrm{d}y + \int_{\mathbb{R}^3} \nu \rho$$

- Hohenberg-Kohn theorem (1964)
- Universal Levy-Lieb functional (1984), for $\rho \in L^1(\mathbb{R}^d)$ such that $\sqrt{\rho} \in H^1$ and $\int \rho = N$,

$$F(\rho) := \inf_{\substack{\Psi \in H^1(\mathbb{R}^{dN}) \\ \int |\Psi|^2 = 1 \\ \rho_{\Psi} = \rho}} \left(\int_{\mathbb{R}^{dN}} |\nabla \Psi|^2 + W(\Psi) \right)$$

$$E^N(v) = \inf_{\substack{\rho \in L^1(\mathbb{R}^d) \\ \int \rho = N \\ \sqrt{\rho} \in H^1}} \left(F(\rho) + \int_{\mathbb{R}^d} v \rho \right)$$

• Approximate $F(\rho)$: "graal" of DFT

• Lieb-Thirring (1976)

$$c_{\mathsf{LT}} \int_{\mathbb{R}^d}
ho_{\Psi}^{1+rac{2}{d}} \leqslant \int_{\mathbb{R}^{dN}} |
abla \Psi|^2$$

Lieb-Thirring (1976)

$$c_{\mathsf{LT}} \int_{\mathbb{R}^d}
ho_{\Psi}^{1+rac{2}{d}} \leqslant \int_{\mathbb{R}^{dN}} |
abla \Psi|^2$$

• Hoffmann-Ostenhof (1977)

$$\int_{\mathbb{R}^d} |\nabla \sqrt{\rho_\Psi}|^2 \leqslant \int_{\mathbb{R}^{dN}} |\nabla \Psi|^2$$

Lieb-Thirring (1976)

$$c_{\mathsf{LT}} \int_{\mathbb{R}^d}
ho_{\Psi}^{1+rac{2}{d}} \leqslant \int_{\mathbb{R}^{dN}} |
abla \Psi|^2$$

• Hoffmann-Ostenhof (1977)

$$\int_{\mathbb{R}^d} |\nabla \sqrt{\rho_\Psi}|^2 \leqslant \int_{\mathbb{R}^{dN}} |\nabla \Psi|^2$$

• Lieb-Oxford (1981)

$$\frac{1}{2} \int_{\mathbb{R}^{2d}} \frac{\rho_{\Psi}(x) \rho_{\Psi}(y)}{|x-y|} \mathrm{d}x \mathrm{d}y - c_{\mathsf{LO}} \int_{\mathbb{R}^d} \rho_{\Psi}^{1+\frac{1}{d}} \leqslant W(\Psi)$$

Lieb-Thirring (1976)

$$c_{\mathsf{LT}} \int_{\mathbb{R}^d}
ho_{\Psi}^{1+rac{2}{d}} \leqslant \int_{\mathbb{R}^{d\mathcal{N}}} |
abla \Psi|^2$$

• Hoffmann-Ostenhof (1977)

$$\int_{\mathbb{R}^d} |\nabla \sqrt{\rho_{\Psi}}|^2 \leqslant \int_{\mathbb{R}^{dN}} |\nabla \Psi|^2$$

Lieb-Oxford (1981)

$$\frac{1}{2} \int_{\mathbb{R}^{2d}} \frac{\rho_{\Psi}(x) \rho_{\Psi}(y)}{|x-y|} \mathrm{d}x \mathrm{d}y - c_{\mathsf{LO}} \int_{\mathbb{R}^d} \rho_{\Psi}^{1+\frac{1}{d}} \leqslant W(\Psi)$$

 Uniform electrons gaz in Lewin-Lieb-Seiringer (2018, 2019), jellium to Dirac order by Lieb-Narnhofer (1975), Graf-Solovej (1994), next order by Hainzl-Porta-Rexze (2020) and Benedikter-Nam-Porta-Schlein-Seiringer (2020)

Table of contents

- 1 Hohenberg-Kohn theorems
 - Unique continuation
 - Extensions
- 2 The direct map $v \mapsto \rho(v)$
 - The set of binding potentials
 - Regularity and weak-strong continuity of $v \mapsto \Psi(v)$
 - Degenerate potentials
- 3 The Kohn-Sham problem
 - Regularization of the problem
 - Numerical inversion

Plan

- Hohenberg-Kohn theorems
 - Unique continuation
 - Extensions
- 2 The direct map $v \mapsto \rho(v)$
 - The set of binding potentials
 - Regularity and weak-strong continuity of $v \mapsto \Psi(v)$
 - Degenerate potentials
- 3 The Kohn-Sham problem
 - Regularization of the problem
 - Numerical inversion

Table of contents

- Hohenberg-Kohn theorems
 - Unique continuation
 - Extensions
- 2 The direct map $v \mapsto \rho(v)$
 - The set of binding potentials
 - Regularity and weak-strong continuity of $v \mapsto \Psi(v)$
 - Degenerate potentials
- 3 The Kohn-Sham problem
 - Regularization of the problem
 - Numerical inversion

$$H^{N}(v) := \sum_{i=1}^{N} -\Delta_{i} + \sum_{1 \leq i < j \leq N} w(x_{i} - x_{j}) + \sum_{i=1}^{N} v(x_{i})$$

$$\rho_{\Psi}(x) := N \int_{\mathbb{R}^{d(N-1)}} |\Psi|^{2}(x, x_{2}, \dots, x_{N}) dx_{1} \cdots dx_{N}$$

$$H^{N}(v) := \sum_{i=1}^{N} -\Delta_{i} + \sum_{1 \leq i < j \leq N} w(x_{i} - x_{j}) + \sum_{i=1}^{N} v(x_{i})$$

$$\rho_{\Psi}(x) := N \int_{\mathbb{R}^{n} d(N-1)} |\Psi|^{2}(x, x_{2}, \dots, x_{N}) dx_{1} \cdots dx_{N}$$

Theorem (Hohenberg-Kohn)

Let $w, v_1, v_2 \in ?$. If there are two ground states Ψ_1 and Ψ_2 of $H^N(v_1)$ and $H^N(v_2)$, such that

$$ho_{\Psi_1} =
ho_{\Psi_2}, \qquad \text{ then } v_1 = v_2 + rac{E_1 - E_2}{N}.$$

$$H^{N}(v) := \sum_{i=1}^{N} -\Delta_{i} + \sum_{1 \leq i < j \leq N} w(x_{i} - x_{j}) + \sum_{i=1}^{N} v(x_{i})$$

$$\rho_{\Psi}(x) := N \int_{\mathbb{R}^{n} d(N-1)} |\Psi|^{2}(x, x_{2}, \dots, x_{N}) dx_{1} \cdots dx_{N}$$

Theorem (Hohenberg-Kohn)

Let $w, v_1, v_2 \in ?$. If there are two ground states Ψ_1 and Ψ_2 of $H^N(v_1)$ and $H^N(v_2)$, such that

$$\int_{\mathbb{R}^d} (v_1 - v_2) (\rho_{\Psi_1} - \rho_{\Psi_2}) = 0, \qquad \text{ then } v_1 = v_2 + \frac{E_1 - E_2}{N}.$$

$$H^{N}(v) := \sum_{i=1}^{N} -\Delta_{i} + \sum_{1 \leq i < j \leq N} w(x_{i} - x_{j}) + \sum_{i=1}^{N} v(x_{i})$$

$$\rho_{\Psi}(x) := N \int_{\mathbb{R}^{n} d(N-1)} |\Psi|^{2}(x, x_{2}, \dots, x_{N}) dx_{1} \cdots dx_{N}$$

Theorem (Hohenberg-Kohn)

Let $w, v_1, v_2 \in ?$. If there are two ground states Ψ_1 and Ψ_2 of $H^N(v_1)$ and $H^N(v_2)$, such that

$$\int_{\mathbb{R}^d} (v_1 - v_2) (\rho_{\Psi_1} - \rho_{\Psi_2}) = 0, \qquad \text{ then } v_1 = v_2 + \frac{E_1 - E_2}{N}.$$

• Works for bosons and fermions, in any dimension d.

$$H^{N}(v) := \sum_{i=1}^{N} -\Delta_{i} + \sum_{1 \leq i < j \leq N} w(x_{i} - x_{j}) + \sum_{i=1}^{N} v(x_{i})$$

$$\rho_{\Psi}(x) := N \int_{\mathbb{R}^{n} d(N-1)} |\Psi|^{2}(x, x_{2}, \dots, x_{N}) dx_{1} \cdots dx_{N}$$

Theorem (Hohenberg-Kohn)

Let $w, v_1, v_2 \in ?$. If there are two ground states Ψ_1 and Ψ_2 of $H^N(v_1)$ and $H^N(v_2)$, such that

$$\int_{\mathbb{R}^d} (v_1 - v_2)(\rho_{\Psi_1} - \rho_{\Psi_2}) = 0, \qquad \text{ then } v_1 = v_2 + \frac{E_1 - E_2}{N}.$$

