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1 Motivations

Given an algebraically closed field k and a positive integer n let us define:

LZar(k
n) = {Zariski closed subsets of kn}

This is a distributive, bounded lattice. Studying the model-theory of the lattice LZar(k
n)

might give a model-theoretic approach of intersection theory (that is the study of intersection
of algebraic varieties over an algebraically closed field) so our title.

Question 1.1 Is LZar(k
n) decidable?

Question 1.2 k ≡ k′ =⇒ LZar(k
n) ≡ LZar(k

′n)?

Question 1.3 k � k′ =⇒ LZar(k
n) � LZar(k

′n)?

If LZar(k
n) would be uniformly interpretable in k then these questions would have immediate

answers. One can show that this is not the case, more precisely:

Proposition 1.4 LZar(k
n) is interpretable in the ring k[X1, . . . ,Xn] but not in the field k.

One can show that question 1.1 has a negative answer, more precisely1:

Proposition 1.5 The ring of integers is uniformly interpretable in LZar(k
n) for every alge-

braically closed field k and every integer n ≥ 2.

Nevertheless questions 1.2 and 1.3 are still widely open. Let us consider now the following
natural variants. By a local field k we mean an algebraically closed, real closed or p-adicaly
closed field. Endow kn with its natural topology and for any definable subset X of kn let:

Ldef(X) = {definable subsets of kn closed in X}

If k is algebraically closed then Ldef(k
n) is nothing but LZar(k

n) by the quantifier elimination
of the theory of algebraically closed fields. In any case Ldef(k

n) is not interpretable in k, so all
the questions above still arise for Ldef(k

n). Question 1.1 has again a negative answer for real
closed fields but we expect the the p-adic case to be different, due to the lack of connectedness
for p-adic definable sets not reduced to a single point. The results presented here include:

1I thank Luc Bélair for giving me the reference [Grz51] where an argument is given from which proposition 1.5
follows immediately.
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1. A finite axiomatisation of the universal theory of the class Σ(k, d) of all lattices LZar(X)
for X ranging over the Zariski closed sets of dimension at most d over an arbitrary
infinite field k.

2. A model-completion for this theory in an appropriate finite expansion by definition of
the language of lattices.

In the last section we discuss how this is related to the above questions, specially for p-adically
closed fields.

2 Axiomatization and local finiteness

Llat = {0,1,∨,∧} is the language of lattices. In any lattice the order is quantifier-free definable
in Llat by b ≤ a ⇐⇒ a ∨ b = a so we can consider ≤ as well as the strict order < as part of
the lattice language.
LSCd

= Llat ∪{−}∪ {Ck}0≤k≤d where ‘−’ is a binary function symbol and the Ck’s are unary
function symbols.

Example 2.1 Let X be any topological space of dimension at most d, and L(X) the lattice
of closed subsets of X. For any subset Y of X let Y denote the topological closure of Y in X.
We endow L(X) with an LSCd

-structure as follows. For any A,B ∈ L(X) and any positive
integer k ≤ d let:

• A−B = the topological closure of A \B in X.

• Ck(A) = {a ∈ A / dim(A, a) = i} where dim(A, a), the local dimension of A at a, is
defined as the least possible dimension of the closure of of a neighborhood of a in A.

In case X is an algebraic variety, the lattice L(X) is LZar(X), and the above Ck(A) is simply
the union of the irreducible components of A of dimension k.

Let Σ(d) denote the class of all LSCd
-structures L(X) as in the above example, where X

ranges over the class of all noetherian topological spaces of dimension at most d.

Definition 2.2 A d-subscaled lattice is a model of the universal theory (in LSCd
) of the

class Σ(d).

Given an LSCd
-structure L we define for any a, b ∈ L (in the two last definitions we use the

convention that max(∅) = −1):

• b≪ a ⇐⇒ b < a and a− b = a.

• dimL a = max{k / ∃a0, . . . , ak ∈ L, 0 6= a0 ≪ a1 ≪ · · · ≪ ak ≤ a}

• scdimL a = max{k / Ck(a) 6= 0}

For any A,B ∈ L(X) in the above example, A ≪ B if and only A is non-empty and B has
empty interior in A. So dimL(X) A is exactly the usual (topological) dimension of A. Moreover
one can show that:

∀A ∈ L(X), scdimL(X)(A) = dimL(X)(A)

This is true in particular for LZar(k
d) (k an infinite field). More generaly it remains true for

every Ldef(X) (X definable over a local field).

2



Definition 2.3 A d-subscaled lattice L such that dimL(a) = scdimL(a) for every a ∈ L is
called a d-scaled lattice2.

A distributive bounded lattice admits at most one structure of d-scaled lattice extending its
lattice structure. This LSCd

-structure is then an extension by definition of its lattice structure.

Theorem 2.4 The theory of d-subscaled lattices (resp. of d-scaled lattices) is finitely axiom-
atizable.

An explicit axiomatization has been given in [Dar04]. For seek of shortness we do not repro-
duce it here. A crucial tool for this axiomatisation, as well as for all the results presented
here, is the following:

Theorem 2.5 (Local finiteness) Every finitely generated d-subscaled lattice is finite. More
precisely there is a bound µ(n, d) for the cardinality of any d-subscaled lattice generated by n
elements.

