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Chapter 0

Logic and sets

0.1 Sets

As inmany areas ofmathematics, wewill use sets very often during this course. Butwewon’t cover anything
about axiomatic set theory. Instead we will only use a naive informal intuitive definition of what is a set
and what is a function/map between two sets (you are already used to that from your linear algebra and
calculus courses).

Definition 0.1 (Informal). A set is a (well-defined) ”collection” of elements (order doesn’t matter).
Two sets are equal if they contain the same elements, so {1, 2, 2, 3} = {1, 2, 3} since they contain 1, 2, 3.

Remark 0.2. We usually define a set either by giving explicitely the elements it contains, e.g.

𝑆 = {apple, 𝜋, 5}

or from an already constructed set by taking only the elements satisfying some property

𝑆 = {𝑛 ∈ ℤ ∶ ∃𝑘 ∈ ℤ, 𝑛 = 2𝑘}

Notation 0.3. Given a set 𝑆, we write 𝑎 ∈ 𝑆 to express that 𝑎 is an element of 𝑆. It is read ”𝑎 is in 𝑆” or ”𝑎
is an element of 𝑆”.

Example 0.4.
• apple ∈ {apple, 𝜋, 5}
• banana ∉ {apple, 𝜋, 5}

Notation 0.5. Given two sets 𝑆 and 𝑇 , we write 𝑆 ⊂ 𝑇 to express that every element of 𝑆 is an element of
𝑇 , i.e.

∀𝑎 ∈ 𝑆, 𝑎 ∈ 𝑇

It is read ”𝑆 is a subset of 𝑇 ” or ”𝑆 is included in 𝑇 ”.

Remark 0.6. Two sets 𝑆 and 𝑇 are equal if and only if they have the same elements, i.e.

𝑆 = 𝑇 ⇔ (𝑆 ⊂ 𝑇 and 𝑇 ⊂ 𝑆)

Remark 0.7. There exists a unique set containing no element, it is denoted by ∅ and called the empty set.

Remark 0.8. Given a set 𝐸, the set of subsets of 𝐸 is well-defined, it is denoted by 𝒫(𝐸) ≔ {𝑆 ∶ 𝑆 ⊂ 𝐸}
and called the powerset of 𝐸.
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0.2 Cartesian product
Definition 0.9. An 𝑛-tuple is an ordered list of 𝑛 elements (𝑥1, … , 𝑥𝑛). We say couple for a 2-tuple and triple
for a 3-tuple.

Fundamental property 0.10. (𝑥1, … , 𝑥𝑛) = (𝑦1, … , 𝑦𝑛) ⇔ 𝑥1 = 𝑦1, 𝑥2 = 𝑦2, … , 𝑥𝑛 = 𝑦𝑛

Remark 0.11.
• {1, 2, 3} = {3, 2, 1} (sets)
• (1, 2, 3) ≠ (3, 2, 1) (tuples)

Remark 0.12.
• {1, 2, 2, 3} = {1, 2, 3} (sets)
• (1, 2, 2, 3) ≠ (1, 2, 3) (tuples)

Theorem 0.13. Given two sets 𝐴 and 𝐵, the following set is well-defined

𝐴 × 𝐵 ≔ {(𝑎, 𝑏) ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}

It is called the cartesian product of 𝐴 and 𝐵.

Example 0.14. Set 𝐴 = {𝜋, 𝑒} and 𝐵 = {1, √2, 𝜋} then

𝐴 × 𝐵 = {(𝜋, 1), (𝜋, √2) , (𝜋, 𝜋), (𝑒, 1), (𝑒, √2) , (𝑒, 𝜋)}

Theorem 0.15. Given sets 𝐴1, 𝐴2, … , 𝐴𝑛, the following set is well-defined

𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛 ≔ {(𝑎1, 𝑎2, … , 𝑎𝑛) ∶ 𝑎𝑖 ∈ 𝐴𝑖}

Remark 0.16. We will often identify the following sets although they are not formally equal:
• (𝐴 × 𝐵) × 𝐶 ∋ ((𝑎, 𝑏), 𝑐)
• 𝐴 × (𝐵 × 𝐶) ∋ (𝑎, (𝑏, 𝑐))
• 𝐴 × 𝐵 × 𝐶 ∋ (𝑎, 𝑏, 𝑐)

0.3 Basic logic
Definition 0.17. A statement is a sentence which is either “true” (𝑇 ) or “false” (𝐹 ).

Definition 0.18. The negation of a statement 𝑃 is the statement denoted by ¬𝑃 (or no𝑃 ) defined with the
following truth table:

𝑃 ¬𝑃
𝑉 𝐹
𝐹 𝑉

Definition 0.19. The disjunction of two statements 𝑃 and 𝑄 is the statement denoted by 𝑃 ∨ 𝑄 (or 𝑃 or𝑄)
defined with the following truth table:

𝑃 𝑄 𝑃 ∨ 𝑄
𝑉 𝑉 𝑉
𝑉 𝐹 𝑉
𝐹 𝑉 𝑉
𝐹 𝐹 𝐹

Beware: the disjunction is not exclusive.
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Definition 0.20. The conjunction of two statements 𝑃 and 𝑄 is the statement denoted by 𝑃 ∧ 𝑄 (or 𝑃 and𝑄)
defined with the following truth table:

𝑃 𝑄 𝑃 ∧ 𝑄
𝑉 𝑉 𝑉
𝑉 𝐹 𝐹
𝐹 𝑉 𝐹
𝐹 𝐹 𝐹

Definition 0.21. Given two statements 𝑃 and 𝑄, we define the statement 𝑃 ⇒ 𝑄 with the following truth
table:

𝑃 𝑄 𝑃 ⇒ 𝑄
𝑉 𝑉 𝑉
𝑉 𝐹 𝐹
𝐹 𝑉 𝑉
𝐹 𝐹 𝑉

It is called the implication (or conditional statement) and it is read as follows ”𝑃 imples 𝑄” or ”if 𝑃 (is true)
then 𝑄 (is true)”.

Definition 0.22. The converse of 𝑃 ⇒ 𝑄 is defined as 𝑄 ⇒ 𝑃 .

Definition 0.23. Given two statements 𝑃 and 𝑄, we define the statement 𝑃 ⇔ 𝑄 with the following truth
table:

𝑃 𝑄 𝑃 ⇔ 𝑄
𝑉 𝑉 𝑉
𝑉 𝐹 𝐹
𝐹 𝑉 𝐹
𝐹 𝐹 𝑉

It is called the equivalence and it is read ”𝑃 is equivalent to 𝑄” or ”𝑃 (is true) if and only if 𝑄 (is true)”.

Definition 0.24. A tautology is a statement which is true whatever are the truth values of its components,
we usually use the notation ⊨ 𝑃 .

Definition 0.25. We say that 𝑃 and 𝑄 are logically equivalent when 𝑃 ⇔ 𝑄 is a tautology.
It simply means that 𝑃 and 𝑄 have the same truth table.

Remark 0.26. The above logical connectives could have been defined in terms of the disjunction and the
negation. Indeed:

• 𝑃 ∧ 𝑄 is equivalent to ¬ ((¬𝑃 ) ∨ (¬𝑄)).

𝑃 𝑄 ¬𝑃 ¬𝑄 (¬𝑃 ) ∨ (¬𝑄) ¬ ((¬𝑃 ) ∨ (¬𝑄)) 𝑃 ∧ 𝑄
𝑉 𝑉 𝐹 𝐹 𝐹 𝑉 𝑉
𝑉 𝐹 𝐹 𝑉 𝑉 𝐹 𝐹
𝐹 𝑉 𝑉 𝐹 𝑉 𝐹 𝐹
𝐹 𝐹 𝑉 𝑉 𝑉 𝐹 𝐹

• 𝑃 ⇒ 𝑄 is equivalent to (¬𝑃 ) ∨ 𝑄.

𝑃 𝑄 ¬𝑃 (¬𝑃 ) ∨ 𝑄 𝑃 ⇒ 𝑄
𝑉 𝑉 𝐹 𝑉 𝑉
𝑉 𝐹 𝐹 𝐹 𝐹
𝐹 𝑉 𝑉 𝑉 𝑉
𝐹 𝐹 𝑉 𝑉 𝑉

• 𝑃 ⇔ 𝑄 is equivalent to (𝑃 ⇒ 𝑄) ∧ (𝑄 ⇒ 𝑃 ) or to (𝑃 ∧ 𝑄) ∨ ((¬𝑃 ) ∧ (¬𝑄)).
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Example 0.27. Law of excluded middle: ⊨ 𝑃 ∨ (¬𝑃 )

𝑃 ¬𝑃 𝑃 ∨ (¬𝑃 )
𝑉 𝐹 𝑉
𝐹 𝑉 𝑉

The law of excluded middle simply means that either 𝑃 is true, or its negation ¬𝑃 is true.

Example 0.28. The modus ponens: ⊨ (𝑃 ∧ (𝑃 ⇒ 𝑄)) ⇒ 𝑄

𝑃 𝑄 𝑃 ⇒ 𝑄 𝑃 ∧ (𝑃 ⇒ 𝑄) (𝑃 ∧ (𝑃 ⇒ 𝑄)) ⇒ 𝑄
𝑉 𝑉 𝑉 𝑉 𝑉
𝑉 𝐹 𝐹 𝐹 𝑉
𝐹 𝑉 𝑉 𝐹 𝑉
𝐹 𝐹 𝑉 𝐹 𝑉

It is the main inference rule in mathematics: if both 𝑃 and 𝑃 ⇒ 𝑄 are true then so is 𝑄.

Example 0.29. ⊨ (𝑃 ∧ 𝑄) ⇒ 𝑃

Example 0.30. ⊨ 𝑃 ⇒ (𝑃 ∨ 𝑄)

Proposition 0.31. The disjunction is commutative: ⊨ (𝑃 ∨ 𝑄) ⇔ (𝑄 ∨ 𝑃 )

Proposition 0.32. The disjunction is associative: ⊨ ((𝑃 ∨ 𝑄) ∨ 𝑅) ⇔ (𝑃 ∨ (𝑄 ∨ 𝑅)).

Proposition 0.33. The conjunction is commutative: ⊨ (𝑃 ∧ 𝑄) ⇔ (𝑄 ∧ 𝑃 )

Proposition 0.34. The conjunction is associative : ⊨ ((𝑃 ∧ 𝑄) ∧ 𝑅) ⇔ (𝑃 ∧ (𝑄 ∧ 𝑅)).

Proposition 0.35 (Double negation elimination). ⊨ (¬(¬𝑃 )) ⇔ 𝑃

Proof.
𝑃 ¬𝑃 ¬(¬𝑃 )
𝑉 𝐹 𝑉
𝐹 𝑉 𝐹

■

Proposition 0.36 (Morgan’s laws).
• The negation of 𝑃 ∨ 𝑄 is (¬𝑃 ) ∧ (¬𝑄):

⊨ (¬(𝑃 ∨ 𝑄)) ⇔ ((¬𝑃 ) ∧ (¬𝑄))

• the negation of 𝑃 ∧ 𝑄 is (¬𝑃 ) ∨ (¬𝑄):

⊨ (¬(𝑃 ∧ 𝑄)) ⇔ ((¬𝑃 ) ∨ (¬𝑄))

Mnemonic device: the negation changes conjunctions in disjunctions and vice-versa.

Proof. I only prove the first one.

𝑃 𝑄 ¬𝑃 ¬𝑄 (¬𝑃 ) ∧ (¬𝑄) 𝑃 ∨ 𝑄 ¬(𝑃 ∨ 𝑄)
𝑉 𝑉 𝐹 𝐹 𝐹 𝑉 𝐹
𝑉 𝐹 𝐹 𝑉 𝐹 𝑉 𝐹
𝐹 𝑉 𝑉 𝐹 𝐹 𝑉 𝐹
𝐹 𝐹 𝑉 𝑉 𝑉 𝐹 𝑉

■
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Proposition 0.37 (Distributivity).
• ⊨ (𝑃 ∧ (𝑄 ∨ 𝑅)) ⇔ ((𝑃 ∧ 𝑄) ∨ (𝑃 ∧ 𝑅))
• ⊨ (𝑃 ∨ (𝑄 ∧ 𝑅)) ⇔ ((𝑃 ∨ 𝑄) ∧ (𝑃 ∨ 𝑅))

Proposition 0.38 (Proof by contrapositive).
The statement 𝑃 ⇒ 𝑄 is logically equivalent to its contrapositive (¬𝑄) ⇒ (¬𝑃 ).
Proof.

𝑃 𝑄 𝑃 ⇒ 𝑄 ¬𝑃 ¬𝑄 (¬𝑄) ⇒ (¬𝑃 )
𝑉 𝑉 𝑉 𝐹 𝐹 𝑉
𝑉 𝐹 𝐹 𝐹 𝑉 𝐹
𝐹 𝑉 𝑉 𝑉 𝐹 𝑉
𝐹 𝐹 𝑉 𝑉 𝑉 𝑉

■

In some cases, it may be easier to prove (¬𝑄) ⇒ (¬𝑃 ) rather than 𝑃 ⇒ 𝑄.
Example 0.39. Let 𝑛 ∈ ℤ. Prove that if 𝑛2 is odd then 𝑛 is odd.
Proposition 0.40 (Reductio ad absurdum). (((¬𝑃 ) ⇒ 𝑄) ∧ ((¬𝑃 ) ⇒ (¬𝑄))) ⇒ 𝑃 is a tautology.
In practice, in order to prove 𝑃 by contradiction, we assume that ¬𝑃 is true and we look for a contradiction.

0.4 Quantifiers
Definition 0.41. A predicate𝑃 (𝑥, 𝑦, …) is a statementwhose truth value depends on variables 𝑥, 𝑦, … occuring
in it.
Definition 0.42 (Universal quantifier). The statement ”∀𝑥 ∈ 𝐸, 𝑃 (𝑥)” means that 𝑃 (𝑥) is true for any 𝑥 in
𝐸.
It is read ”for all 𝑥 in 𝐸, 𝑃 (𝑥) is true”.
Definition 0.43 (Existential quantifier). The statement ”∃𝑥 ∈ 𝐸, 𝑃 (𝑥)” means that there exists at least one
𝑥 in 𝐸 such that 𝑃 (𝑥) is true.
It is read ”there exists 𝑥 in 𝐸 such that 𝑃 (𝑥) is true”.
Here 𝑥 is a bound variable:

• we may replace ”∀𝑥 ∈ 𝐸, 𝑃 (𝑥)” by ”∀𝑦 ∈ 𝐸, 𝑃 (𝑦)”
• we may replace ”∃𝑥 ∈ 𝐸, 𝑃 (𝑥)” by ”∃𝑦 ∈ 𝐸, 𝑃 (𝑦)”.

Definition 0.44. The statement ”∃!𝑥 ∈ 𝐸, 𝑃 (𝑥)” means that 𝑃 (𝑥) is true for exactly one element 𝑥 in 𝐸.
It is read ”there exists a unique 𝑥 in 𝐸 such that 𝑃 (𝑥) is true”.
As we see in the following example, we can’t permute the quantifiers ∀ and ∃.

• ∃𝑛 ∈ ℕ, ∀𝑝 ∈ ℕ, 𝑝 ≤ 𝑛
• ∀𝑝 ∈ ℕ, ∃𝑛 ∈ ℕ, 𝑝 ≤ 𝑛

Nonetheless, we may permute two existential quantifiers or two universal quantifiers.
Remark 0.45. It is common to write ”∀𝑥, 𝑦 ∈ 𝐸” for ”∀𝑥 ∈ 𝐸, ∀𝑦 ∈ 𝐸” (that’s an ellipsis).
The same holds for the existential quantifier ∃.
Definition 0.46. The negation of ”∀𝑥 ∈ 𝐸, 𝑃 (𝑥)” is ”∃𝑥 ∈ 𝐸, ¬𝑃 (𝑥)”.
Definition 0.47. The negation of ”∃𝑥 ∈ 𝐸, 𝑃 (𝑥)” is ”∀𝑥 ∈ 𝐸, ¬𝑃 (𝑥)”.
Mnemonic device: the negation swaps ∀ and ∃.
Axiom 0.48. The statement ”∃𝑥 ∈ ∅, 𝑃 (𝑥)” is false for any predicate.
Proposition 0.49. The statement ”∀𝑥 ∈ ∅, 𝑃 (𝑥)” is true for any predicate.
Proof. Indeed, ∃𝑥 ∈ ∅, (¬𝑃 (𝑥)) is false, so its negation ∀𝑥 ∈ ∅, 𝑃 (𝑥) is true. ■
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0.5 Functions
Definition 0.50 (informal). A function (or map) is the data of two sets 𝐴 and 𝐵 together with a ”process”
which assigns to each 𝑥 ∈ 𝐴 a unique 𝑓(𝑥) ∈ 𝐵:

𝑓 ∶ {
𝐴 → 𝐵
𝑥 ↦ 𝑓(𝑥)

Here, 𝑓 is the name of the function, 𝐴 is the domain of 𝑓 , and 𝐵 is the codomain of 𝑓 .

Remark 0.51. The domain and codomain are part of the definition of a function. For instance

𝑓 ∶ {
ℝ → [1, +∞)
𝑥 ↦ 𝑥2 + 1 and 𝑔 ∶ {

ℝ → ℝ
𝑥 ↦ 𝑥2 + 1

are not the same function (the first one is surjective but not the second one).
A function is not simply a ”formula”, you need to specify the domain and the codomain.

Definitions 0.52. Given a function 𝑓 ∶ 𝐴 → 𝐵.
• The image of 𝐸 ⊂ 𝐴 by 𝑓 is 𝑓(𝐸) ≔ {𝑓(𝑥) ∶ 𝑥 ∈ 𝐸} ⊂ 𝐵.
• The image of f (or range of 𝑓) is Range(𝑓 ) ≔ 𝑓(𝐴).
• The preimage of 𝐹 ⊂ 𝐵 by 𝑓 is 𝑓 −1(𝐹 ) ≔ {𝑥 ∈ 𝐴 ∶ 𝑓(𝑥) ∈ 𝐹 }.
• The graph of 𝑓 is the set Γ𝑓 ≔ {(𝑥, 𝑦) ∈ 𝐴 × 𝐵 ∶ 𝑦 = 𝑓(𝑥)}.
• We say that 𝑓 is injective (or one-to-one) if ∀𝑥1, 𝑥2 ∈ 𝐴, 𝑥1 ≠ 𝑥2 ⟹ 𝑓(𝑥1) ≠ 𝑓(𝑥2)

or equivalently by taking the contrapositive ∀𝑥1, 𝑥2 ∈ 𝐴, 𝑓(𝑥1) = 𝑓(𝑥2) ⟹ 𝑥1 = 𝑥2
• We say that 𝑓 is surjective (or onto) if ∀𝑦 ∈ 𝐵, ∃𝑥 ∈ 𝐴, 𝑦 = 𝑓(𝑥)
• We say that 𝑓 is bijective if it is injective and surjective, i.e. ∀𝑦 ∈ 𝐵, ∃!𝑥 ∈ 𝐴, 𝑦 = 𝑓(𝑥)

𝑎
𝑏
𝑐

1
2
3
4

Figure 1: Injective

𝑎
𝑏
𝑐

1
2
3
4

Figure 2: Not injective

𝑎
𝑏
𝑐
𝑑

1
2
3

Figure 3: Surjective

𝑎
𝑏
𝑐
𝑑

1
2
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4

Figure 4: Not surjective

𝑎
𝑏
𝑐
𝑑

1
2
3
4

Figure 5: Bijective
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Proposition 0.53. 𝑓 ∶ 𝐴 → 𝐵 is bijective if and only if there exists 𝑔 ∶ 𝐵 → 𝐴 such that {
∀𝑥 ∈ 𝐴, 𝑔(𝑓(𝑥)) = 𝑥
∀𝑦 ∈ 𝐵, 𝑓(𝑔(𝑦)) = 𝑦 .

Then 𝑔 is unique, it is called the inverse of 𝑓 and denoted by 𝑓 −1 ∶ 𝐵 → 𝐴.

𝑎
𝑏
𝑐
𝑑

1
2
3
4

Figure 6: Bijective function

𝑎
𝑏
𝑐
𝑑

1
2
3
4

Figure 7: Its inverse

0.6 Sigma notation
Definition 0.54. For 𝑚, 𝑛 ∈ ℤ, we set

𝑛

∑
𝑖=𝑚

𝑎𝑖 = 𝑎𝑚 + 𝑎𝑚+1 + ⋯ + 𝑎𝑛

Remark 0.55. If 𝑚 > 𝑛 then
𝑛

∑
𝑖=𝑚

𝑎𝑖 = 0 by convention.

Example 0.56.
7

∑
𝑖=3

𝑖2 = 32 + 42 + 52 + 62 + 72 = 135

Remark 0.57. If 𝑚 ≤ 𝑛 then there are 𝑛 − 𝑚 + 1 terms in the sum
𝑛

∑
𝑖=𝑚

𝑎𝑖.



Chapter 1

Natural numbers

In this chapterwe introduce the setℕ of natural numbers. Wewill startwith aminimal axiomatic description
of it from which we will derive the main properties of ℕ.

Intuitively, we describe ℕ starting from 0 and repeatedly doing the operation +1 (we say that we take the
successor): 1 is the successor of 0, 2 is the successor of 1, 3 is the successor of 2 and so on…This operation is
governed by a few rules in order tomake sure that the set we obtain coincides with our intuitive expectation
about what should be ℕ.

The method of proof by induction is closely related to the nature of ℕ. Hence we will study it at the end
of this chapter.

I use the convention that ℕ is the set of non-negative integers, i.e. 0 ∈ ℕ.

1.1 Peano axioms

All the results concerning the natural numbers will derive from the next theorem, that we admit, andwhich
states the existence of ℕ.

Theorem 1.1 (Peano axioms). There exists a set ℕ together with an element 0 ∈ ℕ read as zero and a function
𝑠 ∶ ℕ → ℕ read as successor such that:
(i) 0 is not the successor of any element of ℕ, i.e. 0 is not in the image of 𝑠:

0 ∉ 𝑠(ℕ)

(ii) If the successor of 𝑛 equals the successor of 𝑚 then 𝑛 = 𝑚, i.e. 𝑠 is injective:

∀𝑛, 𝑚 ∈ ℕ, 𝑠(𝑛) = 𝑠(𝑚) ⟹ 𝑛 = 𝑚

(iii) The induction principle. If a subset of ℕ contains 0 and is closed under 𝑠 then it is ℕ:

∀𝐴 ⊂ ℕ, {
0 ∈ 𝐴
𝑠(𝐴) ⊂ 𝐴 ⟹ 𝐴 = ℕ

The set ℕ is the set of natural numbers. As we will see, all the results of ℕ will derive from the above basic
properties. The last axiom basically means that all the elements of ℕ can be obtained from 0 by taking the
successor iteratively. Intuitively, the successor of 𝑛 is 𝑠(𝑛) = 𝑛 + 1 (actually, it will become formal after we
define the addition, see Remark 1.6).
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0
3

0
7 (i) doesn’t hold

0
7 (ii) doesn’t hold

0
7 (ii) doesn’t hold

0
7 𝑠 is not a function

0
7 (iii) doesn’t hold

Below are some basic propositions relying only on Peano axioms.

Proposition 1.2. Any non-zero natural number is the successor of a natural number, i.e.

∀𝑛 ∈ ℕ ∖ {0}, ∃𝑚 ∈ ℕ, 𝑛 = 𝑠(𝑚)

Proof. Set 𝐴 = 𝑠(ℕ) ∪ {0}. Then
• 𝐴 ⊂ ℕ
• 0 ∈ 𝐴
• 𝑠(𝐴) ⊂ 𝑠(ℕ) ⊂ 𝐴

Hence, by the induction principle, 𝐴 = ℕ.
Let 𝑛 ∈ ℕ ∖ {0}, then 𝑛 ∈ 𝐴 but 𝑛 ≠ 0, therefore 𝑛 ∈ 𝑠(ℕ). So there exists 𝑚 ∈ ℕ such that 𝑛 = 𝑠(𝑚). ■

Proposition 1.3. A natural number is never its own successor, i.e.

∀𝑛 ∈ ℕ, 𝑛 ≠ 𝑠(𝑛)

Proof. Set 𝐴 = {𝑛 ∈ ℕ ∶ 𝑛 ≠ 𝑠(𝑛)}. Then
• 𝐴 ⊂ ℕ
• 0 ∈ 𝐴 since 0 ∉ 𝑠(ℕ) (particularly 0 ≠ 𝑠(0))
• 𝑠(𝐴) ⊂ 𝐴

Indeed, let 𝑚 ∈ 𝑠(𝐴). Then 𝑚 = 𝑠(𝑛) for some 𝑛 ∈ 𝐴. So 𝑠(𝑛) ≠ 𝑛.
Since 𝑠 is injective, we get that 𝑠(𝑠(𝑛)) ≠ 𝑠(𝑛), i.e. 𝑠(𝑚) ≠ 𝑚.
Hence 𝑚 ∈ 𝐴.

So, by the induction principle, 𝐴 = ℕ. Thus, for every 𝑛 ∈ ℕ we have that 𝑛 ≠ 𝑠(𝑛). ■

Remark 1.4 (You can skip it). Up to a bijection, ℕ is uniquely defined by the Peano axioms.
More precisely, if there exists a set 𝑆, with an element 𝑒 ∈ 𝑆 and a function 𝜎 ∶ 𝑆 → 𝑆 such that
(i) 𝑒 ∉ 𝜎(𝑆)
(ii) ∀𝑥, 𝑦 ∈ 𝑆, 𝜎(𝑥) = 𝜎(𝑦) ⟹ 𝑥 = 𝑦
(iii) ∀𝐴 ⊂ 𝑆, {

𝑒 ∈ 𝐴
𝜎(𝐴) ⊂ 𝐴 ⟹ 𝐴 = 𝑆

then there exists a bijection Φ ∶ 𝑆 → ℕ such that Φ(𝑒) = 0, 𝑠(Φ(𝑥)) = Φ(𝜎(𝑥)).

𝑒
𝜎 𝜎 𝜎 𝜎

0
𝑠 𝑠 𝑠 𝑠Φ
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1.2 Addition, multiplication and order

1.2.1 Addition
The following proposition defines inductively the function addition with 𝑎.

Proposition 1.5. Let 𝑎 ∈ ℕ. Then there exists a unique function (𝑎 + •) ∶ ℕ → ℕ
𝑏 ↦ 𝑎 + 𝑏 such that

(i) 𝑎 + 0 = 𝑎
(ii) ∀𝑏 ∈ ℕ, 𝑎 + 𝑠(𝑏) = 𝑠(𝑎 + 𝑏)

Proof. This function iswell defined by the induction principle (i.e. we didn’tmiss any element of the domain
ℕ using this iterative definition).
Let’s check that it is unique. Let 𝜑 ∶ ℕ → ℕ be such that 𝜑(0) = 𝑎 and ∀𝑏 ∈ ℕ, 𝜑(𝑠(𝑏)) = 𝑠(𝜑(𝑏)).
Set 𝐴 = {𝑏 ∈ ℕ ∶ 𝜑(𝑏) = 𝑎 + 𝑏}. Then

• 𝐴 ⊂ ℕ
• 0 ∈ 𝐴 since 𝜑(0) = 𝑎 = 𝑎 + 0.
• 𝑠(𝐴) ⊂ 𝐴. Indeed, let 𝑐 ∈ 𝑠(𝐴). Then 𝑐 = 𝑠(𝑏) for some 𝑏 ∈ 𝐴 and

𝜑(𝑐) = 𝜑(𝑠(𝑏)) since 𝑐 = 𝑠(𝑏)
= 𝑠(𝜑(𝑏)) by definition of 𝜑
= 𝑠(𝑎 + 𝑏) since 𝑏 ∈ 𝐴
= 𝑎 + 𝑠(𝑏) by definition of 𝑎 + •
= 𝑎 + 𝑐 since 𝑠(𝑏) = 𝑐

Hence 𝑐 ∈ 𝐴.
Therefore, by the induction principle, 𝐴 = ℕ. Thus, for every 𝑏 ∈ ℕ we have that 𝜑(𝑏) = 𝑎 + 𝑏. ■

Remark 1.6. We set 1 ≔ 𝑠(0). Then, for 𝑛 ∈ ℕ, 𝑛 + 1 = 𝑛 + 𝑠(0) = 𝑠(𝑛 + 0) = 𝑠(𝑛). As expected…
Hence, from now on, I will use indistinctively 𝑛 + 1 or 𝑠(𝑛) (depending on which notation seems to be the
more convenient). Similarly, we set 2 ≔ 𝑠(1), 3 ≔ 𝑠(2), 4 ≔ 𝑠(3) and so on…

Proposition 1.7.
1. ∀𝑎, 𝑏, 𝑐 ∈ ℕ, 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 (the addition is associative)
2. ∀𝑎, 𝑏 ∈ ℕ, 𝑎 + 𝑏 = 𝑏 + 𝑎 (the addition is commutative)
3. ∀𝑎, 𝑏, 𝑐 ∈ ℕ, 𝑎 + 𝑏 = 𝑎 + 𝑐 ⟹ 𝑏 = 𝑐 (cancellation)
4. ∀𝑎, 𝑏 ∈ ℕ, 𝑎 + 𝑏 = 0 ⟹ 𝑎 = 𝑏 = 0

Proof.