- Works for bosons and fermions, in any dimension d.
- Lieb remarked this relies on a strong unique continuation property (1983). He conjectured $? = L^{\frac{d}{2}}(\mathbb{R}^d) + L^{\infty}(\mathbb{R}^d)$

$$H^{N}(v) := \sum_{i=1}^{N} -\Delta_{i} + \sum_{1 \leq i < j \leq N} w(x_{i} - x_{j}) + \sum_{i=1}^{N} v(x_{i})$$

$$\rho_{\Psi}(x) := N \int_{\mathbb{R}^{n} d(N-1)} |\Psi|^{2}(x, x_{2}, \dots, x_{N}) dx_{1} \cdots dx_{N}$$

Theorem (Hohenberg-Kohn)

Let $w, v_1, v_2 \in ?$. If there are two ground states Ψ_1 and Ψ_2 of $H^N(v_1)$ and $H^N(v_2)$, such that

$$\int_{\mathbb{R}^d} (v_1 - v_2)(\rho_{\Psi_1} - \rho_{\Psi_2}) = 0, \qquad \text{ then } v_1 = v_2 + \frac{E_1 - E_2}{N}.$$

- Works for bosons and fermions, in any dimension d.
- Lieb remarked this relies on a strong unique continuation property (1983). He conjectured $? = L^{\frac{d}{2}}(\mathbb{R}^d) + L^{\infty}(\mathbb{R}^d)$
- We can take $? = L^{\frac{dN}{2}}(\mathbb{R}^d) + L^{\infty}(\mathbb{R}^d)$ by Jerison-Kenig (1985)

$$E_1 \leqslant \langle \Psi_2, H^N(v_1)\Psi_2 \rangle = E_2 + \int_{\mathbb{R}^d} \rho_{\Psi_2}(v_1 - v_2)$$

3 Exchanging
$$1 \leftrightarrow 2$$
 gives $E_1 - E_2 \geqslant \int_{\mathbb{R}^d} \rho_{\Psi_1}(v_1 - v_2)$

- $E_1 \leqslant \langle \Psi_2, H^N(v_1)\Psi_2 \rangle = E_2 + \int_{\mathbb{R}^d} \rho_{\Psi_2}(v_1 v_2)$
- **3** Exchanging $1 \leftrightarrow 2$ gives $E_1 E_2 \geqslant \int_{\mathbb{R}^d} \rho_{\Psi_1}(v_1 v_2)$
- Using $\int_{\mathbb{R}^d} (v_1 v_2)(\rho_{\Psi_1} \rho_{\Psi_2}) = 0$, the \leq 's above are =, hence $\langle \Psi_2, H^N(v_1)\Psi_2 \rangle = E_1$, that is Ψ_2 is a ground state for $H^N(v_1)$, so $H^N(v_1)\Psi_2 = E_1\Psi_2$

- $E_1 \leqslant \langle \Psi_2, H^N(v_1)\Psi_2 \rangle = E_2 + \int_{\mathbb{R}^d} \rho_{\Psi_2}(v_1 v_2)$
- **3** Exchanging $1 \leftrightarrow 2$ gives $E_1 E_2 \geqslant \int_{\mathbb{R}^d} \rho_{\Psi_1}(v_1 v_2)$
- Using $\int_{\mathbb{R}^d} (v_1 v_2)(\rho_{\Psi_1} \rho_{\Psi_2}) = 0$, the \leq 's above are =, hence $\langle \Psi_2, H^N(v_1)\Psi_2 \rangle = E_1$, that is Ψ_2 is a ground state for $H^N(v_1)$, so $H^N(v_1)\Psi_2 = E_1\Psi_2$
- **5** Substracting it with $H^N(v_2)\Psi_2 = E_2\Psi_2$, we get

$$\left(E_1 - E_2 + \sum_{i=1}^{N} (v_2 - v_1)(x_i)\right) \Psi_2 = 0$$

- **3** Exchanging $1 \leftrightarrow 2$ gives $E_1 E_2 \geqslant \int_{\mathbb{R}^d} \rho_{\Psi_1}(v_1 v_2)$
- Using $\int_{\mathbb{R}^d} (v_1 v_2)(\rho_{\Psi_1} \rho_{\Psi_2}) = 0$, the \leq 's above are =, hence $\langle \Psi_2, H^N(v_1)\Psi_2 \rangle = E_1$, that is Ψ_2 is a ground state for $H^N(v_1)$, so $H^N(v_1)\Psi_2 = E_1\Psi_2$
- **5** Substracting it with $H^N(v_2)\Psi_2 = E_2\Psi_2$, we get

$$\left(E_1 - E_2 + \sum_{i=1}^{N} (v_2 - v_1)(x_i)\right) \Psi_2 = 0$$

3 By strong unique continuation, $|\{\Psi_2(X) = 0\}| = 0$, thus $E_1 - E_2 + \sum_{i=1}^{N} (v_2 - v_1)(x_i) = 0$ and integrating on $[0, L]^{d(N-1)}$, we obtain $v_1 = v_2 + (E_1 - E_2)/N$

Strong UCP

Theorem (Strong UCP for many-body Schrödinger operators)

Assume that the potentials satisfy

$$v, w \in L^p_{loc}(\mathbb{R}^d)$$
 with $p > \max(2d/3, 2)$.

If $\Psi \in H^2_{loc}(\mathbb{R}^{dN})$ is a non zero solution to $H^N(v)\Psi = E\Psi$, then $|\{\Psi(X) = 0\}| = 0$.

- L. Garrigue, Unique continuation for many-body Schrödinger operators and the Hohenberg-Kohn theorem, Math. Phys. Anal. Geom., 21 (2018), p. 27.
- L. Garrigue, Unique continuation for many-body Schrödinger operators and the Hohenberg-Kohn theorem. II. The Pauli Hamiltonian, (2019), arXiv:1901.03207.

Strong UCP

Theorem (Strong UCP for many-body Schrödinger operators)

Assume that the potentials satisfy

$$v, w \in L^p_{loc}(\mathbb{R}^d)$$
 with $p > \max(2d/3, 2)$.

If $\Psi \in H^2_{loc}(\mathbb{R}^{dN})$ is a non zero solution to $H^N(v)\Psi = E\Psi$, then $|\{\Psi(X) = 0\}| = 0$.

• In 3D, we can take $? = L^{p>2}(\mathbb{R}^3) + L^{\infty}(\mathbb{R}^3)$. Covers Coulomb-like singularities

- L. Garrigue, Unique continuation for many-body Schrödinger operators and the Hohenberg-Kohn theorem, Math. Phys. Anal. Geom., 21 (2018), p. 27.
- L. Garrigue, Unique continuation for many-body Schrödinger operators and the Hohenberg-Kohn theorem.
 II. The Pauli Hamiltonian. (2019), arXiv:1901.03207.

Strong UCP

Theorem (Strong UCP for many-body Schrödinger operators)

Assume that the potentials satisfy

$$v, w \in L^p_{loc}(\mathbb{R}^d)$$
 with $p > \max(2d/3, 2)$.

If $\Psi \in H^2_{loc}(\mathbb{R}^{dN})$ is a non zero solution to $H^N(v)\Psi = E\Psi$, then $|\{\Psi(X) = 0\}| = 0$.

- In 3D, we can take $? = L^{p>2}(\mathbb{R}^3) + L^{\infty}(\mathbb{R}^3)$. Covers Coulomb-like singularities
- Works for excited states

L. GARRIGUE, Unique continuation for many-body Schrödinger operators and the Hohenberg-Kohn theorem, Math. Phys. Anal. Geom., 21 (2018), p. 27.

L. Garrigue, Unique continuation for many-body Schrödinger operators and the Hohenberg-Kohn theorem.
 II. The Pauli Hamiltonian. (2019), arXiv:1901.03207.

Magnetic case, the Pauli Hamiltonian

$$H^{N}(v,A) := \sum_{j=1}^{N} \left((\sigma_{j} \cdot (-i\nabla_{j} + A(x_{j})))^{2} + v(x_{j}) \right) + \sum_{1 \leq i < j \leq N} w(x_{i} - x_{j})$$

Theorem (Strong UCP for the many-body Pauli operator)

Assume that the potentials satisfy div A = 0 and

$$A \in L^q_{\mathrm{loc}}(\mathbb{R}^d)$$
 with $q > 2d$, curl $A, v, w \in L^p_{\mathrm{loc}}(\mathbb{R}^d)$ with $p > \max(2d/3, 2)$.

If $\Psi \in H^2_{loc}(\mathbb{R}^{dN})$ is a non zero solution to $H^N(v,A)\Psi = E\Psi$, then $|\{\Psi(X)=0\}|=0$.