Since the theory of d-subscaled lattices is universal, a prime d-subscaled lattice is simply a
d-subscaled lattice generated by the empty set, so:

Corollary 2.6 There is a finite number of non-isomorphic prime d-subscaled lattice.

Let Σ(k, d) be as in the first section, with k an arbitrary infinite field. Endow each lattice
LZar(X) ∈ Σ(k, d) with its natural LSCd

-structure (see example ??). Using the local finiteness
theorem one can prove:

Theorem 2.7 The universal theory of Σ(k, d) (in LSCd
) is exactly the theory of d-subscaled

lattices. In particular it does not depend on k.

3 Model-completion

We call super d-scaled lattices the d-scaled lattices satisfying the following additionnal
properties.

Catenarity: For every positive integers r ≤ q ≤ p and every elements c ≤ a, if Cp(a) = a

and Cr(c) = c then there exists an element b such that c ≤ b ≤ a and Cq(b) = b.

Splitting: For every elements b1, b2, a, if b1 ∨ b2 ≪ a then there exists non-zero elements
a1 ≥ b1 and a2 ≥ b2 such that:











a1 = a− a2
a2 = a− a1
a1 ∧ a2 = b1 ∧ b2

Clearly the class of super d-scaled lattices is finitely axiomatizable in LSCd
, using only finitely

many ∀∃-formulas.

Theorem 3.1 Every d-subscaled lattice embeds in a super d-scaled lattice.

2By theorem 3.1 below, the class of LSCd
-substructures of d-scaled lattices is exactly the class of d-subscaled

lattices.
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Theorem 3.2 Let L,L′ be any two super d-scaled lattices, and ϕ an isomorphism between
two finitely generated LSCd

-substructures L0 and L′
0 of L and L′ respectively. Let L1 be a

finitely generated extension of L0 in L. Then ϕ extends to an embedding ψ of L1 into L′.

The two above theorems and the local finiteness result then easily imply:

Corollary 3.3 The theory of super d-scaled lattices is the model-completion of the theory of
subscaled lattices.

Corollary 3.4 The theory of super d-scaled lattices containing any given prime d-subscaled
lattice is complete, decidable and ℵ0-categorical. Every completion of the theory of super
d-scaled lattices is of that kind, hence the theory of super d-scaled lattices has finitely many
completions and is decidable.

Remark: This results generalize to higher dimensions the well known model-completion result
for boolean algebras. Indeed 0-subscaled lattices are exactly non-trivial boolean algebras
(up to uniform and quantifier-free interdefinability), while the splitting property for 0-scaled
lattices boils down to the atomless property.

4 Back to motivations

• The theory of LZar(k
n) for an algebraically closed field k is somewhat complicated.

The following variant is enlightening: let L◦
Zar(k

2) denote the LSCd
-substructure of LZar(k

2)
generated by smooth curves.

Fact 4.1 Let k be the algebraic closure of the finite field with p elements, and K the algebraic
closure of k(t). Then k � K but L◦

Zar(k
2) 6≡ L◦

Zar(K
2).

• The case of certain local fields might be more promising. Let k be any local field.
The points (in the affine space kn) are the atomes of Ldef(k

n). Since the splitting property
implies that a super n-scaled lattice is atomless, clearly Ldef(k

n) can not be a super n-scaled
lattice. However it is not difficult to adapt the previous result in order to keep atoms in a
new model-completion result.
LASCd

= LSCd
∪ {Atk}k≥1 with the Atk’s being new unary predicates. An atomic d-scaled

lattice is an LASCd
-structure L such that:

1. The LSCd
-reduct of L is a d-scaled lattice.

2. Each Atk is interpreted as the set of elements of L which are the join of exactly k atoms.

3. Every a ∈ L is the least upper bound of the set of atoms of L which are smaller than a.

A super atomic d-scaled lattice is an atomic d-scaled lattice which satisfies the catenarity
axiom and the splitting axiom restricted to the elements a such that C0(a) = 0.

Theorem 4.2 The theory of super atomic d-scaled lattices is the model-completion of the
theory of atomic d-scaled lattices. It admits ℵ0 completions, each of which is determined by
a prime atomic d-subscaled lattices, hence is decidable. As a consequence the theory of super
atomic d-scaled lattices is decidable.
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If k is algebraically closed or real closed then Ldef(k
n), with its natural structure of atomic

n-scaled lattice, is not super atomic. Indeed it admits connected elements of dimension greater
than zero, which still contradicts the restricted splitting property.
On the other hand if k is p-adically closed then the only connected elements of Ldef(k

n)
are the points of kn, that is the atoms of Ldef(k

n). It might then be (and there are many
other evidence) that Ldef(k

n) is a super atomic n-scaled lattice, which is equivalent to the
following conjecture (remember that a definable subset over a local field is said to have pure
dimension d if it has local dimension d at every point):

Conjecture 4.3 Let k be any p-adically closed field. Let A be a closed definable subset of
kn of pure dimension d ≥ 1. Let B1, B2 be two closed definable subsets of A of dimension at
most d − 1. Then there exist closed definable subsets A1, A2 of A of pure dimension d such
that Ai ⊇ Bi (for i = 1, 2) and:

A1 ∩A2 = B1 ∩B2
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