Propagation of Wave Packets and Herman-Kluk Propagators

Clotilde Fermanian Kammerer Université Paris Est - Créteil & CNRS

Workshop AlgDynQua

Cirm, Sept. 14-18, 2020

Joint work with

Caroline Lasser (Tech. Univ. München) & Didier Robert (Univ. de Nantes)

Thanks to: CNRS 80 Prime & TUM Von Neumann Visiting Professorship

Introduction

Schedule of the talk.

- **Quantum Dynamics**. Systems of Schrödinger time-evolution equations.
- Scalar case. How to trade solving high dimensional oscillating equations into solving ODEs ? Egorov theorem, thawed or frozen gaussians approximation, "non-hopping algorithm".
- Systems. Zoology of systems, revisiting the scalar methods, the need of "hopping" algorithms.

Quantum Dynamics

Schrödinger equations

Born-Oppenheimer Approximation

$$egin{aligned} & egin{aligned} & eta & eta \ arepsilon & arepsilon \ arepsilon & arepsilon \ are$$

V matrix-valued, self-adjoint, with subquadratic growth,

$$z = (x,\xi) \in \mathbb{R}^{2d}, \ (t,x) \in \mathbb{R} imes \mathbb{R}^{d}, \ \psi^{\varepsilon} \in L^{2}(\mathbb{R}^{d},\mathbb{C}^{N}).$$

Schrödinger equations

• Born-Oppenheimer Approximation

V matrix-valued, self-adjoint, with subquadratic growth,

$$z = (x,\xi) \in \mathbb{R}^{2d}, \ (t,x) \in \mathbb{R} imes \mathbb{R}^{d}, \ \psi^{\varepsilon} \in L^{2}(\mathbb{R}^{d},\mathbb{C}^{N}).$$

- \implies The aim: Describe
 - $\begin{aligned} & \bullet & \psi^{\varepsilon}(t) = e^{-\frac{i}{\varepsilon}t\widehat{H}}\psi_{0}^{\varepsilon} \\ & & \bullet & (\widehat{a}\psi^{\varepsilon}(t),\psi^{\varepsilon}(t))_{L^{2}(\mathbb{R}^{d},\mathbb{C}^{N})}, \ a \in \mathcal{C}_{0}^{\infty}(\mathbb{R}^{2d},\mathbb{C}^{N,N}) \ . \end{aligned}$

What is known about H ? and ε

• Energy surfaces - Pyrazine

cf. Köppel and Yarkony

• Who is ε ?

For molecular dynamics,
$$arepsilon=\sqrt{rac{m_e}{m_N}}$$

Algorithms from the 70s

Underlying ideas:

- Key point: solving ODEs instead of PDEs by developing ansatz based on classical quantities.
- Key tools: Propagation of wave packets + Gaussian frame.

Algorithms from the 70s

Underlying ideas:

- Key point: solving ODEs instead of PDEs by developing ansatz based on classical quantities.
- Key tools: Propagation of wave packets + Gaussian frame.
- A large range of methods:
 - Frozen gaussians & Thawed gaussians approximations, from chemistry Heller 1981, Herman-Kluk 1984, Kay 1994, Domcke & all 2019 to mathematics Rousse-Swart 2009, Robert 2010, Lasser-Sattleger 2017.
 - Surface hopping semi-groups, Tully Preston 1971, FK Lasser 2012, Kube Lasser Weber 2009, Lu 2018.
 - Variational methods, MCTDH and G-MCTDH, Worth, Lasorne, Burghardt & Römer 2013, Lubich 2015.

Scalar equations

 $H = h \operatorname{Id}$ for h real-valued.