1. Let 𝑎, 𝑏 ∈ ℕ. Set 𝐴 = {𝑐 ∈ ℕ ∶ 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐}. Then
• 𝐴 ⊂ ℕ
• 0 ∈ 𝐴. Indeed, 𝑎 + (𝑏 + 0) = 𝑎 + 𝑏 = (𝑎 + 𝑏) + 0.
• 𝑠(𝐴) ⊂ 𝐴. Indeed, let 𝑛 ∈ 𝑠(𝐴) then 𝑛 = 𝑠(𝑐) for some 𝑐 ∈ 𝐴. Therefore

𝑎 + (𝑏 + 𝑛) = 𝑎 + (𝑏 + 𝑠(𝑐)) since 𝑛 = 𝑠(𝑐)
= 𝑎 + 𝑠(𝑏 + 𝑐)
= 𝑠(𝑎 + (𝑏 + 𝑐))
= 𝑠((𝑎 + 𝑏) + 𝑐) since 𝑐 ∈ 𝐴
= (𝑎 + 𝑏) + 𝑠(𝑐)
= (𝑎 + 𝑏) + 𝑛

Hence 𝑛 ∈ 𝐴.
Thus, by the induction principle, 𝐴 = ℕ and for any 𝑐 ∈ ℕ, 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐.
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2. Sketch of proof:
(a) Prove that ∀𝑎 ∈ ℕ, 0 + 𝑎 = 𝑎 + 0 using the induction principle.

Hint: 0 + 𝑠(𝑎) = 𝑠(0 + 𝑎) = 𝑠(𝑎 + 0) = 𝑠(𝑎) = 𝑠(𝑎) + 0
(b) Prove that ∀𝑎 ∈ ℕ, 𝑠(𝑎) = 1 + 𝑎 using the induction principle.

Hint: 𝑠(𝑠(𝑎)) = 𝑠(1 + 𝑎) = (1 + 𝑎) + 1 = 1 + (𝑎 + 1) = 1 + 𝑠(𝑎).
(c) Let 𝑎 ∈ ℕ. Prove that ∀𝑏 ∈ ℕ, 𝑎 + 𝑏 = 𝑏 + 𝑎.

Hint: 𝑎 + 𝑠(𝑏) = 𝑠(𝑎 + 𝑏) = 𝑠(𝑏 + 𝑎) = 𝑏 + 𝑠(𝑎) = 𝑏 + (1 + 𝑎) = (𝑏 + 1) + 𝑎 = 𝑠(𝑏) + 𝑎

3. Set 𝐴 = {𝑎 ∈ ℕ ∶ ∀𝑏, 𝑐 ∈ ℕ, 𝑎 + 𝑏 = 𝑎 + 𝑐 ⟹ 𝑏 = 𝑐}. Then
• 𝐴 ⊂ ℕ
• 0 ∈ 𝐴
• 𝑠(𝐴) ⊂ 𝐴

Indeed, let 𝑛 ∈ 𝑠(𝐴). Let 𝑏, 𝑐 ∈ ℕ such that 𝑛 + 𝑏 = 𝑛 + 𝑐. We want to prove that 𝑏 = 𝑐.
There exists 𝑎 ∈ 𝐴 such that 𝑛 = 𝑠(𝑎). Then

𝑛 + 𝑏 = 𝑛 + 𝑐
⇒𝑠(𝑎) + 𝑏 = 𝑠(𝑎) + 𝑐
⇒𝑏 + 𝑠(𝑎) = 𝑐 + 𝑠(𝑎) by commutativity
⇒𝑠(𝑏 + 𝑎) = 𝑠(𝑐 + 𝑎) by construction of the addition
⇒𝑏 + 𝑎 = 𝑐 + 𝑎 since 𝑠 is injective
⇒𝑎 + 𝑏 = 𝑎 + 𝑐 by commutativity
⇒𝑏 = 𝑐 since 𝑎 ∈ 𝐴

Hence 𝑛 ∈ 𝐴.
Thus, by the induction principle, 𝐴 = ℕ.

4. Let 𝑎, 𝑏 ∈ ℕ be such that 𝑎 + 𝑏 = 0. Assume by contradiction that 𝑎 ≠ 0 or 𝑏 ≠ 0.
Without lost of generality, we may assume that 𝑏 ≠ 0 (using commutativity).
Then, by Proposition 1.2, 𝑏 = 𝑠(𝑛) for some 𝑛 ∈ ℕ. So 0 = 𝑎 + 𝑏 = 𝑎 + 𝑠(𝑛) = 𝑠(𝑎 + 𝑛).
Which is a contradiction since 0 ∉ 𝑠(ℕ). ■

1.2.2 Multiplication
The following proposition defines inductively the function multiplication with 𝑎.

Proposition 1.8. Let 𝑎 ∈ ℕ. Then there exists a unique function (𝑎 × •) ∶ ℕ → ℕ
𝑏 ↦ 𝑎 × 𝑏 such that

(i) 𝑎 × 0 = 0
(ii) ∀𝑏 ∈ ℕ, 𝑎 × 𝑠(𝑏) = (𝑎 × 𝑏) + 𝑎

Proposition 1.9.
1. ∀𝑎, 𝑏, 𝑐 ∈ ℕ, 𝑎 × (𝑏 × 𝑐) = (𝑎 × 𝑏) × 𝑐 (the multiplication is associative)
2. ∀𝑎, 𝑏 ∈ ℕ, 𝑎 × 𝑏 = 𝑏 × 𝑎 (the multiplication is commutative)
3. ∀𝑎, 𝑏, 𝑐 ∈ ℕ, 𝑎 × (𝑏 + 𝑐) = 𝑎 × 𝑏 + 𝑎 × 𝑐 and (𝑎 + 𝑏) × 𝑐 = 𝑎 × 𝑐 + 𝑏 × 𝑐 (× is distributive over +)
4. ∀𝑎 ∈ ℕ, 𝑎 × 1 = 𝑎
5. ∀𝑎, 𝑏 ∈ ℕ, 𝑎 × 𝑏 = 0 ⟹ (𝑎 = 0 or 𝑏 = 0)
6. ∀𝑎, 𝑏, 𝑐 ∈ ℕ, {

𝑎 × 𝑏 = 𝑎 × 𝑐
𝑎 ≠ 0 ⟹ 𝑏 = 𝑐 (cancellation)

We prove these properties similarly to the ones of the addition.

Remark 1.10. It is common to omit the symbol × when there is no possible confusion (i.e. to simply write
𝑎𝑏 for 𝑎 × 𝑏).
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1.2.3 Order
The following definition is a little bit informal, but it is enough for our purpose.

Definition 1.11. A binary relation ℛ on a set 𝐸 consists in associating a truth value to every couple (𝑥, 𝑦) ∈
𝐸2 (beware, order matters here).
We say that 𝑥 is related to 𝑦 by ℛ, denoted 𝑥ℛ𝑦, if the value true is assigned to (𝑥, 𝑦).

Examples 1.12.
1. Let 𝐸 = {𝑎, 𝑏, 𝑐}. Since 𝐸 is finite, we can define a binary relation ℛ using a truth table as below:

𝑦
𝑥 𝑎 𝑏 𝑐

𝑎 3 7 7

𝑏 7 7 3

𝑐 3 3 7

Here 𝑎ℛ𝑎, 𝑎ℛ𝑐, 𝑏ℛ𝑐 and 𝑐ℛ𝑏.
2. For 𝐸 = ℝ, we can define a binary relation as follows:

𝑥ℛ𝑦 ⇔ 𝑥2 − 𝑦2 = 𝑥 − 𝑦

The following definition highlights the important properties of the order ≤ that you intuitively know.

Definition 1.13. We say that a binary relation ℛ on a set 𝐸 is an order if
(i) ∀𝑥 ∈ 𝐸, 𝑥ℛ𝑥 (reflexivity)
(ii) ∀𝑥, 𝑦 ∈ 𝐸, (𝑥ℛ𝑦 and 𝑦ℛ𝑥) ⟹ 𝑥 = 𝑦 (antisymmetry)
(iii) ∀𝑥, 𝑦, 𝑧 ∈ 𝐸, (𝑥ℛ𝑦 and 𝑦ℛ𝑧) ⟹ 𝑥ℛ𝑧 (transitivity)

Definition 1.14. We say that an order ℛ on a set 𝐸 is total if

∀𝑥, 𝑦 ∈ 𝐸, 𝑥ℛ𝑦 or 𝑦ℛ𝑥

Definition 1.15. We define the binary relation ≤ on ℕ by

∀𝑎, 𝑏 ∈ ℕ, (𝑎 ≤ 𝑏 ⇔ ∃𝑘 ∈ ℕ, 𝑏 = 𝑎 + 𝑘)
We read ”𝑎 is less than or equal to 𝑏” or ”𝑏 is greater than or equal to 𝑎” when 𝑎 ≤ 𝑏 holds.

Proposition 1.16. The set of natural numbers ℕ is totally ordered for ≤.

Proof.
(i) Reflexivity: let 𝑎 ∈ ℕ, then 𝑎 = 𝑎 + 0 with 0 ∈ ℕ, hence 𝑎 ≤ 𝑎.
(ii) Antisymmetry: let 𝑎, 𝑏 ∈ ℕ be such that 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎.

Then there exists 𝑘 ∈ ℕ such that 𝑏 = 𝑎 + 𝑘 and there exists 𝑙 ∈ ℕ such that 𝑎 = 𝑏 + 𝑙.
Therefore 𝑎 = 𝑏 + 𝑙 = 𝑎 + 𝑘 + 𝑙. Hence 0 = 𝑘 + 𝑙 and thus 𝑙 = 𝑘 = 0 so that 𝑎 = 𝑏.

(iii) Transitivity: let 𝑎, 𝑏, 𝑐 ∈ ℕ be such that 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑐.
Then there exists 𝑘 ∈ ℕ such that 𝑏 = 𝑎 + 𝑘 and there exists 𝑙 ∈ ℕ such that 𝑐 = 𝑏 + 𝑙.
Therefore 𝑐 = 𝑏 + 𝑙 = 𝑎 + (𝑘 + 𝑙) with 𝑘 + 𝑙 ∈ ℕ, i.e. 𝑎 ≤ 𝑐.

(iv) ≤ is total: let 𝑎 ∈ ℕ. Set 𝐴 = {𝑏 ∈ ℕ ∶ 𝑎 ≤ 𝑏 or 𝑏 ≤ 𝑎}. Then
• 𝐴 ⊂ ℕ
• 0 ∈ 𝐴, indeed 𝑎 = 0 + 𝑎 so that 0 ≤ 𝑎.
• 𝑠(𝐴) ⊂ 𝐴.

Indeed, let 𝑛 ∈ 𝑠(𝐴). Then 𝑛 = 𝑠(𝑏) for some 𝑏 ∈ 𝐴, i.e. 𝑎 ≤ 𝑏 or 𝑏 ≤ 𝑎.
If 𝑎 ≤ 𝑏 then 𝑏 = 𝑎 + 𝑘 for some 𝑘 ∈ ℕ, 𝑛 = 𝑠(𝑏) = 𝑏 + 1 = 𝑎 + 𝑘 + 1 with 𝑘 + 1 ∈ ℕ, so that 𝑎 ≤ 𝑛.
If 𝑏 ≤ 𝑎 then 𝑎 = 𝑏 + 𝑙 for some 𝑙 ∈ ℕ. The case 𝑙 = 0 is covered by the above case, so we may
assume that 𝑙 ≠ 0. Then 𝑙 = ̃𝑙 + 1 for some ̃𝑙 ∈ ℕ.
Hence 𝑎 = 𝑏 + 𝑙 = 𝑏 + ̃𝑙 + 1 = 𝑏 + 1 + ̃𝑙 = 𝑛 + ̃𝑙, i.e. 𝑛 ≤ 𝑎.
In both cases 𝑛 ∈ 𝐴.



J.-B. Campesato Chapter 1. Natural numbers 13

Therefore, by the induction principle, 𝐴 = ℕ. So, for all 𝑏 ∈ ℕ, either 𝑎 ≤ 𝑏 or 𝑏 ≤ 𝑎. ■

Definition 1.17. Given 𝑎, 𝑏 ∈ ℕ, we write 𝑎 < 𝑏 for (𝑎 ≤ 𝑏 and 𝑎 ≠ 𝑏).

Proposition 1.18.
1. ∀𝑎, 𝑏 ∈ ℕ, 𝑎 < 𝑏 ⇔ 𝑎 + 1 ≤ 𝑏.
2. Given 𝑎, 𝑏 ∈ ℕ, exactly one of the followings occurs: either 𝑎 < 𝑏, or 𝑎 = 𝑏, or 𝑏 < 𝑎.

Particularly, the negation of 𝑎 ≤ 𝑏 is 𝑏 < 𝑎.

Proof.

1. ⇒: Let 𝑎, 𝑏 ∈ ℕ be such that 𝑎 < 𝑏. Then 𝑎 ≤ 𝑏 so there exists 𝑘 ∈ ℕ such that 𝑏 = 𝑎 + 𝑘.
Assume by contradiction that 𝑘 = 0 then 𝑎 = 𝑏 which is false. Hence 𝑘 ≠ 0 and there exists �̃� ∈ ℕ such
that 𝑘 = �̃� + 1. Then 𝑏 = (𝑎 + 1) + �̃�. We proved that 𝑎 + 1 ≤ 𝑏 as expected.
⇐: Assume that 𝑎 + 1 ≤ 𝑏 then there exists 𝑘 ∈ ℕ such that 𝑏 = 𝑎 + 1 + 𝑘.

• Then 𝑏 = 𝑎 + (1 + 𝑘) with 1 + 𝑘 ∈ ℕ hence 𝑎 ≤ 𝑏.
• Assume by contradiction that 𝑎 = 𝑏 then 𝑎 = 𝑎 + 1 + 𝑘 hence 0 = 1 + 𝑘 from which we get 0 = 1,

so 0 = 𝑠(0). We get a contradiction with 0 ∉ 𝑠(ℕ).

2. This property derives from the fact that the order ≤ is total. ■

Proposition 1.19.
1. ∀𝑎 ∈ ℕ, 𝑎 ≤ 0 ⟹ 𝑎 = 0
2. ∀𝑎, 𝑏, 𝑐 ∈ ℕ, 𝑎 + 𝑏 ≤ 𝑎 + 𝑐 ⟹ 𝑏 ≤ 𝑐
3. There is no 𝑎 ∈ ℕ such that 0 < 𝑎 < 1.
4. There is no 𝑎 ∈ ℕ such that ∀𝑏 ∈ ℕ, 𝑏 ≤ 𝑎.
5. ∀𝑎, 𝑏, 𝑐 ∈ ℕ, 𝑎 ≤ 𝑏 ⟹ 𝑎𝑐 ≤ 𝑏𝑐

Proof. 1. Let 𝑎 ∈ ℕ be such that 𝑎 ≤ 0. Then there exists 𝑘 ∈ ℕ such that 0 = 𝑎 + 𝑘. Hence 𝑎 = 𝑘 = 0.

2. Let 𝑎, 𝑏, 𝑐 ∈ ℕ. Assume that 𝑎 + 𝑏 ≤ 𝑎 + 𝑐. Then there exists 𝑘 ∈ ℕ such that 𝑎 + 𝑐 = 𝑎 + 𝑏 + 𝑘. Then
𝑐 = 𝑏 + 𝑘 so that 𝑏 ≤ 𝑐 as expected.

3. Let 𝑎 ∈ ℕ. Assume that 𝑎 < 1, then there exists 𝑙 ∈ ℕ ∖ {0} such that 1 = 𝑎 + 𝑙. Since 𝑙 ≠ 0, 𝑙 = 𝑘 + 1 for
some 𝑘 ∈ ℕ, and 1 = 𝑎 + 𝑘 + 1 so that 0 = 𝑎 + 𝑘. Therefore 𝑎 = 0.

4. Assume by contradiction that there exists 𝑎 ∈ ℕ such that ∀𝑏 ∈ ℕ, 𝑏 ≤ 𝑎. Then 𝑎+1 ≤ 𝑎 hence 1 ≤ 0, i.e.
0 = 1 + 𝑘 for some 𝑘 ∈ ℕ. Therefore 1 = 0 which is a contradiction (otherwise 0 = 𝑠(0) but 0 ∉ 𝑠(ℕ)).

5. Let 𝑎, 𝑏, 𝑐 ∈ ℕ. Assume that 𝑎 ≤ 𝑏. Then 𝑏 = 𝑎 + 𝑘 for some 𝑘 ∈ ℕ. Thus 𝑏𝑐 = (𝑎 + 𝑘)𝑐 = 𝑎𝑐 + 𝑘𝑐 with
𝑘𝑐 ∈ ℕ. Therefore 𝑎𝑐 ≤ 𝑏𝑐. ■

Theorem 1.20 (The well-ordering principle). The set ℕ is well-ordered for ≤.
A nonempty subset 𝐴 of ℕ has a least element, i.e. there exists 𝑛 ∈ 𝐴 such that ∀𝑎 ∈ 𝐴, 𝑛 ≤ 𝑎.

Proof. Let’s prove the contrapositive, i.e. if a subset 𝐴 ⊂ ℕ doesn’t have a least element then it is empty.
Let 𝐵 = {𝑎 ∈ ℕ ∶ ∀𝑖 ≤ 𝑎, 𝑖 ∉ 𝐴}.

• 𝐵 ⊂ ℕ
• 0 ∈ 𝐵 (otherwise 0 would be the least element of 𝐴).
• 𝑠(𝐵) ⊂ 𝐵

Indeed, if 𝑛 ∈ 𝑠(𝐵), then 𝑛 = 𝑠(𝑎) for 𝑎 ∈ 𝐵, i.e. ∀𝑖 ≤ 𝑎, 𝑖 ∉ 𝐴. Note that 𝑛 = 𝑎 + 1 ∉ 𝐴 otherwise it
would be the least element of 𝐴. Therefore ∀𝑖 ≤ 𝑛, 𝑖 ∉ 𝐴, i.e. 𝑛 ∈ 𝐵.

Thus, by the induction principle, 𝐵 = ℕ so 𝐴 is empty. ■
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We proved that the induction principle implies the well-ordering principle, but they are actually equiv-
alent. In the definition of ℕ, we could have replaced the induction principle by the well-ordering principle.

Proof that the well-ordering principle implies the induction principle.
Let 𝐴 ⊂ ℕ. Assume that 0 ∈ 𝐴 and that 𝑠(𝐴) ⊂ 𝐴. We want to prove that 𝐴 = ℕ.
Assume by contradiction that ℕ ∖ 𝐴 ≠ ∅. Then, by the well-ordering principle, ℕ ∖ 𝐴 admits a least element
𝑎 ∈ 𝐴. Obviously, 𝑎 ≠ 0 since 0 ∈ 𝐴.
Since 𝑎 ∈ ℕ ∖ {0}, there exists ̃𝑎 ∈ ℕ such that 𝑎 = 𝑠( ̃𝑎). Since 𝑠(𝐴) ⊂ 𝐴, ̃𝑎 ∉ 𝐴 (otherwise 𝑎 = 𝑠( ̃𝑎) ∈ 𝐴).
But ̃𝑎 < 𝑎. This contradicts the fact that 𝑎 is the least element of 𝐴.
Hence ℕ ∖ 𝐴 = ∅ and 𝐴 = ℕ. ■

Proposition 1.21. ∀𝑎, 𝑏 ∈ ℕ, 𝑎𝑏 = 1 ⟹ 𝑎 = 𝑏 = 1.

Proof. Let 𝑎, 𝑏 ∈ ℕ be such that 𝑎𝑏 = 1. Since 𝑎 = 0 or 𝑏 = 0 implies that 𝑎𝑏 = 0, we know that 𝑎 ≠ 0 and
𝑏 ≠ 0. We have 0 ≤ 𝑎 and 𝑎 ≠ 0 hence 0 < 𝑎 from which we get 1 ≤ 𝑎. Similarly 1 ≤ 𝑏.
Then 𝑎 = 1 + 𝑘 for some 𝑘 ∈ ℕ. Then 1 = 𝑎𝑏 = 𝑏 + 𝑏𝑘, i.e. 𝑏 ≤ 1. Hence 𝑏 = 1 and 𝑎 = 𝑎 × 1 = 𝑎𝑏 = 1. ■

1.2.4 Summary

The main properties of (ℕ, +, ×, ≤, 0, 1), where +, × are two binary laws and ≤ is a binary relation, are:
• + is associative: ∀𝑎, 𝑏, 𝑐 ∈ ℕ, (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐)
• + is commutative: ∀𝑎, 𝑏 ∈ ℕ, 𝑎 + 𝑏 = 𝑏 + 𝑎
• 0 is the unit of +: ∀𝑎 ∈ ℕ, 0 + 𝑎 = 𝑎 + 0 = 𝑎
• Cancellation rule: ∀𝑎, 𝑏, 𝑐 ∈ ℕ, 𝑎 + 𝑏 = 𝑎 + 𝑐 ⇒ 𝑏 = 𝑐
• ∀𝑎, 𝑏 ∈ ℕ, 𝑎 + 𝑏 = 0 ⟹ 𝑎 = 𝑏 = 0.
• × is associative: ∀𝑎, 𝑏, 𝑐 ∈ ℕ, (𝑎 × 𝑏) × 𝑐 = 𝑎 × (𝑏 × 𝑐)
• × is commutative: ∀𝑎, 𝑏 ∈ ℕ, 𝑎 × 𝑏 = 𝑏 × 𝑎
• 1 is the unit of ×: ∀𝑎 ∈ ℕ, 1 × 𝑎 = 𝑎 × 1 = 𝑎
• Cancellation rule: for ∀𝑎, 𝑏, 𝑐 ∈ ℕ, {

𝑎 × 𝑏 = 𝑎 × 𝑐
𝑎 ≠ 0 ⇒ 𝑏 = 𝑐

• × is distributive over +: ∀𝑎, 𝑏, 𝑐 ∈ ℕ, 𝑎 × (𝑏 + 𝑐) = 𝑎 × 𝑏 + 𝑎 × 𝑐 and (𝑎 + 𝑏) × 𝑐 = 𝑎 × 𝑐 + 𝑏 × 𝑐
• ∀𝑎, 𝑏 ∈ ℕ, 𝑎 × 𝑏 = 0 ⟹ (𝑎 = 0 or 𝑏 = 0)
• ∀𝑎, 𝑏 ∈ ℕ, 𝑎𝑏 = 1 ⟹ 𝑎 = 𝑏 = 1
• ≤ is an order on ℕ, i.e.

– Reflexivity: ∀𝑎 ∈ ℕ, 𝑎 ≤ 𝑎
– Antisymmetry: ∀𝑎, 𝑏 ∈ ℕ, (𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎) ⇒ 𝑎 = 𝑏
– Transitivity: ∀𝑎, 𝑏, 𝑐 ∈ ℕ, (𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑐) ⇒ 𝑎 ≤ 𝑐

Besides, this order is total: ∀𝑎, 𝑏 ∈ ℕ, 𝑎 ≤ 𝑏 or 𝑏 ≤ 𝑎
• Well-ordering principle: a nonempty subset 𝐴 of ℕ has a least element.
• ≤ is compatible with +: ∀𝑎, 𝑏, 𝑐 ∈ ℕ, 𝑎 ≤ 𝑏 ⇒ 𝑎 + 𝑐 ≤ 𝑏 + 𝑐
• ≤ is compatible with × : ∀𝑎, 𝑏, 𝑐 ∈ ℕ, 𝑎 ≤ 𝑏 ⇒ 𝑎𝑐 ≤ 𝑏𝑐
⋆ ∀𝑎, 𝑏, 𝑐, 𝑑 ∈ ℕ, (𝑎 ≤ 𝑏 and 𝑐 ≤ 𝑑) ⇒ 𝑎 + 𝑐 ≤ 𝑏 + 𝑑
⋆ ∀𝑎, 𝑏, 𝑐, 𝑑 ∈ ℕ, (𝑎 ≤ 𝑏 and 𝑐 ≤ 𝑑) ⇒ 𝑎𝑐 ≤ 𝑏𝑑
• ∀𝑎 ∈ ℕ, 𝑎 ≤ 0 ⟹ 𝑎 = 0
• There is no 𝑎 ∈ ℕ such that 0 < 𝑎 < 1.
• There is no 𝑎 ∈ ℕ such that ∀𝑏 ∈ ℕ, 𝑏 ≤ 𝑎.
• ∀𝑎, 𝑏 ∈ ℕ, 𝑎 < 𝑏 ⇔ 𝑎 + 1 ≤ 𝑏.
• For 𝑎, 𝑏 ∈ ℕ we have (exclusively) either 𝑎 < 𝑏, or 𝑎 = 𝑏, or 𝑏 < 𝑎.

Particularly, the negation of 𝑎 ≤ 𝑏 is 𝑏 < 𝑎.

The properties with a star were not proved in this chapter but will be proved as practice questions.
Except otherwise stated, you can directly use any of the above properties without proving them.
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1.3 Proof by induction
In this sectionwe are going to highlight the connection between the principle of induction as stated in Theorem
1.1 and the notion of proof by induction that you have already encountered.

1.3.1 Formal statement
Proof by induction is closely related to the fact that ℕ is defined by its initial term 0 and then by taking
iteratively its successor. This fact is highlighted in the proof of the following theorem.

Theorem 1.22 (Proof by induction). Let 𝒫(𝑛) be a statement depending on 𝑛 ∈ ℕ.
If 𝒫(0) is true and if 𝒫(𝑛) ⟹ 𝒫(𝑛 + 1) is true for all 𝑛 ∈ ℕ, then 𝒫(𝑛) is true for all 𝑛 ∈ ℕ. Formally,

{
𝒫(0)
∀𝑛 ∈ ℕ, (𝒫(𝑛) ⟹ 𝒫(𝑛 + 1))

⟹ ∀𝑛 ∈ ℕ, 𝒫(𝑛)

The informal idea is that since 𝒫(0) and 𝒫(0) ⟹ 𝒫(1) are true then 𝒫(1) is true. Then we can repeat the
same process: since 𝒫(1) and 𝒫(1) ⟹ 𝒫(2) are true then 𝒫(2) is true, and so on...
This way 𝒫(0), 𝒫(1), 𝒫(2), 𝒫(3), … are all true.

Proof of Theorem 1.22.
We define the set 𝐴 = {𝑛 ∈ ℕ ∶ 𝒫(𝑛) is true}. Then:

• 𝐴 ⊂ ℕ by definition of 𝐴.
• 0 ∈ ℕ since 𝒫(0) is true.
• 𝑠(𝐴) ⊂ 𝐴

Indeed, let 𝑛 ∈ 𝑠(𝐴). Then 𝑛 = 𝑠(𝑚) = 𝑚 + 1 for some 𝑚 ∈ 𝐴. By definition of 𝐴, 𝒫(𝑚) is true. But by
assumption 𝒫(𝑚) ⟹ 𝒫(𝑚 + 1) is also true. Hence 𝒫(𝑚 + 1) is true, meaning that 𝑛 = 𝑚 + 1 ∈ 𝐴.

Hence, by the induction principle of Theorem 1.1, 𝐴 = ℕ. Finally, for every 𝑛 ∈ ℕ we have that 𝒫(𝑛) is true. ■

1.3.2 In practice
How to write a proof by induction? There are several steps that you should make sure they appear clearly!

