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@ Non relativistic quantum mechanics at equilibrium
(static)

@ Fermions and bosons, condensed matter, superconductivity,
electrons, Bose-Einstein condensates, quantum chemistry, cold
atoms, nuclear physics, dense plasmas

@ Density functional theory (DFT) is the most efficient method
to probe matter at microscopic scale (five to hundreds of
electrons)

@ Very few mathematical works on the foundations of DFT
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Framework: one particle

@ No spin, static, space R

o States are W € H! (RY,C), [|VV]* < +oo, [|W]> =1, |V}
accessible

e Hamiltonian : operator of [? (Rd,(C) (particle in E = —VVv)

H(v)=-A+v
@ Energy of W :
W, H) = [ [V [ v
Rd Rd

@ Ground (equilibrium) states : minimizers of (W, H(v)V)
e To have (W, H(v)¥) > —c (V, V), need
v € (LP + L®)(RY,R) with

p=1 ford=1
p>1 ford =2
p=d/2 ford=3.
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Framework: hydrogen atom

1
x|’

2
(v, H(v)\II>:/R3 |vw|2—/R3 |w|(;<|)| dx.

By Sobolev's inequality, (W, H(v)¥) > —c (W, V). Unique
minimizer V(x) = %e"’d
o n'h excited state ), is given by inf (W, H(v)¥)
JIvP=1
WJ—SPan(SDOva‘Pnfl)

e Example : the hydrogen atom, d = 3, v(x) = —
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Framework: N particles

States are W € [2 ((Rd)"’ ,@), with [ [W]? =
V(XX ) ==V X, X )
One-body density p € L}(R? R, ), experimentally measurable

p\U(X) = N/ |\|J|2 (X,XQ,. .. ,XN)dX2 .. -dXN
RA(N—1)

@ Hamiltonian : operator of L2( (Rd)N(C) (we LP+ L)
N

z D+ Y wlxi—x)+ ) v(x)
i=1

1<i<j<N
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Framework: N particles

o States are W € [2 ((Rd)"’ ,@), with [ (W7 =1
o V(.. X, Xj,...) ==V .., xj,...,%i,...)
o One-body density p € L}(R9, R, ), experimentally measurable
pul) = N[ G e
RA(N—1)

@ Hamiltonian : operator of L2( (Rd)N(C) (welLp /\—'/— L)

z AX,+ Z XI_XJ')‘{‘ZV(X,')
i=1

1<i<<N
@ The energy of \IJ is :

<‘U7 H"’(V)W> :/R VW2 + W(\U)+/Rd vpu
Z/ _Xj)|w|2 (X1, ..oy xy)dxy - - - dxpy

1<J
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@ Ground (equilibrium) states : minimizers of

N = in Ny
EN(v) = wag(gw) <w,H ( )w>
[rwp=1
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Framework: N particles

-t M Z
® Molecules : w = |-|77, v(x) =—>_2,; 7‘X_JRJ|
@ Ground (equilibrium) states : minimizers of
EN(v):= inf <w, H"’(v)w>
wel2(rdV)
JIvP=1

Curse of dimensionality
If w=0, then ¥ = /\N —o i Where ¢; are the first eigenstates

of —A+v, EN(v) = ZI:O (fRd Vil + Jrav ’(pi|2>' and
N—1| 2
pv =g |pil
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DFT in one slide

The ground state one-body density p has the central role

@ Hohenberg-Kohn theorem (1964) : | p contains everything |.
Main goal of DFT : express everything in terms of p

@ Kohn-Sham (1965) : replace (v, w) by vs such that
’pW:O(Vks) = p(v) ‘ where p,—o(Vks) is the ground state
density of

N
Z Ax, + Vks X/))

i=1

Kohn-Sham orbitals ¢;, Wys = /\,N:_Olgpi, E,{V:_Ol |gp,-\2 = p(v)
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p contains everything

o Thomas-Fermi theory for w = ||~ (1927)
1
EN(p)chF/ p5/3+/ p(x)p(y)dxdwr/ vp
R3 2 Jrs |x =yl R3

@ Hohenberg-Kohn theorem (1964)
o Universal Levy-Lieb functional (1984), for p € L*(RY) such
that \/p € H' and [p= N,

F(p):= inf vw2+ww>
R ( [ 179+ wew)

