Triangulation of *p*-adic semi-algebraic sets

Luck Darnière

Thursday, November 2nd

Introduction

- Semi-algebraic sets
- p-adically closed fields
- Quantifiers elimination
- Which triangulation?

Simplicial complexes

3 Main result and applications

1.1 - Semi-algebraic sets

K is any field.

$$\mathbf{P}_{\mathbf{N}} := \{ y^{\mathbf{N}} / y \in \mathbf{K} \} \qquad \big(\mathbf{P}_{\mathbf{N}}^{\times} := \mathbf{P}_{\mathbf{N}} \setminus \{ \mathbf{0} \} \big).$$

 $A \subseteq K^m$ is semi-algebraic if it is a finite union of sets defined by:

$$f_1 = \cdots = f_r = 0$$
 and $g_1 \in P_{N_1}^{\times}$ and \cdots and $g_s \in P_{N_s}^{\times}$.

with $f_i, g_i \in K[X_1, \ldots, X_m]$.

1.1 - Semi-algebraic sets

K is any field.

$$\mathbf{P}_{\mathbf{N}} := \{ y^{\mathbf{N}} / y \in \mathbf{K} \} \qquad \big(\mathbf{P}_{\mathbf{N}}^{\times} := P_{\mathbf{N}} \setminus \{ \mathbf{0} \} \big).$$

 $A \subseteq K^m$ is semi-algebraic if it is a finite union of sets defined by:

$$f_1 = \cdots = f_r = 0$$
 and $g_1 \in P_{N_1}^{\times}$ and \cdots and $g_s \in P_{N_s}^{\times}$.

with $f_i, g_i \in K[X_1, \ldots, X_m]$.

Remarks

• If K is algebraically closed, $g_i \in P_N^{\times} \iff g_i \neq 0$.

1.1 - Semi-algebraic sets

K is any field.

$$\mathbf{P}_{\mathbf{N}} := \{ y^{\mathbf{N}} / y \in \mathbf{K} \} \qquad \big(\mathbf{P}_{\mathbf{N}}^{\times} := \mathbf{P}_{\mathbf{N}} \setminus \{ \mathbf{0} \} \big).$$

 $A \subseteq K^m$ is semi-algebraic if it is a finite union of sets defined by:

$$f_1=\cdots=f_r=0$$
 and $g_1\in P_{N_1}^{ imes}$ and \cdots and $g_s\in P_{N_s}^{ imes}$.

with $f_i, g_i \in K[X_1, \ldots, X_m]$.

Remarks

- If K is algebraically closed, $g_i \in P_N^{\times} \iff g_i \neq 0$.
- If K is real closed:

$$g_i \in P_{2n}^{\times} \iff g_i > 0.$$

 $g_i \in P_{2n+1}^{\times} \iff g_i \neq 0,$

1.2 - *p*-adically closed fields

Examples

• Every finite extension K_0 of \mathbf{Q}_p .

Examples

- Every finite extension K_0 of \mathbf{Q}_p .
- The relative algebraic closure of \mathbf{Q} inside K_0 (not complete).

Examples

- Every finite extension K_0 of \mathbf{Q}_p .
- The relative algebraic closure of \mathbf{Q} inside K_0 (not complete).
- The completion w.r.t. the *t*-adic valuation the field $\bigcup_{n\geq 1} K_0((t^{1/n}))$ of Puiseux series over K_0 (value group $\mathbf{Z} \times \mathbf{Q}$).

Examples

- Every finite extension K_0 of \mathbf{Q}_p .
- The relative algebraic closure of \mathbf{Q} inside K_0 (not complete).
- The completion w.r.t. the *t*-adic valuation the field $\bigcup_{n\geq 1} K_0((t^{1/n}))$ of Puiseux series over K_0 (value group $\mathbf{Z} \times \mathbf{Q}$).
- K is *p*-adically closed if $\mathbf{Q} \subseteq K$ and there is a valuation v on K such that:
 - **(**K, v**)** is Henselian.
 - **2** The residue field of (K, v) is finite, with characteristic p.
 - The value group $\mathcal{Z} = v(K^{\times})$ is a **Z-group**:
 - i) ${\mathcal Z}$ has a smallest element > 0 ;
 - ii) $\mathcal{Z}/n\mathcal{Z} \simeq \mathbf{Z}/n\mathbf{Z}$ for every $n \ge 1$.

Theorem (Chevalley (19??), Tarski (1948), Macintyre (1976)) If K is algebraically closed, real closed or p-adically closed, then the projection on K^m of any semi-algebraic set $A \subseteq K^{m+1}$ is also semi-algebraic. Theorem (Chevalley (19??), Tarski (1948), Macintyre (1976)) If K is algebraically closed, real closed or p-adically closed, then the projection on K^m of any semi-algebraic set $A \subseteq K^{m+1}$ is also semi-algebraic.

This means that for every such field K:

- By stabilizing algebraic sets (defined by f = 0 with f pol.) projections and boolean combinations we obtain *exactly* the semi-algebraic sets.
- A ⊆ K^m is semi-algebraic ⇔ A is definable (in the language of rings).

A semi-algebraic map $\varphi : A \subseteq K^m \to K^n$ is a map whose graph is semi-algebraic.

A semi-algebraic map $\varphi : A \subseteq K^m \to K^n$ is a map whose graph is semi-algebraic.

Theorem (Triangulation of real semi-algebraic sets)

Let K be a real closed field. Every semi-algebraic set $A \subseteq K^m$ is semi-algebraically homeomorphic to the union of a simplicial complex.

A semi-algebraic map $\varphi : A \subseteq K^m \to K^n$ is a map whose graph is semi-algebraic.

Theorem (Triangulation of real semi-algebraic sets)

Let K be a real closed field. Every semi-algebraic set $A \subseteq K^m$ is semi-algebraically homeomorphic to the union of a simplicial complex.

Aim

Same result for a *p*-adically closed field.

A semi-algebraic map $\varphi : A \subseteq K^m \to K^n$ is a map whose graph is semi-algebraic.

Theorem (Triangulation of real semi-algebraic sets)

Let K be a real closed field. Every semi-algebraic set $A \subseteq K^m$ is semi-algebraically homeomorphic to the union of a simplicial complex.