• What statement are you proving? What is your 𝒫(𝑛)? Particularly, on which parameter are you doing
the induction? You should make everything clear for the reader!

• Base case: prove that 𝒫(0) is true.
• Induction step: prove that if 𝒫(𝑛) is true for some 𝑛 ∈ ℕ then 𝒫(𝑛 + 1) is also true.

It is important to clearly write the induction hypothesis and what you want to prove in this step (the
reader shouldn’t have to guess). Make sure that you used the induction hypothesis somewhere, oth-
erwise there is something suspicious with your proof.

Below are two basic examples:

Proposition 1.23. For any 𝑛 ∈ ℕ, the sum 0 + 1 + 2 + ⋯ + 𝑛 is equal to 𝑛(𝑛+1)
2 .

Proof. We are going to prove that ∀𝑛 ∈ ℕ, 0 + 1 + 2 + 3 + ⋯ + 𝑛 = 𝑛(𝑛+1)
2 by induction on 𝑛.

• Base case: Let 𝑛 = 0. Then the sum in the left hand side is equal to 0. And 𝑛(𝑛+1)
2 = 0⋅1

2 = 0. So the
equality holds.

• Induction step: Assume that 0 + 1 + 2 + 3 + ⋯ + 𝑛 = 𝑛(𝑛+1)
2 for some 𝑛 ∈ ℕ and let’s prove that

0 + 1 + 2 + 3 + ⋯ + 𝑛 + (𝑛 + 1) = (𝑛+1)(𝑛+2)
2 .

0 + 1 + 2 + 3 + ⋯ + 𝑛 + (𝑛 + 1) = 𝑛(𝑛 + 1)
2 + (𝑛 + 1) by the induction hypothesis

= 𝑛(𝑛 + 1) + 2(𝑛 + 1)
2 = (𝑛 + 1)(𝑛 + 2)

2
Which proves the induction step. ■
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Proposition 1.24. For any 𝑛 ∈ ℕ, the sum of the first 𝑛 odd numbers is equal to 𝑛2.

Proof. We are going to prove that ∀𝑛 ∈ ℕ, 1 + 3 + ⋯ + (2𝑛 − 1) = 𝑛2 by induction on 𝑛.
• Base case: Let 𝑛 = 0. Then the sum in the left hand side is empty, so it is equal to 0. And 𝑛2 = 02 = 0.

So the equality holds.
• Induction step: Assume that the sum of the first 𝑛 odd numbers is equal to 𝑛2 for some 𝑛 ∈ ℕ, i.e.

1 + 3 + ⋯ + (2𝑛 − 1) = 𝑛2.
Let’s prove that 1 + 3 + ⋯ + (2𝑛 − 1) + (2𝑛 + 1) = (𝑛 + 1)2.

1 + 3 + ⋯ + (2𝑛 − 1) + (2𝑛 + 1) = 𝑛2 + 2𝑛 + 1 by the induction hypothesis
= (𝑛 + 1)2 by the binomial formula

Which proves the induction step. ■

1.3.3 Variants of the induction

Strong induction

The strong induction is equivalent to the usual induction (i.e. one may prove that Theorem 1.22 holds
assuming Theorem 1.25, and that Theorem 1.25 holds assuming Theorem 1.22). Nonetheless, in some cases,
it may be easier to write a strong induction rather than a usual one.

Theorem 1.25 (Strong induction). Let 𝒫(𝑛) be a statement depending on 𝑛 ∈ ℕ.
If 𝒫(0) is true and if (𝑃 (0), 𝑃 (1), … , 𝒫(𝑛)) ⟹ 𝒫(𝑛 + 1) is true for all 𝑛 ∈ ℕ, then 𝒫(𝑛) is true for all 𝑛 ∈ ℕ.
Formally,

{
𝒫(0)
∀𝑛 ∈ ℕ, ((𝒫(0), 𝒫(1), … , 𝒫(𝑛)) ⟹ 𝒫(𝑛 + 1))

⟹ ∀𝑛 ∈ ℕ, 𝒫(𝑛)

Proof. For 𝑛 ∈ ℕ, we define ℛ(𝑛) by

ℛ(𝑛) is true ⇔ 𝒫(0), 𝒫(1), … , 𝒫(𝑛) are true

Assume that 𝒫(0) is true and that (𝑃 (0), 𝑃 (1), … , 𝒫(𝑛)) ⟹ 𝒫(𝑛 + 1) is true for all 𝑛 ∈ ℕ.
Then ℛ(0) is true since 𝒫(0) is. And, for all 𝑛 ∈ ℕ, ℛ(𝑛) ⟹ ℛ(𝑛 + 1) is true.
By the usual induction ℛ(𝑛) is true for any 𝑛 ∈ ℕ. Particularly, 𝒫(𝑛) is true for any 𝑛 ∈ ℕ as expected. ■

Base case at 𝑛0

It may be easier towrite a proof by induction starting at a base 𝑛0 ∈ ℕ which is not necessarily 0. Below is the
corresponding statement for the usual induction, but it is possible to adapt the strong induction similarly.

Theorem 1.26. Let 𝑛0 ∈ ℕ. Let 𝒫(𝑛) be a statement depending on a natural number 𝑛 ≥ 𝑛0.
If 𝒫(𝑛0) is true and if 𝒫(𝑛) ⟹ 𝒫(𝑛 + 1) is true for every natural number 𝑛 ≥ 𝑛0, then 𝒫(𝑛) is true for every natural
number 𝑛 ≥ 𝑛0. Formally,

{
𝒫(𝑛0)
∀𝑛 ∈ ℕ≥𝑛0 , (𝒫(𝑛) ⟹ 𝒫(𝑛 + 1))

⟹ ∀𝑛 ∈ ℕ≥𝑛0 , 𝒫(𝑛)

Proof. For 𝑛 ∈ ℕ, we define ℛ(𝑛) by

ℛ(𝑛) is true ⇔ 𝒫(𝑛 + 𝑛0) is true

Then ℛ(0) is true since 𝒫(𝑛0) is. And, for all 𝑛 ∈ ℕ, ℛ(𝑛) ⟹ ℛ(𝑛 + 1) is true.
By the usual induction ℛ(𝑛) is true for any 𝑛 ∈ ℕ, i.e. 𝒫(𝑛) is true for any 𝑛 ∈ ℕ≥𝑛0 . ■
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Below is an example of induction starting at 𝑛0 = 5.

Proposition 1.27. For any integer 𝑛 ≥ 5, 2𝑛 > 𝑛2.

Proof. We are going to prove that ∀𝑛 ≥ 5, 2𝑛 > 𝑛2 by induction on 𝑛.
• Base case at 𝑛 = 5: 25 = 32 > 25 = 52.
• Induction step: Assume that 2𝑛 > 𝑛2 for some 𝑛 ≥ 5 and let’s prove that 2𝑛+1 > (𝑛 + 1)2.

Note that 2𝑛+1 = 2×2𝑛 ≥ 2𝑛2 by the induction hypothesis. Hence it is enough to prove that 2𝑛2 > (𝑛+1)2

which is equivalent to 𝑛2 − 2𝑛 − 1 > 0.
We study the sign of the polynomial 𝑥2 − 2𝑥 − 1. It is a polynomial of degree 2 with positive leading
coefficient and its discriminant is (−2)2 − 4 × (−1) = 8 > 0. Therefore

𝑥

𝑥2 −2𝑥−1

−∞ 1 − √2 1 + √2 +∞

+ 0 − 0 +

Since 5 > 1 + √2, we know that 𝑛2 − 2𝑛 − 1 > 0 for 𝑛 ≥ 5. Which proves the induction step. ■

Remark 1.28. The above example is interesting because the induction step holds for 𝑛 ≥ 3, but 𝒫(3) and
𝒫(4) are false: don’t forget the base case! It is crucial!
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Exercises

Exercise 1.
Using only the definition of the multiplication, the properties of the addition and Peano axioms, prove that:

1. ∀𝑎 ∈ ℕ, 0 × 𝑎 = 𝑎 × 0 = 0
2. ∀𝑎 ∈ ℕ, 𝑎 × 1 = 𝑎

Exercise 2.

Given 𝑚 ∈ ℕ, we define inductively the function 𝑚• ∶ ℕ → ℕ
𝑛 ↦ 𝑚𝑛 by 𝑚0 = 1 and ∀𝑛 ∈ ℕ, 𝑚𝑠(𝑛) = 𝑚𝑛 × 𝑚.

Prove that:
1. ∀𝑚 ∈ ℕ, 𝑚1 = 𝑚
2. ∀𝑎, 𝑏, 𝑛 ∈ ℕ, (𝑎 × 𝑏)𝑛 = 𝑎𝑛 × 𝑏𝑛

3. ∀𝑎, 𝑚, 𝑛 ∈ ℕ, 𝑎𝑚+𝑛 = 𝑎𝑚 × 𝑎𝑛

4. ∀𝑛 ∈ ℕ ∖ {0}, 0𝑛 = 0
5. ∀𝑛 ∈ ℕ, 1𝑛 = 1

Exercise 3.
For each of the followings, is the binary relation ℛ an order on 𝐸? If so, is it total?

1. 𝐸 = ℤ and ∀𝑥, 𝑦 ∈ ℤ, 𝑥ℛ𝑦 ⇔ 𝑥 = −𝑦
2. 𝐸 = ℝ and ∀𝑥, 𝑦 ∈ ℝ, 𝑥ℛ𝑦 ⇔ cos2 𝑥 + sin2 𝑦 = 1
3. 𝐸 = 𝒫(𝑆) is the set of subsets of a fixed set 𝑆 and ∀𝐴, 𝐵 ∈ 𝒫(𝑆), 𝐴ℛ𝐵 ⇔ 𝐴 ⊂ 𝐵

Exercise 4.
We define a binary relation ℛ on ℕ by ∀𝑥, 𝑦 ∈ ℕ, 𝑥ℛ𝑦 ⇔ ∃𝑝, 𝑞 ∈ ℕ ∖ {0}, 𝑦 = 𝑝𝑥𝑞 .

1. Prove that ℛ is an order.
2. Is it a total order?

Exercise 5.
We define a binary relation ≺ on ℕ2 by (𝑥1, 𝑦1) ≺ (𝑥2, 𝑦2) ⇔ (𝑥1 ≤ 𝑥2 and 𝑦1 ≤ 𝑦2).

1. Prove that ≺ is an order.
2. Is it a total order?

Exercise 6.
Prove that

1. ∀𝑎, 𝑏, 𝑐, 𝑑 ∈ ℕ, (𝑎 ≤ 𝑏 and 𝑐 ≤ 𝑑) ⇒ 𝑎 + 𝑐 ≤ 𝑏 + 𝑑
2. ∀𝑎, 𝑏, 𝑐, 𝑑 ∈ ℕ, (𝑎 ≤ 𝑏 and 𝑐 ≤ 𝑑) ⇒ 𝑎𝑐 ≤ 𝑏𝑑

Exercise 7.
For which 𝑐 ∈ ℕ, do we have ∀𝑎, 𝑏 ∈ ℕ, 𝑎𝑐 ≤ 𝑏𝑐 ⟹ 𝑎 ≤ 𝑏?

Exercise 8.
Using the well-ordering principle, find an alternative proof of: there is no natural number 𝑛 between 0 and 1.

Exercise 9.
1. Prove that ∀𝑛 ∈ ℕ, ∃𝑘 ∈ ℕ, 𝑛3 + 2𝑛 = 3𝑘.

2. Prove that ∀𝑛 ∈ ℕ,
𝑛

∑
𝑘=0

𝑘
2𝑘 = 2 − 𝑛 + 2

2𝑛 .

Exercise 10.

We define a sequence (𝑢𝑛)𝑛≥1 by 𝑢1 = 3 and ∀𝑛 ∈ ℕ ∖ {0}, 𝑢𝑛+1 = 2
𝑛

𝑛

∑
𝑘=1

𝑢𝑘.

Prove that ∀𝑛 ∈ ℕ ∖ {0}, 𝑢𝑛 = 3𝑛.
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Exercise 11. Bernoulli’s inequality.
Prove that ∀𝑥 ∈ [−1, +∞), ∀𝑛 ∈ ℕ, (1 + 𝑥)𝑛 ≥ 1 + 𝑛𝑥.
(here we consider the usual order ≥ on ℝ)

Exercise 12.
For 𝑛 ∈ ℕ, we define the statement 𝑃 (𝑛) by 2𝑛 > 𝑛2.

1. Prove that ∀𝑛 ≥ 3, 𝑃 (𝑛) ⟹ 𝑃 (𝑛 + 1).
2. For which 𝑛 ∈ ℕ, is 𝑃 (𝑛) true?

Exercise 13.
What do you think about the following proof by induction?

We want to prove that for any 𝑛 ≥ 2, 𝑛 distinct points of the plane are always on the same line.
Proof:

• Base case: when 𝑛 = 2 the property is known to be true.
• Induction step: we assume that the property is true for some 𝑛 ≥ 2 and we want to show that it also

holds for 𝑛 + 1.
Let 𝐴1, 𝐴2, … , 𝐴𝑛+1 be 𝑛 + 1 distinct points of the plane. By the induction hypothesis, we have

– 𝐴1, 𝐴2, … , 𝐴𝑛 are on the same line 𝐿.
– 𝐴2, 𝐴3, … , 𝐴𝑛+1 are on the same line 𝐿′.

Then 𝐴2, 𝐴3, … , 𝐴𝑛 are at the same time on 𝐿 and 𝐿′ so that 𝐿 = 𝐿′.
Thus 𝐴1, … , 𝐴𝑛+1 are on the same line. Which ends the induction step. ■

Exercise 14.
Given 𝑛 ∈ ℕ ∖ {0}, prove that there exists a unique couple (𝑎, 𝑏) ∈ ℕ such that 𝑛 = 2𝑎(2𝑏 + 1).

Exercise 15.
Find all the increasing functions 𝑓 ∶ ℕ → ℕ such that 𝑓(2) = 2 and ∀𝑝, 𝑞 ∈ ℕ, 𝑓(𝑝𝑞) = 𝑓(𝑝)𝑓(𝑞).
Recall that a function 𝑓 ∶ ℕ → ℕ is increasing if ∀𝑥, 𝑦 ∈ ℕ, 𝑥 < 𝑦 ⟹ 𝑓(𝑥) < 𝑓(𝑦).

Exercise 16.
1. Prove that if 𝑆 ⊂ ℤ admits a greatest element then it is unique.
2. Prove that a non-empty finite subset of ℤ admits a greatest element.

Exercise 17.
Let 𝑛 ∈ ℕ ∖ {0}. Prove that if one square of a 2𝑛 × 2𝑛 chessboard is removed, then the remaining squares can
be covered by L-shaped trominoes.

Figure 1.1: An 8 × 8 chessboard with a removed
square.

Figure 1.2: An 𝐿-shaped tromino on a chessboard.



Chapter 2

Integers

In this chapter, we are going to construct the set ℤ of integers and then to study its properties. The informal
idea consists in extending ℕ by adding its symmetry with respect to 0:

−5 −4 −3 −2 −1 0 1 2 3 4 5

For this purpose, we have to give a meaning to the notation −𝑛 where 𝑛 is a natural number and then we
have to extend from ℕ to ℤ the operations (+,×) and the order (≤).

There are several ways to formally do that. The usual one consists in defining ℤ = (ℕ × ℕ)/∼ for the
equivalence relation (𝑎, 𝑏) ∼ (𝑐, 𝑑) ⇔ 𝑎+𝑑 = 𝑏+𝑐. Let me explain what does it mean: intuitively (𝑎, 𝑏) stands
for 𝑎−𝑏, but, since such an expression is not unique (e.g. 7−5 = 10−8), we need to ”identify” some couples
(e.g. (7, 5) = (10, 8)). This construction has several advantages (it is easy to extend +, × and ≤) but it needs
an additional layer of abstraction (equivalence relations, equivalence classes…).

Instead, I will use a more naive approach. The counterpart is that extending the operations will be a
little bit tedious with several cases to handle (e.g. the definition of 𝑎 + 𝑏 will depend on the signs of 𝑎 and
𝑏, so we have 4 cases just to define the addition…).

Note that what we are going to describe in a few lines took centuries to be developped and accepted:
during the 18th century, most mathematicians were still reluctant about using negative numbers.

2.1 Construction of the integers

2.1.1 Definition
Definition 2.1. For any 𝑛 ∈ ℕ ∖ {0}, we formally introduce the symbol −𝑛 read as minus 𝑛 and we fix the
convention that −0 = 0.
We define the set −ℕ ≔ {−𝑛 ∶ 𝑛 ∈ ℕ}. Then the set of integers is ℤ ≔ (−ℕ) ∪ ℕ.

Remark 2.2. (−ℕ) ∩ ℕ = {0}

Remark 2.3. ℕ ⊂ ℤ 0 1 2 3 4 5 ℕ

−5 −4 −3 −2 −1 0−ℕ

−5 −4 −3 −2 −1 0 1 2 3 4 5 ℤ
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2.1.2 Operations
Definition 2.4. For 𝑚, 𝑛 ∈ ℕ, we set:
(i) 𝑚 + 𝑛 for the usual addition in ℕ
(ii) (−𝑚) + (−𝑛) = −(𝑚 + 𝑛)
(iii) 𝑚 + (−𝑛) = {

𝑘 where 𝑘 is the unique natural integer such that 𝑚 = 𝑛 + 𝑘 if 𝑛 ≤ 𝑚
−𝑘 where 𝑘 is the unique natural integer such that 𝑛 = 𝑚 + 𝑘 if 𝑚 ≤ 𝑛

(iv) (−𝑚) + 𝑛 = 𝑛 + (−𝑚) where 𝑛 + (−𝑚) is defined in (iii)

We’ve just defined + ∶ ℤ × ℤ → ℤ
(𝑎, 𝑏) ↦ 𝑎 + 𝑏 .

Remark 2.5. We have to check that the overlapping cases 𝑚 = 0 or 𝑛 = 0 are not contradictory.

Definition 2.6. For 𝑚, 𝑛 ∈ ℕ, we set:
(i) 𝑚 × 𝑛 for the usual product in ℕ
(ii) (−𝑚) × (−𝑛) = 𝑚 × 𝑛
(iii) 𝑚 × (−𝑛) = −(𝑚 × 𝑛)
(iv) (−𝑚) × 𝑛 = −(𝑚 × 𝑛)
We’ve just defined × ∶ ℤ × ℤ → ℤ

(𝑎, 𝑏) ↦ 𝑎 × 𝑏 .

Remark 2.7. We may simply write 𝑎𝑏 for 𝑎 × 𝑏 when there is no possible confusion.

Remark 2.8. Note that the addition and product on ℤ are compatible with the addition and product on ℕ.

Definition 2.9. For 𝑛 ∈ ℕ, we set −(−𝑛) = 𝑛. Then −𝑎 is well-defined for every 𝑎 ∈ ℤ.

Proposition 2.10.
• + is associative: ∀𝑎, 𝑏, 𝑐 ∈ ℤ, (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐)
• 0 is the unit of +: ∀𝑎 ∈ ℤ, 𝑎 + 0 = 0 + 𝑎 = 𝑎
• −𝑎 is the additive inverse of 𝑎: ∀𝑎 ∈ ℤ, 𝑎 + (−𝑎) = (−𝑎) + 𝑎 = 0
• + is commutative: ∀𝑎, 𝑏 ∈ ℤ, 𝑎 + 𝑏 = 𝑏 + 𝑎
• × is associative: ∀𝑎, 𝑏, 𝑐 ∈ ℤ, (𝑎𝑏)𝑐 = 𝑎(𝑏𝑐)
• × is distributive with respect to +: ∀𝑎, 𝑏, 𝑐 ∈ ℤ, 𝑎 × (𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐 et (𝑎 + 𝑏)𝑐 = 𝑎𝑐 + 𝑏𝑐
• 1 is the unit of ×: ∀𝑎 ∈ ℤ, 1 × 𝑎 = 𝑎 × 1 = 𝑎
• × is commutative: ∀𝑎, 𝑏 ∈ ℤ, 𝑎𝑏 = 𝑏𝑎
• ∀𝑎, 𝑏 ∈ ℤ, 𝑎𝑏 = 0 ⇒ (𝑎 = 0 or 𝑏 = 0)

The above properties are easy to prove but the proofs are tedious with several cases depending on the signs.

Remark. From now on, we may simply write 𝑎 − 𝑏 for 𝑎 + (−𝑏) and −𝑎 + 𝑏 for (−𝑎) + 𝑏.

Corollary 2.11. ∀𝑎, 𝑏, 𝑐 ∈ ℤ, (𝑎𝑐 = 𝑏𝑐 and 𝑐 ≠ 0) ⟹ 𝑎 = 𝑏

Proof. Let 𝑎, 𝑏, 𝑐 ∈ ℤ be such that 𝑎𝑐 = 𝑏𝑐 and 𝑐 ≠ 0.
Then (𝑎 − 𝑏)𝑐 = 0. So either 𝑎 − 𝑏 = 0 or 𝑐 = 0. Since 𝑐 ≠ 0, we get 𝑎 − 𝑏 = 0, i.e. 𝑎 = 𝑏.. ■

2.1.3 Order
Definition 2.12. We define the binary relation ≤ on ℤ by

∀𝑎, 𝑏 ∈ ℤ, 𝑎 ≤ 𝑏 ⇔ 𝑏 − 𝑎 ∈ ℕ

Proposition 2.13. ≤ defines a total order on ℤ.

Proof.
• Reflexivity. Let 𝑎 ∈ ℤ, then 𝑎 − 𝑎 = 0 ∈ ℕ so 𝑎 ≤ 𝑎.
• Antisymmetry. Let 𝑎, 𝑏 ∈ ℤ. Assume that 𝑎 ≤ 𝑏 and that 𝑏 ≤ 𝑎. Then 𝑏 − 𝑎 ∈ ℕ and 𝑎 − 𝑏 ∈ ℕ. So

𝑎 − 𝑏 = −(𝑏 − 𝑎) ∈ (−ℕ). Hence 𝑎 − 𝑏 ∈ (−ℕ) ∩ ℕ = {0} and thus 𝑎 = 𝑏.
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• Transitivity. Let 𝑎, 𝑏, 𝑐 ∈ ℤ. Assume that 𝑎 ≤ 𝑏 and that 𝑏 ≤ 𝑐. Then 𝑏 − 𝑎 ∈ ℕ and 𝑐 − 𝑏 ∈ ℕ.
Thus 𝑐 − 𝑎 = (𝑐 − 𝑏) + (𝑏 − 𝑎) ∈ ℕ, i.e. 𝑎 ≤ 𝑐.

• Let 𝑎, 𝑏 ∈ ℤ. Then 𝑏 − 𝑎 ∈ ℤ = (−ℕ) ∪ (ℕ).
First case: 𝑏 − 𝑎 ∈ ℕ then 𝑎 ≤ 𝑏.
Second case: 𝑏 − 𝑎 ∈ (−ℕ), then 𝑎 − 𝑏 = −(𝑏 − 𝑎) ∈ ℕ and 𝑏 ≤ 𝑎.
Hence the order is total. ■

Proposition 2.14. The order on ℤ is compatible with the order on ℕ.

Proof. Let 𝑎, 𝑏 ∈ ℕ.
• Assume that 𝑎 ≤ℤ 𝑏. Then 𝑘 = 𝑏 − 𝑎 ∈ ℕ. So 𝑏 = 𝑎 + 𝑘, i.e. 𝑎 ≤ℕ 𝑏.
• Assume that 𝑎 ≤ℕ 𝑏. Then 𝑏 = 𝑎 + 𝑘 for some 𝑘 ∈ ℕ. Then 𝑏 − 𝑎 = 𝑘 ∈ ℕ, i.e. 𝑎 ≤ℤ 𝑏. ■

Proposition 2.15.
1. ℕ = {𝑎 ∈ ℤ, 0 ≤ 𝑎}
2. ∀𝑎, 𝑏, 𝑐 ∈ ℤ, 𝑎 ≤ 𝑏 ⇔ 𝑎 + 𝑐 ≤ 𝑏 + 𝑐
3. ∀𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ, (𝑎 ≤ 𝑏 and 𝑐 ≤ 𝑑) ⇒ 𝑎 + 𝑐 ≤ 𝑏 + 𝑑
4. ∀𝑎, 𝑏 ∈ ℤ, ∀𝑐 ∈ ℕ ∖ {0}, 𝑎 ≤ 𝑏 ⇔ 𝑎𝑐 ≤ 𝑏𝑐
5. ∀𝑎, 𝑏 ∈ ℤ, ∀𝑐 ∈ (−ℕ) ∖ {0}, 𝑎 ≤ 𝑏 ⇔ 𝑏𝑐 ≤ 𝑎𝑐

Proof.
1. Let 𝑎 ∈ ℤ. Then 0 ≤ 𝑎 ⇔ 𝑎 = 𝑎 − 0 ∈ ℕ.
2. Let 𝑎, 𝑏, 𝑐 ∈ ℤ. Then 𝑎 ≤ 𝑏 ⇔ 𝑏 − 𝑎 ∈ ℕ ⇔ (𝑏 + 𝑐) − (𝑎 + 𝑐) ∈ ℕ ⇔ 𝑎 + 𝑐 ≤ 𝑏 + 𝑐.
3. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ. Assume that 𝑎 ≤ 𝑏 and that 𝑐 ≤ 𝑑. Then 𝑏 − 𝑎 ∈ ℕ and 𝑑 − 𝑐 ∈ ℕ.

Hence (𝑏 + 𝑑) − (𝑎 + 𝑐) = (𝑏 − 𝑎) + (𝑑 − 𝑐) ∈ ℕ, i.e. 𝑎 + 𝑐 ≤ 𝑏 + 𝑑.
4. Let 𝑎, 𝑏 ∈ ℤ and 𝑐 ∈ ℕ.

⇒: Assume that 𝑎 ≤ 𝑏. Then 𝑏 − 𝑎 ∈ ℕ, thus 𝑏𝑐 − 𝑎𝑐 = (𝑏 − 𝑎)𝑐 ∈ ℕ. Therefore 𝑎𝑐 ≤ 𝑏𝑐.
⇐: Assume that 𝑐 ≠ 0 and that 𝑎𝑐 ≤ 𝑏𝑐. Then 𝑏𝑐 − 𝑎𝑐 = (𝑏 − 𝑎)𝑐 ∈ ℕ. Assume by contradiction
that (𝑏 − 𝑎) ∈ (−ℕ) ∖ {0} then, by definition of the multiplication, (𝑏 − 𝑎)𝑐 ∈ (−ℕ) ∖ {0}, which is a
contradiction. Hence 𝑏 − 𝑎 ∈ ℕ, i.e. 𝑎 ≤ 𝑏.

5. Let 𝑎, 𝑏 ∈ ℤ and 𝑐 ∈ (−ℕ).
⇒: Assume that 𝑎 ≤ 𝑏. Then 𝑏 − 𝑎 ∈ ℕ, thus 𝑎𝑐 − 𝑏𝑐 = (𝑏 − 𝑎)(−𝑐) ∈ ℕ. Therefore 𝑏𝑐 ≤ 𝑎𝑐.
⇐: Assume that 𝑐 ≠ 0 and that 𝑏𝑐 ≤ 𝑎𝑐. Then 𝑎𝑐 − 𝑏𝑐 = (𝑏 − 𝑎)(−𝑐) ∈ ℕ. And we conclude as in 4. ■

Remark 2.16. Given 𝑎, 𝑏, 𝑐 ∈ ℤ, it is common to lighten the notation by writing 𝑎 ≤ 𝑏 ≤ 𝑐 for (𝑎 ≤ 𝑏 and 𝑏 ≤
𝑐).

Theorem 2.17.
1. A non-empty subset 𝐴 of ℤ which is bounded from below has a least element, i.e.

∃𝑚 ∈ 𝐴, ∀𝑎 ∈ 𝐴, 𝑚 ≤ 𝑎

2. A non-empty subset 𝐴 of ℤ which is bounded from above has a greatest element, i.e.

∃𝑀 ∈ 𝐴, ∀𝑎 ∈ 𝐴, 𝑎 ≤ 𝑀

Proof.