[Iv[=1
pw=p

@ Approximate F(p) : “graal” of DFT
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Mathematical DFT

o Lieb-Thirring (1976)

1+2 2
CLT/ Py ¢ </ VY
Rd RdN

@ Hoffmann-Ostenhof (1977)

[ vt < [ 1w

Rd RdAN

o Lieb-Oxford (1981)

1 / pw(x)pu(y)
R2d

2 x =yl

1+4
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Mathematical DFT

o Lieb-Thirring (1976)

1+2 2
CLT/ Py * </ VY|
Rd RdN

@ Hoffmann-Ostenhof (1977)

[ wvmi< [ vef

Rd RdAN

o Lieb-Oxford (1981)

1 / pw(x)pu(y)
R2d

1+4
il dxdy—q_o/ py ¢ < W(W
Ix =y R4 v (V)

2
e Uniform electrons gaz in Lewin-Lieb-Seiringer (2018, 2019),
jellium to Dirac order by Lieb-Narnhofer (1975), Graf-Solove;j
(1994), next order by Hainzl-Porta-Rexze (2020) and
Benedikter-Nam-Porta-Schlein-Seiringer (2020)
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Hohenberg-Kohn theorem

N

N
HVW) =30+ 3 wixi—x)+ Y v(x)
i=1

1<i<j<N i=1
p\U(X) ::N/ |\|J|2 (X,XQ,...,XN)dxl--~dXN
RA(N-1)

Theorem (Hohenberg-Kohn)

Let w, vy, vo € 7. If there are two ground states V1 and WV, of
HN(v1) and HN(v,), such that
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Hohenberg-Kohn theorem
N

N
HY(v) =) =D+ > wlxi—x)+ > v(x)
i=1

1<i<j<N i=1

pw(x) = N/ |\I»‘|2 (x,x2, ..., xn)dxq - - - dxpy
RAI(N-1)

Theorem (Hohenberg-Kohn)

Let w, vy, va € 7. If there are two ground states V1 and WV, of
HN(vy) and HN(v,), such that

Ei — E
(V1 = V2)(p\U1 = ,O\IJQ) =0, then vi = v + 1 N 2.
R4

@ Works for bosons and fermions, in any dimension d.

@ Lieb remarked this relies on a strong unique continuation
property (1983). He conjectured ? = L% (R9) + [°(R)

e We can take 7 = L%(Rd) + L°°(RY) by Jerison-Kenig (1985)
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0 (¥, (SN v(x)) W) = fu v
Q Ey < (W, HN(v)W2) = Ex + [ pw,(v1 — v2)
@ Exchanging 1 <+ 2 gives E; — B > [ pu, (V1 — v2)

Q@ Using [pa(vi — v2)(pw, — pw,) = 0, the <'s above are =,
hence (Wa, HY(v1)W,) = Ei, that is W5 is a ground state for
HN(Vl), SO HN(Vl)\Ug = El\UQ

@ Substracting it with HN(v)Vs = E;W5, we get

N
(El —E, + Z(Vz — V1)(X,')> Y, =0

i=1
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Proof of the Hohenberg-Kohn theorem

o

2]
o
o

<\U, (Z,N:1 v(x,-)> \Il> = fRd Vpw
Ey < (W, HY(vi)W3) = B> + [ga pu,(vi — v2)
Exchanging 1 <+ 2 gives £1 — E> > [pq pu, (V1 — v2)

Using [za(vi — v2)(pw, — pw,) = 0, the <'s above are =,
hence (Wa, HY(v1)W,) = Ei, that is W5 is a ground state for
HN(Vl), SO HN(Vl)\Ug = El\UQ

Substracting it with HY ()W, = EV5, we get

N

(El —E, + Z(Vz — V1)(X,')> Y, =0
i=1

By strong unique continuation, [{W,(X) = 0}| =0, thus

Er — B2+ 32N (v2 — v1)(x;) = 0 and integrating on

[0, L]d(N_l), we obtain vi = w» + (E1 — E2)/N
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Strong UCP

ody Schrodinger operators)

Assume that the potentials satisfy

v,we LP (RY) with p > max (2d/3,2).

loc

If W € H2_(RN) is a non zero solution to HN(v)W = EWV,
then |[{W(X) = 0}| = 0.

