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Linear Schrödinger Equation

i∂tψ + ∆ψ = 0

Fourier transform :

ψ(t, x) =
1

(4πit)d/2

∫
Rd

e−
|x−y|2

4it ψ0(y)dy .

Proposition
∀t ∈ R,

‖ψ(t)‖L2 = ‖ψ0‖L2 ,

E (t) = ‖∇ψ(t)‖2L2 = E0,

‖ψ(t)‖L∞ ≤
1

(4πt)d/2
‖ψ0‖L1 .
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Semilinear Schrödinger Equation

i∂tψ + ∆ψ = λ|ψ|αψ

with α > 0, λ ∈ R∗ (huge influence of the sign of λ on the
behavior of the solution ψ).

Proposition

‖ψ(t)‖L2 = ‖ψ0‖L2 ,

E (t) = ‖∇ψ(t)‖2L2 +
λ

α + 2

∫
Rd

|ψ(t, x)|α+2 = E0.

Strichartz estimates : ∀t ∈ R,

‖ψ‖Lq(R,Lr (Rd )) ≤ C‖ψ0‖L2 ,

where (q, r) is an admissible pair, ie 2
q = d

(1
2 −

1
r

)
.
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Logarithmic Schrödinger Equation

i∂tψ + ∆ψ = λψ log(|ψ|2)

with λ ∈ R∗.

Proposition

‖ψ(t)‖L2 = ‖ψ0‖L2 ,

E (t) = ‖∇ψ(t)‖2L2 + λ

∫
Rd

|ψ(t, x)|2 log |ψ(t, x)|2dx = E0.

Remark
No Strichartz-like estimates currently known.
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Logarithmic Schrödinger Equation

Proposition
Stationnary Solutions
• λ < 0 : Existence of standing waves

∀ω ∈ R, u(x , t) = e iωte
ω+d

2 e−
1
2 |x |

2
.

• λ > 0 : No stationnary solutions, every solution vanishes to 0 :

‖ψ(t, .)‖L∞(Rd ) → 0 when t → 0.

Nonlinear behavior : Note that up to a scaling in time, every
solution ψ disperses as a Gaussian function.



Schrödinger Equations Quantum Hydrodynamics Systems

Logarithmic Schrödinger-Langevin Equation

Bohmian mechanics approach of quantum mechanics :

i∂tψ +
1
2

∆ψ = λψ log(|ψ|2) +
1
2i
µψ log

(
ψ

ψ∗

)
(1)

• well-posedness ?
• local/global existence ? long time behavior ?
• stationnary solutions ? stability ?
• physics : µ > 0. Influence of λ > 0 and λ < 0 ?
• numerics ?
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Splitting Method

i∂tψ +
1
2

∆ψ = λψ log(|ψ|2) +
1
2i
µψ log

(
ψ

ψ∗

)
We solve :
• ∂tψ = −1

2 i∆ψ by FFT,
• ∂tψ = −iλψ log(|ψ|2 + ε) by the explicit solution

ψ(t + ∆t, .) = ψ(t, .)e−iλ∆t log(|ψ(t,.)|2+ε),

• and ∂tψ = −1
2µψ log

(
ψ
ψ∗

)
by an explicit solution

ψ(t + ∆t, .) = a(t, .)e iθ(t,.)e−µ∆t
,

where we decompose ψ(t, .) = a(t, .)e iθ(t,.).
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λ < 0 case

Figure – Solution of equation (8) with initial datum ψ0 in the focusing
case (λ = −0.1, µ = 1).
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λ > 0 case

Figure – Solution of equation (8) with initial datum ψ0 in the defocusing
case (λ = 0.1, µ = 1).
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Madelung transform

i~∂tψ +
~2

2
∆ψ = Vψ

Madelung transform ψ =
√
ρe iS/~, and define J = ρ∇S , then :

∂tρ+ divJ = 0, (2)

∂tJ + div
(
J ⊗ J

ρ

)
+ ρ∇V =

~2

2
ρ∇
(

∆
√
ρ

√
ρ

)
. (3)

Remark
• Quantum Euler Equations without pressure.
• Pathological 3rd order quantum potential ρ∇

(
∆
√
ρ/
√
ρ
)
.
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Logarithmic Schrödinger-Langevin Equation with potential

In the case of the Schrödinger-langevin equation

i~∂tψ +
~2

2
∆ψ = λψ log(|ψ|2) +

~
2i
µψ log

(
ψ

ψ∗

)
+ Vψ,

we get the following system :

∂tρ+ divJ = 0, (4)

∂tJ + div
(
J ⊗ J

ρ

)
+ λ∇ρ+ µJ + ρ∇V =

~2

2
ρ∇
(

∆
√
ρ

√
ρ

)
. (5)
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Augmented formulation

Denoting I = ~∇ρ, previous system can be written :

∂tρ+ divJ = 0, (6)

∂tJ + div
(
J ⊗ J

ρ

)
+ λ∇ρ+ µJ + ρ∇V =

~
4

div
(
∇I − 1

ρ
I · I
)
,

(7)

∂t I + div
(
I ⊗ J

ρ

)
= −~

4
div
(

t∇J − 1
ρ

tJ · t I

)
. (8)

Remark
This system is over-determined as we have the fourth equation
I = ~∇ρ. Note also that it fails to be a classical hyperbolic system.
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Preserving structure

Our discretization had to preserve some structural properties of our
system, as
• mass conservation

‖ρ(t, .)‖L1 = ‖ρ0‖L1 ,

• positivity
ρ ≥ 0,

• over-determination
I = ~∇ρ.
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Aim

Benefits of such method (vs Spectral method in particular) :
• no hard structural hypothesis,
• should works equally for both linear and non-linear system.

What we could aim about our discretization (vs Splitting Method in
particular) :
• long-time accuracy under strict CFL,
• regularity-preserving (ρ0 ∈ Hk ⇒ ρ ∈ Hk).
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Thanks for your attention.
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