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1.1 - Semi-algebraic sets

K is any field.

PN := {yN / y ∈ K}
(
P×N := PN \ {0}

)
.

A ⊆ Km is semi-algebraic if it is a finite union of sets defined by:

f1 = · · · = fr = 0 and g1 ∈ P×N1
and · · · and gs ∈ P×Ns

.

with fi , gi ∈ K [X1, . . . ,Xm].

Remarks

If K is algebraically closed, gi ∈ P×N ⇐⇒ gi 6= 0.

If K is real closed:
gi ∈ P×2n ⇐⇒ gi > 0.

gi ∈ P×2n+1 ⇐⇒ gi 6= 0,
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1.2 - p-adically closed fields

Examples

Every finite extension K0 of Qp.

The relative algebraic closure of Q inside K0 (not complete).

The completion w.r.t. the t-adic valuation the field
⋃

n≥1 K0((t1/n))
of Puiseux series over K0 (value group Z×Q).

K is p-adically closed if Q ⊆ K and there is a valuation v on K such that:

1 (K , v) is Henselian.

2 The residue field of (K , v) is finite, with characteristic p.
3 The value group Z = v(K×) is a Z-group:

i) Z has a smallest element > 0 ;
ii) Z/nZ ' Z/nZ for every n ≥ 1.
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1.3 - Quantifiers elimination

Theorem (Chevalley (19??), Tarski (1948), Macintyre (1976))

If K is algebraically closed, real closed or p-adically closed, then the
projection on Km of any semi-algebraic set A ⊆ Km+1 is also
semi-algebraic.

This means that for every such field K :

By stabilizing algebraic sets (defined by f = 0 with f pol.) projections
and boolean combinations we obtain exactly the semi-algebraic sets.

A ⊆ Km is semi-algebraic ⇐⇒ A is definable (in the language of
rings).
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1.4 - Which triangulation?

A semi-algebraic map ϕ : A ⊆ Km → Kn is a map whose graph is
semi-algebraic.

Theorem (Triangulation of real semi-algebraic sets)

Let K be a real closed field. Every semi-algebraic set A ⊆ Km is
semi-algebraically homeomorphic to the union of a simplicial complex.

Aim
Same result for a p-adically closed field.

Tools

Cell decomposition.

“Good Direction” Lemma.

Simplexes (faces, splitting. . . ).
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2.1 - The real case

A real polytope A is the strict convex hull of a finite set A0 ⊆ Rq (the
points of its frontier ∂A are excluded).

It is a simplex if A0 can be chosen a finite set of affinely independent
points.

Properties

Let A ⊆ Rq be a real polytope.

1 A is relatively open and precompact.

2 A can be defined by finitely many inequalities on linear maps.

3 Every face of A is a polytope.

4 The faces of A form a complex and a partition of A.
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The specialisation order on the subsets of a topological space is defined
by

B ≤ A ⇐⇒ B ⊆ A.

The facets of a polytope are its proper faces which are maximal (with
respect to the specialization order).

Proposition

Let A ⊆ Rq be a real polytope.

1 A has at least ≥ dim(A) + 1 facets.

2 Equality holds ⇐⇒ A is a simplex.
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2.2 - Topological complexes

Let X be a topological space, and A a finite family of subsets of X . A is a
complex of subsets of X if:

1 the elements of A are pairwise disjoint;

2 every A ∈ A is relatively open (i.e. A \ A is closed) and

A =
⋃{

B ∈ A / B ≤ A
}
.

NB: A1 ∩ A2 =
⋃
{B ∈ A / B ≤ A1 and B ≤ A2}.
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The proper faces of a real polytope A form a complex.
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Every polytope is the union of a simplicial complex.
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Any given simplicial complex
refining the complex of proper faces of A

can be extended by “Barycentric Division”
to a simplicial complex partitionning A.
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2.3 - The discrete case

For this talk we will take Z = Z, but any other Z-group will be all right.
We let Γ := Z ∪ {+∞}.

F{1}(Γ2)

F{2}(Γ2)

•
F∅(Γ2)

The point a = (x , y) ∈ Γ2 is represented by (1− 2−x , 1− 2−y ).

For every a ∈ Γq, Supp a :=
{
i ∈ {1, . . . , q} / ai < +∞

}
.