History of related UCP results

	Date	Weak or Strong	Number of particles	Hypothesis on v (loc)	Magnetic ?
Carleman	39	W	$1 \; (and \; N)$	L^{∞}	No
Hörmander	63	W	1	$L^{2d/3}$	No
Georgescu	80	W	Ν	$L^{2d/3}$	No
Schechter-Simon	80	W	Ν	L^d	No
Jerison-Kenig	85	S	1	$L^{d/2}$	No
Kurata	97	S	1	Many	Yes
Koch-Tataru	01	S	1	$L^{d/2}$	Yes
Laestadius-Benedicks-Penz	18	S	Ν	Many	Yes
Garrigue	19	S	Ν	$L^{p>2d/3}$	Yes

History of related UCP results

	Date	Weak or Strong	Number of particles	Hypothesis on v (loc)	Magnetic ?
Carleman	39	W	$1 \; (and \; N)$	L^{∞}	No
Hörmander	63	W	1	$L^{2d/3}$	No
Georgescu	80	W	Ν	$L^{2d/3}$	No
Schechter-Simon	80	W	Ν	L^d	No
Jerison-Kenig	85	S	1	$L^{d/2}$	No
Kurata	97	S	1	Many	Yes
Koch-Tataru	01	S	1	$L^{d/2}$	Yes
Laestadius-Benedicks-Penz	18	S	Ν	Many	Yes
Garrigue	19	S	Ν	$L^{p>2d/3}$	Yes

Other works: Kinzebulatov-Shartser (2010), Lammert (2018)

Carleman-type inequality

De Figueiredo-Gossez (1992) : if
$$|\{\Psi(X)=0\}|>0$$
, then $\int \frac{|\Psi|^2}{|X-X_0|^\tau}$ is finite for all τ . Take $X_0=0$.

Carleman-type inequality

De Figueiredo-Gossez (1992) : if $|\{\Psi(X)=0\}|>0$, then $\int \frac{|\Psi|^2}{|X-X_0|^\tau}$ is finite for all τ . Take $X_0=0$.

Theorem (Carleman-type inequality)

Define $\phi(X) := (-\ln |X|)^{-1/2}$. We have

$$\tau^{3} \int_{B_{1/2}} \phi^{5} \left| \frac{e^{(\tau+2)\phi} \Psi}{|X|^{\tau+2}} \right|^{2} + \tau \int_{B_{1/2}} \phi^{5} \left| \nabla \left(\frac{e^{(\tau+1)\phi} \Psi}{|X|^{\tau+1}} \right) \right|^{2} + \tau^{-1} \int_{B_{1/2}} \phi^{5} \left| \Delta \left(\frac{e^{\tau\phi} \Psi}{|X|^{\tau}} \right) \right|^{2} \leqslant c \int_{B_{1/2}} \left| \frac{e^{\tau\phi} \Delta \Psi}{|X|^{\tau}} \right|^{2}.$$

Fractional Carleman

• With Hardy's inequality $|X|^{-2s} \leq (-\Delta)^s$, it transforms into

Fractional Carleman

• With Hardy's inequality $|X|^{-2s} \leq (-\Delta)^s$, it transforms into

Corollary (Carleman fractionnaire)

Pour tout
$$\delta > 0$$
, $s \in [0,1]$, $s' \in \left[0,\frac{1}{2}\right]$, $\tau \geqslant \tau_0$, $u \in C_{\mathsf{c}}^{\infty}(B_1 \setminus \{0\})$,

$$\tau^{3-4s} \left\| (-\Delta)^{(1-\delta)s} \left(e^{\tau \phi} u \right) \right\|_{L^{2}}^{2} + \tau^{1-4s'} \sum_{i=1}^{n} \left\| (-\Delta)^{(1-\delta)s'} \left(e^{\tau \phi} \partial_{i} u \right) \right\|_{L^{2}}^{2} \leqslant \frac{\kappa_{n}}{\delta^{5/2}} \left\| e^{\tau \phi} \Delta u \right\|_{L^{2}}^{2}.$$

Fractional Carleman

• With Hardy's inequality $|X|^{-2s} \leqslant (-\Delta)^s$, it transforms into

Corollary (Carleman fractionnaire)

Pour tout $\delta > 0$, $s \in [0,1]$, $s' \in \left[0,\frac{1}{2}\right]$, $\tau \geqslant \tau_0$, $u \in C_{\mathsf{c}}^{\infty}(B_1 \setminus \{0\})$,

$$\tau^{3-4s} \left\| (-\Delta)^{(1-\delta)s} \left(e^{\tau \phi} u \right) \right\|_{L^{2}}^{2} + \tau^{1-4s'} \sum_{i=1}^{n} \left\| (-\Delta)^{(1-\delta)s'} \left(e^{\tau \phi} \partial_{i} u \right) \right\|_{L^{2}}^{2} \leqslant \frac{\kappa_{n}}{\delta^{5/2}} \left\| e^{\tau \phi} \Delta u \right\|_{L^{2}}^{2}.$$

• We use $|V_{\mathsf{many-body}}|^2 \leqslant \epsilon (-\Delta)^{\frac{3}{2}-\delta} + c$

Table of contents

- Hohenberg-Kohn theorems
 - Unique continuation
 - Extensions
- 2 The direct map $v \mapsto \rho(v)$
 - The set of binding potentials
 - Regularity and weak-strong continuity of $v \mapsto \Psi(v)$
 - Degenerate potentials
- 3 The Kohn-Sham problem
 - Regularization of the problem
 - Numerical inversion

• Interactions :

Therefore :
$$\rho_{\Psi}^{(2)}(x,y) := \frac{N(N-1)}{2} \int_{\mathbb{R}^{d(N-2)}} |\Psi|^2 (x,y,x_3,\ldots,x_N) \mathrm{d}x_3 \cdots \mathrm{d}x_N$$

$$\left\langle \Psi, \left(\sum_{1 \leqslant i < j \leqslant N} w(x_i - x_j) \right) \Psi \right\rangle = \int_{\mathbb{R}^{2d}} w(x-y) \rho_{\Psi}^{(2)}(x,y),$$

$$(v,w) \mapsto \rho^{(2)} \text{ injective (robust)}$$

Interactions :

$$\rho_{\Psi}^{(2)}(x,y) := \frac{N(N-1)}{2} \int_{\mathbb{R}^{d(N-2)}} |\Psi|^2 (x,y,x_3,\ldots,x_N) dx_3 \cdots dx_N$$

$$\left\langle \Psi, \left(\sum_{1 \leqslant i < j \leqslant N} w(x_i - x_j) \right) \Psi \right\rangle = \int_{\mathbb{R}^{2d}} w(x-y) \rho_{\Psi}^{(2)}(x,y),$$

$$(v,w) \mapsto \rho^{(2)} \text{ injective (robust)}$$

• Zeeman magnetism : $H^N(v, B) := H^N(v) + \sum_{i=1}^N \sigma_i \cdot B(x_i)$, $\left\langle \Psi, \left(\sum_{i=1}^N \sigma_i \cdot B(x_i) \right) \Psi \right\rangle = \int_{\mathbb{R}^d} B \cdot m_{\Psi}$ $(v, B) \mapsto (\rho, m)$, "almost" injective

$$(
ho_{\Psi_1}, m_{\Psi_1}) = (
ho_{\Psi_2}, m_{\Psi_2}) \implies \left[|B_1 - B_2| \, \chi = rac{E_1 - E_2}{N} + v_2 - v_1
ight],$$
 where $\chi(x) \in \{-1, -1 + rac{2}{N}, -1 + rac{4}{N}, \dots, 1 - rac{2}{N}, 1\}$

L. GARRIGUE, Hohenberg-Kohn theorems for interactions, spin and temperature, J. Stat. Phys. (2019)

• Non-local potentials : $H^N(G) := H^N(0) + \sum_{i=1}^N G_i$, $\gamma_{\Psi}(x,y) = N \int_{\mathbb{R}^{d(N-1)}} \Psi(x,x_2,\dots) \overline{\Psi(y,x_2,\dots)} \mathrm{d}x_2 \cdots \mathrm{d}x_N$, $\left\langle \Psi, \left(\sum_{i=1}^N G_i \right) \Psi \right\rangle = \mathrm{Tr} \ G \gamma_{\Psi}$, counterexamples at w=0

L. Garrigue, Hohenberg-Kohn theorems for interactions, spin and temperature, J. Stat. Phys. (2019)

- Non-local potentials : $H^N(G) := H^N(0) + \sum_{i=1}^N G_i$, $\gamma_{\Psi}(x,y) = N \int_{\mathbb{R}^{d(N-1)}} \Psi(x,x_2,\dots) \overline{\Psi(y,x_2,\dots)} \mathrm{d}x_2 \cdots \mathrm{d}x_N$, $\left\langle \Psi, \left(\sum_{i=1}^N G_i \right) \Psi \right\rangle = \mathrm{Tr} \ G \gamma_{\Psi}$, counterexamples at w=0
- At T > 0, all HKs hold : $(T, v, A, w) \mapsto (S, \rho, j_{\text{tot}}, \rho^{(2)})$ injective, non local $G \mapsto \gamma$, classical, (grand) canonical

L. GARRIGUE, Hohenberg-Kohn theorems for interactions, spin and temperature, J. Stat. Phys. (2019)

Plan

- 1 Hohenberg-Kohn theorems
 - Unique continuation
 - Extensions
- 2 The direct map $v \mapsto \rho(v)$
 - The set of binding potentials
 - Regularity and weak-strong continuity of $v \mapsto \Psi(v)$
 - Degenerate potentials
- 3 The Kohn-Sham problem
 - Regularization of the problem
 - Numerical inversion

Definition of $v \mapsto \rho(v)$

$$H^{N}(v) := \sum_{i=1}^{N} -\Delta_{i} + \sum_{1 \leq i < j \leq N} w(x_{i} - x_{j}) + \sum_{i=1}^{N} v(x_{i})$$