Aim

Same result for a *p*-adically closed field.

Tools

• Cell decomposition.

A semi-algebraic map $\varphi : A \subseteq K^m \to K^n$ is a map whose graph is semi-algebraic.

Theorem (Triangulation of real semi-algebraic sets)

Let K be a real closed field. Every semi-algebraic set $A \subseteq K^m$ is semi-algebraically homeomorphic to the union of a simplicial complex.

Aim

Same result for a *p*-adically closed field.

Tools

- Cell decomposition.
- "Good Direction" Lemma.

A semi-algebraic map $\varphi : A \subseteq K^m \to K^n$ is a map whose graph is semi-algebraic.

Theorem (Triangulation of real semi-algebraic sets)

Let K be a real closed field. Every semi-algebraic set $A \subseteq K^m$ is semi-algebraically homeomorphic to the union of a simplicial complex.

Aim

Same result for a *p*-adically closed field.

Tools

- Cell decomposition.
- "Good Direction" Lemma.
- Simplexes (faces, splitting...).

1 Introduction

2 Simplicial complexes

- The real case
- Topological complexes
- The discrete case
- Division
- The *p*-adic case

A **real polytope** A is the *strict* convex hull of a finite set $A_0 \subseteq \mathbf{R}^q$ (the points of its frontier ∂A are excluded).

It is a simplex if A_0 can be chosen a finite set of affinely independent points.

A real polytope A is the *strict* convex hull of a finite set $A_0 \subseteq \mathbf{R}^q$ (the points of its frontier ∂A are excluded).

It is a simplex if A_0 can be chosen a finite set of affinely independent points.

Properties

- Let $A \subseteq \mathbf{R}^q$ be a real polytope.
 - A is relatively open and precompact.
 - **2** A can be defined by finitely many inequalities on linear maps.
 - Severy face of A is a polytope.
 - The faces of A form a complex and a partition of \overline{A} .

The **specialisation order** on the subsets of a topological space is defined by

$$B \leq A \iff B \subseteq \overline{A}.$$

The **facets** of a polytope are its proper faces which are maximal (with respect to the specialization order).

The **specialisation order** on the subsets of a topological space is defined by

$$B \leq A \iff B \subseteq \overline{A}.$$

The **facets** of a polytope are its proper faces which are maximal (with respect to the specialization order).

Proposition

Let $A \subseteq \mathbf{R}^q$ be a real polytope.

- A has at least $\geq \dim(A) + 1$ facets.
- 2 Equality holds \iff A is a simplex.

Let X be a topological space, and A a *finite* family of subsets of X. A is a **complex** of subsets of X if:

1 the elements of \mathcal{A} are pairwise disjoint;

Let X be a topological space, and A a *finite* family of subsets of X. A is a **complex** of subsets of X if:

① the elements of \mathcal{A} are pairwise disjoint;

2 every $A \in \mathcal{A}$ is relatively open (*i.e.* $\overline{A} \setminus A$ is closed) and

$$\overline{A} = \bigcup \big\{ B \in \mathcal{A} / B \le A \big\}.$$

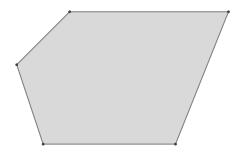
Let X be a topological space, and A a *finite* family of subsets of X. A is a **complex** of subsets of X if:

① the elements of \mathcal{A} are pairwise disjoint;

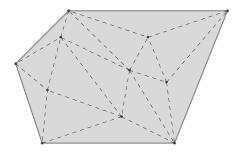
2 every $A \in \mathcal{A}$ is relatively open (*i.e.* $\overline{A} \setminus A$ is closed) and

$$\overline{A} = \bigcup \big\{ B \in \mathcal{A} / B \le A \big\}.$$

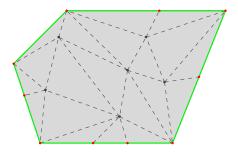
NB: $\overline{A}_1 \cap \overline{A}_2 = \bigcup \{ B \in \mathcal{A} \mid B \leq A_1 \text{ and } B \leq A_2 \}.$



The proper faces of a real polytope A form a complex.



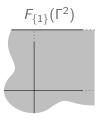
Every polytope is the union of a simplicial complex.



Any given simplicial complex refining the complex of proper faces of Acan be extended by "Barycentric Division" to a simplicial complex partitionning \overline{A} .

For this talk we will take $\mathcal{Z} = Z$, but any other Z-group will be all right. We let $\Gamma := Z \cup \{+\infty\}$.

For this talk we will take $\mathcal{Z} = Z$, but any other Z-group will be all right. We let $\Gamma := Z \cup \{+\infty\}$.

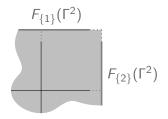


The point $a = (x, y) \in \Gamma^2$ is represented by $(1 - 2^{-x}, 1 - 2^{-y})$.

• For every $a \in \Gamma^q$, Supp $\mathbf{a} := \{i \in \{1, \dots, q\} \mid a_i < +\infty\}$.

• For every $I \subseteq \{1, \ldots, q\}$, $F_{I}(\Gamma^{q}) := \{a \in \Gamma^{q} / \text{ Supp } a = I\}$.

For this talk we will take $\mathcal{Z} = Z$, but any other Z-group will be all right. We let $\Gamma := Z \cup \{+\infty\}$.

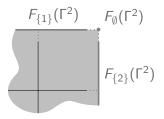


The point $a = (x, y) \in \Gamma^2$ is represented by $(1 - 2^{-x}, 1 - 2^{-y})$.

• For every $a \in \Gamma^q$, Supp $\mathbf{a} := \{i \in \{1, \dots, q\} \mid a_i < +\infty\}$.

• For every $I \subseteq \{1, \ldots, q\}$, $F_I(\Gamma^q) := \{a \in \Gamma^q / \text{ Supp } a = I\}$.

For this talk we will take $\mathcal{Z} = Z$, but any other Z-group will be all right. We let $\Gamma := Z \cup \{+\infty\}$.

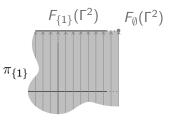


The point $a = (x, y) \in \Gamma^2$ is represented by $(1 - 2^{-x}, 1 - 2^{-y})$.