For every I ⊆ {1, . . . , q}, FI(Γq) := {a ∈ Γq / Supp a = I}.

πI:= the projection of Γq onto {a ∈ Γq / Supp a ⊆ I}.
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For every a, b ∈ Γq, δ(a,b) := max
1≤i≤q

|2−ai − 2−bi |.

For every A ⊆ Γq and I ⊆ {1, . . . , q}:

FI(A) :=
{
a ∈ A / Supp a = I

}
= A ∩ FI (Γq).

If non-empty, FI (A) is the face of A with support I .

•

A1 : 0 ≤ y ≤ x

F∅(A1)

F{2}(A1)

• F∅(A2)

A2 : 0 ≤ x ≤ y ≤ 2x

NB1: Every subset of Γq which is bounded below is precompact.
NB2: The set of faces of A ⊆ Z3 is not always a complex!
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A ⊆ Zq is semi-linear mod N if it is defined by

f1(x) ≥ 0 and · · · and fr (x) ≥ 0 and g1(x) ∈ NZ and gs(x) ∈ NZ

with fi , gj Z-linear maps.

A is semi-linear if N = 1 (congruences are superfluous).

Same definitions for A ⊆ FI (Γq), after identifying FI (Γq) ' ZCard I .

Exemple
The following conditions:

0 ≤ x ≤ y ≤ 2x and z = 2x − 2y .

define a semi-linear subset A of Z3.

However F{3}(A) = {+∞}× {+∞}× 2N is only semi-linear mod 2.

Luck Darnière Triangulation of p-adic semi-algebraic sets Thursday, November 2nd 14 / 34



A ⊆ Zq is semi-linear mod N if it is defined by

f1(x) ≥ 0 and · · · and fr (x) ≥ 0 and g1(x) ∈ NZ and gs(x) ∈ NZ

with fi , gj Z-linear maps.

A is semi-linear if N = 1 (congruences are superfluous).

Same definitions for A ⊆ FI (Γq), after identifying FI (Γq) ' ZCard I .

Exemple
The following conditions:

0 ≤ x ≤ y ≤ 2x and z = 2x − 2y .

define a semi-linear subset A of Z3.

However F{3}(A) = {+∞}× {+∞}× 2N is only semi-linear mod 2.

Luck Darnière Triangulation of p-adic semi-algebraic sets Thursday, November 2nd 14 / 34



A ⊆ Zq is semi-linear mod N if it is defined by

f1(x) ≥ 0 and · · · and fr (x) ≥ 0 and g1(x) ∈ NZ and gs(x) ∈ NZ

with fi , gj Z-linear maps.

A is semi-linear if N = 1 (congruences are superfluous).

Same definitions for A ⊆ FI (Γq), after identifying FI (Γq) ' ZCard I .

Exemple
The following conditions:

0 ≤ x ≤ y ≤ 2x and z = 2x − 2y .

define a semi-linear subset A of Z3.

However F{3}(A) = {+∞}× {+∞}× 2N is only semi-linear mod 2.

Luck Darnière Triangulation of p-adic semi-algebraic sets Thursday, November 2nd 14 / 34



A ⊆ Zq is semi-linear mod N if it is defined by

f1(x) ≥ 0 and · · · and fr (x) ≥ 0 and g1(x) ∈ NZ and gs(x) ∈ NZ

with fi , gj Z-linear maps.

A is semi-linear if N = 1 (congruences are superfluous).

Same definitions for A ⊆ FI (Γq), after identifying FI (Γq) ' ZCard I .

Exemple
The following conditions:

0 ≤ x ≤ y ≤ 2x and z = 2x − 2y .

define a semi-linear subset A of Z3.

However F{3}(A) = {+∞}× {+∞}× 2N is only semi-linear mod 2.

Luck Darnière Triangulation of p-adic semi-algebraic sets Thursday, November 2nd 14 / 34



A ⊆ Zq is semi-linear mod N if it is defined by

f1(x) ≥ 0 and · · · and fr (x) ≥ 0 and g1(x) ∈ NZ and gs(x) ∈ NZ

with fi , gj Z-linear maps.

A is semi-linear if N = 1 (congruences are superfluous).

Same definitions for A ⊆ FI (Γq), after identifying FI (Γq) ' ZCard I .