Egorov theorem

• Egorov Theorem: for any observable a

$$(\widehat{a}\,\psi^{\varepsilon}(t),\psi^{\varepsilon}(t))_{L^{2}(\mathbb{R}^{d},\mathbb{C})}=\left(\widehat{a\circ\Phi_{h}^{t}}\,\psi^{\varepsilon}(t),\psi^{\varepsilon}(t)\right)_{L^{2}(\mathbb{R}^{d},\mathbb{C})}+O(\varepsilon^{2})$$

where $t \mapsto \Phi_h^t(z_0)$ is the classical trajectory

$$\begin{split} \dot{\Phi}_h^t(z_0) &= Jdh(\Phi_h^t(z_0)), \quad \Phi_h^0(z_0) = z_0. \\ h(x,\xi) &= \frac{|\xi|^2}{2} + V(x), \quad J = \begin{pmatrix} 0 & \mathrm{Id} \\ -\mathrm{Id} & 0 \end{pmatrix}. \end{split}$$

- Numerical realization
 - Sample the initial Wigner transform ⇒ (z_j, w_j)_{1≤j≤N}
 Propagate the weighted points:

$$(\Phi_h^t(z_j), w_j), \quad 1 \leq j \leq N.$$

Sum-up at finite time:

$$\left(\widehat{a} \, \psi^arepsilon(t), \psi^arepsilon(t))_{L^2(\mathbb{R}^d,\mathbb{C})} \sim \sum_{j=1}^N \mathsf{a}\left(\Phi^t_h(z_j)
ight) \mathsf{w}_j.$$

• Gaussian: Let Γ in the positive half Siegel space,

$$g_0^{\Gamma}(x) = c_{\Gamma} \operatorname{e}^{i \Gamma x \cdot x}, \ \|g_0^{\Gamma}\|_{L^2(\mathbb{R}^d)} = 1, \ ^t \Gamma = \Gamma, \ \operatorname{Im} \Gamma > 0.$$

• Gaussian wave packets: Let $z = (q, p) \in \mathbb{R}^{2d}$,

$$g_z^{\Gamma,\varepsilon}(x) = \varepsilon^{-rac{d}{4}} g_0^{\Gamma}\left(rac{x-q}{\sqrt{\varepsilon}}
ight) \mathrm{e}^{rac{i}{\varepsilon}p\cdot(x-q)}$$

• Bargmann transform: Decomposition of $\psi \in L^2(\mathbb{R}^d)$ on Gaussians

$$\psi(x) = (2\pi\varepsilon)^{-d} \int_{z \in \mathbb{R}^{2d}} \langle g_z^{\varepsilon}, \psi \rangle g_z^{\varepsilon}(x) dz, \quad \psi \in L^2(\mathbb{R}^d)$$

10/30

where $g_z^{i \operatorname{Id},\varepsilon} = g_z^{\varepsilon}$.

$$\psi(x) = (2\pi\varepsilon)^{-d} \int_{z \in \mathbb{R}^{2d}} \langle g_z^{\varepsilon}, \psi \rangle g_z^{\varepsilon}(x) dz, \quad \psi \in L^2(\mathbb{R}^d)$$

$$\psi_0^{\varepsilon}(x) = (2\pi\varepsilon)^{-d} \int_{z \in \mathbb{R}^{2d}} \langle g_z^{\varepsilon}, \psi_0^{\varepsilon} \rangle g_z^{\varepsilon}(x) dz, \quad \psi \in L^2(\mathbb{R}^d)$$

$$\mathrm{e}^{-\frac{i}{\varepsilon}t\widehat{H}^{\varepsilon}}\psi_{0}^{\varepsilon}(x)=(2\pi\varepsilon)^{-d}\int_{z\in\mathbb{R}^{2d}}\langle g_{z}^{\varepsilon},\psi_{0}^{\varepsilon}\rangle\mathrm{e}^{-\frac{i}{\varepsilon}t\widehat{H}^{\varepsilon}}g_{z}^{\varepsilon}(x)dz.$$

Wave packet propagation:

$$\mathrm{e}^{-\frac{i}{\varepsilon}t\widehat{H}^{\varepsilon}}g_{z}^{\varepsilon}(x) = \mathrm{e}^{\frac{i}{\varepsilon}S(t,z)}g_{\Phi_{H}^{t}(z)}^{\Gamma(t,z),\varepsilon}(x) + O(\sqrt{\varepsilon})$$