• For every $a \in \Gamma^q$, Supp $\mathbf{a} := \{i \in \{1, \dots, q\} \mid a_i < +\infty\}$.

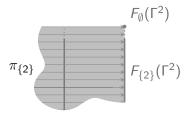
• For every $I \subseteq \{1, \ldots, q\}$, $F_{I}(\Gamma^{q}) := \{a \in \Gamma^{q} / \text{ Supp } a = I\}$.

For this talk we will take $\mathcal{Z} = Z$, but any other Z-group will be all right. We let $\Gamma := Z \cup \{+\infty\}$.



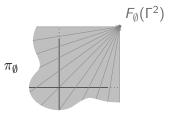
- For every $a \in \Gamma^q$, Supp $\mathbf{a} := \{i \in \{1, \dots, q\} \mid a_i < +\infty\}$.
- For every $I \subseteq \{1, \ldots, q\}$, $F_{I}(\Gamma^{q}) := \{a \in \Gamma^{q} / \text{ Supp } a = I\}$.
- π_I := the projection of Γ^q onto $\{a \in \Gamma^q / \text{ Supp } a \subseteq I\}$.

For this talk we will take $\mathcal{Z} = Z$, but any other Z-group will be all right. We let $\Gamma := Z \cup \{+\infty\}$.



- For every $a \in \Gamma^q$, Supp $\mathbf{a} := \{i \in \{1, \dots, q\} \mid a_i < +\infty\}$.
- For every $I \subseteq \{1, \ldots, q\}$, $F_{I}(\Gamma^{q}) := \{a \in \Gamma^{q} / \text{ Supp } a = I\}$.
- π_I := the projection of Γ^q onto $\{a \in \Gamma^q / \text{ Supp } a \subseteq I\}$.

For this talk we will take $\mathcal{Z} = Z$, but any other Z-group will be all right. We let $\Gamma := Z \cup \{+\infty\}$.



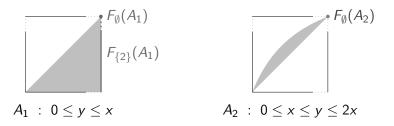
- For every $a \in \Gamma^q$, Supp $\mathbf{a} := \{i \in \{1, \dots, q\} \mid a_i < +\infty\}$.
- For every $I \subseteq \{1, \ldots, q\}$, $F_{I}(\Gamma^{q}) := \{a \in \Gamma^{q} / \text{ Supp } a = I\}$.
- π_I := the projection of Γ^q onto $\{a \in \Gamma^q / \text{ Supp } a \subseteq I\}$.

• For every
$$a, b \in \Gamma^q$$
, $\delta(\mathbf{a}, \mathbf{b}) := \max_{1 \le i \le q} |2^{-a_i} - 2^{-b_i}|.$

- For every $a, b \in \Gamma^q$, $\delta(\mathbf{a}, \mathbf{b}) := \max_{1 \le i \le q} |2^{-a_i} 2^{-b_i}|.$
- For every $A \subseteq \Gamma^q$ and $I \subseteq \{1, \ldots, q\}$:

$$\mathsf{F}_{\mathsf{I}}(\mathsf{A}) := \left\{ a \in \overline{\mathcal{A}} \, / \, \operatorname{Supp} a = I \right\} = \overline{\mathcal{A}} \cap F_{\mathsf{I}}(\Gamma^q).$$

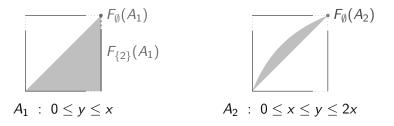
If non-empty, $F_I(A)$ is the face of A with support I.



- For every $a, b \in \Gamma^q$, $\delta(\mathbf{a}, \mathbf{b}) := \max_{1 \le i \le q} |2^{-a_i} 2^{-b_i}|.$
- For every $A \subseteq \Gamma^q$ and $I \subseteq \{1, \ldots, q\}$:

$$\mathsf{F}_{\mathsf{I}}(\mathsf{A}) := \left\{ a \in \overline{\mathcal{A}} \, / \, \operatorname{Supp} a = I \right\} = \overline{\mathcal{A}} \cap F_{\mathsf{I}}(\Gamma^q).$$

If non-empty, $F_I(A)$ is the face of A with support I.

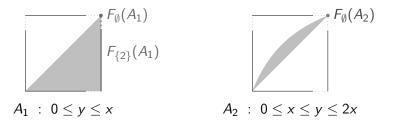


NB₁: Every subset of Γ^q which is bounded below is precompact.

- For every $a, b \in \Gamma^q$, $\delta(\mathbf{a}, \mathbf{b}) := \max_{1 \le i \le q} |2^{-a_i} 2^{-b_i}|.$
- For every $A \subseteq \Gamma^q$ and $I \subseteq \{1, \ldots, q\}$:

$$\mathsf{F}_{\mathsf{I}}(\mathsf{A}) := \left\{ a \in \overline{\mathcal{A}} \, / \, \operatorname{Supp} a = I \right\} = \overline{\mathcal{A}} \cap F_{I}(\Gamma^{q}).$$

If non-empty, $F_I(A)$ is the face of A with support I.



NB₁: Every subset of Γ^q which is bounded below is precompact. NB₂: The set of faces of $A \subseteq \mathbf{Z}^3$ is not always a complex!

 $f_1(x) \ge 0$ and \cdots and $f_r(x) \ge 0$ and $g_1(x) \in NZ$ and $g_s(x) \in NZ$

with f_i , g_j **Z**-linear maps.

 $f_1(x) \geq 0$ and \cdots and $f_r(x) \geq 0$ and $g_1(x) \in NZ$ and $g_s(x) \in NZ$

with f_i , g_j **Z**-linear maps.

A is semi-linear if N = 1 (congruences are superfluous).

 $f_1(x) \geq 0$ and \cdots and $f_r(x) \geq 0$ and $g_1(x) \in NZ$ and $g_s(x) \in NZ$

with f_i , g_j **Z**-linear maps.

A is semi-linear if N = 1 (congruences are superfluous).

