I am currently an assistant professor at Université d'Angers in the Department of Mathematics LAREMA (UMR CNRS 6093).

Contact

E-mail : mikael"dot"escobar-bach"at"univ-angers.fr
Office: I114
Adress: Département de mathématiques, Faculté des Sciences Bâtiment I, 2 Boulevard Lavoisier 49045 Angers cedex 01
Phone : (+33)2 41 73 50 35

Submitted papers

  • Egea, M., Escobar-Bach M. (2024) Local differential privacy in survival analysis using private failure indicators.
  • Escobar-Bach, M., Goudet, O. (2023). Survival estimation for missing not at random censoring indicators based on copula models.

Published papers

  1. Beirlant, J., Escobar-Bach, M., Goegebeur, Y., Guillou, A. (2016). Bias-corrected estimation of stable tail dependence function. J. Mult. An., 143, 453–466.
  2. Bitseki Penda, S., Escobar-Bach, M., Guillin, A. (2017). Transportation and concentration inequalities for bifurcating Markov chains. Bernoulli, 23(4B), 3213–3242.
  3. Escobar-Bach, M., Goegebeur, Y., Guillou, A., You, A. (2017). Bias-corrected and robust estimation of the bivariate stable tail dependence function. TEST, 26(2), 284–307.
  4. Escobar-Bach, M., Goegebeur, Y., Guillou, A. (2018). Local robust estimation of the Pickands dependence function. Ann. Stat., 46(6A), 2806–2843.
  5. Escobar-Bach, M., Goegebeur, Y., Guillou, A. (2018). Local estimation of the conditional stable tail dependence function. Scand. J. Stat., 45, 590–617.
  6. Escobar-Bach, M., Van Keilegom, I. (2019). Non-parametric estimation of the cure rate under insufficient follow-up using extremes. J. R. Stat. Soc. B., 81, 861-880.
  7. Escobar-Bach, M., Goegebeur, Y., Guillou, A. (2020). Bias correction in conditional multivariate extremes. Electron. J. Stat., 14, 1773-1795.
  8. Escobar-Bach, M., Maller, R., Muzhi, Z., Van Keilegom, I. (2021). Estimation of the cure rate for distributions in the Gumbel maximum domain of attraction under insufficient follow-up. Biometrika, asaa106.
  9. Escobar-Bach, M., Van Keilegom, I. (2023). Nonparametric estimation of conditional cure models for heavy-tailed distributions and under insufficient follow-up. Comp. Stat. & Data An., 183-107728.
  10. Escobar-Bach, M., Helali S. (2024). Dependent censoring with simultaneous death times based on the Generalized Marshall-Olkin model. J. Mult. An., 204, 105347.
  11. Escobar-Bach, M., Van Keilegom, I., Xie, P. (2024) Testing for sufficient follow-up in censored survival data by using extremes. Biometrical Journal, 66: e202400033.

Papers in applied sciences

  1. Deltreil G, Tardivel P, Graczyk P, Escobar-Bach M, Descatha A. How to Use Biomechanical Job Exposure Matrices with Job History to Access Work Exposure for Musculoskeletal Disorders? Application of Mathematical Modeling in Severe Knee Pain in the Constances Cohort. Int J Environ Res Public Health.

Students

  • Guillaume Deltreil, Ph.D student from 2020 to 2023
  • Salima Helali, Post-doc from 2021 to 2022
  • Maxime Egea, Post-doc from 2022 to 2023
  • Malo Sahin, Ph.D student from 2023 to 2026
  • Kéva Jussien, Ph.D student from 2025 to 2028

Curriculum Vitae

  • 2018 - present : Assistant Professor, Université d'Angers, France.
  • 2017-2018 : Postdoc, K.U. Leuven, Belgium.
  • 2014-2017 : Ph.D in Statistics from Syddansk Universitet, Odense, Denmark.
    Title : ”Estimation of Dependence Structure for Multivariate Extremes”.
    Supervisors : Yuri GOEGEBEUR and Armelle GUILLOU.
  • 2013-2014 : Master ”Probabilité et Statistiques”, Université Paris-Sud, Orsay, France.
  • 2012-2013 : Master ”Probabilité et Modèles Aléatoires”, Université Pierre et Marie Curie, Paris, France.