Thawed Gaussian propagator for scalar equations

Theorem (Kay 2006, Rousse & Swart 2009, Robert 2010)

$$\mathrm{e}^{-\frac{i}{\varepsilon}t\widehat{H}}\psi_{0}^{\varepsilon} = (2\pi\varepsilon)^{-d} \int_{\mathbb{R}^{2d}} \langle g_{z}^{\varepsilon}, \psi_{0}^{\varepsilon} \rangle \mathrm{e}^{\frac{i}{\varepsilon}S(t,z)} g_{\Phi_{h}^{t}(z)}^{\Gamma(t,z),\varepsilon} dz + O(\varepsilon) \text{ in } L^{2}(\mathbb{R}^{d}),$$

Classical quantities

- $\Phi_h^t(z) = (q(t), p(t))$ is the classical trajectory arising from z.
- S(t,z) is the classical action, $\dot{S} = p \cdot \dot{q} h(q,p)$, S(0) = 0.
- $\Gamma(t,z) = (C(t,z) + iD(t,z))(A(t,z) + iB(t,z))^{-1}$ where $F(t,z) = \begin{pmatrix} A(t,z) & B(t,z) \\ C(t,z) & D(t,z) \end{pmatrix}$ satisfies $\partial_t F = J \operatorname{Hess}_z h(t, \Phi_b^t(z))F(t), \quad F(0) = \operatorname{Id}_{\mathbb{R}^{2d}}.$

14 / 30

Frozen Gaussian propagator for scalar equations

Theorem (Kay 2006, Rousse & Swart 2009, Robert 2010)

$$\begin{split} \mathrm{e}^{-\frac{i}{\varepsilon}t\widehat{H}}\psi_{0}^{\varepsilon} &= (2\pi\varepsilon)^{-d}\int_{\mathbb{R}^{2d}}\langle g_{z}^{\varepsilon},\psi_{0}^{\varepsilon}\rangle u(t,z)\mathrm{e}^{\frac{i}{\varepsilon}S(t,z)}g_{\Phi_{h}^{t}(z)}^{\varepsilon}dz + O(\varepsilon) \text{ in } L^{2}(\mathbb{R}^{d}),\\ \text{with } u(t,z) &= 2^{-d/2} \det^{1/2}\left(A(t,z) + D(t,z) + i(C(t,z) - B(t,z))\right). \end{split}$$

Key points of the proof [Robert 2010]:

Wave packet propagation

$$\mathrm{e}^{-\frac{i}{\varepsilon}t\widehat{H}^{\varepsilon}}g_{z}^{\varepsilon}(x)=\mathrm{e}^{\frac{i}{\varepsilon}S(t,z)}g_{\Phi_{H}^{t}(z)}^{\Gamma(t,z),\varepsilon}(x)+O(\sqrt{\varepsilon})$$

3 Turn the width $\Gamma(t, z)$ of the Gaussian into the prefactor u(t, z) by an evolution argument drawing a path form $\Gamma_0 = i \text{Id}$ to $\Gamma_1 = \Gamma(t, 0, z)$.

Frozen Gaussian propagator for scalar equations Algorithmic realization [Lasser & Sattleger 2017]

Initial Sampling of the data by a Monte Carlo procedure

$$\psi_0^{\varepsilon}(x) \sim (2\pi\varepsilon)^{-d} \sum_{1 \leq j \leq N} r_0^{\varepsilon}(z_j) g_{z_j}^{\varepsilon}$$

with z_1, \dots, z_N i.i.d. according to the probability measure

$$\mu_0^arepsilon(dz) = \left(\int |\langle g_z, \psi_0^arepsilon
angle | dz
ight)^{-1} |\langle g_z, \psi_0^arepsilon
angle | dz.$$

Transport of the sample points + classical quantities

$$z_j(t) = \Phi_h^t(z_j), \quad S(t,z_j), \quad u(t,z_j), \quad 1 \leq j \leq N.$$

Quadrature formula

$$\psi^{\varepsilon}(t,x) \sim (2\pi\varepsilon)^{-d} \sum_{1 \leq j \leq N} r_0^{\varepsilon}(z_j) \mathrm{e}^{\frac{i}{\varepsilon}S(t,z_j)} u(t,z_j) g_{\Phi_{z_j}^{\varepsilon}}^{\varepsilon}.$$

16 / 30

What about systems ?

Which systems ? which data ?