1. Assume that 𝐴 is a non-empty subset of ℤ which is bounded from below.
Then there exists 𝑘 ∈ ℤ such that ∀𝑎 ∈ 𝐴, 𝑘 ≤ 𝑎. Define 𝑆 = {𝑎 − 𝑘 ∶ 𝑎 ∈ 𝐴}.
Then 𝑆 is a non-empty subset of ℕ (indeed, ∀𝑎 ∈ 𝐴, 0 ≤ 𝑎 − 𝑘).
By the well-ordering principle, there exists �̃� ∈ 𝑆 such that ∀𝑎 ∈ 𝐴, �̃� ≤ 𝑎 − 𝑘.
Then 𝑚 = �̃� + 𝑘 is the least element of 𝐴 (note that �̃� ∈ 𝑆 so 𝑚 = �̃� + 𝑘 ∈ 𝐴)

2. Assume that 𝐴 is a non-empty subset of ℤ which is bounded from above. Then (−𝐴) = {−𝑎 ∶ 𝑎 ∈ 𝐴}
is a non-empty subset of ℤ which is bounded from below (prove it).
By the above, there exists 𝑚 ∈ (−𝐴) such that ∀𝑎 ∈ 𝐴, 𝑚 ≤ −𝑎. Hence ∀𝑎 ∈ 𝐴, 𝑎 ≤ −𝑚.
Thus 𝑀 ≔ −𝑚 is the greatest element of 𝐴. ■
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2.2 Absolute value

Definition 2.18. For 𝑛 ∈ ℤ, we define the absolute value of 𝑛 by |𝑛| ≔ {
𝑛 if 𝑛 ∈ ℕ

−𝑛 if 𝑛 ∈ (−ℕ) .

Proposition 2.19.
(i) ∀𝑛 ∈ ℤ, |𝑛| ∈ ℕ
(ii) ∀𝑛 ∈ ℤ, 𝑛 ≤ |𝑛|
(iii) ∀𝑛 ∈ ℤ, |𝑛| = 0 ⇔ 𝑛 = 0
(iv) ∀𝑎, 𝑏 ∈ ℤ, |𝑎𝑏| = |𝑎||𝑏|
(v) ∀𝑎, 𝑏 ∈ ℤ, |𝑎| ≤ 𝑏 ⇔ −𝑏 ≤ 𝑎 ≤ 𝑏
(vi) ∀𝑎, 𝑏 ∈ ℤ, |𝑎 + 𝑏| ≤ |𝑎| + |𝑏| (triangle inequality)

Proof.
(i) First case: if 𝑛 ∈ ℕ then |𝑛| = 𝑛 ∈ ℕ.

Second case: if 𝑛 ∈ (−ℕ) then 𝑛 = −𝑚 for some 𝑚 ∈ ℕ and |𝑛| = −𝑛 = −(−𝑚) = 𝑚 ∈ ℕ.
(ii) First case: 𝑛 ∈ ℕ. Then 𝑛 ≤ 𝑛 = |𝑛|.

Second case: 𝑛 ∈ (−ℕ). Then 𝑛 ≤ 0 ≤ |𝑛|.
(iii) Note that |0| = 0 and that if 𝑛 ≠ 0 then |𝑛| ≠ 0.
(iv) You have to study separately the four cases depending on the signs of 𝑎 and 𝑏.
(v) If 𝑏 < 0 then |𝑎| ≤ 𝑏 and −𝑏 ≤ 𝑎 ≤ 𝑏 are both false. So we may assume that 𝑏 ∈ ℕ. Then

First case: 𝑎 ∈ ℕ. Then |𝑎| ≤ 𝑏 ⇔ 𝑎 ≤ 𝑏 ⇔ −𝑏 ≤ 𝑎 ≤ 𝑏.
Second case: 𝑎 ∈ (−ℕ). Then |𝑎| ≤ 𝑏 ⇔ −𝑎 ≤ 𝑏 ⇔ −𝑏 ≤ 𝑎 ⇔ −𝑏 ≤ 𝑎 ≤ 𝑏.

(vi) Since 𝑎 + 𝑏 ≤ |𝑎| + |𝑏| and −(𝑎 + 𝑏) = −𝑎 − 𝑏 ≤ | − 𝑎| + | − 𝑏| = |𝑎| + |𝑏|, we get |𝑎 + 𝑏| ≤ |𝑎| + |𝑏|. ■

2.3 Euclidean division
Theorem 2.20 (Euclidean division).
Given 𝑎 ∈ ℤ and 𝑏 ∈ ℤ ∖ {0}, there exists a unique couple (𝑞, 𝑟) ∈ ℤ2 such that

{
𝑎 = 𝑏𝑞 + 𝑟
0 ≤ 𝑟 < |𝑏|

The integers 𝑞 and 𝑟 are respectively called the quotient and the remainder of the division of 𝑎 by 𝑏.

Proof.
Existence:
First case: assume that 0 < 𝑏.
We set1 𝐸 = {𝑝 ∈ ℤ ∶ 𝑏𝑝 ≤ 𝑎}.

• 𝐸 ≠ ∅, indeed if 0 ≤ 𝑎 then 0 ∈ 𝐸, otherwise 𝑎 ∈ 𝐸.
• |𝑎| is an upper bound of 𝐸.

Indeed, let 𝑝 ∈ 𝐸.
If 𝑝 ≤ 0 then 𝑝 ≤ 0 ≤ |𝑎|.
Otherwise, if 0 < 𝑝 then 1 ≤ 𝑏 ⟹ 𝑝 ≤ 𝑏𝑝 ≤ 𝑎 ≤ |𝑎|.

Thus 𝐸 is a non-empty subset of ℤ which is bounded from above.
Hence it admits a greatest element, i.e. there exists 𝑞 ∈ 𝐸 such that ∀𝑝 ∈ 𝐸, 𝑝 ≤ 𝑞.
We set 𝑟 = 𝑎 − 𝑏𝑞. Since 𝑞 ∈ 𝐸, 𝑟 = 𝑎 − 𝑏𝑞 ≥ 0.
And 𝑞 + 1 ∉ 𝐸 since 𝑞 + 1 > 𝑞 whereas 𝑞 is the greatest element of 𝐸.
Therefore 𝑏(𝑞 + 1) > 𝑎, so 𝑟 = 𝑎 − 𝑏𝑞 < 𝑏 = |𝑏|.
We wrote 𝑎 = 𝑏𝑞 + 𝑟 with 0 ≤ 𝑟 < |𝑏| as expected.

1When 𝑏 > 0, the informal idea of this proof consists in determining how many times we can add 𝑏 before exceeding 𝑎, which
will give the quotient. Then the remainder will be obtained by filling the difference in order to reach 𝑎.
Intuitively, if the quotient exists, it has to be the greatest 𝑝 such that 𝑏𝑝 ≤ 𝑎. We have to prove the existence of such a number and
then to check formally that this idea is actually correct.
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Second case: assume that 𝑏 < 0.
Then we apply the first case to 𝑎 and −𝑏 > 0: there exists (𝑞, 𝑟) ∈ ℤ2 such that 𝑎 = −𝑏𝑞 + 𝑟 = 𝑏(−𝑞) + 𝑟 with
0 ≤ 𝑟 < −𝑏 = |𝑏|.

Uniqueness: assume that we have two suitable couples (𝑞, 𝑟) and (𝑞′, 𝑟′).
Then 𝑟′ − 𝑟 = (𝑎 − 𝑏𝑞′) − (𝑎 − 𝑏𝑞) = 𝑏(𝑞 − 𝑞′). Besides

{
0 ≤ 𝑟 < |𝑏|
0 ≤ 𝑟′ < |𝑏| ⟹ {

−|𝑏| < −𝑟 ≤ 0
0 ≤ 𝑟′ < |𝑏| ⟹ −|𝑏| < 𝑟′ − 𝑟 < |𝑏|

Thus −|𝑏| < 𝑏(𝑞 − 𝑞′) < |𝑏|, from which we get |𝑏||𝑞 − 𝑞′| = |𝑏(𝑞 − 𝑞′)| < |𝑏|.
Since |𝑏| > 0, we obtain 0 ≤ |𝑞 − 𝑞′| < 1.
But we proved in the first chapter that there is no natural number between 0 and 1.
Therefore |𝑞 − 𝑞′| = 0, which implies that 𝑞 − 𝑞′ = 0, i.e. 𝑞 = 𝑞′.
Finally, 𝑟′ = 𝑏 − 𝑎𝑞′ = 𝑏 − 𝑎𝑞 = 𝑟. ■

Examples 2.21.

• Division of 22 by 5: 22 = 5 × 4 + 2.
The quotient is 𝑞 = 4 and the remainder is 𝑟 = 2.

• Division of −22 by 5: −22 = 5 × (−5) + 3.
The quotient is 𝑞 = −5 and the remainder is 𝑟 = 3.

• Division of 22 by −5: 22 = (−5) × (−4) + 2.
The quotient is 𝑞 = −4 and the remainder is 𝑟 = 2.

• Division of −22 by −5: −22 = (−5) × 5 + 3.
The quotient is 𝑞 = 5 and the remainder is 𝑟 = 3.

Proposition 2.22. Given 𝑛 ∈ ℤ,
• either 𝑛 = 2𝑘 for some 𝑘 ∈ ℤ (then we say that 𝑛 is even),
• or 𝑛 = 2𝑘 + 1 for some 𝑘 ∈ ℤ (then we say that 𝑛 is odd),

and these cases are exclusive.

Proof. Let 𝑛 ∈ ℤ. By the Euclidean division by 2, there exist 𝑘, 𝑟 ∈ ℤ such that 𝑛 = 2𝑘 + 𝑟 and 0 ≤ 𝑟 ≤ 1. But
we know from the last chapter that there is no natural number between 0 and 1. Hence either 𝑟 = 0 or 𝑟 = 1.
These cases are exclusive by the uniqueness of the Euclidean division. ■

2.4 Divisibility
Definition 2.23. Given 𝑎, 𝑏 ∈ ℤ, we say that 𝑎 is divisible by 𝑏 if there exists 𝑘 ∈ ℤ such that 𝑎 = 𝑏𝑘.
In this case we write 𝑏|𝑎 and we also say that 𝑏 is divisor of 𝑎 or that 𝑎 is a multiple of 𝑏.

Examples 2.24. • (−5)|10 • 5 ∤ (−11)
(we will study divisibility criteria later in the term)

Remarks 2.25.
• Any integer is a divisor of 0, i.e ∀𝑏 ∈ ℤ, 𝑏|0. Indeed, 0 = 𝑏 × 0.
• Any integer is divisible by 1 and itself, i.e. ∀𝑎 ∈ ℤ, 1|𝑎 and 𝑎|𝑎. Indeed, 𝑎 = 1 × 𝑎 = 𝑎 × 1.
• The only integer divisible by 0 is 0 itself, i.e. ∀𝑎 ∈ ℤ, 0|𝑎 ⟹ 𝑎 = 0.

Indeed, then 𝑎 = 0 × 𝑘 for some 𝑘 ∈ ℤ and hence 𝑎 = 0.
• When 𝑏 ≠ 0, 𝑏|𝑎 if and only if the remainder of the Euclidean division of 𝑎 by 𝑏 is 𝑟 = 0.
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Proposition 2.26.
1. ∀𝑎, 𝑏 ∈ ℤ, (𝑎|𝑏 and 𝑏|𝑎) ⟹ |𝑎| = |𝑏|
2. ∀𝑎, 𝑏, 𝑐 ∈ ℤ, (𝑎|𝑏 and 𝑏|𝑐) ⟹ 𝑎|𝑐
3. ∀𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ, (𝑎|𝑏 and 𝑐|𝑑) ⟹ 𝑎𝑐|𝑏𝑑
4. ∀𝑎, 𝑏, 𝑐, 𝜆, 𝜇 ∈ ℤ, (𝑎|𝑏 and 𝑎|𝑐) ⟹ 𝑎|(𝜆𝑏 + 𝜇𝑐)
5. ∀𝑎 ∈ ℤ, 𝑎|1 ⟹ |𝑎| = 1

Proof.
1. Let 𝑎, 𝑏 ∈ ℤ satisfying 𝑎|𝑏 and 𝑏|𝑎. If 𝑎 = 0 then 𝑏 = 0 (from 0|𝑏). So we may assume that 𝑎 ≠ 0.

There exist 𝑘, 𝑙 ∈ ℤ such that 𝑏 = 𝑎𝑘 and 𝑎 = 𝑏𝑙. Then 𝑎 = 𝑏𝑙 = 𝑎𝑘𝑙, thus 1 = 𝑘𝑙 since 𝑎 ≠ 0.
Therefore, 1 = |1| = |𝑘𝑙| = |𝑘| × |𝑙|. Since |𝑘|, |𝑙| ∈ ℕ, we get that |𝑘| = |𝑙| = 1.
Finally, |𝑎| = |𝑏𝑙| = |𝑏| × |𝑙| = |𝑏| × 1 = |𝑏|.

2. Let 𝑎, 𝑏, 𝑐 ∈ ℤ satisfying 𝑎|𝑏 and 𝑏|𝑐. Then 𝑏 = 𝑎𝑘 and 𝑐 = 𝑏𝑙 for some 𝑘, 𝑙 ∈ ℤ.
Therefore 𝑐 = 𝑏𝑙 = 𝑎𝑘𝑙, so 𝑎|𝑐.

3. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ satisfying 𝑎|𝑏 and 𝑐|𝑑. Then 𝑏 = 𝑎𝑘 and 𝑑 = 𝑐𝑙 for some 𝑘, 𝑙 ∈ ℤ.
Therefore 𝑏𝑑 = 𝑎𝑐𝑘𝑙, so 𝑎𝑐|𝑏𝑑.

4. Let 𝑎, 𝑏, 𝑐 ∈ ℤ satisfying 𝑎|𝑏 and 𝑎|𝑐. Then 𝑏 = 𝑘𝑎 and 𝑐 = 𝑙𝑎 for some 𝑘, 𝑙 ∈ ℤ.
Hence 𝜆𝑏 + 𝜇𝑐 = 𝜆𝑘𝑎 + 𝜇𝑙𝑎 = (𝜆𝑘 + 𝜇𝑙)𝑎. Thus 𝑎|(𝜆𝑏 + 𝜇𝑐).

5. Let 𝑎 ∈ ℤ. Assume that 𝑎|1. Then 𝑎|1 and 1|𝑎. So by the first item, |𝑎| = 1. ■

2.5 Greatest common divisor
Theorem 2.27. Given 𝑎, 𝑏 ∈ ℤ not both zero, the set common divisors of 𝑎 and 𝑏 admits a greatest element denoted
gcd(𝑎, 𝑏) and called the greatest common divisor of 𝑎 and 𝑏.

Proof. Let 𝑎, 𝑏 ∈ ℤ not both zero. We set 𝑆 = {𝑑 ∈ ℤ ∶ 𝑑|𝑎 and 𝑑|𝑏}.
• 𝑆 is non-empty since it contains 1.
• Since 𝑎 and 𝑏 are not both zero, we know that 𝑎 ≠ 0 or 𝑏 ≠ 0.

Without loss of generality, let assume that 𝑎 ≠ 0.
Let 𝑑 ∈ 𝑆 then 𝑎 = 𝑑𝑘 for some 𝑘 ∈ ℤ. Note that 𝑘 ≠ 0 (otherwise 𝑎 = 𝑑𝑘 = 0), hence 1 ≤ |𝑘|.
Thus 𝑑 ≤ |𝑑| ≤ |𝑑| × |𝑘| = |𝑑𝑘| = |𝑎|. Hence 𝑆 is bounded from above by |𝑎|.

Therefore, 𝑆 admits a greatest element (as an non-empty subset of ℤ bounded from above). ■

Remark 2.28. Note that gcd(𝑎, 𝑏) ≥ 1 since 1 is a common divisor of 𝑎 and 𝑏 (particularly gcd(𝑎, 𝑏) ∈ ℕ).

Proposition 2.29. Let 𝑎, 𝑏 ∈ ℤ not both zero and 𝑑 ∈ ℕ ∖ {0}. Then

⎧⎪
⎨
⎪⎩

𝑑|𝑎
𝑑|𝑏
∀𝛿 ∈ ℕ, (𝛿|𝑎 and 𝛿|𝑏) ⟹ 𝛿|𝑑

|
|
||

⟹ 𝑑 = gcd(𝑎, 𝑏)

Remark 2.30. We will see later that the converse holds (Proposition 2.35.(3)).

Proof. Let 𝑎, 𝑏 ∈ ℤ not both zero and 𝑑 ∈ ℕ ∖ {0}. Assume that 𝑑|𝑎, 𝑑|𝑏 and that 𝑑 is a multiple of every
non-negative common divisors, i.e.

∀𝛿 ∈ ℕ, (𝛿|𝑎 and 𝛿|𝑏) ⟹ 𝛿|𝑑

Then 𝑑 is a common divisor of 𝑎 and 𝑏. We need to prove that it is the greatest one.
Let 𝛿 ∈ ℤ be a common divisor of 𝑎 and 𝑏.

• If 𝛿 ≤ 0 then 𝛿 ≤ 𝑑.
• If 𝛿 > 0 then 𝑑 = 𝛿𝑘 for some 𝑘 ∈ ℤ.

Note that 𝑘 ≥ 1 since 𝑑, 𝛿 > 0. Thus 𝛿 ≤ 𝛿𝑘 = 𝑑. ■
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The following theorem is extremely useful! We will use it quite often to study gcd and also when studying
modular arithmetic!

Theorem 2.31 (Bézout’s identity). Given 𝑎, 𝑏 ∈ ℤ not both zero, there exist 𝑢, 𝑣 ∈ ℤ such that

𝑎𝑢 + 𝑏𝑣 = gcd(𝑎, 𝑏)

Example 2.32. gcd(15, 25) = 5 = 15 × 2 + 25 × (−1).
We will see below an algorithm in order to find a suitable couple (𝑢, 𝑣).
Remarks 2.33.

• The couple (𝑢, 𝑣) is not unique: 5 = 15 × 27 + 25 × (−16).
• The converse is false: 2 = 3 × 4 + 5 × (−2) but gcd(3, 5) = 1 ≠ 2.

Nonetheless, we will see later that there is a partial converse when gcd(𝑎, 𝑏) = 1.
Proof of Theorem 2.31. Let 𝑎, 𝑏 ∈ ℤ not both zero. Set 𝑆 = {𝑛 ∈ ℕ ∖ {0} ∶ ∃𝑢, 𝑣 ∈ ℤ, 𝑛 = 𝑎𝑢 + 𝑏𝑣}.
Without loss of generality we may assume that 𝑎 ≠ 0.
Note that 𝑆 is not empty. Indeed,

• If 𝑎 < 0 then 𝑛 = 𝑎 × (−1) + 𝑏 × 0 is in 𝑆, or,
• If 𝑎 > 0 then 𝑛 = 𝑎 × 1 + 𝑏 × 0 is in 𝑆.

Thus, by the well-ordering principle, 𝑆 admits a least element 𝑑.
Since 𝑑 ∈ 𝑆, we know that 𝑑 = 𝑎𝑢 + 𝑏𝑣 for some 𝑢, 𝑣 ∈ ℤ.
Let’s prove that 𝑑 = gcd(𝑎, 𝑏).

• By Euclidean division, there exist 𝑞, 𝑟 ∈ ℤ such that 𝑎 = 𝑑𝑞 + 𝑟 and 0 ≤ 𝑟 < |𝑑| = 𝑑.
Assume by contradiction that 𝑟 ≠ 0.
Then 𝑟 = 𝑎 − 𝑞𝑑 = 𝑎 − 𝑞(𝑎𝑢 + 𝑏𝑣) = 𝑎 × (1 − 𝑞𝑢) + 𝑏 × (−𝑞𝑣) is in 𝑆. Which contradicts the fact that 𝑑 is
the least element of 𝑆. Hence 𝑟 = 0 and 𝑎 = 𝑑𝑞, i.e. 𝑑|𝑎.

• Similarly 𝑑|𝑏.
• Let 𝛿 ∈ ℤ be another common divisor of 𝑎 and 𝑏.

Since 𝛿|𝑎 and 𝛿|𝑏, 𝑎 = 𝛿𝑘 and 𝑏 = 𝛿𝑙 for some 𝑘, 𝑙 ∈ ℤ. Hence 𝑑 = 𝑎𝑢 + 𝑏𝑣 = 𝛿(𝑘𝑢 + 𝑙𝑣), i.e. 𝛿|𝑑.

Therefore, by Proposition 2.29, 𝑑 = gcd(𝑎, 𝑏).
Hence gcd(𝑎, 𝑏) = 𝑎𝑢 + 𝑏𝑣 as requested. ■

Proposition 2.34. ∀𝑎 ∈ ℤ ∖ {0}, gcd(𝑎, 0) = |𝑎|
Proof. By definition, gcd(𝑎, 0) is the greatest divisor of 𝑎.
Since 𝑎 = |𝑎| × (±1), we know that |𝑎| is a divisor of 𝑎. We have to check that it is the greatest one.
Let 𝑑 be a non-negative divisor of 𝑎, then 𝑎 = 𝑑𝑘 for some 𝑘 ∈ ℤ.
Since 𝑎 ≠ 0, we know that 𝑘 ≠ 0.
Hence 1 ≤ |𝑘| from which we get that 𝑑 ≤ 𝑑|𝑘| = |𝑑| × |𝑘| = |𝑑𝑘| = |𝑎|. ■

Proposition 2.35. Let 𝑎, 𝑏 ∈ ℤ not both zero, then
1. gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎)
2. gcd(𝑎, 𝑏) = gcd(𝑎, −𝑏) = gcd(−𝑎, 𝑏) = gcd(−𝑎, −𝑏)
3. ∀𝛿 ∈ ℤ, (𝛿|𝑎 and 𝛿|𝑏) ⟹ 𝛿| gcd(𝑎, 𝑏)
4. ∀𝜆 ∈ ℤ ∖ {0}, gcd(𝜆𝑎, 𝜆𝑏) = |𝜆| gcd(𝑎, 𝑏)
5. ∀𝑘 ∈ ℤ, gcd(𝑎 + 𝑘𝑏, 𝑏) = gcd(𝑎, 𝑏)

Proof. I will just prove 3, 4 and 5, the first two being easy to prove.

3. Let 𝑎, 𝑏 ∈ ℤ. Let 𝛿 ∈ ℤ. Assume that 𝛿|𝑎 and 𝛿|𝑏.
By Bézout’s theorem, gcd(𝑎, 𝑏) = 𝑎𝑢 + 𝑏𝑣 for some 𝑢, 𝑣 ∈ ℤ.
Since 𝛿|𝑎 and 𝛿|𝑏, we have that 𝛿|𝑎𝑢 + 𝑏𝑣 = gcd(𝑎, 𝑏).

4. Let 𝑎, 𝑏 ∈ ℤ let 𝜆 ∈ ℤ ∖ {0}. Since |𝜆| divides 𝜆𝑎 and 𝜆𝑏, then it divides gcd(𝜆𝑎, 𝜆𝑏) by the third item.
Hence gcd(𝜆𝑎, 𝜆𝑏) = |𝜆| × 𝑑 for some 𝑑 ∈ ℤ. Let’s prove that 𝑑 = gcd(𝑎, 𝑏).
Let 𝑛 ∈ ℤ, then 𝑛|𝑎, 𝑏 ⇔ |𝜆|𝑛|𝜆𝑎, 𝜆𝑏 ⇔ |𝜆|𝑛|gcd(𝜆𝑎, 𝜆𝑏) ⇔ 𝑛|𝑑.
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5. Let 𝑎, 𝑏, 𝑘 ∈ ℤ. gcd(𝑎, 𝑏)|𝑎, 𝑏 hence gcd(𝑎, 𝑏)|𝑎 + 𝑘𝑏. Thus gcd(𝑎, 𝑏)| gcd(𝑎 + 𝑘𝑏, 𝑏).
Similarly, gcd(𝑎 + 𝑘𝑏, 𝑏)|𝑎 + 𝑘𝑏, 𝑏 hence gcd(𝑎 + 𝑘𝑏, 𝑏)|𝑎 + 𝑘𝑏 − 𝑘𝑏 = 𝑎. Thus gcd(𝑎 + 𝑘𝑏, 𝑏)| gcd(𝑎, 𝑏).
Hence |gcd(𝑎 +𝑘𝑏, 𝑏)| = | gcd(𝑎, 𝑏)|. Since they are both non-negative, we get gcd(𝑎+𝑘𝑏, 𝑏) = gcd(𝑎, 𝑏).

■

2.6 Euclid’s algorithm
Euclid’s algorithm is an efficient way to compute the gcd of two numbers.

Let 𝑎, 𝑏 ∈ ℤ not both zero.
Initialization of the algorithm. We set 𝑎0 ≔ |𝑎| and 𝑏0 ≔ |𝑏|. Note that gcd(𝑎0, 𝑏0) = gcd(±𝑎, ±𝑏) = gcd(𝑎, 𝑏).
Iteration. Assume that 𝑎𝑛, 𝑏𝑛 ∈ ℤ are already constructed with 𝑎𝑛, 𝑏𝑛 ≥ 0 not both zero.

• If 𝑏𝑛 = 0 then gcd(𝑎𝑛, 𝑏𝑛) = 𝑎𝑛 and the algorithm stops.
• Otherwise, by Euclidean division, there exist 𝑞𝑛, 𝑟𝑛 ∈ ℝ such that 𝑎𝑛 = 𝑏𝑛𝑞𝑛 + 𝑟𝑛 and 0 ≤ 𝑟𝑛 < 𝑏𝑛.

We set 𝑎𝑛+1 ≔ 𝑏𝑛 and 𝑏𝑛+1 ≔ 𝑟𝑛, then 𝑎𝑛+1 = 𝑏𝑛 > 0 and 0 ≤ 𝑏𝑛+1 < 𝑏𝑛.
Moreover, using Proposition 2.35.(5),

gcd(𝑎𝑛, 𝑏𝑛) = gcd(𝑏𝑛𝑞𝑛 + 𝑟𝑛, 𝑏𝑛) = gcd(𝑟𝑛, 𝑏𝑛) = gcd(𝑏𝑛, 𝑟𝑛) = gcd(𝑎𝑛+1, 𝑏𝑛+1)

We repeat the iterative process with 𝑎𝑛+1 and 𝑏𝑛+1.
Conclusion. Since the 𝑏𝑛 are natural numbers and 0 ≤ 𝑏𝑛+1 < 𝑏𝑛, there exists 𝑁 ∈ ℕ such that 𝑏𝑁 = 0.
It proves that the algorithm ends after finitely many steps. Furthermore

gcd(𝑎, 𝑏) = gcd(𝑎0, 𝑏0) = gcd(𝑎1, 𝑏1) = ⋯ = gcd(𝑎𝑁 , 𝑏𝑁 ) = 𝑎𝑁

So the algorithm computes gcd(𝑎, 𝑏) as expected.

Algorithm: Euclid’s algorithm in pseudocode

Result: gcd(𝑎, 𝑏) where 𝑎, 𝑏 ∈ ℤ not both zero.
𝑎 ← |𝑎|
𝑏 ← |𝑏|
while 𝑏 ≠ 0 do

𝑟 ← 𝑎%𝑏 (the remainder of the Euclidean division 𝑎 = 𝑏𝑞 + 𝑟 with 0 ≤ 𝑟 < 𝑏)
𝑎 ← 𝑏
𝑏 ← 𝑟

end
return 𝑎

Example 2.36. We want to compute gcd(600, −136):
𝑎0 = 600, 𝑏0 = 136 gcd(600, −136) = gcd(600, 136)

600 = 136 × 4 + 56 𝑎1 = 136, 𝑏1 = 56 gcd(600, 136) = gcd(136, 56)
136 = 56 × 2 + 24 𝑎2 = 56, 𝑏2 = 24 gcd(136, 56) = gcd(56, 24)
56 = 24 × 2 + 8 𝑎3 = 24, 𝑏3 = 8 gcd(56, 24) = gcd(24, 8)
24 = 8 × 3 + 0 𝑎4 = 8, 𝑏4 = 0 gcd(24, 8) = gcd(8, 0) = 8

Hence gcd(600, −136) = 8.

It is possible to obtain a suitable Bézout’s identity from the above algorithm by going backward.

