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1 – Model-completion
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Theorem (Pitts 1992)

IPC2 is interpretable in IPC1.

Theorem (Pitts 1992)

For every propositionnal formula ϕ(p̄, v) there are propositionnal formulae
ϕR(p̄) and ϕL(p̄) such that, for any formula ψ(p̄, q̄) not containing v,

ϕ `ψ ⇐⇒ ϕR ` ϕ ψ ` ϕ ⇐⇒ ψ ` φL.

Theorem (Ghilardi - Zawadowski 1997)

The theory of Heyting algebras has a model-completion.
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Question: Which (theory of) varieties H of Heyting algebras have a
model-completion?

Remark: A necessary condition is is that H has the amalgamation property.
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Theorem (Maksimova 1977)

Exactly 8 varieties H1,. . . ,H8 of Heyting algebras have the amalgation
property.

Theorem (Ghilardi - Zawadowski 1997)

Each of the 8 eight varieties of Heyting algeras which has the
amalgamation property, has a model-completion.

Proof based on Pitts + Maksimova + some model-theoretic non-sense.

End of the story!
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Question: What are these model-completions? Can we give a
(meaningfull) axiomatisation of them? Is there a model-theoretic proof?

From now on and for i = 1, 2, . . . , 8 let H∗i be the variety of coHA dual
(opposite? reverse?) to Hi :

L ∈ H∗i ⇐⇒ L∗ ∈ Hi .

Llat = {0, 1,∨,∧}.
LHA = Llat ∪ {→} and LHA∗ = Llat ∪ {−}.
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From HA to coHA (and way back) without pain

In a coHA, a− b := min{c | a 6 b ∨ c}.

Let E be a poset and a an element of E .

E ∗ := E , with the opposite order.

a∗ := a, but seen as an element of E ∗.

b 6 a ⇐⇒ a∗ 6 b∗

If E is a lattice:

a ∧ b = (a∗ ∨ b∗)∗ a ∨ b = (a∗ ∧ b∗)∗

If E is a coHA:
a− b = (b∗ → a∗)∗
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What means “much smaller”?

Given two subsets S , T of a topological space X ,

T � S ⇐⇒ T ⊆ S and S \ T = S .

Given two elements a, b of a (distributive and bounded) lattice L,

b � a ⇐⇒ P(b)� P(a)

whith P(a) := {p ∈ Spec↑(X ) | a ∈ p}.
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Remark: If L is a coHA then P(a− b) = P(a) \ P(b) hence

b � a ⇐⇒ b 6 a and a− b = a

is quantifier-free definable in L.
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H∗1 = variety of all co-Heyting algebras.

Density D1 For every a, c such that c � a 6= 0 there exists a non zero
element b such that:

c � b � a

Splitting S1 For every a, b1, b2 such that b1 ∨ b2 � a 6= 0 there exists
non zero elements a1 > b1 and a2 > b2 such that:

a− a2 = a1

a− a1 = a2

a1 ∧ a2 = b1 ∧ b2

a
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• H∗2 = H∗1 +
[
(1− x) ∧ (1− (1− x)) = 0

]
.

This is the dual (opposite? reverse?) of the variety of the logic of the
weak excluded middle (¬x ∨ ¬¬x = 1).

Density D2 Same as D1.

Splitting S2 Same as S1 with the additional assumption that
b1 ∧ b2 ∧ (1− (1− a)) = 0

• H∗3 = H∗1 +
[(

((1− x) ∧ x)− y
)
∧ y = 0

]
This is the dual of the second slice of Hosoi: a coHA L ∈ H∗3 iff every
p ∈ Spec↑ L is minimal or maximal.

Density D3 For every a such that a = 1− (1− a) 6= 0 there exists a non
zero element b such that b � a.

Splitting S3 Same as S1.

• And so on for H∗4, . . . ,H∗8.
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Theorem (Darnière - Junker 2011-18)

For i = 1, 2, . . . , 8:

1 Every coHA existentially closed in H∗i satisfies Di + Si .

2 For every L0, L1, L ∈ H∗i such that L0 ⊆ L1 and L0 ⊆ L , if L1 is finite
and if L satisfies Di + Si , there exist an LHA∗-embedding of L1 into L
over L0.

