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1 — Model-completion
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Theorem (Ghilardi - Zawadowski 1997)
The theory of Heyting algebras has a model-completion.
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Question: Which (theory of) varieties H of Heyting algebras have a
model-completion?

Remark: A necessary condition is is that A has the amalgamation property.
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Theorem (Maksimova 1977)

Exactly 8 varieties H1,...,Hg of Heyting algebras have the amalgation
property.
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Question: What are these model-completions? Can we give a
(meaningfull) axiomatisation of them? /s there a model-theoretic proof?
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Question: What are these model-completions? Can we give a
(meaningfull) axiomatisation of them? /s there a model-theoretic proof?

From now on and for i = 1,2,...,8 let H} be the variety of coHA dual
(opposite? reverse?) to H;:

LeH; < L* € H,.

»Clat = {07 17 \Z /\}'
£HA = £|at @] {—)} and EHA* — ﬁlat U {_}
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From HA to coHA (and way back) without pain

Ina coHA, a— b:=min{c | a< bVc}.
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From HA to coHA (and way back) without pain

Ina coHA, a— b:=min{c | a< bVc}.
Let E be a poset and a an element of E.

e £ := E, with the opposite order.

@ 2" := a, but seen as an element of E*.

*

b<a < a*<b
If E is a lattice:

aNb=(a"Vvb")* avb=(a"ANb")"
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What means “much smaller”?

Given two subsets S, T of a topological space X,

T<S <<= TCSandS\T=5.
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Remark: This is a strict order on L\ {0} (not on L: 0 < 0!).
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What means “much smaller”?
Given two subsets S, T of a topological space X,

T<S < TCSand S\ T=S.

Given two elements a, b of a (distributive and bounded) lattice L,
b< a <= P(b) < P(a)

whith P(a) := {p € Spec’(X) | a € p}.

Remark: If L is a coHA then P(a — b) = P(a) \ P(b) hence
b<a<+= b<aanda—b=2a

is quantifier-free definable in L.
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] = variety of all co-Heyting algebras.

Density D1 For every a, ¢ such that ¢ < a # 0 there exists a non zero
element b such that:

cKEbxa

A 30%




] = variety of all co-Heyting algebras.
Density D1 For every a, ¢ such that ¢ < a # 0 there exists a non zero

element b such that:

cKEbxa

Splitting S1 For every a, by, by such that b; V by < a # 0 there exists
non zero elements a; > b; and a» > by such that:

a—ady) =—ai
a—d; = ar
aiNax= b1 A b

A 30%




] = variety of all co-Heyting algebras.
Density D1 For every a, ¢ such that ¢ < a # 0 there exists a non zero

element b such that:

cKEbxa

Splitting S1 For every a, by, by such that b; V by < a # 0 there exists
non zero elements a; > b; and a» > by such that:

a—ady) =—ai
a—dal) = a
aiNax= b1 A b

by | b2

A 30%




] = variety of all co-Heyting algebras.
Density D1 For every a, ¢ such that ¢ < a # 0 there exists a non zero
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Splitting S1 For every a, by, by such that b; V by < a # 0 there exists
non zero elements a; > b; and a» > by such that:
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ai ap
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o Mi=Hi+[1-x)A(1-(1-x))=0]

This is the dual (opposite? reverse?) of the variety of the logic of the
weak excluded middle (—x V —=—=x =1).

Density D2 Same as D1.

Splitting S2 Same as S1 with the additional assumption that
b1/\b2/\(1—(1—3))=0
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o Mi=Hi+[1-x)A(1-(1-x))=0]

This is the dual (opposite? reverse?) of the variety of the logic of the
weak excluded middle (—x V —=—=x =1).

Density D2 Same as D1.

Splitting S2 Same as S1 with the additional assumption that
b1/\b2/\(1—(1—3))=0

o Hi=Hi+[((1-x)Ax)—y)Ay=0]

This is the dual of the second slice of Hosoi: a coHA L € H3 iff every
p € Spec' L is minimal or maximal.

Density D3 For every a such that a =1 — (1 — a) # 0 there exists a non
zero element b such that b < a.

Splitting S3 Same as S1.
e And so on for Hj,..., Hg.
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Theorem (Darniére - Junker 2011-18)
Fori=1,2,...,8:
@ Every coHA existentially closed in Hj satisfies D; + S;.
@ Forevery Lo, L1, L € H such that Lo C Ly and Lo C L, if Ly is finite
and if L satisfies D; + S;, there exist an Lya~-embedding of Ly into L
over Lg.