8 = 56 + 24 × (−2) since 8 = 56 − 24 × 2
= 56 + (136 + 56 × (−2)) × (−2) since 24 = 136 − 56 × 2
= 136 × (−2) + 56 × 5
= 136 × (−2) + (600 + 136 × (−4)) × 5 since 56 = 600 − 136 × 4

8 = 600 × 5 + (−136) × 22



28 Concepts in Abstract Mathematics J.-B. Campesato

2.7 Coprime integers
Definition 2.37. Let 𝑎, 𝑏 ∈ ℤ not both zero. We say that 𝑎 and 𝑏 are coprime (or relatively prime) if gcd(𝑎, 𝑏) = 1.
The following result states that the converse of Bézout’s identity holds for coprime numbers.
Proposition 2.38. Let 𝑎, 𝑏 ∈ ℤ not both zero. Then

gcd(𝑎, 𝑏) = 1 ⇔ ∃𝑢, 𝑣 ∈ ℤ, 𝑎𝑢 + 𝑏𝑣 = 1
Proof.
⇒: it is simply Bézout’s identity.
⇐: let 𝑎, 𝑏 ∈ ℤ not both zero. Assume that 𝑎𝑢 + 𝑏𝑣 = 1 for some 𝑢, 𝑣 ∈ ℤ.
Set 𝑑 = gcd(𝑎, 𝑏). Then 𝑑|𝑎 and 𝑑|𝑏, hence 𝑑|(𝑎𝑢 + 𝑏𝑣) = 1. So |𝑑| = 1. But since 𝑑 ∈ ℕ, we get that 𝑑 = 1. ■

Theorem 2.39 (Gauss’ lemma). ∀𝑎, 𝑏, 𝑐 ∈ ℤ, {
gcd(𝑎, 𝑏) = 1
𝑎|𝑏𝑐 ⟹ 𝑎|𝑐

Proof. Let 𝑎, 𝑏, 𝑐 ∈ ℤ such that gcd(𝑎, 𝑏) = 1 and 𝑎|𝑏𝑐. Then there exists 𝑘 ∈ ℤ such that 𝑏𝑐 = 𝑘𝑎. By Bézout’s
identity, there exist 𝑢, 𝑣 ∈ ℤ such that 1 = 𝑎𝑢 + 𝑏𝑣.
Thus 𝑐 = (𝑎𝑢 + 𝑏𝑣)𝑐 = 𝑎𝑢𝑐 + 𝑏𝑐𝑣 = 𝑎𝑢𝑐 + 𝑘𝑎𝑣 = 𝑎(𝑢𝑐 + 𝑘𝑣). Hence 𝑎|𝑐. ■

The following result is very useful.
Proposition 2.40. Let 𝑎, 𝑏, 𝑐 ∈ ℤ. If 𝑎|𝑐, 𝑏|𝑐 and gcd(𝑎, 𝑏) = 1 then 𝑎𝑏|𝑐.
Proof. Since 𝑎|𝑐 and 𝑏|𝑐, there exist 𝑘, 𝑙 ∈ ℤ such that 𝑐 = 𝑎𝑘 and 𝑐 = 𝑏𝑙.
Since gcd(𝑎, 𝑏) = 1, by Bézout’s identity, there exists 𝑢, 𝑣 ∈ ℤ such that 𝑎𝑢 + 𝑏𝑣 = 1.
Then 𝑐 = 𝑎𝑢𝑐 + 𝑏𝑣𝑐 = 𝑎𝑢𝑏𝑙 + 𝑏𝑣𝑎𝑘 = 𝑎𝑏(𝑢𝑙 + 𝑣𝑘), so that 𝑎𝑏|𝑐. ■

2.8 A diophantine equation
Theorem 2.41. Let 𝑎, 𝑏, 𝑐 ∈ ℤ with 𝑎 and 𝑏 not both zero.
Then the equation 𝑎𝑥 + 𝑏𝑦 = 𝑐 has an integer solution if and only if gcd(𝑎, 𝑏)|𝑐.
Proof.
⇒: Assume that 𝑎𝑥 + 𝑏𝑦 = 𝑐 for some (𝑥, 𝑦) ∈ ℤ2.
Since gcd(𝑎, 𝑏)|𝑎 and gcd(𝑎, 𝑏)|𝑏, we get that gcd(𝑎, 𝑏)|𝑎𝑥 + 𝑏𝑦 = 𝑐.
⇐: Assume that gcd(𝑎, 𝑏)|𝑐, then there exists 𝑘 ∈ ℤ such that 𝑐 = 𝑘 gcd(𝑎, 𝑏).
By Bézout’s identity, there exists (𝑢, 𝑣) ∈ ℤ2 such that 𝑎𝑢 + 𝑏𝑣 = gcd(𝑎, 𝑏) hence 𝑎𝑘𝑢 + 𝑏𝑘𝑣 = 𝑘 gcd(𝑎, 𝑏) = 𝑐.
Therefore (𝑘𝑢, 𝑘𝑣) is an integer solution of the equation. ■

How to find all the integer solutions of an equation of the form 𝑎𝑥 + 𝑏𝑦 = 𝑐 with 𝑎 ≠ 0, 𝑏 ≠ 0 and gcd(𝑎, 𝑏)|𝑐?
• Step 1: reduction to the case where gcd(𝑎, 𝑏) = 1.

There exist ̃𝑎, �̃�, ̃𝑐 ∈ ℤ such that 𝑎 = ̃𝑎gcd(𝑎, 𝑏), 𝑏 = �̃�gcd(𝑎, 𝑏) and 𝑐 = ̃𝑐 gcd(𝑎, 𝑏).
Hence 𝑎𝑥 + 𝑏𝑦 = 𝑐 ⇔ ̃𝑎𝑥 + ̃𝑏𝑦 = ̃𝑐.
Note that gcd(𝑎, 𝑏) = gcd( ̃𝑎gcd(𝑎, 𝑏), �̃�gcd(𝑎, 𝑏)) = gcd(𝑎, 𝑏) gcd( ̃𝑎, �̃�). Hence gcd( ̃𝑎, �̃�) = 1.

• Step 2: find a first solution.
By Bézout’s identity, there exist 𝑢, 𝑣 ∈ ℤ such that ̃𝑎𝑢 + �̃�𝑣 = 1 (we may find such a couple (𝑢, 𝑣) using
Euclid’s algorithm).
Thence ̃𝑎 ̃𝑐𝑢 + ̃𝑏 ̃𝑐𝑣 = ̃𝑐. Therefore we obtain a solution (𝑥0, 𝑦0) = ( ̃𝑐𝑢, ̃𝑐𝑣) of ̃𝑎𝑥 + �̃�𝑦 = ̃𝑐.

• Step 3: study the other solutions.
Let (𝑥, 𝑦) ∈ ℤ2 satisfying ̃𝑎𝑥 + �̃�𝑦 = ̃𝑐. Then ̃𝑎(𝑥 − 𝑥0) + �̃�(𝑦 − 𝑦0) = 0, i.e. �̃�(𝑦 − 𝑦0) = ̃𝑎(𝑥0 − 𝑥).
Since ̃𝑎|�̃�(𝑦−𝑦0) and gcd( ̃𝑎, �̃�) = 1, byGauss’ lemma, ̃𝑎|𝑦−𝑦0, i.e. there exists 𝑘 ∈ ℤ such that 𝑘 ̃𝑎 = 𝑦−𝑦0,
i.e. 𝑦 = 𝑦0 + 𝑘 ̃𝑎.
Then ̃𝑎(𝑥0 − 𝑥) = �̃�(𝑦 − 𝑦0) = 𝑘 ̃𝑎�̃�. Since ̃𝑎 ≠ 0, we get 𝑥0 − 𝑥 = 𝑘�̃�, i.e. 𝑥 = 𝑥0 − 𝑘 ̃𝑏.
We proved that there exists 𝑘 ∈ ℤ such that (𝑥, 𝑦) = (𝑥0 − 𝑘 ̃𝑏, 𝑦0 + 𝑘 ̃𝑎).
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• Step 4: check the converse!
We proved that if (𝑥, 𝑦) ∈ ℤ2 is a solution, then there exists 𝑘 ∈ ℤ such that (𝑥, 𝑦) = (𝑥0 − 𝑘 ̃𝑏, 𝑦0 + 𝑘 ̃𝑎).
It means that the solutions are among (𝑥, 𝑦) ∈ {(𝑥0 − 𝑘 ̃𝑏, 𝑦0 + 𝑘 ̃𝑎) ∶ 𝑘 ∈ ℤ}.
Otherwise stated, it means that {(𝑥, 𝑦) ∈ ℤ2 ∶ ̃𝑎𝑥 + �̃�𝑦 = ̃𝑐} ⊂ {(𝑥0 − 𝑘�̃�, 𝑦0 + 𝑘 ̃𝑎) ∶ 𝑘 ∈ ℤ}.
It doesn’t mean that they are all solutions, we need to check that separately, i.e. we need to prove the
other inclusion.
Conversely, let’s prove that for every 𝑘 ∈ ℤ, (𝑥, 𝑦) = (𝑥0 − 𝑘 ̃𝑏, 𝑦0 + 𝑘 ̃𝑎) is a solution:

̃𝑎(𝑥0 − 𝑘�̃�) + �̃�(𝑦0 + 𝑘 ̃𝑎) = ̃𝑎𝑥0 + ̃𝑏𝑦0 = ̃𝑐

• Step 5: Conclusion!
The solutions are exactly the (𝑥, 𝑦) = (𝑥0 − 𝑘�̃�, 𝑦0 + 𝑘 ̃𝑎) for 𝑘 ∈ ℤ.

Example 2.42. We want to solve 20𝑥 + 16𝑦 = 500 for (𝑥, 𝑦) ∈ ℤ.

1. Note that gcd(20, 16) = 4|500, hence this equation admits a solution.
Moreover, dividing by 4, we get that 20𝑥 + 16𝑦 = 500 ⇔ 5𝑥 + 4𝑦 = 125.

2. Let’s find a first solution starting from a Bézout relation 5𝑢 + 4𝑣 = 1.
In this example, there is an obvious Bézout relation: 5 × 1 + 4 × (−1) = 1.
(otherwise, we can use Euclid’s algorithm to find one)
Hence 5 × 125 + 4 × (−125) = 125. So (125, −125) is a solution

3. Let’s find all the solutions.
Let (𝑥, 𝑦) be a solution then 5𝑥 + 4𝑦 = 125 and 5 × 125 + 4 × (−125) = 125.
Thus 5(𝑥 − 125) + 4(𝑦 + 125) = 0, so 4|5(𝑥 − 125).
Since gcd(4, 5) = 1, by Gauss’ lemma, 4|𝑥 − 125. So 𝑥 = 4𝑘 + 125 for some 𝑘 ∈ ℤ.
Then 5(4𝑘) + 4(𝑦 + 125) = 0, i.e. 5𝑘 + 𝑦 + 125 = 0, so that 𝑦 = −5𝑘 − 125.
Therefore (𝑥, 𝑦) = (4𝑘 + 125, −5𝑘 − 125).

4. Conversely, (4𝑘 + 125, −5𝑘 − 125) is a solution for every 𝑘 ∈ ℤ:
indeed, 20𝑥 + 16𝑦 = 20(4𝑘 + 125) + 16(−5𝑘 − 125) = 500.

5. Conclusion: the solutions are (4𝑘 + 125, −5𝑘 − 125), 𝑘 ∈ ℤ.

For general diophantine equations, there are no recipes (Fermat’s Last Theorem is about some diophan-
tine equations and took 4 centuries to be solved).

Example 2.43. We want to find integer solutions of 𝑥2 − 𝑦2 = 401.
Note that 𝑥2 − 𝑦2 = 401 ⇔ (𝑥 − 𝑦)(𝑥 + 𝑦) = 401.
Since 401 is a prime number (I am sure you can look in the future for next Thursday lecture), then

either {
𝑥 − 𝑦 = 1
𝑥 + 𝑦 = 401 or {

𝑥 − 𝑦 = −1
𝑥 + 𝑦 = −401 or {

𝑥 − 𝑦 = 401
𝑥 + 𝑦 = 1 or {

𝑥 − 𝑦 = −401
𝑥 + 𝑦 = −1

So either (𝑥, 𝑦) = (201, 200), or (𝑥, 𝑦) = (−201, −200) or (𝑥, 𝑦) = (201, −200) or (𝑥, 𝑦) = (−201, 200).



30 Concepts in Abstract Mathematics J.-B. Campesato

Appendix 2.A Properties of the strict order

Recall that given 𝑎, 𝑏 ∈ ℤ, 𝑎 < 𝑏 means (𝑎 ≤ 𝑏 and 𝑎 ≠ 𝑏).
The following properties of < are easy to derive from the ones of ≤.

• ∀𝑎, 𝑏, 𝑐 ∈ ℤ, (𝑎 < 𝑏 and 𝑏 ≤ 𝑐) ⟹ 𝑎 < 𝑐
• ∀𝑎, 𝑏, 𝑐 ∈ ℤ, (𝑎 ≤ 𝑏 and 𝑏 < 𝑐) ⟹ 𝑎 < 𝑐
• ∀𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ, (𝑎 < 𝑏 and 𝑐 ≤ 𝑑) ⟹ 𝑎 + 𝑐 < 𝑏 + 𝑑
• ∀𝑎, 𝑏, 𝑐 ∈ ℤ, 𝑎 < 𝑏 ⟹ 𝑎 + 𝑐 < 𝑏 + 𝑐

(that’s a special case of the previous one where 𝑑 = 𝑐)
• ∀𝑎, 𝑏, 𝑐 ∈ ℤ, (𝑎 < 𝑏 and 𝑐 > 0) ⟹ 𝑎𝑐 < 𝑏𝑐
• ∀𝑎, 𝑏, 𝑐 ∈ ℤ, (𝑎 < 𝑏 and 𝑐 < 0) ⟹ 𝑎𝑐 > 𝑏𝑐
• ∀𝑎, 𝑏 ∈ ℤ, 𝑎 < 𝑏 ⇔ 𝑎 + 1 ≤ 𝑏
• Given 𝑎, 𝑏 ∈ ℤ, exactly one of the following occurs:

(i) 𝑎 < 𝑏
(ii) 𝑎 = 𝑏
(iii) 𝑎 > 𝑏
Particularly, the negation of 𝑎 ≤ 𝑏 if 𝑎 > 𝑏.

Appendix 2.B Implementation of Euclid’s algorithm in Julia

Euclid’s algorithm in Julia (iterative)
1 function euclid(a::Integer, b::Integer)
2 a != 0 || b != 0 || error("a and b must not be both zero")
3 a = abs(a)
4 b = abs(b)
5 while b != 0
6 r = a%b
7 a = b
8 b = r
9 end
10 return a
11 end

Actually, it is not important to replace 𝑎 and 𝑏 by their respective absolute values in the initialization. In
this case, the sequence (𝑏𝑛) is eventually non-negative so the algorithm stops as earlier and we just have to
make sure that we return the absolute value of 𝑎 at the end.

That being said, you should be careful because most programming languages don’t use the above con-
vention for Euclidean division. Instead, they require the remainder 𝑟 to have the same sign as 𝑏, i.e. 𝑟
satisfies 0 ≤ 𝑟 < 𝑏 if 𝑏 > 0 or 𝑏 < 𝑟 ≤ 0 if 𝑏 < 0.

But it doesn’t matter for Euclid’s algorithm: indeed, with this convention, the sequence |𝑏𝑛| is still de-
creasing, so the algorithm stops.

Therefore, we can simply write the following program (here gcd(0, 0) = 0 by convention).

Euclid’s algorithm in Julia (recursive)
1 function euclid(a::Integer, b::Integer)
2 b != 0 || return abs(a)
3 return euclid(b,a%b)
4 end
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Exercises

Exercise 1.
Let 𝑎, 𝑏 ∈ ℤ. Prove that if 𝑎2 = 𝑏2 then |𝑎| = |𝑏|.

Exercise 2.
Let 𝑛 ∈ ℕ ∖ {0}. Prove that given 𝑛 consecutive integers, one is divisible by 𝑛.
The above result is very useful and from now on you can use it without proving it again.

Exercise 3.
1. Compute gcd(816, 2260).
2. Find (𝑢, 𝑣) ∈ ℤ2 such that 816𝑢 + 2260𝑣 = gcd(816, 2260).

Exercise 4.
1. Does the divisibility relation | define an order on ℤ? If so, is it total?
2. Does the divisibility relation | define an order on ℕ? If so, is it total?

Exercise 5.
Prove that ∀𝑛 ∈ ℕ, 7|32𝑛+1 + 24𝑛+2

Exercise 6.
Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ be such that 𝑎𝑑 + 𝑏𝑐 ≠ 0. Prove that if 𝑎𝑑 + 𝑏𝑐 divides 𝑎, 𝑏, 𝑐, 𝑑 then |𝑎𝑑 + 𝑏𝑐| = 1.

Exercise 7.
Prove that ∀𝑛 ∈ ℕ, gcd(𝑛2 + 𝑛, 2𝑛 + 1) = 1

Exercise 8.
Let 𝑎, 𝑏 ∈ ℤ. Prove that if gcd(𝑎, 𝑏) = 1 then gcd(𝑎2, 𝑏2) = 1.

Exercise 9.
Prove that

1. ∀𝑎, 𝑏 ∈ ℤ ∖ {0}, 𝑎2|𝑏2 ⟹ 𝑎|𝑏
2. Prove that ∀𝑎, 𝑏, 𝑐 ∈ ℤ ∖ {0}, gcd(𝑎, 𝑏) = 1 and 𝑐|𝑏 ⟹ gcd(𝑎, 𝑐) = 1

Exercise 10.
For each of the following statements: is it true? If so, prove it. Otherwise, give a counter-example.

1. If 𝑎, 𝑏 ∈ ℤ are coprime then 𝑎 + 𝑏 and 𝑎𝑏 are too.
2. If 𝑎, 𝑏 ∈ ℤ are coprime then 𝑎 + 𝑏 and 𝑎2 + 𝑏2 are too.

We say that 𝑎 and 𝑏 are coprime if gcd(𝑎, 𝑏) = 1.

Exercise 11.
Seven friends have a dinner in a restaurant. When he brings the bill, the waiter makes the following offer:
”I’ll put on each of your foreheads a sticky note with a day of the week2 written on it, so that each of you will see the
other six notes but not yours. Then you will have to guess the day written on your note (by secretly writing your
guess on your napkin). If at least one of you has the correct answer, then the bill is on me. By the way, there is no rule
concerning my choices for the days, for instance I can assign several times the same day.”
While the waiter left to write the sticky notes, one of the friends, who happens to be a mathematician,
exclaims: ”I found a way so that we are 100% sure that one of us is correct!”.
And then he explains his winning strategy to his friends.
Can you guess what it is?

2Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday.
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Exercise 12.
1. Prove that among 42 distinct integers, there are always two distinct integers 𝑎 and 𝑏 such that 𝑏 − 𝑎 is

a multiple of 41.
2. Prove that among five integers, there are always three with sum divisible by 3.

Exercise 13.
Compute gcd(3123 − 5, 25).

Exercise 14.
Prove that ∀𝑛 ∈ ℤ, 6|𝑛(𝑛 + 1)(𝑛 + 2)

Exercise 15.
1. Prove that ∀𝑛 ∈ ℤ, gcd(2𝑛, 2𝑛 + 2) = 2.
2. Prove that ∀𝑛 ∈ ℤ, gcd(2𝑛 − 1, 2𝑛 + 1) = 1.
3. Prove that for 𝑎, 𝑏 ∈ ℤ not both zero, gcd(5𝑎 + 3𝑏, 13𝑎 + 8𝑏) = gcd(𝑎, 𝑏).

Exercise 16.
Find all the integer solutions of
(a) 𝑥𝑦 = 2𝑥 + 3𝑦 (b) 1

𝑥 + 1
𝑦 = 1

5 (c) 𝑥 + 𝑦 = 𝑥𝑦
(d) 9𝑥 + 15𝑦 = 11 (e) 9𝑥 + 15𝑦 = 18 (f) 1665𝑥 + 1035𝑦 = 45

Exercise 17.
1. Prove that if 𝑎, 𝑏 ∈ ℤ are not both zero then there exist 𝑎′, 𝑏′ ∈ ℤ such that gcd(𝑎′, 𝑏′) = 1, and 𝑎 = 𝑑𝑎′

and 𝑏 = 𝑑𝑏′ where 𝑑 = gcd(𝑎, 𝑏).
2. Prove that ∀𝑎, 𝑏, 𝑐 ∈ ℤ ∖ {0}, 𝑐|𝑎𝑏 ⟹ 𝑐|(gcd(𝑎, 𝑐) gcd(𝑏, 𝑐))

Exercise 18.
1. Prove Sophie Germain’s identity: 𝑎4 + 4𝑏4 = ((𝑎 + 𝑏)2 + 𝑏2) ((𝑎 − 𝑏)2 + 𝑏2).
2. Prove that 344 + 429 is a composite number.
3. Prove that for every natural number 𝑛 > 1, 𝑛4 + 4𝑛 is a composite number.

Hint: study the parity of 𝑛.

Exercise 19.
Prove that there are infinitely many integers that can’t be written as the sum of a square with a prime
number.
Hint: look at (3𝑘 + 2)2 for 𝑘 ∈ ℕ ∖ {0}.

Exercise 20.
Prove that ∀𝑛 ∈ ℕ, 𝑛|(𝑛 − 1)! + 1 ⟹ 𝑛 is prime.

Exercise 21.
Let 𝑛 ∈ ℕ ∖ {0}. Find 𝑛 consecutive natural numbers such that none of them is a prime number.

Exercise 22.
Prove that the following numbers are not rationals using the prime factorization theorem.

1. log10 2
2. √2

For this question you can use what you know about ℚ and ℝ.

Exercise 23.
Prove that ∀𝑛 ∈ ℤ, 49 ∤ 𝑛3 − 𝑛2 − 2𝑛 + 1
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Exercise 24.
Prove that there are infinitely many prime numbers of the form 𝑝 = 4𝑘 + 3 where 𝑘 ∈ ℕ.

Exercise 25. Goldbach’s theorem about Fermat numbers

1. Prove that ∀𝑛 ∈ ℕ, ∀𝑘 ∈ ℕ ∖ {0}, 22𝑛+𝑘 − 1 = (22𝑛 − 1) ×
𝑘−1

∏
𝑖=0

(22𝑛+𝑖 + 1).

2. Let 𝑚, 𝑛 ∈ ℕ. Prove that if 𝑚 ≠ 𝑛 then 22𝑛 + 1 and 22𝑚 + 1 are coprime.

Exercise 26.
Let 𝑎, 𝑛 ≥ 2 be two natural numbers.

1. Prove that if 𝑎𝑛 − 1 is prime then 𝑎 = 2 and 𝑛 is prime.
A number of the form 𝑀𝑛 = 2𝑛 − 1 is called a Mersenne number.

2. Is the converse true?

Exercise 27.
Three brothers inherit 𝑛 gold pieces weighing 1, 2, … , 𝑛.
For what 𝑛 ∈ ℕ ∖ {0} can they be split into three equal heaps?

Exercise 28.
A sea pirate wants to share a treasure with its sailors.
The treasure is made of 69 diamonds, 1150 pearls and 4140 gold coins.
He is able to share fairly the treasure such that everyone (including himself) receive the same amount of
each object.
How many sailors are there?



Chapter 3

Prime numbers

Informally, prime numbers are the integers greater than 1 which can’t be factorized further. More precisely
they are the natural numbers admitting exactly two positive divisors. Otherwise stated, a natural number
𝑛 ≥ 2 is a prime number if and only if its only positive divisors are 1 and 𝑛 itself.

They play a crucial role in number theory since every natural number admit a unique expression as a
product of prime numbers. They will also appear quite often later when we will study modular arithmetic.

All the results presented below were already known in Euclid’s Elements (circa 300BC). Nonetheless,
there are still many conjectures involving prime numbers which are easy to state but still open (some of
them despite several centuries of attempts). For instance:

• Goldbach conjecture (1742): any even natural number greater than 2 may be written as a sum of two
prime numbers (e.g. 4 = 2 + 2, 6 = 3 + 3, 8 = 5 + 3, 10 = 5 + 5 = 7 + 3…).

• The twin prime conjecture (1849): there are infinitelymany prime numbers 𝑝 such that 𝑝+2 is also prime
(e.g. (3, 5), (5, 7), (11, 13)…).

• Legendre conjecture (1912): given 𝑛 ∈ ℕ ∖ {0}, we may always find a prime between 𝑛2 and (𝑛 + 1)2.

3.1 Prime numbers
Definition 3.1. Wesay that a natural number 𝑝 is a prime number if it has exactly twodistinct positive divisors.
A positive natural number with more than 2 positive divisors is said to be a composite number.

Remark 3.2.
• 0 is not a prime number since any natural number is a divisor of 0.
• 1 is not a prime number because it has only one positive divisor.

Hence a natural number 𝑝 is prime if and only if 𝑝 ≥ 2 and the only positive divisors of 𝑝 are 1 and 𝑝.

Example 3.3. The first prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97…

We face two natural questions:
1. How to check whether a natural number is a prime number?
2. How many prime numbers are there?

Proposition 3.4. Let 𝑛 ∈ ℕ. Then 𝑛 is composite if and only if there exist 𝑎, 𝑏 ∈ ℕ ∖ {0, 1} such that 𝑛 = 𝑎𝑏.

Proof. Let 𝑛 ∈ ℕ.
⇒ assume that 𝑛 is a composite number, then it admits a divisor 𝑘 ∈ ℕ such that 𝑘 ≠ 1 and 𝑘 ≠ 𝑛.
So 𝑛 = 𝑘𝑚 for some 𝑚 ∈ ℕ. Note that 𝑘, 𝑚 ≠ 0 since otherwise 𝑛 = 0. Note that 𝑚 ≠ 1 since otherwise 𝑘 = 𝑛.
⇐ Assume that 𝑛 = 𝑎𝑏 for some 𝑎, 𝑏 ∈ ℕ ∖ {0, 1}.
Note that 𝑎 ≠ 𝑛, since otherwise 𝑏 = 1 and that 𝑛 ≠ 1 since otherwise 𝑎|1, i.e. 𝑎 = 1.
Therefore 1, 𝑎, 𝑛 are three distinct positive divisors of 𝑛, so that 𝑛 is a composite number. ■
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Proposition 3.5. A composite number 𝑎 admits a positive divisor 𝑏 such that 1 < 𝑏2 ≤ 𝑎.

Proof. Write 𝑎 = 𝑏1𝑏2 for some 𝑏1, 𝑏2 ∈ ℕ ∖ {0, 1}. Then 𝑏2
1, 𝑏2

2 > 1.
Assume by contradiction that both 𝑏2

1 > 𝑎 and 𝑏2
2 > 𝑎. Then 𝑎2 = (𝑏1𝑏2)2 = 𝑏2

1𝑏2
2 > 𝑎2. Hence a contradiction.

■

Example 3.6. We want to prove that 97 is a prime number.
Since 102 = 100 > 97, it is enough to check that none of 2, 3, 4, 5, 6, 7, 8 and 9 are divisors of 97.
We will see later criteria to check divisibility.

Lemma 3.7. A natural number 𝑛 ≥ 2 has at least one prime divisor.

Proof. We are going to prove with a strong induction that every natural number 𝑛 ≥ 2 has a prime divisor.
Base case at 𝑛 = 2: 2 admits a prime divisor (itself).
Induction step: assume that all the natural numbers 2, … , 𝑛 admit a prime divisor for some 𝑛 ≥ 2.

• First case: 𝑛 + 1 is a prime number, then it has a prime divisor (itself).
• Second case: 𝑛 + 1 is a composite, then 𝑛 + 1 = 𝑎𝑏 where 𝑎, 𝑏 ∈ ℕ ∖ {0, 1}.

Note that 𝑎 ≠ 𝑛 + 1 since otherwise 𝑏 = 1.
Since 2 ≤ 𝑎 ≤ 𝑛, 𝑎 admits a prime divisor 𝑝 by the induction hypothesis, i.e. 𝑎 = 𝑝𝑘 for some 𝑘 ∈ ℕ.
Then 𝑛 + 1 = 𝑎𝑏 = 𝑝𝑘𝑏. Thus the prime number 𝑝 is a divisor of 𝑛 + 1.

Which proves the induction step. ■

Theorem 3.8. There are infinitely many prime numbers.