L1
� � // L

L0

/ O

``

/�

??

Fact: H∗1 and H∗2 are not locally finite, but every other H∗i is.

Corollary

For i = 3, 4, . . . , 8, H∗i has a model-completion, which is axiomatized by
Di + Si and the axioms of H∗i .
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2 – Dimension theory

40 %



Let < be strict order on a set E , and x ∈ E . The foundation rank of x in
E for < is defined as follows:

rk(x , <) > n ⇐⇒ ∃x0 < x1 < · · · < xn = x .

Then rk(x , <) = n ⇐⇒ rk(x , <) > n and rk(x , <) � n + 1.

The cofoundation rank cork(x , <) = rk(x , >).

Examples:

rk(x , <) = 0 iff x in minimal in E .

cork(x , <) = 0 iff x is maximal in E .
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For every a in a distributive bounded lattice L,

dimL a := max{cork(p,⊂) | p ∈ P(a)}.

(Reminder: P(a) = {p ∈ Spec L | a ∈ p}.)
By convention dim 0 = −∞.

Proposition

For every a, b ∈ L, dimL(a ∨ b) = max(dimL a, dimL b).

Proof: P(a ∨ b) = P(a) ∪ P(b).
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The finite case

If L is finite:

Every a ∈ L is the join of finitely many ∨-irreducible elements.

For every c ∈ I∨(L), dim c is the foundation rank of c in I∨(L).

dim 0

dim 1

dim 2
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Remark: dimL a strongly depends on L.

ϕ

dimL2 1 = 1 dimB2 ϕ(1) = 0

Proposition

If ϕ : L0 → L1 is an LHA∗-embedding then dimL0 a 6 dimL1 ϕ(a).
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The geometric case

k = algebraically closed field.
S = an algebraic variety (= Zariski-closed subset of kn).

dim S = max{cork(p,⊂) | p ∈ P(Ann(S))}

where Ann(S) = {f ∈ k[x1, . . . , xn] | f = 0 on S}, and
P(Ann(S)) = {p ∈ Spec k[X1, . . . ,Xn] | Ann(S) ⊆ p}.

Theorem (' Hilbert’s Nullstellensatz)

Spec k[X1, . . . ,Xn] '
homeo.

Spec L(kn)

where L(kn) = {Zariski-closed subsets of kn}.

As a consequence, dim S = dimL(kn) S .
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Fact: For non-empty S ,T ∈ L(kn), T � S ⇒ dim T < dim S .

Proposition

For every non-zero elements a,b of a distributive bounded lattice L,

b � a⇒ dim b < dim a.

Hence ∃a0 � · · · � an = a in L \ {0} ⇒ dimL a > n. That is

dim a > rk(a,�).

Proposition

If L is a coHA then dimL a = rk(a,�) for every a ∈ L \ {0}.
As a consequence “dim a = n” is first-order definable in LHA∗ .
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Codimension

For every non-zero element of a distributive bounded lattice L,

codimL a := min{rk(p,⊂) | p ∈ P(a)}.

By convention codim 0 = +∞.

In a nutshell:

Similar properties as dim.

Much better if L is a coHA.
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For every a, b in a coHA L let

δ(a, b) := 2− codim a∆b

where a∆b = (a− b) ∨ (ba) = (a∗ ↔ b∗)∗.

Proposition

1 δ is a pseudometric on L. It is an ultrametric iff every non-zero
element has finite codimension in L.

2 Every LHA∗-morphism is 1-lipshitzian.

3 LHA∗-operations are uniformly continuous, hence extend uniquely to
the Cauchy-completion L̂ of L (so L̂ is still a coHA).
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Theorem (Darnière - Junker 2010)

For every positive integer d,

dL := {a ∈ L | codimL a > d}

is a principal ideal of L.
The family (L/dL)d<ω forms a projective system, whose projective limits
coincides with the Cauchy-completion L̂ of L.