Exemple
The following conditions:

0 ≤ x ≤ y ≤ 2x and z = 2x − 2y .

define a semi-linear subset A of Z3.

However F{3}(A) = {+∞}× {+∞}× 2N is only semi-linear mod 2.

Luck Darnière Triangulation of p-adic semi-algebraic sets Thursday, November 2nd 14 / 34



Proposition

Let A ⊆ Zq be semi-linear set mod N. Let I , J ⊆ {1, . . . , q} be such that
FI (A) and FJ(A) are non-empty.

1 FI (A) = πI (A) is the projection of A over FI (Γq).

2 FJ(A) ≤ FI (A) ⇐⇒ J ⊆ I . When this happens FJ(A) = FJ(FI (A)).

3 FI∩J(A) 6= ∅.
It follows that the set of proper faces of A is a distributive lower
semi-lattice which partitions ∂A.

Problems

The faces of a semi-linear set (mod N) aren’t semi-linear (mod N ′) in
general. They are Presburger sets (= finite union of semi-linear sets
mod N ′).

If A ⊆ Zq is a Presburger set, the proposition is no longer true.
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Proposition (Dichotomy)

Let A ⊆ FI (Γq) be a semi-linear set mod N. Let B be a proper face of A,
and f : A ∪ B → Γ be a function which is continuous on A ∪ B and
Q-linear on A.

•

A
B

If f (b) = +∞ at some point b ∈ B then
f|B = +∞.

Otherwise, f|B is Q-linear f|A = f|B ◦ πB .

NB: Let A ⊆ Rq be a real polytope, B a proper face of A
and ε : A∪B → {−1, 0, 1} a continuous function on A∪B.

If ε(b) = 0 at some point b ∈ B then ε|B = 0.

Otherwise

A
B
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The distance δ : Γ→ R+ extends to Ω := Q ∪ {+∞}.

f : X ⊆ Γq → Ω is largely continuous if it extends to a continuous
function on X .

Example
On X = Z2 the function f (x , y) = x − y is continuous but not largely
continuous: it has no limit at (+∞,+∞).
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The basement of A ⊆ Γq+1 is its projection Â onto Γq.

A ⊆ Zq is discrete polytope if A = Z0 or q ≥ 1 and

(x , t) ∈ A ⇐⇒ x ∈ Â and µ(x) ≤ t ≤ ν(x),

where Â is a discrete polytope, µ, ν : Â→ Ω are Q-linear maps (or +∞),
largely continuous and non-negative. Such a couple (µ, ν) is a
presentation of A.

This generalises to A ⊆ FI (Γq+1), by identifying FI (Γq+1) ' ZCard I .

NB: Every discrete polytope is precompact and semi-linear.
In particular, for every face B = FJ(A) we have B = πJ(A).
We then denote by πB := πJ the projection of A onto B.
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Proposition

Let A ⊆ FI (Γq+1) be a polytope and B = FJ(A) be a face of A.

1 B̂ = F
Ĵ
(Â) with Ĵ := J \ {q + 1}.

2 Let (µ, ν) be a presentation of A. Then (x , t) ∈ FJ(Γq+1) belongs to
B iff:

x ∈ B̂ and µ̄(x) ≤ t ≤ ν̄(x).

Thus B is a polytope and (µ̄, ν̄)|B̂ is a presentation of B.
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Reminder
Real simplexes are, among the polytopes of any given dimension, those
whose number of facets is minimal (= dimA + 1).

A discrete polytope is a simplex if is has got at most one facet, which is a
simplex. Hence it is a simplex iff its faces form a chain.

•

A1 : 0 ≤ y ≤ x

F∅(A1)

F{2}(A1)

• F∅(A2)

A2 : 0 ≤ x ≤ y ≤ 2x
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2.4 - Division

A is a polytope.
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2.4 - Division

T is a simplicial complex refining the complex of proper faces of A.
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2.4 - Division

ε : ∂A→ K× controls the distance to the boundary:
∀T ∈ T , VT (ε) :=

{
a ∈ A / ‖a− πT (a)‖ ≤ ‖ε(πT (a))‖

}
is a “neighborhood of T inside A”.
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2.4 - Division

T ∈ T can be “inflated” inside VT (ε) to a simplex ST whose facet is T .
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2.4 - Division