Same definitions for $A \subseteq F_I(\Gamma^q)$, after identifying $F_I(\Gamma^q) \simeq \mathbf{Z}^{\operatorname{Card} I}$.

 $f_1(x) \geq 0$ and \cdots and $f_r(x) \geq 0$ and $g_1(x) \in N\mathsf{Z}$ and $g_s(x) \in N\mathsf{Z}$

with f_i , g_j **Z**-linear maps.

A is **semi-linear** if N = 1 (congruences are superfluous).

Same definitions for $A \subseteq F_I(\Gamma^q)$, after identifying $F_I(\Gamma^q) \simeq \mathbf{Z}^{\operatorname{Card} I}$.

Exemple

The following conditions:

$$0 \le x \le y \le 2x$$
 and $z = 2x - 2y$.

define a semi-linear subset A of Z^3 .

 $f_1(x) \geq 0$ and \cdots and $f_r(x) \geq 0$ and $g_1(x) \in N\mathsf{Z}$ and $g_s(x) \in N\mathsf{Z}$

with f_i , g_j **Z**-linear maps.

A is **semi-linear** if N = 1 (congruences are superfluous).

Same definitions for $A \subseteq F_I(\Gamma^q)$, after identifying $F_I(\Gamma^q) \simeq \mathbf{Z}^{\operatorname{Card} I}$.

Exemple

The following conditions:

$$0 \le x \le y \le 2x$$
 and $z = 2x - 2y$.

define a semi-linear subset A of Z^3 .

However $F_{\{3\}}(A) = \{+\infty\} \times \{+\infty\} \times 2N$ is only semi-linear *mod* 2.

Let $A \subseteq \mathbb{Z}^q$ be semi-linear set mod N. Let $I, J \subseteq \{1, ..., q\}$ be such that $F_I(A)$ and $F_J(A)$ are non-empty.

- $F_I(A) = \pi_I(A)$ is the projection of A over $F_I(\Gamma^q)$.
- **2** $F_J(A) \leq F_I(A) \iff J \subseteq I$. When this happens $F_J(A) = F_J(F_I(A))$.

It follows that the set of proper faces of A is a distributive lower semi-lattice which partitions ∂A .

Let $A \subseteq \mathbb{Z}^q$ be semi-linear set mod N. Let $I, J \subseteq \{1, ..., q\}$ be such that $F_I(A)$ and $F_J(A)$ are non-empty.

- $F_I(A) = \pi_I(A)$ is the projection of A over $F_I(\Gamma^q)$.
- **2** $F_J(A) \leq F_I(A) \iff J \subseteq I$. When this happens $F_J(A) = F_J(F_I(A))$.

It follows that the set of proper faces of A is a distributive lower semi-lattice which partitions ∂A .

Problems

 The faces of a semi-linear set (mod N) aren't semi-linear (mod N') in general.

Let $A \subseteq \mathbb{Z}^q$ be semi-linear set mod N. Let $I, J \subseteq \{1, ..., q\}$ be such that $F_I(A)$ and $F_J(A)$ are non-empty.

- $F_I(A) = \pi_I(A)$ is the projection of A over $F_I(\Gamma^q)$.
- **2** $F_J(A) \leq F_I(A) \iff J \subseteq I$. When this happens $F_J(A) = F_J(F_I(A))$.

It follows that the set of proper faces of A is a distributive lower semi-lattice which partitions ∂A .

Problems

 The faces of a semi-linear set (mod N) aren't semi-linear (mod N') in general. They are Presburger sets (= finite union of semi-linear sets mod N').

Let $A \subseteq \mathbb{Z}^q$ be semi-linear set mod N. Let $I, J \subseteq \{1, ..., q\}$ be such that $F_I(A)$ and $F_J(A)$ are non-empty.

- $F_I(A) = \pi_I(A)$ is the projection of A over $F_I(\Gamma^q)$.
- **2** $F_J(A) \leq F_I(A) \iff J \subseteq I$. When this happens $F_J(A) = F_J(F_I(A))$.

It follows that the set of proper faces of A is a distributive lower semi-lattice which partitions ∂A .

Problems

- The faces of a semi-linear set (mod N) aren't semi-linear (mod N') in general. They are Presburger sets (= finite union of semi-linear sets mod N').
- If $A \subseteq \mathbf{Z}^q$ is a Presburger set, the proposition is no longer true.

Let $A \subseteq F_I(\Gamma^q)$ be a semi-linear set mod N. Let B be a proper face of A, and $f : A \cup B \to \Gamma$ be a function which is continuous on $A \cup B$ and **Q**-linear on A.

Let $A \subseteq F_{I}(\Gamma^{q})$ be a semi-linear set mod N. Let B be a proper face of A, and $f : A \cup B \to \Gamma$ be a function which is continuous on $A \cup B$ and **Q**-linear on A.

• If
$$f(b) = +\infty$$
 at some point $b \in B$ then
 $f_{|B} = +\infty$.

Let $A \subseteq F_{I}(\Gamma^{q})$ be a semi-linear set mod N. Let B be a proper face of A, and $f : A \cup B \to \Gamma$ be a function which is continuous on $A \cup B$ and **Q**-linear on A.

- If $f(b) = +\infty$ at some point $b \in B$ then $f_{|B} = +\infty$.
- Otherwise, $f_{|B}$ is **Q**-linear $f_{|A} = f_{|B} \circ \pi_B$.

Let $A \subseteq F_{I}(\Gamma^{q})$ be a semi-linear set mod N. Let B be a proper face of A, and $f : A \cup B \to \Gamma$ be a function which is continuous on $A \cup B$ and **Q**-linear on A.

• If
$$f(b) = +\infty$$
 at some point $b \in B$ then $f_{|B} = +\infty$.

• Otherwise,
$$f_{|B}$$
 is **Q**-linear $f_{|A} = f_{|B} \circ \pi_B$.

NB: Let $A \subseteq \mathbf{R}^q$ be a real polytope, B a proper face of A and $\varepsilon : A \cup B \to \{-1, 0, 1\}$ a continuous function on $A \cup B$.

- If $\varepsilon(b) = 0$ at some point $b \in B$ then $\varepsilon_{|B} = 0$.
- Otherwise $\varepsilon(a) = \varepsilon(b)$ for every $a \in A$ and $b \in B$.