• Starting space : binding potentials $(\Sigma^N(v) := \min \sigma_{\operatorname{ess}}(H^N(v)))$ $\mathcal{V}^N_\partial := \left\{ v \in (L^{\frac{d}{2}} + L^\infty)(\mathbb{R}^d) \mid E^N(v) < \Sigma^N(v) \right\}$

Definition of $v \mapsto \rho(v)$

$$H^{N}(v) := \sum_{i=1}^{N} -\Delta_{i} + \sum_{1 \leq i < j \leq N} w(x_{i} - x_{j}) + \sum_{i=1}^{N} v(x_{i})$$

• Starting space : binding potentials $(\Sigma^N(v) := \min \sigma_{ess}(H^N(v)))$

$$\mathcal{V}^N_\partial := \left\{ v \in (L^{\frac{d}{2}} + L^\infty)(\mathbb{R}^d) \mid E^N(v) < \Sigma^N(v) \right\}$$

Non-degenerate binding potentials

$$\mathcal{V}^{\mathcal{N}} \mathrel{\mathop:}= \left\{ v \in \mathcal{V}^{\mathcal{N}}_{\partial} \; \middle| \; \mathsf{dim}\, \mathsf{Ker}\left(H^{\mathcal{N}}(v) - E^{\mathcal{N}}(v)
ight) = 1
ight\}$$

Definition of $v \mapsto \rho(v)$

$$H^{N}(v) := \sum_{i=1}^{N} -\Delta_{i} + \sum_{1 \leqslant i < j \leqslant N} w(x_{i} - x_{j}) + \sum_{i=1}^{N} v(x_{i})$$

• Starting space : binding potentials $(\Sigma^N(v) := \min \sigma_{ess}(H^N(v)))$

$$\mathcal{V}_{\partial}^{N} := \left\{ v \in (L^{\frac{d}{2}} + L^{\infty})(\mathbb{R}^{d}) \mid E^{N}(v) < \Sigma^{N}(v) \right\}$$

Non-degenerate binding potentials

$$\mathcal{V}^N \mathrel{\mathop:}= \left\{ v \in \mathcal{V}^N_\partial \mid \operatorname{\mathsf{dim}} \operatorname{\mathsf{Ker}} \left(H^N(v) - E^N(v)
ight) = 1
ight\}$$

• $\Psi(v) := \text{ground state of } H^N(v),$

$$\rho: \begin{array}{ccc} \mathcal{V}^{N} & \longrightarrow & W^{1,1}(\mathbb{R}^{d}, \mathbb{R}_{+}) \cap \left\{ \int \cdot = N \right\} \\ v & \longmapsto & \rho_{\Psi(v)} = \rho(v), \end{array}$$

Table of contents

- 1 Hohenberg-Kohn theorems
 - Unique continuation
 - Extensions
- **2** The direct map $v \mapsto \rho(v)$
 - The set of binding potentials
 - Regularity and weak-strong continuity of $v \mapsto \Psi(v)$
 - Degenerate potentials
- The Kohn-Sham problem
 - Regularization of the problem
 - Numerical inversion

The set of binding potentials

• The sets \mathcal{V}^N and \mathcal{V}^N_∂ are open in $L^{d/2} + L^\infty$ so they are smooth closed embedded manifolds

The set of binding potentials

• The sets \mathcal{V}^N and \mathcal{V}^N_∂ are open in $L^{d/2} + L^\infty$ so they are smooth closed embedded manifolds

Theorem (Path-connectedness of the space of binding potentials)

$$\cap_{n=1}^{N} \mathcal{V}_{\partial}^{n}$$
 is path-connected

The set of binding potentials

• The sets \mathcal{V}^N and \mathcal{V}^N_∂ are open in $L^{d/2} + L^\infty$ so they are smooth closed embedded manifolds

Theorem (Path-connectedness of the space of binding potentials)

$$\cap_{n=1}^{N} \mathcal{V}_{\partial}^{n}$$
 is path-connected

• Conjecture : $\mathcal{V}_{\partial}^{n+1} \subset \mathcal{V}_{\partial}^{n}$. Would yield $\mathcal{V}_{\partial}^{N} = \bigcap_{n=1}^{N} \mathcal{V}_{\partial}^{n}$

The set of binding potentials

• The sets \mathcal{V}^N and \mathcal{V}^N_∂ are open in $L^{d/2} + L^\infty$ so they are smooth closed embedded manifolds

Theorem (Path-connectedness of the space of binding potentials)

$$\cap_{n=1}^{N} \mathcal{V}_{\partial}^{n}$$
 is path-connected

• Conjecture : $\mathcal{V}_{\partial}^{n+1} \subset \mathcal{V}_{\partial}^{n}$. Would yield $\mathcal{V}_{\partial}^{N} = \bigcap_{n=1}^{N} \mathcal{V}_{\partial}^{n}$

Corollary (Path-connectedness of the set *v*-representable densities)

The set $\rho\left(\bigcap_{n=1}^{N}\mathcal{V}_{\partial}^{n}\right)$ is path-connected

The set of binding potentials

• The sets \mathcal{V}^N and \mathcal{V}^N_∂ are open in $L^{d/2} + L^\infty$ so they are smooth closed embedded manifolds

Theorem (Path-connectedness of the space of binding potentials)

$$\cap_{n=1}^{N} \mathcal{V}_{\partial}^{n}$$
 is path-connected

• Conjecture : $\mathcal{V}_{\partial}^{n+1} \subset \mathcal{V}_{\partial}^{n}$. Would yield $\mathcal{V}_{\partial}^{N} = \bigcap_{n=1}^{N} \mathcal{V}_{\partial}^{n}$

Corollary (Path-connectedness of the set *v*-representable densities)

The set
$$\rho\left(\bigcap_{n=1}^{N} \mathcal{V}_{\partial}^{n}\right)$$
 is path-connected

• Is \mathcal{V}^N path-connected? Adiabatic equivalence?

Table of contents

- 1 Hohenberg-Kohn theorems
 - Unique continuation
 - Extensions
- **2** The direct map $v \mapsto \rho(v)$
 - The set of binding potentials
 - Regularity and weak-strong continuity of $v \mapsto \Psi(v)$
 - Degenerate potentials
- The Kohn-Sham problem
 - Regularization of the problem
 - Numerical inversion

$$\|A\|_{\mathfrak{S}_{\infty,1}} = \left\| (-\Delta + 1)^{\frac{1}{2}} A (-\Delta + 1)^{\frac{1}{2}} \right\|_{L^2 \to L^2}, \qquad \|A\|_{\mathfrak{S}_{1,1}}$$

$$||A||_{\mathfrak{S}_{1,1}} = \operatorname{Tr}_{L^2} \left| (-\Delta + 1)^{\frac{1}{2}} A (-\Delta + 1)^{\frac{1}{2}} \right|$$

$$\|A\|_{\mathfrak{S}_{\infty,1}} = \left\| (-\Delta+1)^{\frac{1}{2}} A (-\Delta+1)^{\frac{1}{2}} \right\|_{L^2 \to L^2}, \qquad \qquad \|A\|_{\mathfrak{S}_{1,1}} = \operatorname{Tr}_{L^2} \left| (-\Delta+1)^{\frac{1}{2}} A (-\Delta+1)^{\frac{1}{$$

$$\mathcal{H}^1_{p} := \frac{\mathcal{H}^1 \cap \mathbb{S}}{\mathcal{S}^1}, \hspace{1cm} \mathscr{P} : \begin{array}{ccc} \mathcal{H}^1_{p} & \longrightarrow & \mathfrak{S}_{\infty,1} \cap \{\operatorname{Tr} \cdot = 1\} \cap \{\| \cdot \| = 1\} \\ \psi & \longmapsto & | \Psi \rangle \left\langle \Psi | \right., \end{array}$$

$$\begin{split} & \|\mathbf{A}\|_{\mathfrak{S}_{\infty,1}} = \left\| (-\Delta + 1)^{\frac{1}{2}} \mathbf{A} (-\Delta + 1)^{\frac{1}{2}} \right\|_{L^2 \to L^2}, \qquad \|\mathbf{A}\|_{\mathfrak{S}_{1,1}} = \operatorname{Tr}_{L^2} \left| (-\Delta + 1)^{\frac{1}{2}} \mathbf{A} (-\Delta + 1)^{\frac{1}{2}} \right| \\ & H^1_p := \frac{H^1 \cap \mathbb{S}}{S^1}, \qquad \mathscr{P} : \quad \begin{array}{c} H^1_p \longrightarrow & \mathfrak{S}_{\infty,1} \cap \left\{ \operatorname{Tr} \cdot = 1 \right\} \cap \left\{ \| \cdot \| = 1 \right\} \\ & \Psi \longmapsto & |\Psi\rangle \left\langle \Psi|, \end{array} \\ & \mathcal{V}^{\mathcal{N}} \stackrel{\mathcal{P}}{\longrightarrow} & \mathfrak{S}_{\infty,1} \longrightarrow & \mathcal{H}^1_p(\Omega) \stackrel{\widetilde{\rho}}{\longrightarrow} & \mathcal{W}^{1,1} \cap \left\{ \int \cdot = \mathcal{N} \right\} \\ & v \longmapsto & |\Psi(v)\rangle \left\langle \Psi(v)| \longmapsto & \Psi(v) \longmapsto & \rho_{\Psi(v)} \end{array}$$