Proof. Assume by contradiction that there exist only finitely many prime numbers 𝑝1, 𝑝2, … , 𝑝𝑛.
We set 𝑞 = 𝑝1𝑝2 ⋯ 𝑝𝑛 + 1. By Lemma 3.7, 𝑞 has a prime divisor. Thus there exists 𝑖 ∈ {1, 2, … , 𝑛} such that
𝑝𝑖|𝑞.
Then, since 𝑝𝑖|𝑝1𝑝2 … 𝑝𝑛 and 𝑝𝑖|𝑞, we have that 𝑝𝑖|(𝑞 − 𝑝1𝑝2 … 𝑝𝑛), i.e. 𝑝𝑖|1.
Therefore 𝑝𝑖 = 1, which is a contradiction because 1 is not a prime number. ■

3.2 The fundamental theorem of arithmetic
Lemma 3.9 (Euclid’s lemma). Let 𝑎, 𝑏 ∈ ℤ and 𝑝 be a prime number. If 𝑝|𝑎𝑏 then 𝑝|𝑎 or 𝑝|𝑏 (or both).

Proof. Let 𝑎, 𝑏 ∈ ℤ and 𝑝 be a prime number such that 𝑝|𝑎𝑏.
Assume that 𝑝 ∤ 𝑎 then gcd(𝑎, 𝑝) = 1 since the only positive divisors of 𝑝 are 1 and itself.
Hence, by Gauss’ lemma, 𝑝|𝑏. ■

Theorem 3.10 (The fundamental theorem of arithmetic). Any integer greater than 1 can be written as a product
of primes, moreover this expression as a product of primes is unique up to the order of the prime factors.

Remark 3.11. The above theorem states two things: the existence of a prime factorization, and its unique-
ness.

Proof.
• Existence. We are going to prove with a strong induction that 𝑛 ≥ 2 admits a prime factorization.

Base case for 𝑛 = 2: 2 is a prime number, so there is nothing to do.
Induction step: assume that all the integers 2, 3, … , 𝑛 have a prime factorization for some 𝑛 ≥ 2.
We want to prove that 𝑛 + 1 admits a prime factorization.
By Lemma 3.7, 𝑛 + 1 admits a prime factor, so 𝑛 + 1 = 𝑝𝑘 where 𝑝 is a prime number and 𝑘 ∈ ℕ ∖ {0}.
If 𝑘 = 1 then there is nothing to do. So we may assume that 𝑘 ≥ 2.
Since 1 < 𝑝, we have that 𝑘 < 𝑝𝑘 = 𝑛 + 1.
Since 2 ≤ 𝑘 ≤ 𝑛, by the induction hypothesis, 𝑘 admits a prime factorization 𝑘 = 𝑝1𝑝2 … 𝑝𝑙.
Finally 𝑛 + 1 = 𝑝𝑝1𝑝2 … 𝑝𝑙, which proves the induction step.
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• Uniqueness (up to order).
Assume by contradiction that there exists an integer greater than 1 with (at least) two distinct prime
factorizations. Denote by 𝑛 the least such integer (which exists by the well-ordering principle).
Let 𝑛 = 𝑝1𝑝2 … 𝑝𝑟 and 𝑛 = 𝑞1𝑞2 … 𝑞𝑠 be two distinct prime factorizations of 𝑛.
Then 𝑝1𝑝2 … 𝑝𝑟 = 𝑞1𝑞2 … 𝑞𝑠.
By Euclid’s lemma 𝑝1 divides one of the 𝑞𝑗 .
Up to reordering the indices, we may assume that 𝑝1|𝑞1.
Since 𝑞1 is a prime number, either 𝑝1 = 1 or 𝑝1 = 𝑞1.
And thus 𝑝1 = 𝑞1 since 𝑝1 is also a prime number (and 1 is not).
Therefore, by cancellation, 𝑚 = 𝑝2 … 𝑝𝑟 = 𝑞2 … 𝑞𝑠 is a number with two distinct prime factorizations.
Note that 𝑚 > 1 since otherwise 𝑛 = 𝑝1 = 𝑞1 is not two distinct prime factorizations.
And, since 1 < 𝑝1 we get that 𝑚 = 𝑝2 … 𝑝𝑟 < 𝑝1𝑝2 … 𝑝𝑟 = 𝑛.
Which contradicts the fact that 𝑛 is the least integer greater than 1 with two prime factorizations. ■

Corollary 3.12. Any natural number 𝑛 ∈ ℕ ∖ {0} admits a unique expression 𝑛 = ∏
𝑝 prime

𝑝𝛼𝑝 where 𝛼𝑝 ∈ ℕ

(i.e. the 𝛼𝑝 are uniquely determined).

Remarks 3.13.
• The above product is finite since all but finitely many exponents are equal to 0.
• 1 is the special case when 𝛼𝑝 = 0 for all prime numbers 𝑝.

Example 3.14. 60798375 = 32 × 53 × 11 × 173

Corollary 3.15. Write 𝑎 = ∏
𝑝 prime

𝑝𝛼𝑝 and 𝑏 = ∏
𝑝 prime

𝑝𝛽𝑝 with 𝛼𝑝, 𝛽𝑝 ∈ ℕ all but finitely many equal to 0. Then

• 𝑎|𝑏 if and only if for every prime number 𝑝, 𝛼𝑝 ≤ 𝛽𝑝.
• gcd(𝑎, 𝑏) = ∏

𝑝 prime
𝑝min(𝛼𝑝,𝛽𝑝).

Example 3.16. gcd(32 × 53 × 11 × 173, 3 × 55 × 172 × 23) = 3 × 53 × 172

Corollary 3.17. Write 𝑛 = ∏
𝑝 prime

𝑝𝛼𝑝 with 𝛼𝑝 ∈ ℕ all but finitely many equal to 0. Then the positive divisors of 𝑛 are

exactly the numbers of the form 𝑛 = ∏
𝑝 prime

𝑝𝛾𝑝 with 0 ≤ 𝛾𝑝 ≤ 𝛼𝑝 for all prime numbers 𝑝.

Particularly, 𝑛 has ∏
𝑝 prime

(𝛼𝑝 + 1) positive divisors.
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Exercises

Exercise 1.
1. Prove that ∀𝑛 ∈ ℕ, 5|22𝑛+1 + 32𝑛+1

2. Prove that ∀𝑛 ∈ ℕ, 17|27𝑛+1 + 32𝑛+1 + 510𝑛+1 + 76𝑛+1

Exercise 2.
Find all the 𝑥 ∈ ℤ such that 𝑥2 + 3 ≡ 0 (mod 7).

Exercise 3.
1. Determine the remainder of the Euclidean division of 2𝑛 by 5 for 𝑛 ∈ ℕ.
2. Determine the remainder of 13572021 by 5.

Exercise 4.
1. Find a criterion for divisibility by 5.
2. Find a criterion for divisibility by 8.

Use it on 958547 and on 123456789336.
3. Find a criterion for divisibility by 11.

Use it on 123456789 and 715.

Exercise 5.
1. Find the integer solutions of 𝑥2 − 5𝑦2 = 3.
2. Find the integer solutions of 15𝑥2 − 7𝑦2 = 9.
3. Find the integer solutions of 𝑥2 + 𝑦2 = 4003 (Hint: work modulo 4).

Exercise 6.
Prove that 13|3126 + 5126.

Exercise 7.
• For which 𝑛 ∈ ℕ, is it true that 8|3𝑛 + 4𝑛 + 1?
• For which 𝑛 ∈ ℕ, is it true that 21|22𝑛 + 2𝑛 + 1?

Exercise 8.
1. Prove that ∀𝑎, 𝑏 ∈ ℤ, (3|𝑎 and 3|𝑏) ⇔ 3|(𝑎2 + 𝑏2).
2. Prove that ∀𝑎, 𝑏 ∈ ℤ, (7|𝑎 and 7|𝑏) ⇔ 7|(𝑎2 + 𝑏2).
3. Prove that ∀𝑎, 𝑏 ∈ ℤ, 21|(𝑎2 + 𝑏2) ⟹ 441|(𝑎2 + 𝑏2).

Exercise 9.
Compute gcd (2445 + 7, 15).

Exercise 10.
Find all the prime numbers 𝑝 such that 2𝑝 + 𝑝2 is also prime.

Exercise 11.

What is the last digit in the decimal expansion of 7384
?

Exercise 12.
1. Convert the following number from the Babylonian cuneiform numeral system to base 10:

𒄴𒐌 𒄭𒈫 𒐈 𒌋 𒁹
2. Convert the following number from decimal to the Babylonian cuneiform numeral system: 42137.
3. Convert the followingnumber fromhexadecimal (with digits 0, 1, 2, … , 9, 𝐴, 𝐵, … , 𝐹 ) to base 10: 𝐹 420𝐶16.
4. Convert the following number from decimal to hexadecimal: 11211.
5. Compute in hexadecimal (without converting to decimal): 9𝐴𝐵716 + 3𝐶0𝐷16.
6. Perform the above computation using decimals. Is it easier?
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Exercise 13.
The scene takes place on an island inhabited by chameleons which are either blue, green, or red.
When two chameleons of different colors meet, they both change to the third color (for instance, if a green
chameleon and a red chameleon meet, then they both become blue).
Cherge, one of the chameleons, is a retiredmathematicianwho likes funnymathematical riddles and tongue
twisters. While he stands at the highest place on the island, he is able to see all the chameleons: 17 of them
are blue, 15 are green and 13 are red (including himself).
Then he wonders about a new riddle ”Could the island become monochromatic?”. What do you think?
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Modular arithmetic

Modular arithmetic was introduced by Gauss during the beginning of the 19th century. Working modulo
a natural number 𝑛 > 0 means that, given an integer 𝑎, we identify it with its remainder 𝑟 for the Euclidean
division by 𝑛. Basically, it means that we force 𝑎 to be equal to 𝑟 (of course, not as integers, but equal modulo
n). Informally, we wind ℤ on itself as represented below.

−5 −4 −3 −2 −1 0 1 2 3 4 5 ℤ0 1 2 3 4 5

… , −12, −6, 0, 6, 12, …

… , −11, −5, 1, 7, 13, …… , −10, −4, 2, 8, 14, …

… , −9, −3, 3, 9, 15, …

… , −8, −2, 4, 10, 16, … … , −7, −1, 5, 11, 17, …

ℤ modulo 6

This extra layer of abstraction allowedGauss, and subsequently other mathematicians, to obtain simpler
proofs of already known results concerning integers but also to prove new theorems, simply by introducing
this new efficient notation which has many good properties.

4.1 Congruences
Definition 4.1. We say that a binary relation ℛ on a set 𝐸 is an equivalence relation if
(i) ∀𝑥 ∈ 𝐸, 𝑥ℛ𝑥 (reflexivity)
(ii) ∀𝑥, 𝑦 ∈ 𝐸, 𝑥ℛ𝑦 ⟹ 𝑦ℛ𝑥 (symmetry)
(iii) ∀𝑥, 𝑦, 𝑧 ∈ 𝐸, (𝑥ℛ𝑦 and 𝑦ℛ𝑧) ⟹ 𝑥ℛ𝑧 (transitivity)

Definition 4.2. Let 𝑛 ∈ ℕ ∖ {0} and 𝑎, 𝑏 ∈ ℤ. We say that 𝑎 and 𝑏 are congruent modulo 𝑛 if 𝑛|𝑎 − 𝑏, which we
denote by 𝑎 ≡ 𝑏 (mod 𝑛).

Proposition 4.3. Congruence modulo 𝑛 is an equivalence relation on ℤ.

Proof.
• Reflexivity. Let 𝑎 ∈ ℤ then 𝑛|0 = 𝑎 − 𝑎. Hence 𝑎 ≡ 𝑎 (mod 𝑛).
• Symmetry. Let 𝑎, 𝑏 ∈ ℤ be such that 𝑎 ≡ 𝑏 (mod 𝑛). Then 𝑛|𝑏 − 𝑎 = −(𝑎 − 𝑏) hence 𝑏 ≡ 𝑎 (mod 𝑛).
• Transitivity. Let 𝑎, 𝑏, 𝑐 ∈ ℤ be such that 𝑎 ≡ 𝑏 (mod 𝑛) and 𝑏 ≡ 𝑐 (mod 𝑛). Then 𝑛|𝑎 − 𝑏 and 𝑛|𝑏 − 𝑐.

Hence 𝑛|𝑎 − 𝑐 = (𝑎 − 𝑏) + (𝑏 − 𝑐). Thus 𝑎 ≡ 𝑐 (mod 𝑛). ■
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Proposition 4.4. Let 𝑛 ∈ ℕ ∖ {0} and 𝑎, 𝑏 ∈ ℤ. Then 𝑎 ≡ 𝑏 (mod 𝑛) if and only if 𝑎 and 𝑏 have same remainder for
the Euclidean division by 𝑛.

Proof.
⇒. Assume that 𝑎 ≡ 𝑏 (mod 𝑛), then 𝑏 − 𝑎 = 𝑘𝑛 for some 𝑘 ∈ ℤ. By Euclidean division, 𝑎 = 𝑛𝑞 + 𝑟 for 𝑞, 𝑟 ∈ ℤ
satisfying 0 ≤ 𝑟 < 𝑛. Hence 𝑏 = 𝑎 + 𝑘𝑛 = 𝑛𝑞 + 𝑟 + 𝑘𝑛 = (𝑞 + 𝑘)𝑛 + 𝑟.
⇐. Assume that 𝑎 and 𝑏 have same remainder for the Euclidean division by 𝑛, then 𝑎 = 𝑛𝑞1 +𝑟 and 𝑏 = 𝑛𝑞2 +𝑟
where 𝑞1, 𝑞2, 𝑟 ∈ ℤ with 0 ≤ 𝑟 < 𝑛.
Hence 𝑎 − 𝑏 = 𝑛𝑞1 + 𝑟 − (𝑛𝑞2 + 𝑟) = 𝑛(𝑞1 − 𝑞2). Thus 𝑛|𝑎 − 𝑏, i.e. 𝑎 ≡ 𝑏 (mod 𝑛). ■

Proposition 4.5. Let 𝑛 ∈ ℕ∖{0} and 𝑎 ∈ ℤ. Then 𝑎 is congruent modulo 𝑛 to exactly one element of {0, 1, … , 𝑛−1}.

Proof. By Euclidean division 𝑎 = 𝑛𝑞 + 𝑟 where 0 ≤ 𝑟 < 𝑛 so that 𝑎 ≡ 𝑟 (mod 𝑛).
Conversely, if 𝑎 ≡ 𝑟′ (mod 𝑛) where 𝑟′ ∈ {0, 1, … , 𝑛 − 1}, then 𝑎 − 𝑟′ = 𝑛𝑞 for some 𝑞 ∈ ℤ. So 𝑎 = 𝑛𝑞 + 𝑟′.
By uniqueness of the Euclidean division, 𝑟 = 𝑟′. ■

Proposition 4.6. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ and 𝑛 ∈ ℕ ∖ {0}. Assume that 𝑎 ≡ 𝑏 (mod 𝑛) and that 𝑐 ≡ 𝑑 (mod 𝑛) then
• 𝑎 + 𝑐 ≡ 𝑏 + 𝑑 (mod 𝑛)
• 𝑎𝑐 ≡ 𝑏𝑑 (mod 𝑛)

Proof. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ and 𝑛 ∈ ℕ ∖ {0}. Assume that 𝑎 ≡ 𝑏 (mod 𝑛) and that 𝑐 ≡ 𝑑 (mod 𝑛). Hence 𝑎 − 𝑏 = 𝑛𝑘
and 𝑐 − 𝑑 = 𝑛𝑙 for some 𝑘, 𝑙 ∈ ℤ. Then

• (𝑎 + 𝑐) − (𝑏 + 𝑑) = (𝑎 − 𝑏) + (𝑐 − 𝑑) = 𝑛𝑘 + 𝑛𝑙 = 𝑛(𝑘 + 𝑙), hence 𝑎 + 𝑐 ≡ 𝑏 + 𝑑 (mod 𝑛).
• 𝑎𝑐 − 𝑏𝑑 = (𝑏 + 𝑛𝑘)(𝑑 + 𝑛𝑙) − 𝑏𝑑 = 𝑏𝑛𝑙 + 𝑑𝑛𝑘 + 𝑛2𝑘𝑙 = 𝑛(𝑏𝑙 + 𝑑𝑘 + 𝑛𝑘𝑙), hence 𝑎𝑐 ≡ 𝑏𝑑 (mod 𝑛). ■

Example 4.7. 1729 × 16 ≡ 12 × (−1) (mod 17) ≡ −12 (mod 17) ≡ 5 (mod 17)

Corollary 4.8. Let 𝑎, 𝑏 ∈ ℤ and 𝑛 ∈ ℕ ∖ {0}. Then ∀𝑘 ∈ ℕ, 𝑎 ≡ 𝑏 (mod 𝑛) ⟹ 𝑎𝑘 ≡ 𝑏𝑘 (mod 𝑛).

Proof. We prove the statement by induction on 𝑘.
Base case at 𝑘 = 0: 𝑎0 = 𝑏0 = 1 hence 𝑎0 ≡ 𝑏0 (mod 𝑛).
Induction step: assume that 𝑎 ≡ 𝑏 (mod 𝑛) ⟹ 𝑎𝑘 ≡ 𝑏𝑘 (mod 𝑛) for some 𝑘 ∈ ℕ.
If 𝑎 ≡ 𝑏 (mod 𝑛) then by induction hypothesiswe also have 𝑎𝑘 ≡ 𝑏𝑘 (mod 𝑛). Hence, combining both previous
congruences, we get that 𝑎𝑘𝑎 ≡ 𝑏𝑘𝑏 (mod 𝑛), i.e. 𝑎𝑘+1 ≡ 𝑏𝑘+1 (mod 𝑛). Which proves the induction step. ■

Remark 4.9. Therefore addition, substraction (which is a special case of addition in ℤ), multiplication and
exponentiation are compatible with congruences.
Beware: division is not compatible with congruences: 10 ≡ 4 (mod 6) but 5 ≢ 2 (mod 6).

Proposition 4.10. Let 𝑎 ∈ ℤ and 𝑛 ∈ ℕ∖{0}. Then 𝑎 has a multiplicative inverse modulo 𝑛 if and only if gcd(𝑎, 𝑛) =
1.
Otherwise stated,

∃𝑏 ∈ ℤ, 𝑎𝑏 ≡ 1 (mod 𝑛) ⇔ gcd(𝑎, 𝑛) = 1

Proof. ∃𝑏 ∈ ℤ, 𝑎𝑏 ≡ 1 (mod 𝑛) ⇔ ∃𝑏, 𝑐 ∈ ℤ, 𝑎𝑏 + 𝑛𝑐 = 1 ⇔ gcd(𝑎, 𝑛) = 1 ■

Remark 4.11. Then the multiplicative inverse is unique modulo 𝑛. Indeed if 𝑎𝑏 ≡ 1 (mod 𝑛) ≡ 𝑎𝑏′ (mod 𝑛)
then 𝑛|(𝑏 − 𝑏′)𝑎. Since gcd(𝑎, 𝑛) = 1, using Gauss’ lemma, we get that 𝑛|𝑏 − 𝑏′, i.e. 𝑏 ≡ 𝑏′ (mod 𝑛).

Remark 4.12. There is no cancellation law for congruences. For instance, 50 ≡ 20 (mod 15) but 5 ≢
2 (mod 15).
Nonetheless, we have the following proposition.

Proposition 4.13. Let 𝑛 ∈ ℕ ∖ {0} and 𝑎, 𝑥, 𝑦 ∈ ℤ satisfying 𝑎𝑥 ≡ 𝑎𝑦 (mod 𝑛) and gcd(𝑎, 𝑛) = 1. Then 𝑥 ≡
𝑦 (mod 𝑛).

Proof. Since gcd(𝑎, 𝑛) = 1, 𝑎 admits an inverse modulo 𝑛, i.e. there exists 𝑏 ∈ ℤ such that 𝑎𝑏 ≡ 1 (mod 𝑛).
Then 𝑎𝑥 ≡ 𝑎𝑦 (mod 𝑛) ⟹ 𝑏𝑎𝑥 ≡ 𝑏𝑎𝑦 (mod 𝑛) ⟹ 𝑥 ≡ 𝑦 (mod 𝑛). ■
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4.2 Applications: divisibility criteria
In our everyday life, we usually use a base ten positional notation. It allows use to write all natural numbers
using only 10 digits although ℕ is infinite. The idea is that the position of a digit changes its value.

Indeed, using the well-ordering principle and Euclidean division, it is possible to prove that any 𝑛 ∈ ℕ

can be uniquely written as 𝑛 =
𝑟

∑
𝑘=0

𝑎𝑘10𝑘 where 𝑎𝑘 ∈ {0, 1, … , 9} and 𝑎𝑟 ≠ 0 (see the appendix for a proof).

We usually write 𝑎𝑟𝑎𝑟−1 … 𝑎0
10 for

𝑟

∑
𝑘=0

𝑎𝑘10𝑘 but we may omit the line over the digits when there is no

possible confusion. For instance, 590743 = 5 × 105 + 9 × 104 + 0 × 103 + 7 × 102 + 4 × 101 + 3 × 100.
Note that we also use other bases: base 2 and base 16 are quite common nowadays in computer sciences.

And other bases were also commonly used by human beings in various places in the past: we still have the
influence of a base 60 positional system when describing time (1 hour is 60 minutes), and the influence of
a base 20 positional system in several languages (in French 96 is litteraly pronounced 4 × 20 + 16).

In this section, we are going to use modular arithmetic in order to prove some divisibility criteria using
our base ten positional notation.

Proposition 4.14. 3|𝑎𝑟𝑎𝑟−1 … 𝑎0
10 if and only if 3|

𝑟

∑
𝑘=0

𝑎𝑘.

Proof. Note that 10 ≡ 1 (mod 3), hence

𝑎𝑟𝑎𝑟−1 … 𝑎0
10 =

𝑟

∑
𝑘=0

𝑎𝑘10𝑘 ≡
𝑟

∑
𝑘=0

𝑎𝑘1𝑘 (mod 3) ≡
𝑟

∑
𝑘=0

𝑎𝑘 (mod 3)

Thus,

3|𝑎𝑟𝑎𝑟−1 … 𝑎0
10 ⇔ 𝑎𝑟𝑎𝑟−1 … 𝑎0

10 ≡ 0 (mod 3)

⇔
𝑟

∑
𝑘=0

𝑎𝑘 ≡ 0 (mod 3)

⇔ 3|
𝑟

∑
𝑘=0

𝑎𝑘

■

Examples 4.15.

• 91524 is divisible by 3 since 9 + 1 + 5 + 2 + 4 = 21 = 7 × 3 is.

• Let’s study whether 8546921469 is a multiple of 3 or not:

3|8546921469 ⇔ 3|8 + 5 + 4 + 6 + 9 + 2 + 1 + 4 + 6 + 9 = 54
⇔ 3|5 + 4 = 9

But 9 = 3 × 3, hence 3|8546921469.

Proposition 4.16. 9|𝑎𝑟𝑎𝑟−1 … 𝑎0
10 if and only if 9|

𝑟

∑
𝑘=0

𝑎𝑘.

Proof. That’s a similar proof since 10 ≡ 1 (mod 9). ■
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Proposition 4.17. 4|𝑎𝑟𝑎𝑟−1 … 𝑎0
10 if and only if 4|𝑎1𝑎0

10.

Proof. Note that 102 = 4 × 25 hence 10𝑘 ≡ 0 (mod 4) for 𝑘 ≥ 2. Hence

4|𝑎𝑟𝑎𝑟−1 … 𝑎0
10 ⇔ 𝑎𝑟𝑎𝑟−1 … 𝑎0

10 ≡ 0 (mod 4)

⇔
𝑟

∑
𝑘=0

𝑎𝑘10𝑘 ≡ 0 (mod 4)

⇔ 𝑎1 × 10 + 𝑎0 ≡ 0 (mod 4)
⇔ 𝑎1𝑎0

10 ≡ 0 (mod 4)
⇔ 4|𝑎1𝑎0

10

■

Examples 4.18.
• 4 ∤ 856987454251100125 since 4 ∤ 25.
• 4|98854558715580 since 4|80 = 4 × 20.

4.3 Fermat’s little theorem

Lemma 4.19. Let 𝑝 be a prime number. Then ∀𝑛 ∈ {1, … , 𝑝 − 1}, (
𝑝
𝑛) ≡ 0 (mod 𝑝).

Proof. Let 𝑛 ∈ {1, … , 𝑝 − 1}. Remember that 𝑛(
𝑝
𝑛) = 𝑝(

𝑝−1
𝑛−1). Hence, 𝑝|𝑛(

𝑝
𝑛).

Since gcd(𝑝, 𝑛) = 1, by Gauss’ lemma, we get that 𝑝|(
𝑝
𝑛). ■

Theorem 4.20 (Fermat’s little theorem, version 1).
Let 𝑝 be a prime number and 𝑎 ∈ ℤ. Then 𝑎𝑝 ≡ 𝑎 (mod 𝑝).

Proof. We first prove the theorem for 𝑎 ∈ ℕ by induction.
Base case at 𝑎 = 0: 0𝑝 = 0 ≡ 0 (mod 𝑝).
Induction step: assume that 𝑎𝑝 ≡ 𝑎 (mod 𝑝) for some 𝑎 ∈ ℕ. Then

(𝑎 + 1)𝑝 =
𝑝

∑
𝑛=0

(
𝑝
𝑛)𝑎𝑛 by the binomial formula

≡ 𝑎𝑝 + 1 (mod 𝑝) since, by the above lemma, 𝑝|(
𝑝
𝑛) for 1 ≤ 𝑛 ≤ 𝑝 − 1

≡ 𝑎 + 1 (mod 𝑝) by the induction hypothesis

Which ends the induction step.

We still need to prove the theorem for 𝑎 < 0. Then −𝑎 ∈ ℕ, hence, from the first part of the proof,
(−𝑎)𝑝 ≡ −𝑎 (mod 𝑝). Multiplying both sides by (−1)𝑝 we get that 𝑎𝑝 ≡ (−1)𝑝+1𝑎 (mod 𝑝).
If 𝑝 = 2 then either 𝑎 ≡ 0 (mod 2) or 𝑎 ≡ 1 (mod 2), and the statement holds for both cases.
Otherwise, 𝑝 is odd, and hence (−1)𝑝+1 = 1. Thus 𝑎𝑝 ≡ 𝑎 (mod 𝑝). ■

Theorem 4.21 (Fermat’s little theorem, version 2).
Let 𝑝 be a prime number and 𝑎 ∈ ℤ. If gcd(𝑎, 𝑝) = 1 then 𝑎𝑝−1 ≡ 1 (mod 𝑝).

Proof. By the first version of Fermat’s little theorem, 𝑎𝑝 ≡ 𝑎 (mod 𝑝). Hence 𝑝|𝑎𝑝 − 𝑎 = 𝑎(𝑎𝑝−1 − 1).
Since gcd(𝑎, 𝑝) = 1, by Gauss’ lemma, 𝑝|𝑎𝑝−1 − 1. Thus 𝑎𝑝−1 ≡ 1 (mod 𝑝). ■

Remark 4.22. Note that both versions of Fermat’s little theorem are equivalent.
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4.4 Wilson’s theorem
Lemma 4.23. Let 𝑝 be a prime number. Then

∀𝑎 ∈ ℤ, 𝑎2 ≡ 1 (mod 𝑝) ⟹ (𝑎 ≡ −1 (mod 𝑝) or 𝑎 ≡ 1 (mod 𝑝))

Proof. Let 𝑝 be a prime number and 𝑎 ∈ ℤ satisfying 𝑎2 ≡ 1 (mod 𝑝). Then 𝑝|𝑎2 − 1 = (𝑎 − 1)(𝑎 + 1).
By Euclid’s lemma, either 𝑝|𝑎 − 1 or 𝑝|𝑎 + 1, i.e. 𝑎 ≡ 1 (mod 𝑝) or 𝑎 ≡ −1 (mod 𝑝). ■

Theorem 4.24 (Wilson’s theorem). Let 𝑛 ∈ ℕ ∖ {0, 1}. Then 𝑛 is prime if and only if (𝑛 − 1)! ≡ −1 (mod 𝑛).