Let $A \subseteq F_{I}(\Gamma^{q})$ be a semi-linear set mod N. Let B be a proper face of A, and $f : A \cup B \to \Gamma$ be a function which is continuous on $A \cup B$ and **Q**-linear on A.

• If
$$f(b) = +\infty$$
 at some point $b \in B$ then $f_{|B} = +\infty$.

• Otherwise,
$$f_{|B}$$
 is **Q**-linear $f_{|A} = f_{|B} \circ \pi_B$.

NB: Let $A \subseteq \mathbf{R}^q$ be a real polytope, B a proper face of A and $\varepsilon : A \cup B \to \{-1, 0, 1\}$ a continuous function on $A \cup B$.

• If $\varepsilon(b) = 0$ at some point $b \in B$ then $\varepsilon_{|B} = 0$.

• Otherwise $\varepsilon_{|A} = \varepsilon_{|B} \circ \pi_B$.

The distance $\delta : \Gamma \to \mathbf{R}_+$ extends to $\mathbf{\Omega} := \mathbf{Q} \cup \{+\infty\}$.

 $f: X \subseteq \Gamma^q \to \Omega$ is largely continuous if it extends to a continuous function on \overline{X} .

The distance $\delta: \Gamma \to \mathbf{R}_+$ extends to $\mathbf{\Omega} := \mathbf{Q} \cup \{+\infty\}.$

 $f: X \subseteq \Gamma^q \to \Omega$ is largely continuous if it extends to a continuous function on \overline{X} .

Example

On $X = \mathbb{Z}^2$ the function f(x, y) = x - y is continuous but not largely continuous: it has no limit at $(+\infty, +\infty)$.

 $A \subseteq \mathbf{Z}^q$ is **discrete polytope** if $A = \mathbf{Z}^0$ or $q \ge 1$ and

$$(x,t)\in A \iff x\in \widehat{A} \text{ and } \mu(x)\leq t\leq
u(x),$$

where \widehat{A} is a discrete polytope, $\mu, \nu : \widehat{A} \to \Omega$ are **Q**-linear maps (or $+\infty$), *largely continuous* and *non-negative*. Such a couple (μ, ν) is a **presentation** of A.

 $A \subseteq \mathbf{Z}^q$ is discrete polytope if $A = \mathbf{Z}^0$ or $q \ge 1$ and

$$(x,t)\in A \iff x\in \widehat{A}$$
 and $\mu(x)\leq t\leq
u(x),$

where \widehat{A} is a discrete polytope, $\mu, \nu : \widehat{A} \to \Omega$ are **Q**-linear maps (or $+\infty$), *largely continuous* and *non-negative*. Such a couple (μ, ν) is a **presentation** of A.

This generalises to $A \subseteq F_{I}(\Gamma^{q+1})$, by identifying $F_{I}(\Gamma^{q+1}) \simeq \mathbf{Z}^{\operatorname{Card} I}$.

 $A \subseteq \mathbf{Z}^q$ is discrete polytope if $A = \mathbf{Z}^0$ or $q \ge 1$ and

$$(x,t)\in A \iff x\in \widehat{A}$$
 and $\mu(x)\leq t\leq
u(x),$

where \widehat{A} is a discrete polytope, $\mu, \nu : \widehat{A} \to \Omega$ are **Q**-linear maps (or $+\infty$), *largely continuous* and *non-negative*. Such a couple (μ, ν) is a **presentation** of A.

This generalises to $A \subseteq F_I(\Gamma^{q+1})$, by identifying $F_I(\Gamma^{q+1}) \simeq \mathbf{Z}^{\operatorname{Card} I}$.

NB: Every discrete polytope is precompact and semi-linear.

 $A \subseteq \mathbf{Z}^q$ is **discrete polytope** if $A = \mathbf{Z}^0$ or $q \ge 1$ and

$$(x,t)\in A \iff x\in \widehat{A}$$
 and $\mu(x)\leq t\leq
u(x),$

where \widehat{A} is a discrete polytope, $\mu, \nu : \widehat{A} \to \Omega$ are **Q**-linear maps (or $+\infty$), *largely continuous* and *non-negative*. Such a couple (μ, ν) is a **presentation** of A.

This generalises to $A \subseteq F_I(\Gamma^{q+1})$, by identifying $F_I(\Gamma^{q+1}) \simeq \mathbf{Z}^{\operatorname{Card} I}$.

NB: Every discrete polytope is precompact and semi-linear. In particular, for every face $B = F_J(A)$ we have $B = \pi_J(A)$. We then denote by $\pi_B := \pi_J$ the projection of A onto B.

Let $A \subseteq F_I(\Gamma^{q+1})$ be a polytope and $B = F_J(A)$ be a face of A. **3** $\widehat{B} = F_{\widehat{J}}(\widehat{A})$ with $\widehat{J} := J \setminus \{q+1\}$.

Let $A \subseteq F_I(\Gamma^{q+1})$ be a polytope and $B = F_J(A)$ be a face of A.

- $\widehat{B} = F_{\widehat{J}}(\widehat{A}) \text{ with } \widehat{J} := J \setminus \{q+1\}.$
- 2 Let (μ, ν) be a presentation of A. Then $(x, t) \in F_J(\Gamma^{q+1})$ belongs to B iff:

$$x\in \widehat{B}$$
 and $\overline{\mu}(x)\leq t\leq \overline{
u}(x).$

Let $A \subseteq F_{I}(\Gamma^{q+1})$ be a polytope and $B = F_{J}(A)$ be a face of A.

- $\widehat{B} = F_{\widehat{J}}(\widehat{A}) \text{ with } \widehat{J} := J \setminus \{q+1\}.$
- 2 Let (μ, ν) be a presentation of A. Then (x, t) ∈ F_J(Γ^{q+1}) belongs to B iff:

$$x\in \widehat{B}$$
 and $\overline{\mu}(x)\leq t\leq \overline{
u}(x).$

Thus B is a polytope and $(\bar{\mu}, \bar{\nu})_{|\hat{B}}$ is a presentation of B.