$$\begin{split} & \|\mathbf{A}\|_{\mathfrak{S}_{\infty,1}} = \left\| (-\Delta + 1)^{\frac{1}{2}} \mathbf{A} (-\Delta + 1)^{\frac{1}{2}} \right\|_{L^2 \to L^2}, \qquad \|\mathbf{A}\|_{\mathfrak{S}_{1,1}} = \operatorname{Tr}_{L^2} \left| (-\Delta + 1)^{\frac{1}{2}} \mathbf{A} (-\Delta + 1)^{\frac{1}{2}} \right| \\ & H^1_p := \frac{H^1 \cap \mathbb{S}}{S^1}, \qquad \mathscr{P} : \quad \begin{array}{c} H^1_p & \longrightarrow & \mathfrak{S}_{\infty,1} \cap \{\operatorname{Tr} \cdot = 1\} \cap \{\| \cdot \| = 1\} \\ & \Psi & \longmapsto & |\Psi\rangle \left\langle \Psi|, \end{array} \\ & \mathcal{V}^{\mathcal{N}} \quad \stackrel{\mathcal{P}}{\longrightarrow} \quad \mathfrak{S}_{\infty,1} \quad \stackrel{\mathscr{P}^{-1}}{\longrightarrow} \quad H^1_p(\Omega) \quad \stackrel{\widetilde{\rho}}{\longrightarrow} \quad W^{1,1} \cap \{\int \cdot = \mathcal{N}\} \\ & v \quad \longmapsto \quad |\Psi(v)\rangle \left\langle \Psi(v)| \quad \longmapsto \quad \Psi(v) \quad \longmapsto \quad \rho_{\Psi(v)} \\ & \Psi = \mathscr{P}^{-1} \circ \mathcal{P} \qquad \qquad \rho = \widetilde{\rho} \circ \Psi \end{split}$$

$$\begin{split} & \| \textbf{A} \|_{\mathfrak{S}_{\infty,1}} = \left\| (-\Delta + 1)^{\frac{1}{2}} \textbf{A} (-\Delta + 1)^{\frac{1}{2}} \right\|_{\mathcal{L}^2 \to \mathcal{L}^2}, & \| \textbf{A} \|_{\mathfrak{S}_{1,1}} = \operatorname{Tr}_{\mathcal{L}^2} \left| (-\Delta + 1)^{\frac{1}{2}} \textbf{A} (-\Delta + 1)^{\frac{1}{2}} \right| \\ & \mathcal{H}^1_{\mathsf{p}} := \frac{H^1 \cap \mathbb{S}}{S^1}, & \mathscr{P} : \begin{array}{c} H^1_{\mathsf{p}} & \longrightarrow & \mathfrak{S}_{\infty,1} \cap \{\operatorname{Tr} \cdot = 1\} \cap \{\| \cdot \| = 1\} \\ & \psi & \longmapsto & | \Psi \rangle \langle \Psi | \,, \\ \\ & \mathcal{V}^{\mathcal{N}} & \xrightarrow{\mathcal{P}} & \mathfrak{S}_{\infty,1} & \xrightarrow{\mathscr{P}^{-1}} & H^1_{\mathsf{p}}(\Omega) & \xrightarrow{\widetilde{\rho}} & \mathcal{W}^{1,1} \cap \{\int \cdot = \mathcal{N}\} \\ & v & \longmapsto & | \Psi(v) \rangle \langle \Psi(v) | & \longmapsto & \Psi(v) & \longmapsto & \rho_{\Psi(v)} \\ & \Psi = \mathscr{P}^{-1} \circ \mathcal{P} & \rho = \widetilde{\rho} \circ \Psi \end{split}$$

Proposition

 \mathscr{P} is a \mathcal{C}^{∞} embedding, $\operatorname{Im} \mathscr{P}$ is a submanifold of $\mathfrak{S}_{\infty,1}$

$$\begin{split} & \| \textbf{A} \|_{\mathfrak{S}_{\infty,1}} = \left\| (-\Delta + 1)^{\frac{1}{2}} \textbf{A} (-\Delta + 1)^{\frac{1}{2}} \right\|_{L^{2} \to L^{2}}, & \| \textbf{A} \|_{\mathfrak{S}_{1,1}} = \operatorname{Tr}_{L^{2}} \left| (-\Delta + 1)^{\frac{1}{2}} \textbf{A} (-\Delta + 1)^{\frac{1}{2}} \right| \\ & H^{1}_{p} := \frac{H^{1} \cap \mathbb{S}}{S^{1}}, & \mathscr{P} : \begin{array}{c} H^{1}_{p} & \longrightarrow & \mathfrak{S}_{\infty,1} \cap \{\operatorname{Tr} \cdot = 1\} \cap \{\| \cdot \| = 1\} \\ & \Psi & \longmapsto & |\Psi\rangle \, \langle \Psi| \,, \\ \\ & \mathcal{V}^{N} & \stackrel{\mathcal{P}}{\longrightarrow} & \mathfrak{S}_{\infty,1} & \stackrel{\mathscr{P}^{-1}}{\longrightarrow} & H^{1}_{p}(\Omega) & \stackrel{\widetilde{\rho}}{\longrightarrow} & W^{1,1} \cap \{\int \cdot = N\} \\ & v & \longmapsto & |\Psi(v)\rangle \, \langle \Psi(v)| & \longmapsto & \Psi(v) & \longmapsto & \rho_{\Psi(v)} \end{split}$$

$$\Psi = \mathscr{P}^{-1} \circ \mathcal{P} \qquad \qquad \rho = \widetilde{\rho} \circ \Psi$$

Proposition

 \mathscr{P} is a \mathcal{C}^{∞} embedding, $\operatorname{Im} \mathscr{P}$ is a submanifold of $\mathfrak{S}_{\infty,1}$

Lemma

$$\widetilde{\rho}: H^1_{\mathtt{p}} o W^{1,1} \cap \left\{ \int \cdot = \mathsf{N} \right\} \text{ is } \mathcal{C}^{\infty}$$

Regularity and compactness of $v \mapsto \rho(v)$

Theorem (Main properties of Ψ)

• Ψ is \mathcal{C}^{∞} from \mathcal{V}^{N} to H^{1}_{p}

Regularity and compactness of $v\mapsto \rho(v)$

Theorem (Main properties of Ψ)

- ullet Ψ is \mathcal{C}^{∞} from \mathcal{V}^{N} to H^{1}_{p}
- For $v \in \mathcal{V}^N$, $d_v \Psi : L^{d/2} + L^\infty \to H^1 \cap \{\Psi(v)\}^\perp$

$$(\mathrm{d}_{v}\Psi)\,u=-\big(H^{N}(v)-E^{N}(v)\big)_{\perp}^{-1}\big(\Sigma_{i=1}^{N}u(x_{i})\big)\Psi(v),$$

 $d_{\nu}\Psi$ is compact and not surjective

Regularity and compactness of $v \mapsto \rho(v)$

Theorem (Main properties of Ψ)

- ullet Ψ is \mathcal{C}^{∞} from \mathcal{V}^{N} to H^{1}_{p}
- For $v \in \mathcal{V}^N$, $d_v \Psi : L^{d/2} + L^\infty \to H^1 \cap \{\Psi(v)\}^\perp$

$$(d_{\nu}\Psi) u = -(H^{N}(\nu) - E^{N}(\nu))_{\perp}^{-1} (\Sigma_{i=1}^{N} u(x_{i})) \Psi(\nu),$$

 $\mathrm{d}_{\nu}\Psi$ is compact and not surjective

• Let $\Lambda \subset \mathbb{R}^d$ be a bounded open set. Assume $v \in \mathcal{V}^N$, $v_n \rightharpoonup v$ and $v_n \mathbb{1}_{\mathbb{R}^d \setminus \Lambda} \to v \mathbb{1}_{\mathbb{R}^d \setminus \Lambda}$. Then $E^N(v_n) \to E^N(v)$, $v_n \in \mathcal{V}^N$ for n large enough, and $V(v_n) \to V(v)$ in H^1_p

Regularity and compactness of $v \mapsto \rho(v)$

Theorem (Main properties of Ψ)

- Ψ is \mathcal{C}^{∞} from \mathcal{V}^{N} to H^{1}_{p}
- For $v \in \mathcal{V}^N$, $d_v \Psi : L^{d/2} + L^\infty \to H^1 \cap \{\Psi(v)\}^\perp$

$$(d_{\nu}\Psi) u = -(H^{N}(\nu) - E^{N}(\nu))_{\perp}^{-1} (\Sigma_{i=1}^{N} u(x_{i})) \Psi(\nu),$$

 $\mathrm{d}_{\nu}\Psi$ is compact and not surjective

• Let $\Lambda \subset \mathbb{R}^d$ be a bounded open set. Assume $v \in \mathcal{V}^N$, $v_n \rightharpoonup v$ and $v_n \mathbb{1}_{\mathbb{R}^d \setminus \Lambda} \to v \mathbb{1}_{\mathbb{R}^d \setminus \Lambda}$. Then $E^N(v_n) \to E^N(v)$, $v_n \in \mathcal{V}^N$ for n large enough, and $V(v_n) \to V(v)$ in H^1_p

 ρ and $d_{\nu}\rho$ are injective when $p > \max(2d/3, 2)$

Corollaries: Hellman-Feynman

The energy $v \mapsto E^N(v)$ is Lipschitz continuous (Lieb 83), concave and weakly upper semi-continuous on $L^p + L^\infty$

Corollaries: Hellman-Feynman

The energy $v \mapsto E^N(v)$ is Lipschitz continuous (Lieb 83), concave and weakly upper semi-continuous on $L^p + L^\infty$

Corollary (Hellmann-Feynman)

The energy E^N is C^∞ on \mathcal{V}^N , with

$$\left(\mathrm{d}_{v}E^{N}\right)u=\int_{\mathbb{R}^{d}}u\rho(v)$$

Corollaries: ill-posedness of the Kohn-Sham potential

Corollary (The set of v-representable densities is very small)

Consider that the system lives in a bounded open set $\Omega \subset \mathbb{R}^d$. Then $v \mapsto \rho(v)$ is compact, ρ^{-1} is discontinuous, and $\rho(\mathcal{V}^N)$ is a countable union of compact sets. Hence $\rho(\mathcal{V}^N)$ has empty interior in $W^{1,1} \cap \{ f \cdot = N \}$.