• The data is chosen on an energy surface:

$$\psi_0^\varepsilon = \widehat{\vec{V}_0}\phi_0^\varepsilon$$

with $\phi_0^{\varepsilon} \in L^2(\mathbb{R}^d, \mathbb{C})$ and $H(z)\vec{V_0}(z) = h(z)\vec{V_0}(z)$.

Which systems ? which data ?

• The data is chosen on an energy surface:

$$\psi_0^{\varepsilon} = \widehat{\vec{V}_0}\phi_0^{\varepsilon}$$

with $\phi_0^{\varepsilon} \in L^2(\mathbb{R}^d, \mathbb{C})$ and $H(z)\vec{V_0}(z) = h(z)\vec{V_0}(z)$.

• How is *h* ?

() Gapped eigenvalue: there exists $\delta_0 > 0$ such that

 $d(h(z), \sigma(H(z)) \setminus {h(z)}) > \delta_0.$

2 Crossings: let $h =: h_1$ and h_2 , eigenvalues of H,

$$\Upsilon:=\{z\in\mathbb{R}^{2d},\ h_1(z)=h_2(z)\}
eq\emptyset.$$

Classification according to the dimension of Υ (Hagedorn 1994), its geometric properties (Colin de Verdière 2003, FK & Gérard 2002) \implies normal forms and transition formulas.

Time-dependent eigenvectors

Adiabatic decoupling: If $\psi_0^{\varepsilon} = \widehat{\vec{V}_0}\phi_0^{\varepsilon} + O(\varepsilon)$ with $H\vec{V}_0 = h\vec{V}_0$, then

$$\psi^{\varepsilon}(t) = \widehat{\vec{V}(t)} e^{-\frac{i}{\varepsilon}t\hat{h}} \phi_0^{\varepsilon} + O(\varepsilon)$$

where $H\vec{V} = h\vec{V}$ is given by parallel transport:

$$\partial_t \vec{V} + \xi \cdot \nabla_x \vec{V} - \nabla h \cdot \vec{V} = \Omega \vec{V}, \quad \vec{V}(0) = \vec{V}_0.$$

 $\Omega(x,\xi) = (\mathrm{Id} - \Pi(x))\xi \cdot \nabla \Pi(x).$

19/30

• Egorov theorem for matrix-valued symbols.

Thawed/Frozen Gaussian aproximation of the propagator.

Gapped systems - Thawed Gaussian propagator

• Propagation of the Gaussian WP:

$$\mathrm{e}^{-irac{t}{arepsilon}\widehat{H}}(ec{V_0}g_z^arepsilon) = \mathrm{e}^{rac{i}{arepsilon}\,\mathcal{S}(t,z)}g_{\Phi_t^h(z)}^{arepsilon,\Gamma(t)}ec{V}(t) + O(\sqrt{arepsilon})..$$

Proposition (FLR 2019)

$$\mathrm{e}^{-i\frac{t}{\varepsilon}\widehat{H}}\psi_0^\varepsilon = (2\pi\varepsilon)^{-d}\int_{\mathbb{R}^{2d}}\langle g_z^\varepsilon, v_0^\varepsilon\rangle \ u(t,z)\vec{V}(t,\Phi_h^t(z)) \ \mathrm{e}^{\frac{i}{\varepsilon}S(t,z)} \ g_{\Phi_h^t(z)}^\varepsilon \ dz + O(\varepsilon).$$

• A vector-valued prefactor:

$$\vec{U}(t,z) = u(t,z)\vec{V}(t,\Phi_h^t(z)).$$

What about systems with crossings ?

Key ideas:

- Far from the crossing set: adiabatic regime.
- Close to the crossing set: generate new trajectories when the trajectories reach a hopping hypersurface

Key ideas:

- Far from the crossing set: adiabatic regime.
- Close to the crossing set: generate new trajectories when the trajectories reach a hopping hypersurface

Good news:

• For "generic" conical crossings, the time-dependent eigenvector exists up to the crossing.

Key ideas:

- Far from the crossing set: adiabatic regime.
- Close to the crossing set: generate new trajectories when the trajectories reach a hopping hypersurface

Key ideas:

- Far from the crossing set: adiabatic regime.
- Close to the crossing set: generate new trajectories when the trajectories reach a hopping hypersurface

Two questions:

• Which hopping hypersurface ?