o L. GARRIGUE, Unique continuation for many-body Schrédinger operators and the Hohenberg-Kohn theorem,
Math. Phys. Anal. Geom., 21 (2018), p. 27.

o L. GARRIGUE, Unique continuation for many-body Schrédinger operators and the Hohenberg-Kohn theorem.
Il. The Pauli Hamiltonian, (2019), arXiv:1901.03207.
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Assume that the potentials satisfy

v,we LP (RY) with p > max (2d/3,2).

loc

If W € H2_(RN) is a non zero solution to HN(v)W = EWV,
then |[{W(X) = 0}| = 0.

e In 3D, we can take ? = LP>2(R3) 4 L=°(R3). Covers
Coulomb-like singularities
@ Works for excited states

o L. GARRIGUE, Unique continuation for many-body Schrédinger operators and the Hohenberg-Kohn theorem,
Math. Phys. Anal. Geom., 21 (2018), p. 27.

o L. GARRIGUE, Unique continuation for many-body Schrédinger operators and the Hohenberg-Kohn theorem.
Il. The Pauli Hamiltonian, (2019), arXiv:1901.03207.
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Magnetic case, the Pauli Hamiltonian

N

T
=
<
=
i

j=1 I<i<sN

Theorem (Strong UCP for the many-body Pauli operator)

> (o (=iV+ A +v0g)) + D2 wlx =)

Assume that the potentials satisfy div A = 0 and

Ac L] (RY) with g > 2d,

curl A, v, w e [P (RY) with p > max (2d/3,2).

loc

IfW € H2_(RN) is a non zero solution to HN(v, A)W = EW, then
{W(X) =0}/ =0.

16 /50



Hohenberg-Kohn theorems . . .
Unique continuation

Extensions

History of related UCP results

Weak Number of  Hypothesis

Date . Magnetic ?
or Strong particles on v (loc)

Carleman 39 W 1 (and N) L No
Hormander 63 W 1 [2d/3 No
Georgescu 80 W N [2d/3 No
Schechter-Simon 80 W N Ld No
Jerison-Kenig 85 S 1 L9/2 No
Kurata 97 S 1 Many Yes
Koch-Tataru 01 S 1 L9/2 Yes
Laestadius-Benedicks-Penz 18 S N Many Yes
Garrigue 19 S N Lp>2d/3 Yes
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Weak Number of  Hypothesis

Date . Magnetic ?
or Strong particles on v (loc)

Carleman 39 W 1 (and N) L No
Hormander 63 W 1 [2d/3 No
Georgescu 80 W N [2d/3 No
Schechter-Simon 80 W N Ld No
Jerison-Kenig 85 S 1 L9/2 No
Kurata 97 S 1 Many Yes
Koch-Tataru 01 S 1 L9/2 Yes
Laestadius-Benedicks-Penz 18 S N Many Yes
Garrigue 19 S N Lp>2d/3 Yes

Other works : Kinzebulatov-Shartser (2010), Lammert (2018)
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Extensions

Carleman-type inequality

De Figueiredo-Gossez (1992) : if [{W(X) =0}| > 0, then
2
/ % is finite for all 7. Take Xy = 0.

Theorem (Carleman-type inequality)
Define ¢(X) := (—In|X|)~Y2. We have

7_3/ e e(T+2)dys 2 ey ( 7+1) ow)
T42 T+1
Bi)2 |X| * 5’1/2 | X *
. 2
oY O AW
By X Bl X
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Fractional Carleman

o With Hardy's inequality |X|™2° < (—A)S, it transforms into

Corollary (Carleman fractionnaire)

Pour tout § >0, s € [0,1], s' € [0,3], 7 > 70, u € C°(B1\ {0}),

(—n)a-0)s (ewu) 2

L2

7_3—45

2

14’ ZH (1 8)s <eT¢8,-u) P

Kn

S 5572

2
eT‘ﬁAuH
L2
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Fractional Carleman

o With Hardy's inequality |X|™2° < (—A)S, it transforms into

Corollary (Carleman fractionnaire)