Corollaries: ill-posedness of the Kohn-Sham potential

Corollary (The set of v-representable densities is very small)

Consider that the system lives in a bounded open set $\Omega \subset \mathbb{R}^d$. Then $v \mapsto \rho(v)$ is compact, ρ^{-1} is discontinuous, and $\rho(\mathcal{V}^N)$ is a countable union of compact sets. Hence $\rho(\mathcal{V}^N)$ has empty interior in $W^{1,1} \cap \{ \int \cdot = N \}$.

For $v \in \rho^{-1}\left(\rho(\mathcal{V}^N) \cap \rho_{w=0}(\mathcal{V}^N_{w=0})\right)$, the Kohn-Sham potential

$$v_{\mathsf{ks}}(v) := \rho_{w=0}^{-1} \circ \rho(v)$$

is ill-posed!

Inverse continuity

Proposition (Weak inverse continuity of Ψ)

Let $p > \max(2d/3, 2)$, $v, v_n \in \mathcal{V}^N$ such that $v_n - E^N(v_n)/N$ is bounded in $L^p + L^\infty$ and $\Psi(v_n) \to \Psi(v)$ in $H^2(\mathbb{R}^{dN})$. Then $v_n \to v$ a.e. up to a subsequence.

Table of contents

- 1 Hohenberg-Kohn theorems
 - Unique continuation
 - Extensions
- **2** The direct map $v \mapsto \rho(v)$
 - The set of binding potentials
 - Regularity and weak-strong continuity of $v \mapsto \Psi(v)$
 - Degenerate potentials
- 3 The Kohn-Sham problem
 - Regularization of the problem
 - Numerical inversion

Degenerate potentials

Proposition (Degenerate Hellman-Feynman)

The energy $v \mapsto E^N(v)$ is infinitely half Gateaux differentiable on the singular points $\mathcal{V}_{\partial}^N \setminus \mathcal{V}^N$, with

$$^+\delta_{v}E^{N}(u) = \min \sigma \left(\mathcal{P}(v)u\mathcal{P}(v)\right) = \min_{\substack{\Psi \in \operatorname{Ker}\left(H^{N}(v) - E^{N}(v)\right) \ |\Psi|^{2} = 1}} \int \rho_{\Psi}u$$

Similarly, ${}^-\delta_v E^N(u) = \max_{\Psi \dots} \int \rho_\Psi u$. If dim Ker $(H^N(v) - E^N(v)) = 2$ with Ψ_1, Ψ_2 an orthonormal basis,

$$^{\pm}\delta_{\nu}E^{N}(u) = \frac{1}{2}\int u\left(\rho_{\Psi_{1}} + \rho_{\Psi_{2}}\right)$$

$$\mp \frac{1}{2}\sqrt{\left(\int u\left(\rho_{\Psi_{1}} - \rho_{\Psi_{2}}\right)\right)^{2} + 4\left|\left\langle\Psi_{1},\left(\sum_{i}u_{i}\right)\Psi_{2}\right\rangle\right|^{2}}.$$

Degenerate potentials

Proposition

• Let $\dim \operatorname{Ker} \left(H^N(v) - E^N(v) \right) = 2$, take $\psi, \varphi \in \operatorname{Ker} \left(H^N(v) - E^N(v) \right)$ with $\psi \perp \varphi$. The degeneracy is broken in no direction at first order if and only if $\rho_{\psi} = \rho_{\varphi}$ and $\int_{\mathbb{R}^d(N-1)} \psi \varphi \mathrm{d} x_2 \cdots \mathrm{d} x_N = 0$

Degenerate potentials

Proposition

- Let dim Ker $(H^N(v) E^N(v)) = 2$, take $\psi, \varphi \in \text{Ker } (H^N(v) E^N(v))$ with $\psi \perp \varphi$. The degeneracy is broken in no direction at first order if and only if $\rho_{\psi} = \rho_{\varphi}$ and $\int_{\mathbb{R}^{d(N-1)}} \psi \varphi \mathrm{d} x_2 \cdots \mathrm{d} x_N = 0$
- Let $v \in \mathcal{V}_{\partial}^{N} \setminus \mathcal{V}^{N}$ be degenerate, and w = 0. Then $h \mapsto E^{N}(h)$ is not differentiable at v, in particular $+\delta_{v}E^{N}(u) < -\delta_{v}E^{N}(u)$ for at least one direction u

Plan

- 1 Hohenberg-Kohn theorems
 - Unique continuation
 - Extensions
- 2 The direct map $v \mapsto \rho(v)$
 - The set of binding potentials
 - Regularity and weak-strong continuity of $v \mapsto \Psi(v)$
 - Degenerate potentials
- 3 The Kohn-Sham problem
 - Regularization of the problem
 - Numerical inversion

• Take a target density $\rho \geqslant 0$, $\int_{\mathbb{R}^d} \rho = N$. Does a v exists such that $\rho_{\Psi(v)} = \rho$, where $\Psi(v)$ is a ground state of $H^N(v)$?

- Take a target density $\rho \geqslant 0$, $\int_{\mathbb{R}^d} \rho = N$. Does a v exists such that $\rho_{\Psi(v)} = \rho$, where $\Psi(v)$ is a ground state of $H^N(v)$?
- ullet Lieb (1983), approximately, quantum mixed states, \mathbb{R}^d , T=0 (but abstract)

- Take a target density $\rho \geqslant 0$, $\int_{\mathbb{R}^d} \rho = N$. Does a v exists such that $\rho_{\Psi(v)} = \rho$, where $\Psi(v)$ is a ground state of $H^N(v)$?
- Lieb (1983), approximately, quantum mixed states, \mathbb{R}^d , T=0 (but abstract)
- With $G_{\rho}(v) := E^{N}(v) \int v \rho$, Lieb (1983) established that

$$\sup_{v \in L^{d/2} + L^{\infty}} G_{\rho}(v) = \inf_{\substack{\Gamma \in \mathcal{S}_{\text{mix}}^{N} \\ \rho_{\Gamma} = \rho}} \operatorname{Tr} H^{N}(0) \Gamma$$

extremizers (v,Γ) respect $E^N(v) - \int v\rho = \operatorname{Tr} H^N(0)\Gamma$, $\rho_{\Gamma} = \rho$

- Take a target density $\rho \geqslant 0$, $\int_{\mathbb{R}^d} \rho = N$. Does a v exists such that $\rho_{\Psi(v)} = \rho$, where $\Psi(v)$ is a ground state of $H^N(v)$?
- Lieb (1983), approximately, quantum mixed states, \mathbb{R}^d , T=0 (but abstract)
- With $G_{\rho}(v) := E^{N}(v) \int v \rho$, Lieb (1983) established that

$$\sup_{v \in L^{d/2} + L^{\infty}} G_{\rho}(v) = \inf_{\substack{\Gamma \in \mathcal{S}_{\text{mix}}^{N} \\ \rho_{\Gamma} = \rho}} \operatorname{Tr} H^{N}(0) \Gamma$$

extremizers (v, Γ) respect $E^{N}(v) - \int v \rho = \operatorname{Tr} H^{N}(0)\Gamma$, $\rho_{\Gamma} = \rho$

• Chayes-Chayes-Lieb (1984), exactly, classical theory, \mathbb{R}^d , T>0

- Take a target density $\rho \geqslant 0$, $\int_{\mathbb{R}^d} \rho = N$. Does a v exists such that $\rho_{\Psi(v)} = \rho$, where $\Psi(v)$ is a ground state of $H^N(v)$?
- Lieb (1983), approximately, quantum mixed states, \mathbb{R}^d , T=0 (but abstract)
- With $G_{\rho}(v) := E^{N}(v) \int v \rho$, Lieb (1983) established that

$$\sup_{v \in L^{d/2} + L^{\infty}} G_{\rho}(v) = \inf_{\substack{\Gamma \in \mathcal{S}_{\text{mix}}^{N} \\ \rho_{\Gamma} = \rho}} \operatorname{Tr} H^{N}(0) \Gamma$$

extremizers (v, Γ) respect $E^{N}(v) - \int v \rho = \operatorname{Tr} H^{N}(0)\Gamma$, $\rho_{\Gamma} = \rho$