 \implies minimal gap condition (FK Lasser 2012 - expectation values).

• Which weight on the new trajectories ?

 \implies Transition coefficients arising from the analysis of the normal forms model problems (starting from Landau and Zener 1930's).

Systems with codimension 1 crossings

• $N \ge 2$, $H = h_1 \Pi_1 + h_2 \Pi_2$.

• The functions h_1 , h_2 , Π_1 and Π_2 are smooth

$$h_1 = v + f$$
, $h_2 = v - f$, $v = \frac{1}{2} \text{Tr} H$, f gap.

• Classical quantities associated with h_j , $j \in \{1,2\}$

 $\Phi_j^{t,t_0}(z), S_j(t,t_0,z), F_j(t,t_0,z), \Gamma_j(t,t_0,z), u_j(t,t_0,z), \vec{U}_j(t,t_0,z), \dots$

Systems with codimension 1 crossings

• Generic codimension 1 crossing:

$$\mu(z) := rac{1}{2} (\partial_t f + \{v, f\}(z))
eq 0, \ \forall z \in \Upsilon.$$

 \implies The trajectories are transverse to the crossing hypersurface

$$\Upsilon = \{f(q) = 0\}.$$

• If $z \in \mathbb{R}^d$, $t^{\flat}(z)$ is the crossing time

$$\Phi_1^{t^\flat(z),0}(z)=z^\flat(z)\in\Upsilon.$$

• With $\vec{V_1} = \Pi_1 \vec{V_1}$, we associate $\vec{V_1}(t, 0, z)$ and $\vec{V_2}(t, t^{\flat}, z)$ with $\vec{V_2}(t^{\flat}, t^{\flat}, z) = \vec{V_1}(t^{\flat}, 0, z)^{\perp}$.

• We associate with $z \in \mathbb{R}^{2d}$

$$S^{\flat}(z) = S_1(t^{\flat},0,z), \;\; lpha^{\flat}(z) = \| (\partial_t \Pi_1 + \{
u, \Pi_1 \}) ec{V_1}(t^{\flat},z^{\flat}) \|_{\mathbb{C}^N}.$$

Systems with codimension 1 crossings

Propagation of a Wave Packet

Propagation of Gaussian wave packets

Theorem (Hagedorn 94, Watson & Weinstein 18, CFK Lasser Robert 19)

Assume $\psi_0^{\varepsilon} = \widehat{ec{V}_1} g_{z_0}^{\varepsilon}$, then in $L^2(\mathbb{R}^d)$

$$\mathrm{e}^{-\frac{i}{\varepsilon}t\widehat{H}}\psi_0^{\varepsilon} = \widehat{\vec{V}}_1(t)v_1^{\varepsilon}(t) + \sqrt{\varepsilon}\mathbf{1}_{t>t^{\flat}}\,\widehat{\vec{V}}_2(t)v_2^{\varepsilon}(t) + O(\varepsilon^{2/3})$$

•
$$v_1^{\varepsilon}(t)$$
 solves $i\varepsilon\partial_t v_1^{\varepsilon} = \widehat{h}_1 v_1^{\varepsilon}, \ v_1^{\varepsilon}(0) = g_{z_0}^{\varepsilon}.$

• $v_2^{\varepsilon}(t)$ solves $i\varepsilon\partial_t v_2^{\varepsilon} = \widehat{h}_2 v_2^{\varepsilon}$, $v_2^{\varepsilon}(t^{\flat}) = \alpha^{\flat} e^{iS^{\flat}/\varepsilon} g_{z^{\flat}}^{\Gamma^{\flat},\varepsilon}$, where α^{\flat} . S^{\flat} . Γ^{\flat} are classical quantities associated with the crossing point z^{\flat} .

The result extends to non gaussian wave packets data:

$$\varepsilon^{-rac{d}{4}}a\left(rac{x-q}{\sqrt{arepsilon}}
ight)\mathrm{e}^{rac{i}{arepsilon}p\cdot(x-q)}, \ a\in\mathcal{S}(\mathbb{R}^d).$$

Frozen Gaussian app. for codim 1 crossings

Theorem (CFK. Lasser Robert, *still writing*...)