Proof. Let 𝑛 ∈ ℕ ∖ {0, 1}.

• Assume that 𝑛 is a composite number. Then there exists 𝑘 ∈ ℕ such that 𝑘|𝑛 and 1 < 𝑘 < 𝑛.
Assume by contradiction that (𝑛 − 1)! ≡ −1 (mod 𝑛) then 𝑛|(𝑛 − 1)! + 1 and hence 𝑘|(𝑛 − 1)! + 1.
But 𝑘|(𝑛 − 1)!, thus 𝑘|((𝑛 − 1)! + 1 − (𝑛 − 1)!), i.e. 𝑘|1. So 𝑘 = 1 which leads to a contradiction.

• Assume that 𝑛 is prime.
Let 𝑎 ∈ {1, 2, … , 𝑛 − 1} then gcd(𝑎, 𝑛) = 1. Hence 𝑎 admits a multiplicative inverse modulo 𝑛, so there
exists 𝑏 ∈ {1, 2, … , 𝑛 − 1} such that 𝑎𝑏 ≡ 1 (mod 𝑛).
Note that this 𝑏 is unique by Remark 4.11.
By the above lemma, 𝑎 = 1 and 𝑎 = 𝑛 − 1 are the only 𝑎 as above being their self-multiplicative inverse
(i.e. such that 𝑎2 ≡ 1 (mod 𝑛)). Otherwise 𝑏 ≠ 𝑎.
Thus (𝑛 − 1)! = 1 × 2 × ⋯ × (𝑛 − 1) ≡ 1 × (𝑛 − 1) (mod 𝑛) ≡ −1 (mod 𝑛).
Indeed, in the previous product each term simplifies with its multiplicative inverse except 1 and 𝑛 −
1. ■

Examples 4.25.
• Take 𝑝 = 17 then (17 − 1)! + 1 = 20922789888001 = 17 × 1230752346353.
• Take 𝑝 = 15 then (15 − 1)! + 1 = 87178291201 = 15 × 5811886080 + 1.

Remark 4.26. Wilson’s theorem is a very inefficientway to checkwhether a number is prime or not. Nonethe-
less, it has some interesting theoretical applications.

4.5 Chinese remainder theorem
Theorem 4.27 (Chinese remainder theorem).
Let 𝑛1, 𝑛2 ∈ ℕ ∖ {0, 1} be such that gcd(𝑛1, 𝑛2) = 1 and let 𝑎1, 𝑎2 ∈ ℤ.

Then there exists 𝑥 ∈ ℤ satisfying {
𝑥 ≡ 𝑎1 (mod 𝑛1)
𝑥 ≡ 𝑎2 (mod 𝑛2)

Besides, if 𝑥1, 𝑥2 ∈ ℤ are two solutions of the above system then 𝑥1 ≡ 𝑥2 (mod 𝑛1𝑛2).

Proof.

• Existence. By Bézout’s identity, there exist 𝑚1, 𝑚2 ∈ ℤ such that 𝑛1𝑚1 + 𝑛2𝑚2 = 1.
Note that 𝑛1𝑚1 ≡ 0 (mod 𝑛1) and that 𝑛1𝑚1 ≡ 𝑛1𝑚1 + 𝑛2𝑚2 (mod 𝑛2) ≡ 1 (mod 𝑛2).
Similarly 𝑛2𝑚2 ≡ 0 (mod 𝑛2) and 𝑛2𝑚2 ≡ 1 (mod 𝑛1).
Thus, if we set 𝑥 = 𝑎2𝑛1𝑚1 + 𝑎1𝑛2𝑚2 then

– 𝑥 ≡ 𝑎2 × 0 + 𝑎1 × 1 (mod 𝑛1) ≡ 𝑎1 (mod 𝑛1),
– 𝑥 ≡ 𝑎2 × 1 + 𝑎1 × 0 (mod 𝑛2) ≡ 𝑎2 (mod 𝑛2).

• Uniqueness modulo 𝑛1𝑛2. Let 𝑥1, 𝑥2 ∈ ℤ be two solutions.
Then 𝑥1 − 𝑥2 ≡ 0 (mod 𝑛1) so 𝑥1 − 𝑥2 = 𝑘𝑛1 for some 𝑘 ∈ ℤ. Similarly 𝑛2|𝑥1 − 𝑥2 = 𝑘𝑛1.
Since gcd(𝑛1, 𝑛2) = 1, by Gauss’ lemma, 𝑛2|𝑘. So there exists 𝑙 ∈ ℤ such that 𝑘 = 𝑛2𝑙.
Thus 𝑥1 − 𝑥2 = 𝑙𝑛1𝑛2 and therefore 𝑥1 ≡ 𝑥2 (mod 𝑛1𝑛2). ■



44 Concepts in Abstract Mathematics J.-B. Campesato

4.6 Euler’s theorem
Definition 4.28. Euler’s totient function is the function 𝜑 ∶ ℕ ∖ {0} → ℕ ∖ {0} defined by

𝜑(𝑛) ≔ # {𝑘 ∈ ℕ ∶ 1 ≤ 𝑘 ≤ 𝑛 and gcd(𝑘, 𝑛) = 1}

Proposition 4.29. ∀𝑛1, 𝑛2 ∈ ℕ ∖ {0}, gcd(𝑛1, 𝑛2) = 1 ⟹ 𝜑(𝑛1𝑛2) = 𝜑(𝑛1)𝜑(𝑛2)

Proof. If 𝑛1 = 1 or 𝑛2 = 1 then there is nothing to prove. So let’s assume that 𝑛1, 𝑛2 ≥ 2.
Define

𝑆𝑖 = {𝑟 ∈ ℕ ∶ 1 ≤ 𝑟 ≤ 𝑛𝑖 and gcd(𝑟, 𝑛𝑖) = 1} , 𝑖 = 1, 2
and

𝑇 = {𝑘 ∈ ℕ ∶ 1 ≤ 𝑘 ≤ 𝑛1𝑛2 and gcd(𝑘, 𝑛1𝑛2) = 1}
For 𝑘 ∈ 𝑇 , write the Euclidean divisions 𝑘 = 𝑛1𝑞1 + 𝑟1 with 0 ≤ 𝑟1 < 𝑛1 and 𝑘 = 𝑛2𝑞2 + 𝑟2 where 0 ≤ 𝑟2 < 𝑛2.
Let’s prove that 𝑟𝑖 ∈ 𝑆𝑖:

• Assume that 𝑟𝑖 = 0 then 𝑛𝑖|𝑘 and 𝑛𝑖|𝑛1𝑛2 so that 𝑛𝑖|gcd(𝑘, 𝑛1𝑛2) = 1: contradiction. So 1 ≤ 𝑟𝑖 < 𝑛𝑖.

• gcd(𝑟𝑖, 𝑛𝑖) = gcd(𝑘 − 𝑛𝑖𝑞𝑖, 𝑛𝑖) = gcd(𝑘, 𝑛𝑖)|gcd(𝑘, 𝑛1𝑛2) = 1, hence gcd(𝑟𝑖, 𝑛𝑖) = 1.

Therefore we can define 𝑓 ∶ 𝑇 → 𝑆1 × 𝑆2 by 𝑓(𝑘) = (𝑟1, 𝑟2). Let’s prove that 𝑓 is a bijection.
Let (𝑟1, 𝑟2) ∈ 𝑆1 ×𝑆2. Then by the Chinese remainder theorem, there exists a unique 𝑘 ∈ {1, 2, … , 𝑛1𝑛2} such
that 𝑘 ≡ 𝑟1 (mod 𝑛1) and 𝑘 ≡ 𝑟2 (mod 𝑛2).
Note that gcd(𝑘, 𝑛1) = gcd(𝑟1 + 𝑙𝑛1, 𝑛1) = gcd(𝑟1, 𝑛1) = 1 (for some 𝑙 ∈ ℤ).
Similarly gcd(𝑘, 𝑛2) = gcd(𝑟2, 𝑛2) = 1.
Then gcd(𝑘, 𝑛1𝑛2) = 1 by Exercise 3 of Problem Set 2, so that 𝑘 ∈ 𝑇 .
We proved that ∀(𝑟1, 𝑟2) ∈ 𝑆1 × 𝑆2, ∃!𝑘 ∈ 𝑇 , (𝑟1, 𝑟2) = 𝑓(𝑘), i.e. that 𝑓 is bijective.
Therefore, #𝑇 = #(𝑆1 × 𝑆2) = #𝑆1#𝑆2, i.e. 𝜑(𝑛1𝑛2) = 𝜑(𝑛1)𝜑(𝑛2). ■

Proposition 4.30. Let 𝑝1, … , 𝑝𝑟 be pairwise distinct prime numbers and 𝛼1, … , 𝛼𝑟 ∈ ℕ ∖ {0}, then

𝜑
(

𝑟

∏
𝑖=1

𝑝𝛼𝑖
𝑖 )

=
𝑟

∏
𝑖=1

(𝑝𝛼𝑖
𝑖 − 𝑝𝛼𝑖−1

𝑖 )

Proof.

• First case: let 𝑝 be a prime number and 𝛼 ∈ ℕ ∖ {0}. Then gcd(𝑝𝛼 , 𝑚) > 1 if and only if 𝑝|𝑚.
Hence 𝜑(𝑝𝛼) = # ({1, 2, … , 𝑝𝛼} ∖ {1 × 𝑝, 2 × 𝑝, … , 𝑝𝛼−1 × 𝑝}) = 𝑝𝛼 − 𝑝𝛼−1.

• General case: using Proposition 4.29 and the first case, we get that

𝜑
(

𝑟

∏
𝑖=1

𝑝𝛼𝑖
𝑖 )

=
𝑟

∏
𝑖=1

𝜑 (𝑝𝛼𝑖
𝑖 ) =

𝑟

∏
𝑖=1

(𝑝𝛼𝑖
𝑖 − 𝑝𝛼𝑖−1

𝑖 )

■

Remark 4.31. Assuming that we have already some knowledge about ℚ, we can also write for 𝑛 =
𝑟

∏
𝑖=1

𝑝𝛼𝑖
𝑖 :

𝜑 (𝑛) = 𝑛
𝑟

∏
𝑖=1 (1 − 1

𝑝𝑖 )

Theorem 4.32 (Euler’s theorem). Let 𝑛 ∈ ℕ ∖ {0} and 𝑎 ∈ ℤ such that gcd(𝑎, 𝑛) = 1. Then 𝑎𝜑(𝑛) ≡ 1 (mod 𝑛).

Remark 4.33. Note that Fermat’s little theorem is a special case of Euler’s theorem: indeed, if 𝑝 is a prime
number then 𝜑(𝑝) = 𝑝 − 1.
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Proof of Euler’s theorem.
Write 𝑆 = {𝑘 ∈ ℕ ∶ 1 ≤ 𝑘 ≤ 𝑛 and gcd(𝑘, 𝑛) = 1} = {𝑘1, 𝑘2, … , 𝑘𝜑(𝑛)}.
We will use the following two facts:
(i) Given 𝑘𝑖 ∈ 𝑆, there exists 𝑘𝑗 ∈ 𝑆 such that 𝑎𝑘𝑖 ≡ 𝑘𝑗 (mod 𝑛).

Let 𝑘𝑖 ∈ 𝑆 then gcd(𝑎𝑘𝑖, 𝑛) = 1 by Exercise 3 of Problem Set 2.
Thus 𝑎𝑘𝑖 ≡ 𝑘𝑗 (mod 𝑛) for some 𝑘𝑗 ∈ 𝑆.

(ii) ∀𝑘𝑖, 𝑘𝑗 ∈ 𝑆, 𝑎𝑘𝑖 ≡ 𝑎𝑘𝑗 (mod 𝑛) ⟹ 𝑘𝑖 = 𝑘𝑗 .
Indeed, then 𝑛|𝑎(𝑘𝑖 − 𝑘𝑗) and hence 𝑛|𝑘𝑖 − 𝑘𝑗 by Gauss’ lemma.
Thus 𝑘𝑖 ≡ 𝑘𝑗 (mod 𝑛).
Finally, 𝑘𝑖 = 𝑘𝑗 since 1 ≤ 𝑘𝑖, 𝑘𝑗 ≤ 𝑛.

For 𝑖 ∈ {1, 2, … , 𝜑(𝑛)}, there exists a unique 𝑙𝑖 ∈ {0, 1, … , 𝑛 − 1} such that 𝑙𝑖 ≡ 𝑎𝑘𝑖 (mod 𝑛).
Then, {𝑙1, 𝑙2, … , 𝑙𝜑(𝑛)} = {𝑘1, 𝑘2, … , 𝑘𝜑(𝑛)}.
Indeed, by (i), {𝑙1, 𝑙2, … , 𝑙𝜑(𝑛)} ⊂ {𝑘1, 𝑘2, … , 𝑘𝜑(𝑛)}. And by (ii), #{𝑙1, 𝑙2, … , 𝑙𝜑(𝑛)} = #{𝑘1, 𝑘2, … , 𝑘𝜑(𝑛)}.

Hence
𝜑(𝑛)

∏
𝑖=1

𝑘𝑖 =
𝜑(𝑛)

∏
𝑖=1

𝑙𝑖 ≡
𝜑(𝑛)

∏
𝑖=1

𝑎𝑘𝑖 (mod 𝑛) ≡ 𝑎𝜑(𝑛)
𝜑(𝑛)

∏
𝑖=1

𝑘𝑖 (mod 𝑛).

Therefore 𝑛|(𝑎𝜑(𝑛) − 1)
𝜑(𝑛)

∏
𝑖=1

𝑘𝑖.

Since gcd
⎛
⎜
⎜
⎝
𝑛,

𝜑(𝑛)

∏
𝑖=1

𝑘𝑖
⎞
⎟
⎟
⎠

= 1 by Exercise 3 of Problem Set 2, we deduce from Gauss’ lemma that 𝑛|𝑎𝜑(𝑛) − 1,

i.e. 𝑎𝜑(𝑛) ≡ 1 (mod 𝑛). ■



46 Concepts in Abstract Mathematics J.-B. Campesato

Appendix 4.A Positional numeral system with base 𝑏
Theorem 4.34. Let 𝑏 ≥ 2 be an natural number. Then any natural number 𝑛 ∈ ℕ admits a unique expression

𝑛 = ∑
𝑘≥0

𝑎𝑘𝑏𝑘

where 𝑎𝑘 ∈ {0, 1, … , 𝑏 − 1} and 𝑎𝑘 = 0 for all but finitely many 𝑘 ≥ 0.

Notation 4.35. We write 𝑎𝑟𝑎𝑟−1 … 𝑎1𝑎0
𝑏 for

𝑟

∑
𝑘=0

𝑎𝑘𝑏𝑘.

Proof of Theorem 4.34.
Existence.
We are going to prove by strong induction that for any 𝑛 ≥ 0, there exist 𝑎𝑘 ∈ {0, 1, … , 𝑏 − 1}, 𝑘 ∈ ℕ, all but
finitely many equal to 0 such that 𝑛 = ∑

𝑘≥0
𝑎𝑘𝑏𝑘.

• Base case at 𝑛 = 0: 0 = ∑
𝑘≥0

0𝑏𝑘.

• Induction step. Assume that 0, 1, … , 𝑛 admit an expression in base 𝑏, for some 𝑛 ≥ 0.
By Euclidean division, 𝑛 + 1 = 𝑏𝑞 + 𝑟 where 𝑞, 𝑟 ∈ ℕ satisfy 0 ≤ 𝑟 < 𝑏.
Note that if 𝑞 ≠ 0 then 𝑞 < 𝑏𝑞 ≤ 𝑏𝑞 + 𝑟 = 𝑛 + 1. Thus 0 ≤ 𝑞 ≤ 𝑛.
Therefore, by the induction hypothesis, 𝑞 = ∑

𝑘≥0
𝑎𝑘𝑏𝑘 where 𝑎𝑘 ∈ {0, 1, … , 𝑏 − 1} and 𝑎𝑘 = 0 for all but

finitely many 𝑘 ≥ 0.
Hence, 𝑛 + 1 = 𝑏𝑞 + 𝑟 = ∑

𝑘≥0
𝑎𝑘𝑏𝑘+1 + 𝑟𝑏0.

Uniqueness.
Write ∑

𝑘≥0
𝑎𝑘𝑏𝑘 = ∑

𝑘≥0
𝑎′

𝑘𝑏𝑘 where 𝑎𝑘, 𝑎′
𝑘 ∈ {0, 1, … , 𝑏 − 1} are zero for all but finitely many 𝑘 ≥ 0.

Assume by contradiction there exists 𝑘 ≥ 0 such that 𝑎𝑘 ≠ 𝑎′
𝑘.

Since {𝑘 ∈ ℕ ∶ 𝑎𝑘 ≠ 𝑎′
𝑘} is finite and non-empty, it admits a greatest element ℓ.

WLOG, we may assume that 𝑎ℓ < 𝑎′
ℓ.

Then 0 = ∑
𝑘≥0

𝑎𝑘𝑏𝑘 − ∑
𝑘≥0

𝑎′
𝑘𝑏𝑘 = ∑

𝑘≥0
(𝑎𝑘 − 𝑎′

𝑘)𝑏𝑘 =
ℓ

∑
𝑘=0

(𝑎𝑘 − 𝑎′
𝑘)𝑏𝑘. So that (𝑎′

ℓ − 𝑎ℓ)𝑏ℓ =
ℓ−1

∑
𝑘=0

(𝑎𝑘 − 𝑎′
𝑘)𝑏𝑘.

Therefore (𝑎′
ℓ − 𝑎ℓ)𝑏ℓ ≤

ℓ−1

∑
𝑘=0

|𝑎𝑘 − 𝑎′
𝑘|𝑏𝑘 ≤

ℓ−1

∑
𝑘=0

(𝑏 − 1)𝑏𝑘 = 𝑏ℓ − 1 < 𝑏ℓ ≤ (𝑎′
ℓ − 𝑎ℓ)𝑏ℓ.

Hence a contradiction. ■

Remark 4.36. In order to pass from a base 10 expression to a base 𝑏 expression, we can perform successive
Euclidean divisions as shown below (to pass from a base 𝑏 expression to a base 10 we may simply compute
the sum).

Example 4.37.

42 = 2 × 21 + 0
= 2 × (2 × 10 + 1) + 0
= 2 × (2 × (2 × 5 + 0) + 1) + 0
= 2 × (2 × (2 × (2 × 2 + 1) + 0) + 1) + 0
= 2 × (2 × (2 × (2 × (2 × 1 + 0) + 1) + 0) + 1) + 0
= 1 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20

Hence 4210 = 1010102.
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The first knownpositional numeral system is the Babylonian one (circa 2000BC)whose base is 60 andwhose
digits are:
0
1 𒁹
2 𒈫
3 𒐈
4 𒃻
5 𒐊
6 𒐋
7 𒐌
8 𒐍
9 𒐎

10 𒌋
11 𒌋 𒁹
12 𒌋 𒈫
13 𒌋𒐈
14 𒌋𒃻
15 𒌋𒐊
16 𒌋𒐋
17 𒌋𒐌
18 𒌋𒐍
19 𒌋𒐎

20 𒌋𒌋
21 𒌋𒌋 𒁹
22 𒌋𒌋 𒈫
23 𒌋𒌋𒐈
24 𒌋𒌋𒃻
25 𒌋𒌋𒐊
26 𒌋𒌋𒐋
27 𒌋𒌋𒐌
28 𒌋𒌋𒐍
29 𒌋𒌋𒐎

30 𒌍
31 𒌍𒁹
32 𒌍𒈫
33 𒌍𒐈
34 𒌍𒃻
35 𒌍𒐊
36 𒌍𒐋
37 𒌍𒐌
38 𒌍𒐍
39 𒌍𒐎

40 𒄭
41 𒄭𒁹
42 𒄭𒈫
43 𒄭𒐈
44 𒄭𒃻
45 𒄭𒐊
46 𒄭𒐋
47 𒄭𒐌
48 𒄭𒐍
49 𒄭𒐎

50 𒄴
51 𒄴𒁹
52 𒄴𒈫
53 𒄴𒐈
54 𒄴𒃻
55 𒄴𒐊
56 𒄴𒐋
57 𒄴𒐌
58 𒄴𒐍
59 𒄴𒐎

Let’s say thatwewant towrite 13655 using Babylonian cuneiformnumerals. For that, we perform successive
Euclidean divisions by 60 as follows:

13655 = 60 × 227 + 35 = 60 × (60 × 3 + 47) + 35 = 3 × 602 + 47 × 601 + 35 × 600

Hence it was written: 𒐈 𒄭𒐌 𒌍𒐊

Originally, there was no positional zero and an empty space was used instead (which can be confusing:
𒌋𒌋 𒐈 𒐊 and 𒌋𒌋 𒐈 𒐊 are not equal). The more convenient symbol 𒑊 was later used instead of the empty
space (but it is not the number 0, just a placeholder symbol for the positional numeral system).

See below a problem set submission by a MAT246 student circa 1700BC.

Figure 4.1: YBC 7289, clay tablet, between 1800BC and 1600BC.

It shows (extremely accurate) approximations of √2 ≃ 1 + 24
60 + 51

602 + 10
603

and of 30√2 ≃ 42 + 25
60 + 35

602 (diagonal of the square of side length 30, see above de square)
Yale Babylonian Collection,
Original picture from https://commons.wikimedia.org/wiki/File:YBC-7289-OBV-REV.jpg

https://commons.wikimedia.org/wiki/File:YBC-7289-OBV-REV.jpg
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Appendix 4.B The Chinese Remainder Theorem for more than two equations
You won’t need the following result in MAT246, I’ve just added it because it was asked on Piazza (@82).

Theorem 4.38 (Chinese remainder theorem). Let 𝑘 ∈ ℕ ∖ {0, 1}.
Let 𝑛1, 𝑛2, … , 𝑛𝑘 ∈ ℕ ∖ {0, 1} be pairwise coprine, i.e. ∀𝑖, 𝑗 ∈ {1, … , 𝑘}, 𝑖 ≠ 𝑗 ⟹ gcd(𝑛𝑖, 𝑛𝑗) = 1.
Let 𝑎1, … , 𝑎𝑘 ∈ ℤ. Then there exists 𝑥 ∈ ℤ satisfying

⎧
⎪
⎨
⎪
⎩

𝑥 ≡ 𝑎1 (mod 𝑛1)
𝑥 ≡ 𝑎2 (mod 𝑛2)

⋮
𝑥 ≡ 𝑎𝑘 (mod 𝑛𝑘)

The proof follows closely the one of Theorem 4.27 but applied to 𝑛𝑖 and 𝑛1 … 𝑛𝑖−1𝑛𝑖+1 … 𝑛𝑘.

Proof. Let 𝑖 ∈ {1, … , 𝑘}. Then gcd(𝑛𝑖, 𝑛1 … 𝑛𝑖−1𝑛𝑖+1 … 𝑛𝑘) = 1.
So, by Bézout’s identity, there exists 𝑢𝑖, 𝑣𝑖 ∈ ℤ such that 𝑢𝑖𝑛𝑖 + 𝑣𝑖𝑛1 … 𝑛𝑖−1𝑛𝑖+1 … 𝑛𝑘 = 1.
Set 𝑒𝑖 = 𝑣𝑖𝑛1 … 𝑛𝑖−1𝑛𝑖+1 … 𝑛𝑘 then 𝑒𝑖 ≡ 1 (mod 𝑛𝑖), and for 𝑗 ∈ {1, … , 𝑘} ∖ {𝑖}, 𝑒𝑖 ≡ 0 (mod 𝑛𝑗).

Therefore 𝑥 =
𝑘

∑
𝑖=1

𝑎𝑖𝑒𝑖 is a suitable solution. ■
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Exercises

Exercise 1.
Find the remainder of the Euclidean division of 24103 by 103.

Exercise 2.

Prove that ∀𝑛 ∈ ℤ, 𝑛7

7 + 𝑛5

5 + 23𝑛
35 ∈ ℤ.

You may already use ℚ for this question.
Hint: introduce 𝐴𝑛 = 35 (

𝑛7

7 + 𝑛5

5 + 23𝑛
35 ).

Exercise 3.
Let 𝑝 be an odd prime number. Prove that ∀𝑛 ∈ ℤ, (𝑛 + 1)𝑝 − (𝑛𝑝 + 1) ≡ 0 (mod 2𝑝).

Exercise 4.

Let 𝑝 be a prime number. Prove that ∀𝑘 ∈ ℕ, ∀𝑛 ∈ ℤ ∖ {0}, gcd(𝑛, 𝑝) = 1 ⟹ (𝑛𝑝−1)
𝑝𝑘

≡ 1 (mod 𝑝𝑘+1).

Exercise 5.
Let 𝑝 and 𝑞 be two distinct prime numbers. Prove that 𝑝𝑞−1 + 𝑞𝑝−1 ≡ 1 (mod 𝑝𝑞).

Exercise 6.
Prove that 𝑥4 + 781 = 3𝑦4 has no integer solution.

Exercise 7.
Let 𝑛 ∈ ℕ be such that 𝑛 ≥ 5. Prove that if 𝑛 + 2 is prime then 𝑛! − 1 is composite.

Exercise 8.
Let 𝑝 be an odd prime number. Prove that 2(𝑝 − 3)! ≡ −1 (mod 𝑝).

Exercise 9. A characterization of twin prime numbers.
Let 𝑛 ∈ ℕ ∖ {0, 1}. Prove that if 𝑛 and 𝑛 + 2 are both prime numbers then

4 ((𝑛 − 1)! + 1) + 𝑛 ≡ 0 (mod 𝑛(𝑛 + 2))

(Actually the converse holds too, but it’s a little bit more difficult to prove)

Exercise 10.
Let 𝑝 be a prime number. Prove that ∀𝑛 ∈ ℤ, 𝑝|𝑛𝑝 + (𝑝 − 1)!𝑛.

Exercise 11.
Either prove or find a counter-example to ∀𝑎, 𝑏 ∈ ℕ ∖ {0}, 𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏).

Exercise 12.
What’s the remainder of the Euclidean division of 1 + 2 + 22 + 23 + ⋯ + 2100 by 125?

Exercise 13.
Find the last 3 digits of 32021 (written in decimal).

Exercise 14.
Prove that ∀𝑛, 𝑘 ∈ ℕ ∖ {0}, 𝜑 (𝑛𝑘) = 𝑛𝑘−1𝜑(𝑛).
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Exercise 15.
Prove that ∀𝑎, 𝑏 ∈ ℕ ∖ {0}, gcd(𝑎, 𝑏) = 1 ⟹ 𝑎𝜑(𝑏) + 𝑏𝜑(𝑎) ≡ 1 (mod 𝑎𝑏).

Exercise 16.

Let 𝑎 ∈ ℤ and 𝑛 ∈ ℕ ∖ {0}. Prove that if gcd(𝑎, 𝑛) = gcd(𝑎 − 1, 𝑛) = 1 then
𝜑(𝑛)−1

∑
𝑘=0

𝑎𝑘 ≡ 0 (mod 𝑛).

Exercise 17.
Prove that ∀𝑎 ∈ ℕ ∖ {0, 1}, ∀𝑘 ∈ ℕ ∖ {0}, 𝑘|𝜑 (𝑎𝑘 − 1).

Exercise 18.
We define a sequence by 𝑢0 ∈ ℕ ∖ {0} and 𝑢𝑘+1 = 𝜑(𝑢𝑘) ∈ ℕ ∖ {0} for 𝑘 ∈ ℕ.
Prove that the sequence (𝑢𝑘)𝑘 is eventually constant equal to 1.



Chapter 5

The RSA algorithm

5.1 Introduction
How can someone send a secret message in a way that only the recipient could read the content even if the
message happens to have been intercepted by a third party? There are several ways to do so.

Early cipher algorithms relied on a unique key which had to be used both by the sender to encrypt the
message and by the recipient to decrypt it. A very simple example is Caesar’s cipher which consists in
shifting letters according to the key.

𝒜 ℬ 𝒞 𝒟

ℰ
ℱ

𝒢
ℋ

ℐ
𝒥

𝒦
ℒℳ𝒩𝒪𝒫𝒬

ℛ
𝒮

𝒯
𝒰

𝒱
𝒲

𝒳
𝒴 𝒵

𝒜
ℬ

𝒞 𝒟 ℰ ℱ 𝒢 ℋ ℐ 𝒥 𝒦
ℒℳ

𝒩
𝒪

𝒫

𝒬ℛ𝒮𝒯𝒰𝒱𝒲𝒳
𝒴

𝒵

6

Figure 5.1: Caesar ciphering with key=6

A major weakeness of such a system is that the key has to be disclosed to all the participants, increasing the
risk for the key to be compromised by a third party.