Pour tout § >0, s € [0,1], s' € [0,3], 7 > 70, u € C°(B1\ {0}),

(—n)a-0)s (ewu) 2

L2

7_3—45

2

14’ ZH (1 8)s <eT¢8,-u) P

Kn

S 5572

2
eT‘ﬁAuH
L2

3

o We use ]Vmany_body\2 < e(—A)f_‘S +c

19/50



Hohenberg-Kohn theorems . N
Unique continuation

Extensions

Table of contents

@ Hohenberg-Kohn theorems

@ Extensions

20/50



Hohenberg-Kohn theorems . N
Unique continuation

Extensions

Extensions

° Ingeractions :
N(N—
psu)(x,y) = % fRd(’V*2) ]\U]2 (x,¥,x3,...,xn)dx3 - - - dxp

(¥ (Srcisgen w0 =) ¥) = feaa wlx = 1) (x.)
(v, w) — p3 injective (robust)

L. GARRIGUE, Hohenberg-Kohn theorems for interactions, spin and temperature, J. Stat. Phys. (2019)
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Extensions

° Ingeractions :

psu)(xty) = N(,\é_l) fRd(N72) ’\U’2 (Xaya X3y 7XN)dX3 T dXN
2

(¥ (Srcisgen w0 =) ¥) = feaa wlx = 1) (x.)
(v, w) — p3 injective (robust)

e Zeeman magnetism : HV(v, B) := HV(v) +Z,’-V:1 oi- B(x),
<w, (Z,‘Vzl i B(x,-)) w> = [ B-my
(v, B) — (p, m), “almost” injective

E—-E
N

(pw,, my,) = (pw,, my,) = ||B1 — Ba|x = +vo— v,

where x(x) € {-1,-1+ %, -1+ 7, ...,1— 7,1}

L. GARRIGUE, Hohenberg-Kohn theorems for interactions, spin and temperature, J. Stat. Phys. (2019)
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Extensions
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Extensions

e Non-local potentials : HV(G) := HV(0 )+Z G;,
Y (x,y) =N [paw-1 V(x,x2, ... W(y,xa,...) )dx2 - dxp,
<\U, (Z,N:l G,-) \U> = Tr Gy, counterexamples at w =0
o At T >0, all HKs hold : (T, v, A w) — (S, p, jiot, p?)

injective, non local G — =, classical, (grand) canonical

L. GARRIGUE, Hohenberg-Kohn theorems for interactions, spin and temperature, J. Stat. Phys. (2019)
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The set of binding potentials
The direct map v — p(v) eg ak-strong continuity of v — W(v)
rate potentials

Definition of v — p(v)

N

Z D+ Y wlxi—x)+ > v(x)

1<i<j<N i=1

@ Starting space : binding potentials
(ZN(v) == minoess(HV(v)))

Vi = {ve (L5 + o)R: | EV(v) < T(v)}
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The set of binding potentials
The direct map v — p(v) eg ak-strong continuity of v — W(v)
rate potentials

Definition of v — p(v)

N

Z D+ Y wlxi—x)+ > v(x)

1<i<j<N i=1

@ Starting space : binding potentials
(ZN(v) == minoess(HV(v)))

Vi = {ve (L5 + o)R: | EV(v) < T(v)}
@ Non-degenerate binding potentials
VN = {v e VY | dim Ker (HN(V) - EN(V)) - 1}
o W(v) := ground state of HN(v),

YV WRIRY R NS = N}
v ,O\IJ(V):,O(V)7
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The set of binding potentials

o The sets VNV and VE’,V are open in L9/2 4 [ so they are
smooth closed embedded manifolds

Theorem (Path-connectedness of the space of binding potentials)

NN_, V8 is path-connected

o Conjecture : V5™ c V3. Would yield V) =nN_, V7

Corollary (Path-connectedness of the set v-representable densities)

The set p (ﬂ,’)’zlvg) is path-connected

o Is VN path-connected ? Adiabatic equivalence ?