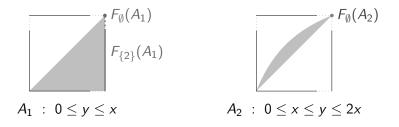
Reminder

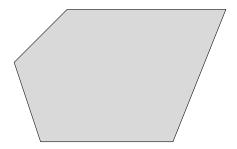
Real simplexes are, among the polytopes of any given dimension, those whose number of facets is minimal $(= \dim A + 1)$.

Reminder

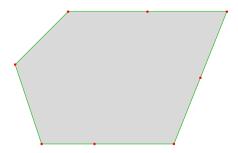
Real simplexes are, among the polytopes of any given dimension, those whose number of facets is minimal $(= \dim A + 1)$.

A discrete polytope is a **simplex** if is has got *at most one* facet, which is a simplex. Hence it is a simplex iff its faces form a *chain*.

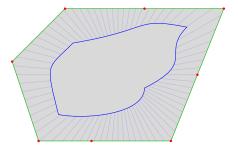




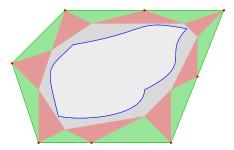
A is a polytope.



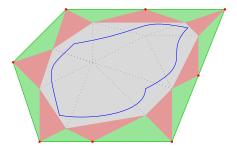
 \mathcal{T} is a simplicial complex refining the complex of proper faces of A.



$$\begin{split} \varepsilon: \partial A \to K^\times \text{ controls the distance to the boundary:} \\ \forall T \in \mathcal{T}, \ V_T(\varepsilon) := \left\{ a \in A / \| a - \pi_T(a) \| \le \| \varepsilon(\pi_T(a)) \| \right\} \\ \text{ is a "neighborhood of T inside A"}. \end{split}$$



 $T \in \mathcal{T}$ can be "inflated" *inside* $V_T(\varepsilon)$ to a simplex S_T whose facet is T.



The remaining of A splits in (clopen?) simplexes.

Proposition (Monotopic division with constraint)

Let $A \subseteq \Gamma^q$ be a polytope and \mathcal{T} a simplicial complex refining the complex of proper faces of A. Let $\varepsilon : \partial A \to \mathbf{Z}$ be a linear function. Then there exists a simplicial complex S in Γ^q such that:

$$\ \, \bullet \ \, \mathcal{T} \subseteq \mathcal{S} \text{ and } \bigcup \mathcal{S} = \overline{A};$$

2 $\forall T \in T$, there is a unique $S_T \in S$ with facet T ;

$${f 3} \hspace{0.1 cm} orall a \in {f S}_{{m T}}$$
 , $\delta({m a}, \hspace{0.1 cm} \pi_{{m T}}({m a})) \leq 2^{-arepsilon(\pi_{{m T}}({m a}))}$;

• every other $S \in S$ is clopen.

2.5 - The p-adic case

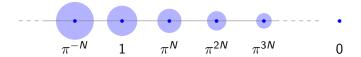
From now we let K be a p-adically closed field. For sake of simplicity we assume that $v(K) = \Gamma = \mathbf{Z} \cup \{+\infty\}$.

- R:= the *p*-adic valuation ring.
- π := a generator of the maximal ideal of R.

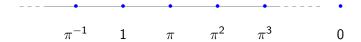
• For every
$$x \in K^q$$
, $\|\mathbf{x}\| := \max_{1 \le i \le q} 2^{-v(x_i)}$.

•
$$B(x,r) := \{y \in K^q / ||x - y|| \le ||r||\}.$$

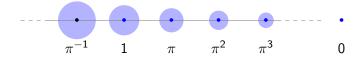
•
$$\mathbf{Q}_{\mathbf{N},\mathbf{M}} := \bigcup_{k \in \Gamma} \pi^{Nk} (1 + \pi^M R) = \bigcup_{k \in \Gamma} B(\pi^{Nk}, \pi^{Nk+M}).$$



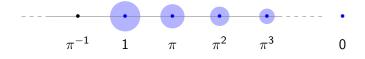
 $\{\pi^k\}_{k\in\mathbf{Z}}$ is not a semi-algebraic set.



 $\{\pi^k\}_{k\in\mathbb{Z}}$ is not a semi-algebraic set. But $Q_{1,M}^{\times}$ is a semi-algebraic neighborhood of $\{\pi^k\}_{k\in\mathbb{Z}}$ (and a sub-group of K^{\times} with finite index).

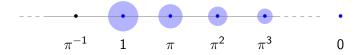


 $\{\pi^k\}_{k\in\mathbb{Z}}$ is not a semi-algebraic set. But $Q_{1,M}^{\times}$ is a semi-algebraic neighborhood of $\{\pi^k\}_{k\in\mathbb{Z}}$ (and a sub-group of K^{\times} with finite index).



 $\mathsf{D}^{\mathsf{M}}\mathsf{R} := Q_{1,\mathsf{M}} \cap \mathsf{R}.$

 $\{\pi^k\}_{k\in \mathbb{Z}}$ is not a semi-algebraic set. But $Q_{1,M}^{\times}$ is a semi-algebraic neighborhood of $\{\pi^k\}_{k\in \mathbb{Z}}$ (and a sub-group of K^{\times} with finite index).



 $\mathsf{D}^{\mathsf{M}}\mathsf{R} := Q_{1,M} \cap R.$

A *p*-adic polytope is the pre-image, by the *p*-adic valuation restricted to $D^M R^q$, of a discrete polytope (in Γ^q). Same thing for *p*-adic simplexes.

NB: *p*-adic polytopes inherit from discrete polytopes all their nice properties regarding faces, projections, présentations... and monotopic division!

1 Introduction

2 Simplicial complexes

3

Main result and applications

- Triangulation and monomialisation
- Lifting
- Retractions
- Splitting
- Lattices of intersection

A simplicial complex of index *M* is a finite family $\mathcal{T} = (\mathcal{T}_i)_{1 \le i \le n}$ where each \mathcal{T}_i is a simplicial complex in $D^M R^{q_i}$.

A simplicial complex of index M is a finite family $\mathcal{T} = (\mathcal{T}_i)_{1 \le i \le n}$ where each \mathcal{T}_i is a simplicial complex in $D^M R^{q_i}$.