[_1C ,,,,,,,,,,,,,,,,,,,,,,,,,,, s L
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Lo
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Theorem (Darniére - Junker 2011-18)
Fori=1,2,...,8:
@ Every coHA existentially closed in Hj satisfies D; + S;.
@ Forevery Lo, L1, L € H such that Lo C Ly and Lo C L, if Ly is finite
and if L satisfies D; + S;, there exist an Lya~-embedding of Ly into L
over Lg.

Fact: H7 and H3 are not locally finite, but every other HJ is.

Fori=3,4,...,8, H; has a model-completion, which is axiomatized by
D; + S; and the axioms of H.
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2 — Dimension theory




Let < be strict order on a set E, and x € E. The foundation rank of x in
E for < is defined as follows:

rk(x,<) > n <= Ixg<x3 <+ < Xp=X.

Then rk(x, <) = n <= rk(x,<) = nand rk(x, <) 2 n+ 1.
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Let < be strict order on a set E, and x € E. The foundation rank of x in
E for < is defined as follows:

rk(x,<) > n <= Ixg<x3 <+ < Xp=X.
Then rk(x, <) = n <= rk(x,<) = nand rk(x, <) 2 n+ 1.

The cofoundation rank cork(x, <) = rk(x, >).

Examples:
e rk(x, <) =0 iff x in minimal in E.

e cork(x, <) = 0 iff x is maximal in E.
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For every a in a distributive bounded lattice L,
dim; a := max{cork(p,C) | p € P(a)}.

(Reminder: P(a) = {p € SpeclL | a € p}.)
By convention dim 0 = —oo.
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For every a in a distributive bounded lattice L,
dim; a := max{cork(p, C) | p € P(a)}.

(Reminder: P(a) = {p € SpecL | a € p}.)
By convention dim 0 = —oo.

Proposition

For every a,b € L, dim;(a V b) = max(dim; a, dim b).

Proof: P(aV b) = P(a) U P(b).
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The finite case

If L is finite:
o Every a € L is the join of finitely many V-irreducible elements.
o For every c € ZV(L), dim c is the foundation rank of ¢ in Z"(L).

dim 2
dim 1

dim 0




Remark: dim; a strongly depends on L.
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Remark: dim; a strongly depends on L.

14

—

dim;,1=1 dimg, (1) =2

Proposition

If p: Lo — Ly is an Lya--embedding then dim;, a < dimy, p(a).




The geometric case

k = algebraically closed field.
S = an algebraic variety (= Zariski-closed subset of k").

dim S = max{cork(p, C) | p € P(Ann(S))}

where Ann(S) = {f € k[x1,...,x5] | f=00n S}, and
P(Ann(S)) = {p € Spec k[X1,...,Xs] | Ann(S) C p}.




The geometric case

k = algebraically closed field.
S = an algebraic variety (= Zariski-closed subset of k").
dim S = max{cork(p,C) | p € P(Ann(S))}

where Ann(S) = {f € k[x1,...,x5] | f=00n S}, and
P(Ann(S)) = {p € Spec k[X1,...,Xs] | Ann(S) C p}.

Theorem (=~ Hilbert's Nullstellensatz)

Spec k[ X1, ..., Xn] o Spec L(k™)

where L(k™) = {Zariski-closed subsets of k"}.

As a consequence, dim S = dim(4n) S.




Fact: For non-empty S, T € L(k"), T < § =dim T <dimS.

Proposition

For every non-zero elements a,b of a distributive bounded lattice L,

b< a= dimb < dima.
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Fact: For non-empty S, T € L(k"), T< S=dimT <dimS.

Proposition

For every non-zero elements a,b of a distributive bounded lattice L,

b< a= dimb < dima.

Hence Jag < --- < ap,=ain L\ {0} =dim; a > n. Thatis

dima > rk(a, <).

Proposition

If L is a coHA then dim; a = rk(a, <) for every a € L\ {0}.
As a consequence ‘dima = n" is first-order definable in Lyp=.




Codimension
For every non-zero element of a distributive bounded lattice L,
codim; a := min{rk(p, C) | p € P(a)}.

By convention codim 0 = +o0.




Codimension
For every non-zero element of a distributive bounded lattice L,
codim; a := min{rk(p, C) | p € P(a)}.

By convention codim 0 = +o0.

In a nutshell:
@ Similar properties as dim.
@ Much better if L is a coHA.