The remaining of A splits in (clopen?) simplexes.
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Proposition (Monotopic division with constraint)

Let A ⊆ Γq be a polytope and T a simplicial complex refining the complex
of proper faces of A. Let ε : ∂A→ Z be a linear function.
Then there exists a simplicial complex S in Γq such that:

1 T ⊆ S and
⋃
S = A;

2 ∀T ∈ T , there is a unique ST ∈ S with facet T ;

3 ∀a ∈ ST , δ(a, πT (a)) ≤ 2−ε(πT (a)) ;

4 every other S ∈ S is clopen.
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2.5 - The p-adic case

From now we let K be a p-adically closed field.
For sake of simplicity we assume that v(K ) = Γ = Z ∪ {+∞}.

R:= the p-adic valuation ring.

π:= a generator of the maximal ideal of R.

For every x ∈ Kq, ‖x‖ := max
1≤i≤q

2−v(xi ).

B(x, r) := {y ∈ Kq / ‖x − y‖ ≤ ‖r‖}.
QN,M :=

⋃
k∈Γ π

Nk(1 + πMR) =
⋃

k∈Γ B(πNk , πNk+M).

• • • • • •

π−N 1 πN π2N π3N 0

Luck Darnière Triangulation of p-adic semi-algebraic sets Thursday, November 2nd 23 / 34



{πk}k∈Z is not a semi-algebraic set.

But Q×1,M is a semi-algebraic

neighborhood of {πk}k∈Z (and a sub-group of K× with finite index).

• • • • • •

π−1 1 π π2 π3 0

DMR := Q1,M ∩ R.

A p-adic polytope is the pre-image, by the p-adic valuation restricted to
DMRq, of a discrete polytope (in Γq). Same thing for p-adic simplexes.

NB: p-adic polytopes inherit from discrete polytopes all their nice
properties regarding faces, projections, présentations. . . and monotopic
division!
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1 Introduction

2 Simplicial complexes

3 Main result and applications
Triangulation and monomialisation
Lifting
Retractions
Splitting
Lattices of intersection



3.1 - Triangulation and monomialisation

A simplicial complex of index M is a finite family T = (Ti )1≤i≤n where
each Ti is a simplicial complex in DMRqi .

Theorem (Triangulation of sets)

For every semi-algebraic A ⊆ Km, there exists a simplicial complex T of
index M and a semi-algebraic homeomorphism ϕ :

⊎
T → A.

Moreover M can be taken arbitrarily large.

Here
⊎
T denotes the disjoint union of the

⋃
Ti ’s.

NB: This can be done simultaneously for a finite family (Ai )i∈I of
semi-algebraic sets. We call (T , ϕ) a triangulation of (Ai )i∈I .
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Ue := {x ∈ K / xe = 1}.

Ue,n := Ue · (1 + πnR) =
⋃
e∈Ue

B(e, πn)

NB: Ue,n is a sub-group of K× and a neighborhood of Ue .

f is N-monomial mod Ue,n on a domain S ⊆ Kq if there exists a
semi-algebraic u : S → Ue,n, ξ ∈ K and β1, . . . , βq ∈ Z such that

This is equivalent to say that f = χ · (1 + πnω) · g with χ : S → Ue ,
ω : S → R and g N-monomial (all semi-algebraic). With other words:∥∥∥∥ f

gχ
− 1

∥∥∥∥ ≤ ‖πn‖.
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Theorem (Triangulation/monomialisation of functions)

Let (θi : Ai ⊆ Km → K )i∈I be a finite family of semi-algebraic functions
and n,N be positive integers. Them there exists a semi-algebraic
triangulation (T , ϕ) of (Ai )i∈I of index M such that:

each θi ◦ ϕ|T is N-monomial mod Ue,n

(for every i ∈ I and T ∈ T , provided ϕ(T ) ⊆ Ai ).

Moreover e,M can be taken arbitrarily large.

We let Tm denote this statement.
(T , ϕ) is an N-monomialisation (mod Ue,n of index M) of the θi ’s.
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3.2 - Lifting

Theorem

Let η : A ⊆ Km → K be a semi-algebraic function such that ‖η‖ is
continuous. Then there exists a semi-algebraic continuous function
h : A ⊆ Km → K such that ‖h‖ = ‖η‖.

