References for Schreyer's mini-course
Marian Aprodu On the vanishing of higher syzygies of curves. math.AG/0110120
Bayer, Dave; Eisenbud, David Ribbons and their canonical embeddings. Trans. Am. Math. Soc. 347, No.3, 719-756 (1995).
v. Bothmer, Hans-Christian Geometric Syzygies of Mukai Varieties and General Canonical Curves with Genus at most 8. math.AG/0202133.
Ehbauer, Stefan Syzygies of points in projective space and applications. Orecchia, Ferruccio (ed.) et al., Zero-dimensional schemes. Proceedings of the international conference held in Ravello, Italy, June 8-13, 1992. Berlin: de Gruyter. 145-170 (1994).
Eisenbud, David; Lange, Herbert; Martens, Gerriet; Schreyer, Frank-Olaf The Clifford dimension of a projective curve. Compos. Math. 72, No.2, 173-204 (1989).
Eisenbud, David Green's conjecture: An orientation for algebraists. Free resolutions in commutative algebra and algebraic geometry, Proc. Conf., Sundance/UT (USA) 1990, Res. Notes Math. 2, 51-78 (1992).
Eisenbud, David; Green, Mark Clifford indices of ribbons. Trans. Am. Math. Soc. 347, No.3, 757-765 (1995).
Green, Mark L. Koszul cohomology and the geometry of projective varieties. Appendix: The nonvanishing of certain Koszul cohomology groups (by Mark Green and Robert Lazarsfeld). J. Differ. Geom. 19, 125-167; 168-171 (1984)
Green, Mark; Lazarsfeld, Robert A simple proof of Petri's theorem on canonical curves. Geometry today, Int. Conf., Rome 1984, Prog. Math. 60, 129-142 (1985).
Green, Mark; Lazarsfeld, Robert On the projective normality of complete linear series on an algebraic curve. Invent. Math. 83, 73-90 (1986).
Green, Mark; Lazarsfeld, Robert Special divisors on curves on a K3 surface. Invent. Math. 89, 357-370 (1987).
Hirschowitz, A.; Ramanan, S. New evidence for Green's conjecture on syzygies of canonical curves. Ann. Sci. Šc. Norm. SupÈr., IV. SÈr. 31, No.2, 145-152 (1998).
Hulek, K.; Paranjape, K.; Ramanan, S. On a conjecture on canonical curves. J. Algebr. Geom. 1, No.3, 335-359 (1992).
Lazarsfeld, Robert K. Linear series on algebraic varieties. Proc. Int. Congr. Math., Kyoto/Japan 1990, Vol. I, 715-723 (1991).
Lazarsfeld, Robert A sampling of vector bundle techniques in the study of linear series. Cornalba, M. (ed.) et al., Proceedings of the first college on Riemann surfaces held in Trieste, Italy, November 9-December 18, 1987. Teaneck, NJ: World Scientific Publishing Co. 500-559 (1989)
Lazarsfeld, Robert Brill-Noether-Petri without degenerations. J. Differ. Geom. 23, 299-307 (1986).
Mukai, Shigeru Curves and symmetric spaces. Proc. Japan Acad., Ser. A 68, No.1, 7-10 (1992).
Mukai, Shigeru Curves and Grassmannians. Yang, Jae-Hyun (ed.) et al., Algebraic geometry and related topics. Proceedings of the international symposium, held in Incheon, Republic of Korea, February 11-13, 1992. Cambridge, MA: International Press. Conf. Proc. Lect. Notes Algebr. Geom. 1, 19-40 (1993).
Paranjape, Kapil; Ramanan, S. On the canonical ring of a curve. Algebraic geometry and commutative algebra, in Honor of Masayoshi Nagata, Vol. II, 503-516 (1988).
Ramanan, S. Curves and their canonical imbeddings. Curves Semin. at Queen's, Vol. 5, Kingston/Ont. 1987, Queen's Pap. Pure Appl. Math. 80, ExposÈ A, 17 p. (1988).
Schreyer, Frank-Olaf Syzygies of canonical curves and special linear series. Math. Ann. 275, 105-137 (1986).
Schreyer, Frank-Olaf Green's conjecture for general p-gonal curves of large genus. Algebraic curves and projective geometry, Proc. Conf., Trento/Italy 1988, Lect. Notes Math. 1389, 254-260 (1989).
Schreyer, Frank-Olaf A standard basis approach to syzygies of canonical curves. J. Reine Angew. Math. 421, 83-123 (1991)
Teixidor i Bigas, Montserrat preprint
Voisin, Claire Courbes tétragonales et cohomologie de Koszul. J. Reine Angew. Math. 387, 111-121 (1988).
Voisin, Claire Déformation des syzygies et théorie de Brill-Noether. Proc. Lond. Math. Soc., III. Ser. 67, No.3, 493-515 (1993)
Voisin, Claire Green's Conjecture curves of even genus lying on a K3 surface. http://www.msri.org/publications/preprints, MSRI Preprint \#2002-020