Theorem (Triangulation of sets)

For every semi-algebraic $A \subseteq K^m$, there exists a simplicial complex \mathcal{T} of index M and a semi-algebraic homeomorphism $\varphi : \biguplus \mathcal{T} \to A$. Moreover M can be taken arbitrarily large.

Here $\biguplus \mathcal{T}$ denotes the disjoint union of the $\bigcup \mathcal{T}_i$'s.

NB: This can be done simultaneously for a finite family $(A_i)_{i \in I}$ of semi-algebraic sets. We call (\mathcal{T}, φ) a **triangulation** of $(A_i)_{i \in I}$.

•
$$U_e := \{x \in K \mid x^e = 1\}.$$

•
$$U_e := \{x \in K / x^e = 1\}.$$

• $U_{e,n} := U_e \cdot (1 + \pi^n R) = \bigcup_{e \in U_e} B(e, \pi^n)$

NB: $U_{e,n}$ is a sub-group of K^{\times} and a neighborhood of U_e .

NB: $U_{e,n}$ is a sub-group of K^{\times} and a neighborhood of U_e .

f is N-monomial mod $U_{e,n}$ on a domain $S \subseteq K^q$ if there exists a semi-algebraic $u: S \to U_{e,n}$, $\xi \in K$ and $\beta_1, \ldots, \beta_q \in \mathbf{Z}$ such that

$$\forall x \in S, \quad f(x) = u(x) \cdot \xi \cdot \prod_{i=1}^{q} x_i^{N\beta_i}$$

NB: $U_{e,n}$ is a sub-group of K^{\times} and a neighborhood of U_e .

f is *N*-monomial mod $U_{e,n}$ on a domain $S \subseteq K^q$ if there exists a semi-algebraic $u: S \to U_{e,n}$, $\xi \in K$ and $\beta_1, \ldots, \beta_q \in \mathbb{Z}$ such that

$$\forall x \in S, \quad f(x) = u(x) \cdot \underbrace{\xi \cdot \prod_{i=1}^{q} x_i^{N\beta_i}}_{g(x)}$$

This is equivalent to say that $f = \chi \cdot (1 + \pi^n \omega) \cdot g$ with $\chi : S \to U_e$, $\omega : S \to R$ and g *N*-monomial (all semi-algebraic). With other words:

$$\left\|\frac{f}{g\chi}-1\right\|\leq \|\pi^n\|.$$

Theorem (Triangulation/monomialisation of functions)

Let $(\theta_i : A_i \subseteq K^m \to K)_{i \in I}$ be a finite family of semi-algebraic functions and n, N be positive integers. Them there exists a semi-algebraic triangulation (\mathcal{T}, φ) of $(A_i)_{i \in I}$ of index M such that:

each $\theta_i \circ \varphi_{|T}$ is N-monomial mod $U_{e,n}$ (for every $i \in I$ and $T \in \mathcal{T}$, provided $\varphi(T) \subseteq A_i$).

Moreover e, M can be taken arbitrarily large.

Theorem (Triangulation/monomialisation of functions)

Let $(\theta_i : A_i \subseteq K^m \to K)_{i \in I}$ be a finite family of semi-algebraic functions and n, N be positive integers. Them there exists a semi-algebraic triangulation (\mathcal{T}, φ) of $(A_i)_{i \in I}$ of index M such that:

each $\theta_i \circ \varphi_{|T}$ is N-monomial mod $U_{e,n}$ (for every $i \in I$ and $T \in \mathcal{T}$, provided $\varphi(T) \subseteq A_i$).

Moreover e, M can be taken arbitrarily large.

We let T_m denote this statement.

 (\mathcal{T}, φ) is an *N*-monomialisation (mod $U_{e,n}$ of index *M*) of the θ_i 's.

Let $\eta : A \subseteq K^m \to K$ be a semi-algebraic function such that $\|\eta\|$ is continuous. Then there exists a semi-algebraic continuous function $h : A \subseteq K^m \to K$ such that $\|h\| = \|\eta\|$.

Sketchy proof

 \mathbf{T}_m reduces to the case where:

•
$$A = \overline{S}$$
 with S a simplex in $D^M R^q$;

• $\eta: \overline{S} \to K$ is *N*-monomial mod $U_{e,n}$ on every face of *S*.

Note that $v \circ \eta$ then defines a **Z**-linear map on every face of v(S).

•
$$v(\eta(x,y)) = \alpha_0 + \alpha_1 v(x) + \alpha_2 v(y)$$
 on S ;

•
$$v(\eta(+\infty,y)) = \beta_0 + \beta_2 v(y)$$
 on T ;

•
$$v(\eta(+\infty,+\infty)) = +\infty$$
 on U .

Let $\eta^* : v(\overline{S}) \to \mathbf{Z}$ be defined by:

•
$$\eta^*(x',y') = lpha_0 + lpha_1 x' + lpha_2 y'$$
 on $v(S)$;

•
$$\eta^*(+\infty, y') = \beta_0 + \beta_2 y'$$
 on $v(T)$.

•
$$\eta^*(+\infty, +\infty) = +\infty$$
 on $\nu(U)$.

We have $\eta^*(v(x), v(y)) = v(\eta(x, y))$, and η^* is continuous on $v(\overline{S})$.

Let $\eta^* : v(\overline{S}) \to \mathbf{Z}$ be defined by:

•
$$\eta^*(x',y') = \alpha_0 + \alpha_1 x' + \alpha_2 y'$$
 on $v(S)$;

•
$$\eta^*(+\infty, y') = \beta_0 + \beta_2 y'$$
 on $v(T)$.

•
$$\eta^*(+\infty, +\infty) = +\infty$$
 on $\nu(U)$.

We have $\eta^*(v(x), v(y)) = v(\eta(x, y))$, and η^* is continuous on $v(\overline{S})$. Since η^* is **Z**-linear on v(S) and $\eta^* \neq +\infty$ on v(T), by the Dichotomy Proposition $\eta^*_{|v(S)} = \eta^*_{|v(T)} \circ \pi_{\{2\}}$.