Assume $\psi_0^{arepsilon}=\widehat{ec{V}}_1v_0^{arepsilon}.$ then

$$\begin{split} \psi^{\varepsilon}(t,x) &= (2\pi\varepsilon)^{-d} \int_{\mathbb{R}^{2d}} e^{\frac{i}{\varepsilon} S_{1}(t,0,z)} \vec{U_{1}^{\varepsilon}}(t,0,z) \langle g_{z}^{\varepsilon}, v_{0}^{\varepsilon} \rangle g_{\Phi_{1}^{t,0}(z)}^{\varepsilon}(x) dz \\ &+ \sqrt{\varepsilon} (2\pi\varepsilon)^{-d} \int_{\mathbb{R}^{2d}} \mathbf{1}_{t^{\flat}(z) < t} \alpha^{\flat}(z) e^{\frac{i}{\varepsilon} S^{\flat}(z)} e^{\frac{i}{\varepsilon} S_{2}(t,t^{\flat},z^{\flat})} \vec{U_{2}^{\varepsilon}}(t,t^{\flat},z^{\flat}) \\ &\times \langle g_{z}^{\varepsilon}, v_{0}^{\varepsilon} \rangle g_{\Phi_{2}^{\varepsilon,t^{\flat}}(z^{\flat})}^{\varepsilon}(x) dz + o(\sqrt{\varepsilon}) \end{split}$$

with vector-valued Herman-Kluk prefactors

$$ec{U}_1^arepsilon(t,0,z) = ec{V}_1\left(t,0,\Phi_1^{t,0}(z)
ight) \, u_1(t,0,z),
onumber \ ec{U}_2^arepsilon(t,t^arphi,z^arphi) = ec{V}_2\left(t,t^arphi,\Phi_2^{t,t^arphi(z)}(z^arphi)
ight) \, u_2(t,t^arphi,z^arphi).$$

Frozen Gaussian solver for codimension 1 crossings

Assume $\psi_0^{\varepsilon} = \widehat{\vec{V}}_1 v_0^{\varepsilon}$.

1 Initial sampling of $v_0^{\varepsilon} : \Longrightarrow N$ weighted sample points

 $(z_1, r_1), \ldots, (z_N, r_N).$

2 Transport along Φ_1^t : $\Longrightarrow z_1^{(1)}(t), \ldots, z_N^{(1)}(t),$ the actions $S_1(t,0,z_j)$ and prefactors $\vec{U}_1(t,0,z_j)$.

 Branching process: If f(z_j(t)) changes of sign at time t^b_j. Generate z_j⁽²⁾(t) on the mode h₂ with starting point z^b_j := z_j⁽¹⁾(t^b_j). Set r^b_j := α(z^b_j)e^{i - S₁(t^b_j, 0, z_j)}r_j.

Conclusion:

$$\begin{split} \psi^{\varepsilon}(t,x) &\sim (2\pi\varepsilon)^{-d} \sum_{1 \leq j \leq N} r_{j} \mathrm{e}^{\frac{i}{\varepsilon} S_{1}(t,0,z_{j})} \vec{U}_{1}(t,0,z_{j}) g^{\varepsilon}_{z_{j}^{(1)}(t)} \\ &+ \sqrt{\varepsilon} \sum_{t_{j}^{\flat} < t} r_{j}^{\flat} \mathrm{e}^{\frac{i}{\varepsilon} S_{2}(t,t_{j}^{\flat},z_{j}^{\flat})} \vec{U}_{2}(t,t_{j}^{\flat},z_{j}^{(2)}(t)) g^{\varepsilon}_{z_{j}^{(2)}(t)} \end{split}$$

Conclusion

- Better estimates for expectation value than for wave function .
- For systems, parallel transport + hopping trajectories with deterministic branching process.
- Codimension 2 and 3 crossing (including Dirac points):
 - single switch surface hopping for observables (transitions at leading order)
 - e thawed & frozen gaussian approximations (work in progress with Lysianne Hari and Stephanie Gamble).