26/50
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Regularity and compactness of v — p(v)

Theorem (Main properties of V)
o VW isC> from VN to H}

o Forve VN d,w: L9211 5 Hln{w(v)}*

(dyW) o = —(HN(v) = EY(v)) T (Z u(x) W(v),

’dvlli is compact‘ and not surjective

o Let A C RY be a bounded open set. Assume v € VN,

and vplgapn — viga\p. Then EN(v,) — EN(v),

v, € VN for n large enough, and’ V(v,) = V(v) ‘ in Hy

p and d,p are injective when p > max(2d/3,2)
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Corollaries: Hellman-Feynman

The energy v — EN(v) is Lipschitz continuous (Lieb 83), concave
and weakly upper semi-continuous on LP 4 [*°

Corollary (Hellmann-Feynman)

The energy EN is C>® on VN, with

(dvEN> u= /Rd up(v)
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Corollaries : ill-posedness of the Kohn-Sham potential

Corollary (The set of v-representable densities is very small)

Consider that the system lives in a bounded open set Q C RY.
Then ‘ v — p(v) is compact ‘ p-

! js discontinuous, and p(VV) is a

countable union of compact sets. Hence p(VN) has empty interior
in Whtn{[.-=N}.
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Corollaries : ill-posedness of the Kohn-Sham potential

Corollary (The set of v-representable densities is very small)

Consider that the system lives in a bounded open set Q C RY.

Then ‘ v — p(v) is compact ‘ p~ Y is discontinuous, and p(VV) is a

countable union of compact sets. Hence p(VN) has empty interior
in Whtn{[.-=N}.

For v € p=t (p(WN) N pw=0(VY_y)). the Kohn-Sham potential

Ys(V) 7= pyg © p(v)

is ill-posed !
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Inverse continuity

Proposition (Weak inverse continuity of W)

Let p > max(2d/3,2), v, v, € VN such that v, — EN(v,)/N is
bounded in LP + L> and W (v,,) — W(v) in H*(RN). Then
Vn — Vv a.e. up to a subsequence.

32/50



et of bind otentials
The direct map v — p(v) ty and -strong continuity of v — W(v)
Degenerate potentials

Table of contents

© The direct map v — p(v)

@ Degenerate potentials

33/50



The set of binding potentials
The direct map v — p(v) Regularity and weak-strong continuity of v — W(v)
Degenerate potentials

Degenerate potentials

Proposition (Degenerate Hellman-Feynman)

The energy v — EN(v) is infinitely half Gateaux differentiable on
the singular points V(Q’ \VN , with

+6,EN(u) = mino (P(v)uP(v)) = e (Hrlp(ir; £v) /p\uu
er V)— v
JIvP=1

Similarly, =6,EN(u) = maxy_. [ pyu. If
dim Ker (HV(v) — EN(v)) = 2 with W1, W, an orthonormal basis,

1
+5,EN(u) = / u (v, + puy)

2
\/</ o, - p"’z)>2 +4 (W, (5 u)W2) .

1
)
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Degenerate potentials

o Let dimKer (HY(v) — EN(v)) = 2, take
¥, € Ker (HN(v) — EN(v)) with ¢ L . The degeneracy is
broken in no direction at first order if and only if py, = p, and
fRd(Nfl) Podxp -+ -dxy =0
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Degenerate potentials

o Let dimKer (HY(v) — EN(v)) = 2, take
¥, € Ker (HN(v) — EN(v)) with ¢ L . The degeneracy is
broken in no direction at first order if and only if py, = p, and
Jraw—n Ypdxo - - - dxy = 0

@ Lletv e VQ’\VN be degenerate, and . Then

h— EN(h) is not differentiable | at v, in particular
+6,EN(u) < ~6,EN(u) for at least one direction u
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The v-representability problem

o Take a target density p > 0, fRd p = N. Does a v exists such

that , where W(v) is a ground state of HV(v) ?

o Lieb (1983), approximately, quantum mixed states, RY, T = 0
(but abstract)

o With G,(v) := EN(v) — [ vp, Lieb (1983) established that

sup  G,(v) = inf TrHN(0)T
VGLd/2+L°° resh

mix

pr=p

extremizers (v, ) respect EN(v) — [vp=Tr HN(O)T, pr = p
o Chayes-Chayes-Lieb (1984), exactly, classical theory, R,
T>0
@ Chayes-Chayes-Ruskai (1985), exactly, quantum mixed states,
lattices Z9, T =0
o Ideally we want exact, pure quantum states, RY, T =0
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Regularization : relaxation

o G,(v) = EN(v) — [vpis not coercive in LP ! Ex :
Vellntrrl v >0, Vy(x) :=n?V(nx),
|Vall?y = ndP=1) [ VP — t00 but EN(V,) =0, and
[ Vap = p(0) [ V is bounded
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Regularization of the problem
The Kohn-Sham problem Numerical inversion