• $v(\eta(x,y)) = \beta_0 + 0v(x) + \beta_2 v(y)$ on S;

•
$$v(\eta(+\infty,y)) = \beta_0 + \beta_2 v(y)$$
 on T ;

•
$$\nu(\eta(+\infty,+\infty)) = +\infty$$
 on U .

Let $\eta^*: v(\overline{S}) \to \mathbf{Z}$ be defined by:

•
$$\eta^*(x',y') = lpha_0 + lpha_1 x' + lpha_2 y'$$
 on $v(S)$;

•
$$\eta^*(+\infty, y') = \beta_0 + \beta_2 y'$$
 on $v(T)$.

•
$$\eta^*(+\infty, +\infty) = +\infty$$
 on $\nu(U)$.

We have $\eta^*(v(x), v(y)) = v(\eta(x, y))$, and η^* is continuous on $v(\overline{S})$. Since η^* is **Z**-linear on v(S) and $\eta^* \neq +\infty$ on v(T), by the Dichotomy Proposition $\eta^*_{|v(S)} = \eta^*_{|v(T)} \circ \pi_{\{2\}}$. Hence for every $(x, y) \in S \cup T$:

$$v(\eta(x,y)) = \eta^*(v(x),v(y)) = \eta^*(+\infty,v(y)) = \beta_0 + \beta_2 v(y).$$

It then suffices to let $h(x, y) = \pi^{\beta_0} y^{\beta_2}$ on $S \cup T$, and h = 0 on U.

A retraction of a non-empty set $A \subseteq K^m$ onto $B \subseteq A$ is a continuous map $\rho : A \to B$ such that $\rho(x) = x$ for every $x \in B$.

NB: If such a retraction exists then B is closed in A.

A **retraction** of a non-empty set $A \subseteq K^m$ onto $B \subseteq A$ is a continuous map $\rho : A \to B$ such that $\rho(x) = x$ for every $x \in B$.

NB: If such a retraction exists then B is closed in A.

Theorem

Let $B \subseteq A \subseteq K^m$ be non-empty semi-algebraic sets. There exists a semi-algebraic retraction of A onto $B \iff B$ is closed in A.

Sketchy proof

 \mathbf{T}_m reduces to the case where $A = \overline{S}$ and $B = \overline{T}$ with S a simplex and T a face of S. We can then take $\rho = \pi_T$.

3.4 - Splitting

Theorem

Let $A \subseteq K^m$ be a relatively open semi-algebraic without isolated points. Let X_1, \ldots, X_r closed semi-algebraic sets such that $X_1 \cup \cdots \cup X_r = \partial A$. Then there exists a partition of A in semi-algebraic sets A_1, \ldots, A_r such that $\partial A_k = X_k$ for $1 \le k \le r$.

Sketchy proof

 \mathbf{T}_m reduces to the case where A is simplex of $D^M R^q$. For sake of simplicity let us assume that r = 2 and $X_1 = X_2 = \overline{B}$ where B is the facet of A. Let $i \in \text{Supp } A \setminus \text{Supp } B$. We can then take:

$$A_1 = \{ a \in A / v(a_i) \in 2\mathbf{N} \}$$
 $A_2 = A \setminus A_1.$

Let X be a semi-algebraic subset of K^m . Let L(X):= the lattice of semi-algebraic subsets of X closed in X.

Theorem (Grzegorczyk 1951)

If K is algebraically closed or real closed, and if dim $X \ge 2$ then L(X) is undecidable.

NB: Crucial in the proof is the existence of irreducible or connected components.

Let K, F be p-adically closed fields and $X \subseteq K^m$, $Y \subseteq F^n$ be semi-algebraic sets.

Let K, F be p-adically closed fields and $X \subseteq K^m$, $Y \subseteq F^n$ be semi-algebraic sets.

L(X) has a decidable theory, which eliminates the quantifier in an expansion by definition of the language of lattices.

Let K, F be p-adically closed fields and $X \subseteq K^m$, $Y \subseteq F^n$ be semi-algebraic sets.

- L(X) has a decidable theory, which eliminates the quantifier in an expansion by definition of the language of lattices.
- **2** If X, Y are pure-dimensional and dim $X = \dim Y$ then $L(X) \equiv L(Y)$.

Let K, F be p-adically closed fields and $X \subseteq K^m$, $Y \subseteq F^n$ be semi-algebraic sets.

- L(X) has a decidable theory, which eliminates the quantifier in an expansion by definition of the language of lattices.
- **2** If X, Y are pure-dimensional and dim $X = \dim Y$ then $L(X) \equiv L(Y)$.
- If K ≤ F and X, Y are defined by the same formula then L(X) ≤ L(Y).

NB₁: The theory of L(X) is axiomatized most of all by the Splitting Property, plus a few simple axioms concerning dim X and the atoms.

Let K, F be p-adically closed fields and $X \subseteq K^m$, $Y \subseteq F^n$ be semi-algebraic sets.

- L(X) has a decidable theory, which eliminates the quantifier in an expansion by definition of the language of lattices.
- **2** If X, Y are pure-dimensional and dim $X = \dim Y$ then $L(X) \equiv L(Y)$.
- If K ≤ F and X, Y are defined by the same formula then L(X) ≤ L(Y).

NB₁: The theory of L(X) is axiomatized most of all by the Splitting Property, plus a few simple axioms concerning dim X and the atoms.

NB₂: The theory of L(X) depends on dim X, on the pure dimensionnal compenents of X, etc but does not depend on p.

Let K, F be p-adically closed fields and $X \subseteq K^m$, $Y \subseteq F^n$ be semi-algebraic sets.

- L(X) has a decidable theory, which eliminates the quantifier in an expansion by definition of the language of lattices.
- **2** If X, Y are pure-dimensional and dim $X = \dim Y$ then $L(X) \equiv L(Y)$.
- If K ≤ F and X, Y are defined by the same formula then L(X) ≤ L(Y).

NB₁: The theory of L(X) is axiomatized most of all by the Splitting Property, plus a few simple axioms concerning dim X and the atoms.

NB₂: The theory of L(X) depends on dim X, on the pure dimensionnal compenents of X, etc but does not depend on p. In particular $L(Q_{p_1}^m) \equiv L(Q_{p_2}^m)$.