- Chayes-Chayes-Lieb (1984), exactly, classical theory, \mathbb{R}^d , T>0
- Chayes-Chayes-Ruskai (1985), exactly, quantum mixed states, lattices \mathbb{Z}^d , T=0

- Take a target density $\rho \geqslant 0$, $\int_{\mathbb{R}^d} \rho = N$. Does a v exists such that $\rho_{\Psi(v)} = \rho$, where $\Psi(v)$ is a ground state of $H^N(v)$?
- Lieb (1983), approximately, quantum mixed states, \mathbb{R}^d , T=0 (but abstract)
- With $G_{\rho}(v) := E^{N}(v) \int v \rho$, Lieb (1983) established that

$$\sup_{v \in L^{d/2} + L^{\infty}} G_{\rho}(v) = \inf_{\substack{\Gamma \in \mathcal{S}_{\text{mix}}^{N} \\ \rho_{\Gamma} = \rho}} \operatorname{Tr} H^{N}(0) \Gamma$$

extremizers (v, Γ) respect $E^{N}(v) - \int v \rho = \operatorname{Tr} H^{N}(0)\Gamma$, $\rho_{\Gamma} = \rho$

- Chayes-Chayes-Lieb (1984), exactly, classical theory, \mathbb{R}^d , T>0
- Chayes-Chayes-Ruskai (1985), exactly, quantum mixed states, lattices \mathbb{Z}^d , T=0
- Ideally we want exact, pure quantum states, \mathbb{R}^d , T=0

Table of contents

- 1 Hohenberg-Kohn theorems
 - Unique continuation
 - Extensions
- 2 The direct map $v \mapsto \rho(v)$
 - The set of binding potentials
 - Regularity and weak-strong continuity of $v \mapsto \Psi(v)$
 - Degenerate potentials
- 3 The Kohn-Sham problem
 - Regularization of the problem
 - Numerical inversion

Regularization: relaxation

•
$$G_{\rho}(v) = E^{N}(v) - \int v\rho$$
 is not coercive in L^{p} ! Ex: $V \in L^{1} \cap L^{p>1}$, $V \geqslant 0$, $V_{n}(x) := n^{d}V(nx)$, $\|V_{n}\|_{L^{p}}^{p} = n^{d(p-1)}\int V^{p} \to +\infty$ but $E^{N}(V_{n}) = 0$, and $\int V_{n}\rho \to \rho(0)\int V$ is bounded

Regularization: relaxation

- $G_{\rho}(v) = E^{N}(v) \int v\rho$ is not coercive in L^{p} ! Ex: $V \in L^{1} \cap L^{p>1}$, $V \geqslant 0$, $V_{n}(x) := n^{d}V(nx)$, $\|V_{n}\|_{L^{p}}^{p} = n^{d(p-1)}\int V^{p} \to +\infty$ but $E^{N}(V_{n}) = 0$, and $\int V_{n}\rho \to \rho(0)\int V$ is bounded
- Relax : $\rho_{\Psi} = \rho$ replaced by $\int \rho_{\Psi} \alpha_i = r_i \left(= \int \rho \alpha_i \right)$ for weights $\alpha_i \in L^{\infty}(\Omega, \mathbb{R}_+)$, $i \in I$, $\sum_i \alpha_i = \mathbb{1}_{\Omega}$. For $r = (r_i)_i$, $r_i > 0$, $\sum_i r_i = N$,

$$F^{N,\alpha}(r) := \inf_{\substack{\Psi \in H^1_a(\Omega^N) \\ \int \alpha_i \rho_\Psi = r_i \ \forall i \in I}} \left\langle \Psi, H^N\left(0\right) \Psi \right\rangle, \quad F^{N,\alpha}_{\mathsf{mix}}(r) := \inf_{\substack{\Gamma \in \mathcal{S}^N_{\mathsf{mix}}(\Omega) \\ \int \alpha_i \rho_\Gamma = r_i \ \forall i \in I}} \mathrm{Tr} \ H^N(0) \Gamma$$

Regularization: relaxation

- $G_{\rho}(v) = E^{N}(v) \int v\rho$ is not coercive in L^{p} ! Ex: $V \in L^{1} \cap L^{p>1}$, $V \geqslant 0$, $V_{n}(x) := n^{d}V(nx)$, $\|V_{n}\|_{L^{p}}^{p} = n^{d(p-1)}\int V^{p} \to +\infty$ but $E^{N}(V_{n}) = 0$, and $\int V_{n}\rho \to \rho(0)\int V$ is bounded
- Relax : $\rho_{\Psi} = \rho$ replaced by $\int \rho_{\Psi} \alpha_i = r_i \left(= \int \rho \alpha_i \right)$ for weights $\alpha_i \in L^{\infty}(\Omega, \mathbb{R}_+)$, $i \in I$, $\sum_i \alpha_i = \mathbb{1}_{\Omega}$. For $r = (r_i)_i$, $r_i > 0$, $\sum_i r_i = N$,

$$F^{N,\alpha}(r) := \inf_{\substack{\Psi \in H^1_a(\Omega^N) \\ \int \alpha_i \rho_\Psi = r_i \ \forall i \in I}} \left\langle \Psi, H^N\left(0\right) \Psi \right\rangle, \quad F^{N,\alpha}_{\mathsf{mix}}(r) := \inf_{\substack{\Gamma \in \mathcal{S}^N_{\mathsf{mix}}(\Omega) \\ \int \alpha_i \rho_\Gamma = r_i \ \forall i \in I}} \mathrm{Tr} \; H^N(0) \Gamma$$

• Dual : restriction to potentials $V = \sum_{i \in I} v_i \alpha_i$, $v = (v_i)_i \in \ell^{\infty}(I, \mathbb{R})$

$$G_{r,\alpha}(v) := E^N\left(\sum_{i \in I} v_i \alpha_i\right) - \sum_{i \in I} v_i r_i,$$

Regularization: result

Theorem (Well-posedness of the dual problem)

Let I be finite. Then $G_{r,\alpha}$ is coercive in $\ell^1(I,\mathbb{R})$, and there exists a unique maximizer. If moreover Ω is bounded, there is an N-particle ground mixed state Γ_v of $H^N\left(\sum_{i\in I}v_i\alpha_i\right)$ such that $\int \alpha_i \rho_{\Gamma_v} = r_i$ and

$$\sup_{u\in\ell^1_+(I,\mathbb{R})}G_{r,\alpha}(u)=G_{r,\alpha}(v)=\operatorname{Tr} H^N(0)\Gamma_v=F_{\mathsf{mix}}^{N,\alpha}(r)$$

Regularization: result

Theorem (Well-posedness of the dual problem)

Let I be finite. Then $G_{r,\alpha}$ is coercive in $\ell^1(I,\mathbb{R})$, and there exists a unique maximizer. If moreover Ω is bounded, there is an N-particle ground mixed state Γ_v of $H^N\left(\sum_{i\in I}v_i\alpha_i\right)$ such that $\int \alpha_i \rho_{\Gamma_v} = r_i$ and

$$\sup_{u\in\ell_1^1(I,\mathbb{R})}G_{r,\alpha}(u)=G_{r,\alpha}(v)=\operatorname{Tr} H^N(0)\Gamma_v=F_{\mathsf{mix}}^{N,\alpha}(r)$$

• We can represent ρ by taking $(r_{\rho})_i := \int \rho \alpha_i$ and finer sequences of weights α_n

Regularization: result

Theorem (Well-posedness of the dual problem)

Let I be finite. Then $G_{r,\alpha}$ is coercive in $\ell^1(I,\mathbb{R})$, and there exists a unique maximizer. If moreover Ω is bounded, there is an N-particle ground mixed state Γ_v of $H^N\left(\sum_{i\in I}v_i\alpha_i\right)$ such that $\int \alpha_i \rho_{\Gamma_v} = r_i$ and

$$\sup_{u\in\ell_1^1(I,\mathbb{R})}G_{r,\alpha}(u)=G_{r,\alpha}(v)=\operatorname{Tr} H^N(0)\Gamma_v=F_{\mathsf{mix}}^{N,\alpha}(r)$$

- We can represent ρ by taking $(r_{\rho})_i := \int \rho \alpha_i$ and finer sequences of weights α_n
- For pure states, a similar theorem would hold for v-representability of densities, but with excited states, if we can prove a unique continuation like theorem

Table of contents

- 1 Hohenberg-Kohn theorems
 - Unique continuation
 - Extensions
- 2 The direct map $v \mapsto \rho(v)$
 - The set of binding potentials
 - Regularity and weak-strong continuity of $v \mapsto \Psi(v)$
 - Degenerate potentials
- 3 The Kohn-Sham problem
 - Regularization of the problem
 - Numerical inversion

• We consider a target density $\rho\geqslant 0$ with $\int \rho=N$ and the Hamiltonian without interaction

$$H_{w=0}^{N}(v) := \sum_{i=1}^{N} (-\Delta_i + v(x_i)).$$

• We consider a target density $\rho\geqslant 0$ with $\int \rho=N$ and the Hamiltonian without interaction

$$H_{w=0}^{N}(v) := \sum_{i=1}^{N} (-\Delta_i + v(x_i)).$$

• We search v such that $\sum_{n=0}^{N-1} |\varphi_n(-\Delta + v)|^2 = \rho$ (pure states)

• We consider a target density $\rho \geqslant 0$ with $\int \rho = N$ and the Hamiltonian without interaction

$$H_{w=0}^{N}(v) := \sum_{i=1}^{N} (-\Delta_i + v(x_i)).$$

- We search v such that $\sum_{n=0}^{N-1} |\varphi_n(-\Delta + v)|^2 = \rho$ (pure states)
- We know that we can approach the constraint $\rho_{\Gamma(v)} = \rho$ (mixed states) with v's

• We consider a target density $\rho\geqslant 0$ with $\int \rho=N$ and the Hamiltonian without interaction

$$H_{w=0}^{N}(v) := \sum_{i=1}^{N} (-\Delta_i + v(x_i)).$$

- We search v such that $\sum_{n=0}^{N-1} |\varphi_n(-\Delta + v)|^2 = \rho$ (pure states)
- We know that we can approach the constraint $\rho_{\Gamma(\nu)} = \rho$ (mixed states) with ν 's
- Is $\rho\left(\mathcal{V}_{\partial}^{N}\right) = \left\{\rho_{\Psi(v)} \mid v \in \mathcal{V}_{\partial}^{N}\right\}$ dense in $\left\{\rho \geqslant 0, \int \cdot = N\right\}$?