Regularization : relaxation

o G,(v) = EN(v) — [vpis not coercive in LP ! Ex :
Vellntrrl v >0, Vy(x) :=n?V(nx),
|Vall?y = ndP=1) [ VP — t00 but EN(V,) =0, and
[ Vap = p(0) [ V is bounded

e Relax : py = p replaced by [ pya; = r;i (= [ pa;) for weigths
aj € L®(Q,Ry), i€l Y ai=1q. For r =(rj)i, ri >0,

>iri=N,
FNe(ry:= inf (W HNO) W), F¥*r):= inf TrHNO)
()i, ot (Y HYOW) FRE() = inf T HY()
fa,-pw:r,- viel

fa,-pr:r,- Vviel
@ Dual : restriction to potentials V =

iel Vili,
v =(v;); € £>°(/,R)
Gra(v) = EN (Z v,-oz,-) — Z viri,
icl icl
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The Kohn-Sham problem

Regularization : result

Numerical inversion

Theorem (Well-posedness of the dual problem)

Let | be finite. Then ‘ Gr,« is coercive

in 1(I,R), and there exists

a unique maximizer. If moreover ) is bounded, there is an
N-particle ground mixed state T, of HY (3., viaj) such that

foz,-prv =1 and

sup  Gra(u) = Gra(v) = Tr HY(O)F, = FRE(r)

uel(1,R)

mix
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Regularization of the problem

The Kohn-Sham problem

Regularization : result

Numerical inversion

Theorem (Well-posedness of the dual problem)

Let | be finite. Then ‘ Gr,« is coercive

in 1(I,R), and there exists

a unique maximizer. If moreover ) is bounded, there is an
N-particle ground mixed state T, of HY (3., viaj) such that

foz,-prv =1 and

sup  Gra(u) = Gra(v) = Tr HY(O)F, = FRE(r)

uel(1,R)

mix

o We can represent p by taking (r,); := [ pa; and finer

sequences of weights «,

@ For pure states, a similar theorem would hold for
v-representability of densities, but with excited states, if we
can prove a unique continuation like theorem
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i=1
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Regularization of the problem

Numerical inversion
The Kohn-Sham problem

Numerical inversion

e We consider a target density p > 0 with [ p = N and the
Hamiltonian without interaction

N
Hi_o(v) ==Y (= Ai+ v(x)).
i=1

@ We search v such that E o lon(—=A 4+ v)|> = p (pure
states)

e We know that we can approach the constraint pr(,) = p
(mixed states) with v's

o Is p(VY) ={pww)|veV)} densein {p>0,[-=N}?
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The Kohn-Sham problem

The gradient ascent algorithm

Maximize
6,(v) = E"(v) = [ v
Rd
Hellman-Feynman :

(@G~ [ ulpv)=0).

o Consider a target p >0, [p=N
A
e Start from vy = N

o lterate vpy1 = v + A (p(va) — p)
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Regularization of the problem

Numerical inversion
The Kohn-Sham problem

The gradient ascent algorithm

Maximize

6,(v) = E"(v) = [ v

Rd
Hellman-Feynman :

(@G~ [ ulpv)=0).

Consider a target p >0, [p=N
A
Start from vy = N

lterate vpr1 = v + A (p(va) — p)
Convergence criterion :

lo(va) = pllx /N < 1073
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Figure: Target densities (red) and their Kohn-Sham potential (blue), for
d=1 N=5
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o We recall

Proposition (Non-degeneracy theorem)

Ford =1 and N =1, for v € (L} + L>)(R), every eigenstate of
HN(v) is non-degenerate.

For d =1 and any N, degeneracy seems accidental

@ Close relationship between the Kohn-Sham potential, Levy

and Levy-Lieb functionals, and degeneracy
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d = 2, symmetry breaking

Take a familly
pa(X) = ca (e"'x—xolli/(w) i Qe—||X+xo||§/(2zr2)) 7
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Figure: Plot of infhen | p(Vn) — pal,: /N against o, N =2, 0 =1,
xo = (¢/5,0)7
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Kohn-Sham vy,

o If the ground eigenspace of H"V(vy,) is non-degenerate, then
Vks = Vm

@ Otherwise, test if py = p for WV visiting
Ker (HN(Vin) = EN(vin))

@ If no, then the Kohn-Sham potential of p does not exist
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