Remark: If L/dL is finite for every d , this implies that L̂ is also the
profinite completion of L.
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A pseudometric space is precompact if its Cauchy-completion is compact.

Theorem (Darniere - Junker 2010)

For every variety H∗ of coHA, the following are equivalent.

1 H∗ has the finite model property.

2 Every L free in H∗ is Hausdorff.

3 Every L finitely presented in H∗ is precompact Hausdorff.

More on this in Codimension and pseudometric in co-Heyting algebras,
Algebra Universalis 64 (2010), no. 3-4.

73 %



3 – Model-completion of coHA of dimension 6 d
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dim L := dimL 1.
D(d) := { coHA L | dim L 6 d}.

Remark: This is the dual (opposite? reverse?) of the (d + 1)-slice of Hosoi
(1967).

Proposition (Hosoi 1967 + Ono 1971)

D(d) is a variety of coHA’s.

Axiomatisation: D(d) = H∗1 + [∆d = 0] where ∆n = ∆n(x0, . . . , xd) is
defined inductively by ∆−1 = 1 and for d > 0

∆d = (∆d−1 − xd) ∧ xd .

The point is that (a− b) ∧ b � a in every coHA.
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Examples:

D(−1) = H∗1 + [1 = 0] is the trivial variety H∗8 .

D(0) = H∗1 + [(1− x) ∧ x = 0] is the variety H∗7 of Boolean algebras.

D(1) is the variety H∗3.

For n > 2, D(n) doesn’t have the amalgamation property, hence
doesn’t have a model-completion. . . in LHA∗!
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LSCd
= LHA∗ ∪ {Ci}06i6d where each Ci is a unary function symbol. For

every a in an LSCd
-structure let

sc-dim a = min{e 6 d | a = ∨∨
06i6e

Ci (a)}.

Remark: Contrary to dim, sc-dim is automatically preserved by
LSCd

-embedding.

For every S ∈ L(kd), let Ci (S) = the pure i-dimensionnal component of
S . The expansion of L by these functions Ci is our guiding example of
d-scaled lattice.
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A d-subscaled lattice is an LSCd
-expansion L of a coHA satisfying the

following axioms.

SC1 ∨∨
06i6d

Ci (a) = a

SC2 ∀I ⊆ {0, . . . , d}, ∀k :

Ck
(
∨∨
i∈I

Ci (a)
)

=

{
0 if k /∈ I

Ck(a) if k ∈ I

SC3 ∀k > max(sc-dim(a), sc-dim(b)),
Ck(a ∨ b) = Ck(a) ∨ Ck(b)

SC4 ∀i 6= j , sc-dim
(
Ci (a) ∧ Cj(b)

)
< min(i , j)

SC5 ∀k > sc-dim(b), Ck(a)− b = Ck(a)− Ck(b)
In particular, by SC1: sc-dim b < a⇒ Ck(a)− b = Ck(a).

SC6 b � a 6= 0⇒ sc-dim b < sc-dim a.

Because of SC6, the class of all d-subscaled is not a variety.
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Theorem (Darnière 2010-18)

Every finitely generated d-subscaled lattice is finite.

Key of the proof: sc-dim(a− b) ∧ b < sc-dim a.

SC6 implies that dimL a 6 sc-dim a for every a in a d-subscaled lattice L.
When equality holds L is called a d-scaled lattice.
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Theorem

The theory of d-subscaled lattices has a model-completion, axiomatised by
the axioms of d-scaled lattices and the following conditions.

Catenarity For every r < q < p and every non-zero elements c � a, if
c = Cr (c) and a = Cp(a), there exist an element b = Cq(b)
such that c � b � a.

Splitting For every elements b1, b2, a, if b1 ∨ b2 � a 6= 0, there exist
non-zero elements a1 > b1 and a2 > b2 such that:

a1 = a− a2

a2 = a− a1

a1 ∧ a2 = b1 ∧ b2
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For yet another model-completion result based on a Density and a
Splitting axiom, see Carai and Ghilardi: Existentially Closed Brouwerian
Semilattices, arXiv 1702.08352

Thank you!
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