Sketchy proof
Tm reduces to the case where:

A = S with S a simplex in DMRq ;

η : S → K is N-monomial mod Ue,n on every face of S .

Note that v ◦ η then defines a Z-linear map on every face of v(S).
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•

S
T

U v(η(x , y)) = α0 + α1v(x) + α2v(y) on S ;

v(η(+∞, y)) = β0 + β2v(y) on T ;

v(η(+∞,+∞)) = +∞ on U.

Let η∗ : v(S)→ Z be defined by:

η∗(x ′, y ′) = α0 + α1x
′ + α2y

′ on v(S) ;

η∗(+∞, y ′) = β0 + β2y
′ on v(T ).

η∗(+∞,+∞) = +∞ on v(U).

We have η∗(v(x), v(y)) = v(η(x , y)), and η∗ is continuous on v(S̄).
Since η∗ is Z-linear on v(S) and η∗ 6= +∞ on v(T ), by the Dichotomy
Proposition η∗|v(S) = η∗|v(T ) ◦ π{2}. Hence for every (x , y) ∈ S ∪ T :

v(η(x , y)) = η∗(v(x), v(y)) = η∗(+∞, v(y)) = β0 + β2v(y).

It then suffices to let h(x , y) = πβ0yβ2 on S ∪ T , and h = 0 on U.
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•

S
T

U v(η(x , y)) = β0 + 0v(x) + β2v(y) on S ;

v(η(+∞, y)) = β0 + β2v(y) on T ;

v(η(+∞,+∞)) = +∞ on U.

Let η∗ : v(S)→ Z be defined by:

η∗(x ′, y ′) = α0 + α1x
′ + α2y

′ on v(S) ;

η∗(+∞, y ′) = β0 + β2y
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It then suffices to let h(x , y) = πβ0yβ2 on S ∪ T , and h = 0 on U.
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3.3 - Retractions

A retraction of a non-empty set A ⊆ Km onto B ⊆ A is a continuous
map ρ : A→ B such that ρ(x) = x for every x ∈ B.

NB: If such a retraction exists then B is closed in A.

Theorem

Let B ⊆ A ⊆ Km be non-empty semi-algebraic sets. There exists a
semi-algebraic retraction of A onto B ⇐⇒ B is closed in A.

Sketchy proof
Tm reduces to the case where A = S and B = T with S a simplex and T
a face of S . We can then take ρ = πT .
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3.4 - Splitting

Theorem

Let A ⊆ Km be a relatively open semi-algebraic without isolated points.
Let X1, . . . ,Xr closed semi-algebraic sets such that X1 ∪ · · · ∪ Xr = ∂A.
Then there exists a partition of A in semi-algebraic sets A1, . . . ,Ar such
that ∂Ak = Xk for 1 ≤ k ≤ r .

Sketchy proof
Tm reduces to the case where A is simplex of DMRq. For sake of simplicity
let us assume that r = 2 and X1 = X2 = B where B is the facet of A.

Let i ∈ SuppA \ SuppB. We can then take:

A1 =
{
a ∈ A / v(ai ) ∈ 2N

}
A2 = A \ A1.
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3.5 - Lattices of intersection

Let X be a semi-algebraic subset of Km. Let L(X ):= the lattice of
semi-algebraic subsets of X closed in X .

Theorem (Grzegorczyk 1951)

If K is algebraically closed or real closed, and if dimX ≥ 2 then L(X ) is
undecidable.

NB: Crucial in the proof is the existence of irreducible or connected
components.
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Theorem

Let K , F be p-adically closed fields and X ⊆ Km, Y ⊆ F n be
semi-algebraic sets.

1 L(X ) has a decidable theory, which eliminates the quantifier in an
expansion by definition of the language of lattices.

2 If X , Y are pure-dimensional and dimX = dimY then L(X ) ≡ L(Y ).

3 If K � F and X , Y are defined by the same formula then
L(X ) � L(Y ).

NB1: The theory of L(X ) is axiomatized most of all by the Splitting
Property, plus a few simple axioms concerning dimX and the atoms.

NB2: The theory of L(X ) depends on dimX , on the pure dimensionnal
compenents of X , etc but does not depend on p.

In particular L(Qm
p1

) ≡ L(Qm
p2

).
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