Maximize

$$G_{\rho}(v) := E^{N}(v) - \int_{\mathbb{R}^{d}} v \rho$$

$$(\mathrm{d}_{v}G_{\rho})u=\int_{\mathbb{R}^{d}}u(\rho(v)-\rho),$$

Maximize

$$G_{\rho}(v) := E^{N}(v) - \int_{\mathbb{R}^{d}} v \rho$$

Hellman-Feynman:

$$(\mathrm{d}_{v}G_{\rho})u=\int_{\mathbb{R}^{d}}u(\rho(v)-\rho),$$

• Consider a target $\rho \geqslant 0$, $\int \rho = N$

Maximize

$$G_{\rho}(v) := E^{N}(v) - \int_{\mathbb{R}^{d}} v \rho$$

$$(\mathrm{d}_{\mathbf{v}} \mathsf{G}_{\rho}) u = \int_{\mathbb{R}^d} u (\rho(\mathbf{v}) - \rho),$$

- Consider a target $\rho \geqslant 0$, $\int \rho = N$
- Start from $v_0 = \frac{\Delta\sqrt{\rho}}{\sqrt{\rho}}$

Maximize

$$G_{
ho}(v) := E^{N}(v) - \int_{\mathbb{R}^{d}} v
ho$$

$$(\mathrm{d}_{\mathbf{v}}\mathsf{G}_{\rho})\,u=\int_{\mathbb{R}^d}u\big(\rho(\mathbf{v})-\rho\big),$$

- Consider a target $\rho \geqslant 0$, $\int \rho = N$
- Start from $v_0 = \frac{\Delta\sqrt{\rho}}{\sqrt{\rho}}$
- Iterate $v_{n+1} = v_n + \lambda (\rho(v_n) \rho)$

Maximize

$$G_{\rho}(v) := E^{N}(v) - \int_{\mathbb{R}^{d}} v \rho$$

$$(\mathrm{d}_{\mathbf{v}}G_{\rho})\mathbf{u}=\int_{\mathbb{R}^{d}}\mathbf{u}(\rho(\mathbf{v})-\rho),$$

- Consider a target $\rho \geqslant 0$, $\int \rho = N$
- Start from $v_0 = \frac{\Delta\sqrt{\rho}}{\sqrt{\rho}}$
- Iterate $v_{n+1} = v_n + \lambda (\rho(v_n) \rho)$
- Convergence criterion :

$$\|\rho(\mathbf{v}_n) - \rho\|_{L^1} / N \leqslant 10^{-3}$$

Justification:

Justification:

• Take a v randomly, compute $\rho(v)$

Justification:

- Take a v randomly, compute $\rho(v)$
- Launch the algorithm on $\rho(v)$, it finds v back

Justification:

- Take a v randomly, compute $\rho(v)$
- Launch the algorithm on $\rho(v)$, it finds v back
- Verified on hundreds of random v

d = 1

Figure: d = 1, N = 5, ground state (first line) and second excited state (second line)

Figure: d = 1, N = 5, ground state (first line) and second excited state (second line)

Figure: Target densities (red) and their Kohn-Sham potential (blue), for $d=1,\ N=5$

Figure: Gaussian target density, N=2, the two ground state density configurations of potentials maximizing G_{ρ} , plot of $\|\rho(v_n) - \rho\|_{L^1}/N$ against n

Figure: Gaussian target density, N=2, the two ground state density configurations of potentials maximizing G_{ρ} , plot of $\|\rho(v_n) - \rho\|_{L^1}/N$ against n

• Lieb (1983) showed that there exists a large class of ρ 's such that $F_{\rm mix}^N(\rho) < F_{\rm pure}^N(\rho)$, radially symmetric ρ 's for instance. Works for $d \geqslant 2$

- Lieb (1983) showed that there exists a large class of ρ 's such that $F_{\rm mix}^N(\rho) < F_{\rm pure}^N(\rho)$, radially symmetric ρ 's for instance. Works for $d \geqslant 2$
- We launched the algorithm on several hundreds of target densities, and it rarely converges. The Kohn-Sham potential for pure states generically does not exists for $d \geqslant 2$

- Lieb (1983) showed that there exists a large class of ρ 's such that $F_{\rm mix}^N(\rho) < F_{\rm pure}^N(\rho)$, radially symmetric ρ 's for instance. Works for $d \geqslant 2$
- We launched the algorithm on several hundreds of target densities, and it rarely converges. The Kohn-Sham potential for pure states generically does not exists for $d \ge 2$
- We recall

Proposition (Non-degeneracy theorem)

For d=1 and N=1, for $v\in (L^1+L^\infty)(\mathbb{R})$, every eigenstate of $H^N(v)$ is non-degenerate.

For d = 1 and any N, degeneracy seems accidental

- Lieb (1983) showed that there exists a large class of ρ 's such that $F_{\rm mix}^N(\rho) < F_{\rm pure}^N(\rho)$, radially symmetric ρ 's for instance. Works for $d \geqslant 2$
- We launched the algorithm on several hundreds of target densities, and it rarely converges. The Kohn-Sham potential for pure states generically does not exists for $d \geqslant 2$
- We recall

Proposition (Non-degeneracy theorem)

For d=1 and N=1, for $v\in (L^1+L^\infty)(\mathbb{R})$, every eigenstate of $H^N(v)$ is non-degenerate.

For d = 1 and any N, degeneracy seems accidental

 Close relationship between the Kohn-Sham potential, Levy and Levy-Lieb functionals, and degeneracy

d=2, symmetry breaking

Take a familly

$$\rho_{\alpha}(x) := c_{\alpha} \left(e^{-\|x - x_0\|_2^2/(2\sigma^2)} + \alpha e^{-\|x + x_0\|_2^2/(2\sigma^2)} \right),$$

Figure: Plot of $\inf_{n\in\mathbb{N}} \|\rho(v_n) - \rho_\alpha\|_{L^1} / N$ against α , N = 2, $\sigma = 1$, $x_0 = (\sigma/5, 0)^T$

 Use something better than gradient ascent, for fast convergence

- Use something better than gradient ascent, for fast convergence
- \bullet Adapt the code to get the mixed Kohn-Sham potential $v_{\rm m}$

- Use something better than gradient ascent, for fast convergence
- \bullet Adapt the code to get the mixed Kohn-Sham potential $v_{\rm m}$
- If the Kohn-Sham potential v_{ks} exists, it is also the mixed Kohn-Sham v_{m}

- Use something better than gradient ascent, for fast convergence
- \bullet Adapt the code to get the mixed Kohn-Sham potential $v_{\rm m}$
- If the Kohn-Sham potential v_{ks} exists, it is also the mixed Kohn-Sham v_m
- If the ground eigenspace of $H^N(v_m)$ is non-degenerate, then $v_{\rm ks}=v_{\rm m}$

- Use something better than gradient ascent, for fast convergence
- \bullet Adapt the code to get the mixed Kohn-Sham potential $v_{\rm m}$
- If the Kohn-Sham potential v_{ks} exists, it is also the mixed Kohn-Sham v_m
- If the ground eigenspace of $H^N(v_m)$ is non-degenerate, then $v_{ks}=v_m$
- Otherwise, test if $\rho_{\Psi} = \rho$ for Ψ visiting $\operatorname{Ker} \left(H^N(v_{\rm m}) E^N(v_{\rm m})\right)$

- Use something better than gradient ascent, for fast convergence
- \bullet Adapt the code to get the mixed Kohn-Sham potential $v_{\rm m}$
- If the Kohn-Sham potential $v_{\rm ks}$ exists, it is also the mixed Kohn-Sham $v_{\rm m}$
- If the ground eigenspace of $H^N(v_m)$ is non-degenerate, then $v_{ks} = v_m$
- Otherwise, test if $\rho_{\Psi} = \rho$ for Ψ visiting Ker $(H^N(v_{\rm m}) E^N(v_{\rm m}))$
- ullet If no, then the Kohn-Sham potential of ρ does not exist