For every a, b in a coHA L let
5(3. b) — 0~ codim aAb

where aAb = (a — b) V (b,) = (a* <> b*)*.

Proposition

© 0 is a pseudometric on L. It is an ultrametric iff every non-zero
element has finite codimension in L.

@ Every Lya+=-morphism is 1-lipshitzian.

© Lya--operations are uniformly continuous, hence extend uniquely to
the Cauchy-completion L of L (so L is still a coHA).




Theorem (Darniére - Junker 2010)

For every positive integer d,
dl:={ae L | codim a>d}

is a principal ideal of L.
The family (L/dL)4<., forms a projective system, whose projective limits
coincides with the Cauchy-completion L of L.

Remark: If L/dL is finite for every d, this implies that L is also the
profinite completion of L.




A pseudometric space is precompact if its Cauchy-completion is compact.

Theorem (Darniere - Junker 2010)

For every variety H* of coHA, the following are equivalent.
@ H* has the finite model property.
@ Every L free in H* is Hausdorff.
© CEvery L finitely presented in H* is precompact Hausdorff.

More on this in Codimension and pseudometric in co-Heyting algebras,
Algebra Universalis 64 (2010), no. 3-4.




3 — Model-completion of coHA of dimension < d



dim L := dim; 1.
D(d):={ coHA L| dimL < d}.

Remark: This is the dual (opposite? reverse?) of the (d + 1)-slice of Hosoi
(1967).

Proposition (Hosoi 1967 + Ono 1971)
D(d) is a variety of coHA's.

Axiomatisation: D(d) = Hj + [Ag = 0] where A, = Ap(xo, ..., Xq) is
defined inductively by A_1 =1 and for d > 0

Ay = (Ad—l — Xd) A Xq.

The point is that (a — b) A b < a in every coHA.



Examples:

e D(—1) = Hi + [1 = 0] is the trivial variety H§
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Examples:
e D(—1) = Hj + [1 = 0] is the trivial variety Hj .
e D(0) =Hi +[(1 —x) Ax = 0] is the variety {3 of Boolean algebras.
e D(1) is the variety H3.

e For n > 2, D(n) doesn't have the amalgamation property, hence
doesn’t have a model-completion... in Lyp*!



Lsc, = Lnar U{C'}ocicd where each C' is a unary function symbol. For
every a in an Lsc,-structure let

sc-dima=min{e<d|a= w Ci(a)}.

Remark: Contrary to dim, sc-dim is automatically preserved by
Lsc,-embedding.

For every S € L(k9), let C/(S) = the pure i-dimensionnal component of
S. The expansion of L by these functions C' is our guiding example of
d-scaled lattice.



A d-subscaled lattice is an Lsc -expansion L of a coHA satisfying the
following axioms.

SC; W Ci(a)=a

0<i<d

SC, VI C{0,...,d}, Vk:

(50@) = o) e

SC3 Vk > max(sc-dim(a), sc-dim(b)),

Ck(aV b) = Ck(a) v CK(b)
SC4 Vi #j, sc-dim (Ci(a) A CU(b)) < min(i, )
SCs Vk > sc-dim(b), Ck(a) — b= Ck(a) — Ck(b)

In particular, by SCy: sc-dim b < a = Ck(a) — b = Ck(a).
SCe¢ b a# 0= sc-dimb < sc-dim a.

Because of SCg, the class of all d-subscaled is not a variety.



Theorem (Darniere 2010-18)

Every finitely generated d-subscaled lattice is finite.

Key of the proof: sc-dim(a — b) A b < sc-dim a.



Theorem (Darniere 2010-18)

Every finitely generated d-subscaled lattice is finite.

Key of the proof: sc-dim(a — b) A b < sc-dim a.

SCg implies that dim; a < sc-dim a for every a in a d-subscaled lattice L.
When equality holds L is called a d-scaled lattice.



Theorem

The theory of d-subscaled lattices has a model-completion, axiomatised by
the axioms of d-scaled lattices and the following conditions.

Catenarity For every r < q < p and every non-zero elements ¢ < a, if
¢ = C'(c) and a = CP(a), there exist an element b = C9(b)
such that c € b < a.
Splitting For every elements by, by, a, if by V by < a # 0, there exist
non-zero elements a; > by and a> > by such that:

dp] —a—ar
dy =a—al
aiNa = b1 A by




For yet another model-completion result based on a Density and a
Splitting axiom, see Carai and Ghilardi: Existentially Closed Brouwerian
Semilattices, arXiv 1702.08352

Thank you!



