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@ Schrodinger Equations
@ Linear Schrédinger Equation
@ Semilinear Schrédinger Equation
@ Logarithmic Schrédinger Equation
@ Schrddinger-Langevin Equation
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Linear Schrédinger Equation

10w + Ay =0

Fourier transform :

Vt € R,

1)z = [1oll 2,
E(t) = IVY(t)lfz = Eo,

1
[()[[Le < WH%HLI-
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Semilinear Schrodinger Equation

00+ AY = N[y |

with a > 0, A € R* (huge influence of the sign of A on the
behavior of the solution ).

Proposition

()2 = 1Yol 2,
A
_ 2 a-+2 —
EW) = VOOl + 55 [ 10(e 01+ = &
Strichartz estimates : Vt € R,

1l Laqr,Lrmayy < Cllvoll Lz,

where (q, r) is an admissible pair, ie % =d(3-1).
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Logarithmic Schrodinger Equation

i0p) + D = M log([1h?)

with A € R*,

Proposition

I9(®)lz = ol
E(e) = V(o)1 + 3 [ 1o 0P og (e, )20k = o

No Strichartz-like estimates currently known.
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Logarithmic Schrodinger Equation

Stationnary Solutions

e )\ < 0 : Existence of standing waves

. w+d 1,2
Vw € R, u(x,t) = e“te 2" e 2%,

e )\ > 0 : No stationnary solutions, every solution vanishes to 0 :
l4(t, ) Loo(mey — 0 when t — 0.

Nonlinear behavior : Note that up to a scaling in time, every
solution 1) disperses as a Gaussian function.
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Logarithmic Schrodinger-Langevin Equation

Bohmian mechanics approach of quantum mechanics :

et + 50 = Abog((w) + goiog ()| ()

well-posedness ?

local /global existence ? long time behavior ?

e stationnary solutions ? stability ?

physics : > 0. Influence of A >0and A <07

e numerics ?
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Splitting Method

et + 380 = N log((uf?) + v g ()

We solve :
e Owp = —1iAy by FFT,
o 0: = —iMylog(|Y|? + €) by the explicit solution

Y(t+At,) =t e MArla(E) o),
e and Oy = —2Mw log (w*) by an explicit solution
1/J(t + At, ) — a(t, .)eie(t,.)e*umj

where we decompose 1(t,.) = a(t,.)e™(t),
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A < 0 case
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Figure — Solution of equation (8) with initial datum g in the focusing
case (A = —0.1, p = 1).
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A > 0 case
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Figure — Solution of equation (8) with initial datum g in the defocusing
case (A=0.1, p=1).
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Logarithmic Schrodinger Equations and Quantum Fluids

© Quantum Hydrodynamics Systems
@ Madelung transform
@ Logarithmic Schrédinger-Langevin Equation
@ Augmented formulation
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Madelung transform

h2
i) + 5 D) = Vi

Madelung transform v = ﬁeis/h, and define J = pVS, then :

Dep + div] = 0, (2)

. (I®J h? A/p
aJ+d1V<>+ VVzV(). 3
R P p 5P /p (3)

e Quantum Euler Equations without pressure.
e Pathological 3rd order quantum potential pV (Ay/p/\/p)-
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Logarithmic Schrodinger-Langevin Equation with potential

In the case of the Schrodinger-langevin equation

_ h? o h (0
ihow) + ?Aw = M) log(|v|) + Ew log <¢*> + V9,

we get the following system :

Bep + divJ = 0, (4)

h? A
O0rd + div <?> + AVp+pud +pVV = 7pV <\/ﬁ) . (5)
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Augmented formulation

Denoting | = hVp, previous system can be written :

Oep + divJ = 0, 6)

(6)
h
0, + div (J@;J> FAVp+ )+ pVV = f div <v1 L />
(7)
(

3t/—|—dlv<l®J> :—Z div(tVJ—ltJ- t/>.
p

P 8)

This system is over-determined as we have the fourth equation
I = hVp. Note also that it fails to be a classical hyperbolic system.
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Preserving structure

Our discretization had to preserve some structural properties of our
system, as

® mass conservation

lo(t, )l = llpollir,

e positivity

e over-determination
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Benefits of such method (vs Spectral method in particular) :
e no hard structural hypothesis,
e should works equally for both linear and non-linear system.

What we could aim about our discretization (vs Splitting Method in
particular) :

e long-time accuracy under strict CFL,

o regularity-preserving (po € H* = p € H¥).
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Logarithmic Schrodinger Equations and Quantum Fluids

Thanks for your attention.
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