Asymmetric algorithms allow to reduce this weakeness by using two keys: a public key which is used to
encrypt messages and which can be widely shared without compromising the exchanges, and a private key
which is kept only by the recipient to decrypt the data. The idea is that anyone can encrypt messages using
the public key but only the recipient can decrypt them with his private key. Particularly, the knowledge of
the public key should not be enough to decrypt messages.

Message in clear Encrypted message Message in clear

Public key Private key
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Asymmetric cryptographic systems were theoretically developed in the mid 70s and the first concrete
algorithm of this kind was the RSA algorithm which appeared in 1978 and is named from the initials of its
authors (Ron Rivest, Adi Shamir, and Leonard Adleman). Actually, the British secret service developed a
similar algorithm as early as 1973 but it was kept confidential until the 90s.

In this chapter, we are going to explain the RSA algorithm which relies on modular arithmetic. The
original proof of work used Fermat’s little theorem but the RSA algorithm is actually easier to explain using
Euler’s theorem (which is a generalization of Fermat’s little theorem, as you already know).

The robustness of this cipher relies on the fact that we don’t know yet an efficient algorithm in order to
find the prime decomposition of a given positive integer. This last difficult problem will not be addressed
in this chapter.

5.2 Generation of the keys
The recipient, that we will call Alice, picks two distinct prime numbers 𝑝 and 𝑞. She sets 𝑛 ≔ 𝑝𝑞 and then
she chooses 𝑒 ∈ ℕ such that gcd(𝑒, 𝜑(𝑛)) = 1. Then the public key is (𝑛, 𝑒). Alice can publicly provide this
key to people willing to send her a crypted message.

Since gcd(𝑒, 𝜑(𝑛)) = 1, 𝑒 admits a multiplicative inverse modulo 𝜑(𝑛), i.e. there exists 𝑑 ∈ ℕ such that
𝑒𝑑 ≡ 1 (mod 𝜑(𝑛)). Indeed, there exist 𝑢, 𝑣 ∈ ℤ such that 𝑒𝑢 + 𝜑(𝑛)𝑣 = 1 (and we can easily find such a
Bézout’s relation using Euclid’s algorithm). Then we take 𝑑 = 𝑢 + 𝑘𝜑(𝑛) for a suitable 𝑘 ∈ ℤ for 𝑑 to be
positive. Then the private key is (𝑛, 𝑑). Alice should not share this key with anyone else.

Note that in order to find a suitable 𝑑, it is necessary to know 𝜑(𝑛) and 𝑒. Alice knows the prime numbers
𝑝 and 𝑞 that she used to define 𝑛 so she can easily compute 𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1). But the shared information
is only the public key (𝑛, 𝑒). Although it is theoretically possible to find 𝜑(𝑛), there is no known efficient
algorithm to compute 𝜑(𝑛) directly from 𝑛. Nonetheless, if a third party were able to quickly compute the
prime factorization of a positive integer, then it could computes 𝜑(𝑛) allowing him to recover (𝑛, 𝑑) from
(𝑛, 𝑒).

The prime numbers 𝑝 and 𝑞 should be chosen wisely so that there is no known efficient algorithm to
recover 𝑝 and 𝑞 from 𝑛 using our current computing power. For instance, not only 𝑝 and 𝑞 should be large
enough but 𝛿 = |𝑝 − 𝑞| should be large too. Indeed, assume that 𝑝 < 𝑞 then 𝑞 = 𝑝 + 𝛿. Thus √𝑛 = 𝑝√1 + 𝛿

𝑝 ∼
𝑝 + 𝛿

2 . Hence, according to Proposition 3 of Chapter 3, it is enough to check whether numbers less than √𝑛
divides 𝑛, and from the above estimation, 𝑝 could be obtained after less than 𝛿

2 attempts (starting from √𝑛).

5.3 How to encrypt a message
The sender, that we are going to call Bob, wants to send a secret message to Alice. But he wants to make
sure that only her can read the content. First, Bob obtains her public key (𝑛, 𝑒).

A message is going to be an element of 𝑚 ∈ {0, 1, … , 𝑛 − 1} (in practice, Alice and Bob need to agree on
how to reduce a human readable message into a sequence of natural numbers less than 𝑛, that’s the goal of
the various protocols used in computer sciences).

Then, there exists a unique 𝑐 ∈ {0, 1, … , 𝑛 − 1} such that 𝑐 ≡ 𝑚𝑒 (mod 𝑛). It is going to be the crypted
message. Bob sends 𝑐 to Alice, and Alice will use her private key in order to recover 𝑚 from 𝑐.

5.4 How to decrypt a message
Alice just received the secret message 𝑐 from Bob. He told her that it was encrypted using her public
key (𝑛, 𝑒). Since she knows her private key (𝑛, 𝑑), Alice can find the unique 𝑘 ∈ {0, 1, … , 𝑛 − 1} such that
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𝑘 ≡ 𝑐𝑑 (mod 𝑛).

We claim that 𝑚 = 𝑘. Indeed, since 𝑒𝑑 = 1 + 𝑙𝜑(𝑛) for some 𝑙 ∈ ℕ, we obtain using Euler’s theorem that

𝑘 ≡ 𝑐𝑑 (mod 𝑛) ≡ 𝑚𝑒𝑑 (mod 𝑛) = 𝑚1+𝑙𝜑(𝑛) (mod 𝑛) ≡ 𝑚 × (𝑚𝜑(𝑛))
𝑙 (mod 𝑛) ≡ 𝑚 × 1𝑙 (mod 𝑛) ≡ 𝑚 (mod 𝑛)

We conclude since 𝑘 has a unique representative in {0, 1, … , 𝑛 − 1} and 𝑚, 𝑘 ∈ {0, 1, … , 𝑛 − 1}.
Note that the above proof doesn’t workwhen gcd(𝑚, 𝑛) ≠ 1, i.e. when 𝑝|𝑚 or 𝑞|𝑚 (because we can’t apply

Euler’s theorem). Nonetheless, it is still true that 𝑚𝑒𝑑 ≡ 𝑚 (mod 𝑛) in this case (you will prove it during next
week tutorials).

5.5 An example
Alice wants to create a pair of keys for the RSA algorithm so that people could send her secret messages.
She picked the prime numbers 𝑝 = 13 and 𝑞 = 17 then 𝑛 = 221 and 𝜑(𝑛) = 12 × 16 = 192. Then she picks
𝑒 = 11, which is a suitable choice since gcd(192, 11) = 1.

Using Euclid’s algorithm, Alice obtains the Bézout relation 192 × (−2) + 11 × (35) = 1. Therefore, she
sets 𝑑 = 35 so that 𝑒𝑑 ≡ 1 (mod 192). Finally, she shares the public key (𝑛, 𝑒) = (221, 11) on her website and
preciously keeps the private key (𝑛, 𝑑) = (221, 35) for herself only.

Later, Bob wants to send the private message 𝑚 = 149 ∈ {0, 1, 2, … , 220} to Alice. He finds on her
website her public key and computes 𝑚𝑒 = 14911 ≡ 89 (mod 221). So the encrypted message is 𝑐 = 89 ∈
{0, 1, 2, … , 220}. He sends it to Alice by e-mail.

After receiving the e-mail, Alice computes 𝑐𝑑 = 8935 ≡ 149 (mod 221) and she recovers the original
message 𝑚 = 149.

5.6 In practice
It is not difficult to find a Bézout relation using Euclid’s algorithm. But two other things seem not to be very
practical in the above example:

1. How to generate the prime numbers 𝑝 and 𝑞?
2. The computations seem to involve very large numbers which are not suitable to computers (14911 is

already a very large number).

The first problem is a little bit tricky. In practice we generate a random odd number 𝑘 of the wanted
order of magnitude and we check whether it is prime or not. If not, we take the next odd number and we
repeat the process. According to the prime number theorem1 we could expect a prime number before ln(𝑘)

2
attempts.

Nonetheless, we don’t know efficient algorithms to check whether a number is prime or not. Instead,
we usually use probabilistic primality tests (so they can fail, but with a very low probability).
Some algorithms rely on Fermat’s little theorem: if 𝑝 is prime then ∀𝑎 ∈ ℤ, 𝑎𝑝 ≡ 𝑎 (mod 𝑝).
Therefore, since 24221 ≡ 176 (mod 221), we know that 221 is not prime.
Nonetheless, it is possible for such a congruence to hold even for a non-prime number 𝑎, for instance we
have 2341 ≡ 2 (mod 341) although 341 = 11 × 31.

The second problem has easy workarounds. First, note that we don’t need to actually compute 𝑚𝑒.
Indeed, we only need a representative modulo 𝑛. More precisely, given 𝑚, 𝑒, 𝑛 ∈ ℕ, we want to find (the
unique) 𝑐 ∈ {0, 1, … , 𝑛 − 1} such that 𝑚𝑒 ≡ 𝑐 (mod 𝑛). One naive way to avoid very large numbers consists
in iteratively multiplying by 𝑐 and to reduce to a representative in {0, … , 𝑛} before the next step.
For instance, in order to compute 14911 (mod 221), we would do:

1For 𝑘 large enough, there are about 𝑘
ln(𝑘) prime numbers less than or equal to 𝑘.
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1. 1491 ≡ 149 (mod 221)
2. 1492 = 149 × 149 = 22201 ≡ 101 (mod 221)
3. 1493 = 101 × 149 = 15049 ≡ 21 (mod 221)
4. 1494 = 21 × 149 = 3129 ≡ 35 (mod 221)
5. 1495 = 35 × 149 = 5215 ≡ 132 (mod 221)
6. 1496 = 132 × 149 = 19668 ≡ 220 (mod 221)

7. 1497 = 220 × 149 = 32780 ≡ 72 (mod 221)
8. 1498 = 72 × 149 = 10728 ≡ 120 (mod 221)
9. 1499 = 120 × 149 = 17880 ≡ 200 (mod 221)

10. 14910 = 200 × 149 = 29800 ≡ 186 (mod 221)
11. 14911 = 186 × 149 = 27714 ≡ 89 (mod 221)

Note that no involved number exceeded 32780 whereas 14911 = 803616698647447868139149 (actually 149 ×
220 = 32780 is the largest number we could have obtained).

We even have even far more efficient algorithms.

First, write the exponent in binary 𝑒 = 𝑎𝑟𝑎𝑟−1 … 𝑎1𝑎0
2 =

𝑟

∑
𝑖=0

𝑎𝑖2𝑖 where 𝑎𝑖 ∈ {0, 1}. Then

𝑚𝑒 = 𝑚∑ 𝑎𝑖2𝑖 =
𝑟

∏
𝑖=0

(𝑚2𝑖
)

𝑎𝑖

So we just need to compute successive squares: 𝑚2𝑖+1 = (𝑚2𝑖
)

2
(actually we only need it modulo 𝑛).

Implementation in Julia:
1 function fastpowmod(m,e,n::Integer)
2 n > 0 || error("n must be positive")
3 e >= 0 || error("e must be non-negative")
4 r = 1
5 while e > 0
6 if (e & 1) > 0
7 r = (r*m)%n
8 end
9 e >>= 1
10 m = (m^2)%n
11 end
12 return r>0 ? r : r+n
13 end

Output:
julia> fastpowmod(149,11,221)
89
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Appendix 5.A A simple implementation in Julia
Source:

1 using Primes
2
3 struct PublicKey
4 n::Integer
5 e::Integer
6 end
7
8 struct PrivateKey
9 n::Integer
10 d::Integer
11 end
12
13 function gen_keys(p::Integer, q::Integer, e::Integer)
14 isprime(p) || error("p must be a prime number")
15 isprime(q) || error("q must be a prime number")
16 e>0 || error("e must be positive")
17 phi = (p-1)*(q-1)
18 (g,u,v) = gcdx(e,phi)
19 g == 1 || error("phi(n) and e must be coprime")
20 u<0 ? d=(u%phi)+phi : d=u%phi
21 n = p*q
22 return PublicKey(n,e),PrivateKey(n,d)
23 end
24
25 function encrypt(m::Integer, k::PublicKey)
26 0 <= m || error("m must be non-negative")
27 m < k.n || error("m is too large")
28 return powermod(m,k.e,k.n)
29 end
30
31 function decrypt(c::Integer, k::PrivateKey)
32 0 <= c || error("c must be non-negative")
33 c < k.n || error("c is too large")
34 return powermod(c,k.d,k.n)
35 end
36
37 (pbk,pvk) = gen_keys(13,17,11)
38 println("The public key is (n,e)=($(pbk.n),$(pbk.e)), give it to people

willing to send you a secret message!")
39 println("The private key is (n,d)=($(pvk.n),$(pvk.d)), don't share it!")
40 m = 149
41 println("Original message: $m")
42 c = encrypt(m, pbk)
43 println("Encrypted message: $c")
44 println("Decrypted message: $(decrypt(c,pvk))")

Output:
[mat246@Pavilion mat246]$ julia rsa.j
The public key is (n,e)=(221,11), give it to people willing to send you a

secret message!
The private key is (n,d)=(221,35), don't share it!
Original message: 149
Encrypted message: 89
Decrypted message: 149
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Exercises

Exercise 1.
Assume that 𝑛 = 𝑝𝑞 where 𝑝, 𝑞 are distinct prime numbers.
Find a way to easily recover 𝑝 and 𝑞 from the knowledge of 𝑛 and 𝜑(𝑛).

Exercise 2.
In order to prove that RSA works, we check that if 𝑝 and 𝑞 are two distinct prime numbers then

∀𝑙 ∈ ℕ, ∀𝑚 ∈ ℤ, 𝑚1+𝑙𝜑(𝑝𝑞) ≡ 𝑚 (mod 𝑝𝑞) (5.1)

The proof seen in class relies on Euler’s theorem: 𝑚1+𝑙𝜑(𝑝𝑞) = 𝑚 × (𝑚𝜑(𝑝𝑞))
𝑙 ≡ 𝑚 × 1𝑙 (mod 𝑝𝑞) ≡ 𝑚 (mod 𝑝𝑞).

Therefore it holds only when gcd(𝑚, 𝑝𝑞) = 1, i.e. it doesn’t hold when 𝑝|𝑚 or 𝑞|𝑚.2.
Prove that (5.1) holds with no restriction on 𝑚.

Exercise 3.
1. Check that (𝑛, 𝑒) = (5917, 17) and (𝑛, 𝑑) = (5917, 2033) are suitable respectively public and private keys.

Note that 𝑛 = 61 × 97.

2. Bob wants to send the message 𝑚 = 42 to Alice using the above keys. What should he send to Alice?
You don’t have to compute it by hand.
Check that Alice can decrypt this message.

3. Alice just received the ciphered message 𝑐 = 3141 from Bob. What is the original message?

Exercise 4.
Eve intercepted the message 𝑐 = 271 sent to Alice from Bob.
She finds Alice’s public key (𝑛, 𝑒) = (1003, 11) on her website.
What is the original message sent by Bob?

Exercise 5. Digital signature
Another common problem related to communations is the following: how can the recipient be sure that the
sender is not an impostor?
Explain how RSA can be used to solve this issue.

2That’s already quite good: it works for 𝑚 ∈ {0, 1, … , 𝑝𝑞 − 1} ∖ ({𝑝, 2𝑝, … , (𝑞 − 1)𝑝} ∪ {𝑞, 2𝑞, … , (𝑝 − 1)𝑞}) but
𝑝𝑞−(𝑝−1)−(𝑞−1)

𝑝𝑞 = 1 + 2
𝑝𝑞 − 1

𝑞 − 1
𝑝 is small when 𝑝 and 𝑞 are large, so this proof works for almost all possible messages.



Chapter 6

The rationals and the reals

Positive rational numbers 𝑝
𝑞 are systematically studied in Euclid’s elements (circa 300BC), but they already

appeared in ancient Egyptian mathematical writings.
In this chapter we are going to formally construct the set ℚ of rational numbers. The basic idea would be to
set

ℚ = {
𝑝
𝑞 ∶ 𝑝 ∈ ℤ, 𝑞 ∈ ℤ ∖ {0}}

as it is often written in elementary introductions to mathematics. Nonetheless that’s not a fully satisfactory
definition since a same rational number may have different quotient expressions, for instance we want to
have 10

14 = 5
7 . In order to formally solve this issue we are going to introduce the notion of equivalence classes

and quotient sets.

The oldest known texts referring to irrational numbers are the Śulbasūtras. They contain the fact that
the diagonal of a square sacrificial altar1 is uncommensurable with the side length (i.e. the side and the
diagonal can’t be integral multiples of another length).

The Pythagorean Hippasus of Metapontum (circa 500BC) is often credited to have discovered the first
proof of irrationality (it is known for sure that Pythagoreans were aware that √2 and 𝜑 are irrational, but
there is a lot of confusion about the first author divulging irrationality, probably because of the subsequent
damages to the dogma of the Pythagorean school). In ancient Greece, mathematics had a geometric flavour
with a focus on constructions: therefore that was a geometric proof of uncommensurability (I will give an
example later in this chapter).

There are several tales concerning the fate of the discoverer of uncommensurable lengths. In the most
favorable version, he was expelled for his impiety (it was Pythagorean dogma that lengths are commensu-
rable, and more generally that all the things in the world are commensurable, such as melodic intervals).
In other versions, the discoverer was sentenced to death by drowning2. That was for sure the beginning of
a deep philosophical crisis.

The second part of this chapter is devoted to the set ℝ of real numbers. It allows us to take these irrational
numbers into account. I will give several proofs of irrationality (disclaimer: no ancient greek philosopher
has been harmed during the preparation of this text).

6.1 Equivalence classes
Recall that a binary relation ∼ on a set 𝐸 is an equivalence relation if
(i) ∀𝑥 ∈ 𝐸, 𝑥 ∼ 𝑥 (reflexivity)
(ii) ∀𝑥, 𝑦 ∈ 𝐸, 𝑥 ∼ 𝑦 ⟹ 𝑦 ∼ 𝑥 (symmetry)
(iii) ∀𝑥, 𝑦, 𝑧 ∈ 𝐸, (𝑥 ∼ 𝑦 and 𝑦 ∼ 𝑧) ⟹ 𝑥 ∼ 𝑧 (transitivity)

1Irrational numbers seem to always appear in a deadly context…
2I warned you that irrational numbers seem to always appear under deadly circumstances.
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In what follows, we fix 𝐸 a set together with an equivalence relation ∼ on it. We define the equivalence class
of 𝑥 ∈ 𝐸 by

[𝑥] = {𝑦 ∈ 𝐸 ∶ 𝑥 ∼ 𝑦}

and we say that 𝑥 is a representative of [𝑥].
We may easily prove that equivalence classes satisfy the following properties:

• ∀𝑥 ∈ 𝐸, 𝑥 ∈ [𝑥]
• ∀𝑥, 𝑦 ∈ 𝐸, 𝑥 ∼ 𝑦 ⇔ [𝑥] = [𝑦]
• ∀𝑥, 𝑦 ∈ 𝐸, [𝑥] = [𝑦] or [𝑥] ∩ [𝑦] = ∅

Proof.

• Let 𝑥 ∈ 𝐸. Since 𝑥 ∼ 𝑥, we have that 𝑥 ∈ [𝑥].

• Let 𝑥, 𝑦 ∈ 𝐸.
⇒ Assume that 𝑥 ∼ 𝑦. Let 𝑧 ∈ [𝑥], then 𝑥 ∼ 𝑧. By transitivity 𝑦 ∼ 𝑧 so that 𝑧 ∈ [𝑦].
We proved that [𝑥] ⊂ [𝑦]. We may similarly prove that [𝑦] ⊂ [𝑥]. Hence [𝑥] = [𝑦].
⇐ Assume that [𝑥] = [𝑦]. Then 𝑥 ∈ [𝑥] = [𝑦], so 𝑦 ∼ 𝑥 (and thus 𝑥 ∼ 𝑦).

• Let 𝑥, 𝑦 ∈ 𝐸. Assume that [𝑥] ∩ [𝑦] ≠ ∅, then there exists 𝑧 ∈ [𝑥] ∩ [𝑦].
Therefore 𝑥 ∼ 𝑧 and 𝑦 ∼ 𝑧. By transitivity, we get that 𝑥 ∼ 𝑦, thus [𝑥] = [𝑦]. ■

The set
𝐸 /∼ ≔ {[𝑥] ∶ 𝑥 ∈ 𝐸}

of equivalence classes of ∼ is called the quotient set of 𝐸 for ∼.
An element of 𝐸 /∼ is a subset of 𝐸 made of elements which are all equivalent for ∼.
According to the above properties the elements of 𝐸 /∼ form a partition of 𝐸:

𝐸 = ⨆
𝑆∈𝐸/∼

𝑆

The idea is that we want to identify all the elements which are equivalent: 𝑥 ∼ 𝑦 becomes [𝑥] = [𝑦] in 𝐸 /∼ .
That’s a very convenient tool to construct new sets from already constructed ones.

Example 6.1. For instance ℤ /mod 6 contains 6 equivalence classes:
• [0] = {𝑛 ∈ ℤ ∶ 𝑛 ≡ 0 (mod 6)} = {… , −12, −6, 0, 6, 12, …}
• [1] = {𝑛 ∈ ℤ ∶ 𝑛 ≡ 1 (mod 6)} = {… , −11, −5, 1, 7, 13, …}
• [2] = {𝑛 ∈ ℤ ∶ 𝑛 ≡ 2 (mod 6)} = {… , −10, −4, 2, 8, 14, …}
• [3] = {𝑛 ∈ ℤ ∶ 𝑛 ≡ 3 (mod 6)} = {… , −9, −3, 3, 9, 15, …}
• [4] = {𝑛 ∈ ℤ ∶ 𝑛 ≡ 4 (mod 6)} = {… , −8, −2, 4, 10, 16, …}
• [5] = {𝑛 ∈ ℤ ∶ 𝑛 ≡ 5 (mod 6)} = {… , −7, −1, 5, 11, 17, …}

Note that −5, 1 and 7 are representatives of [−5] = [1] = [7].
Congruences become an actual equality in ℤ /mod 6 : 𝑎 ≡ 𝑏 (mod 6) ⇔ [𝑎] = [𝑏].
In this example, it is easy to see that the equivalence classes form a partition of ℤ = [0]⊔[1]⊔[2]⊔[3]⊔[4]⊔[5].
Indeed, an integer 𝑛 ∈ ℤ is an element of exactly one of the equivalence classes (depending on its remainder
for the Euclidean division by 6).

Remark 6.2. An equivalence relation is entirely characterized by its equivalence classes.
Indeed if we have a partition 𝐸 = ⨆

𝑖∈𝐼
𝑆𝑖 then

𝑥 ∼ 𝑦 ⇔ (∃𝑖 ∈ 𝐼, 𝑥, 𝑦 ∈ 𝑆𝑖)

defines an equivalence relation on 𝐸.



J.-B. Campesato Chapter 6. The rationals and the reals 59

6.2 Rational numbers
Proposition 6.3. The relation ∼ on ℤ × ℤ ∖ {0} defined by

(𝑎, 𝑏) ∼ (𝑐, 𝑑) ⇔ 𝑎𝑑 = 𝑏𝑐

is an equivalence relation.

Proof.
• Reflexivity. Let (𝑎, 𝑏) ∈ ℤ × ℤ ∖ {0} then 𝑎𝑏 = 𝑏𝑎 so that (𝑎, 𝑏) ∼ (𝑎, 𝑏).
• Symmetry. Let (𝑎, 𝑏), (𝑐, 𝑑) ∈ ℤ × ℤ ∖ {0}. Assume that (𝑎, 𝑏) ∼ (𝑐, 𝑑) then 𝑎𝑑 = 𝑏𝑐.

Thus 𝑐𝑏 = 𝑑𝑎, i.e. (𝑐, 𝑑) ∼ (𝑎, 𝑏).
• Transitivity. Let (𝑎, 𝑏), (𝑐, 𝑑), (𝑒, 𝑓 ) ∈ ℤ × ℤ ∖ {0}. Assume that (𝑎, 𝑏) ∼ (𝑐, 𝑑) and that (𝑐, 𝑑) ∼ (𝑒, 𝑓 ).

Then 𝑎𝑑 = 𝑏𝑐 and 𝑐𝑓 = 𝑑𝑒. Therefore 𝑎𝑑𝑓 = 𝑏𝑐𝑓 = 𝑏𝑑𝑒.
Since 𝑑 ≠ 0, by cancellation, 𝑎𝑓 = 𝑏𝑒, i.e. (𝑎, 𝑏) ∼ (𝑒, 𝑓 ). ■

Definition 6.4. We define the set of rational numbers by ℚ ≔ (ℤ × ℤ ∖ {0}) /∼ andwe denote the equivalence
class of (𝑎, 𝑏) ∈ ℤ × ℤ ∖ {0} by 𝑎

𝑏 ≔ [(𝑎, 𝑏)].

Remark 6.5. Note that 𝑎
𝑏 = 𝑐

𝑑 ⇔ 𝑎𝑑 = 𝑏𝑐.

Remark 6.6. With the above definition, we may formally write that 12
14 = 6

7 : indeed (12, 14) ∼ (6, 7) since
12 × 7 = 84 = 14 × 6.

Remark 6.7. We defined a rational number as a set of couples, but what really matters is how the usual
operations and the order are defined on rational numbers 𝑎

𝑏 ∈ ℚ.

Remark 6.8. Note that for (𝑎, 𝑏) ∈ ℤ × ℤ ∖ {0}, we have −𝑎
𝑏 = 𝑎

−𝑏 . Hence we set −𝑎
𝑏 ≔ −𝑎

𝑏 = 𝑎
−𝑏 .

Remark 6.9. Note that 𝑎
𝑏 = 0 ⇔ 𝑎 = 0 and that if 𝑎

𝑏 = 𝑎′

𝑏′ ≠ 0 then 𝑏
𝑎 = 𝑏′

𝑎′ .

Hence, if 𝑥 = 𝑎
𝑏 ≠ 0, we set 𝑥−1 ≔ 𝑏

𝑎 which doesn’t depend on the representative of 𝑥.

Proposition 6.10. Given 𝑥 ∈ ℚ, there exists a unique couple (𝑎, 𝑏) ∈ ℤ × ℕ ∖ {0} such that 𝑥 = 𝑎
𝑏 and gcd(𝑎, 𝑏) = 1.

Then we say that 𝑥 = 𝑎
𝑏 is written in lowest form.

Proof. Let 𝑥 ∈ ℚ.
Existence. There exist 𝛼 ∈ ℤ and 𝛽 ∈ ℤ ∖ {0} such that 𝑥 = 𝛼

𝛽 .
Write 𝑑 = gcd(𝛼, 𝛽), then there exist 𝑎 ∈ ℤ and 𝑏 ∈ ℤ ∖ {0} such that 𝛼 = 𝑑𝑎 and 𝛽 = 𝑑𝑏.
We have 𝑑 = gcd(𝛼, 𝛽) = gcd(𝑑𝑎, 𝑑𝑏) = 𝑑 gcd(𝑎, 𝑏), so gcd(𝑎, 𝑏) = 1.
Besides 𝛼

𝛽 = sign(𝑏)𝑎
|𝑏| since sign(𝑏)𝑎𝛽 = sign(𝑏)𝑎𝑑𝑏 = |𝑏|𝑑𝑎 = |𝑏|𝛼.

Uniqueness. Assume that 𝑎
𝑏 = 𝑎′

𝑏′ where 𝑎, 𝑎′ ∈ ℤ, 𝑏, 𝑏′ ∈ ℕ ∖ {0}, gcd(𝑎, 𝑏) = 1, gcd(𝑎′, 𝑏′) = 1.
Then 𝑎𝑏′ = 𝑎′𝑏. By Gauss’ lemma, since 𝑏|𝑎𝑏′ and gcd(𝑎, 𝑏) = 1, we get that 𝑏|𝑏′. Similarly 𝑏′|𝑏.
Since 𝑏|𝑏′ and 𝑏′|𝑏, we get |𝑏| = |𝑏′|, and thus 𝑏 = 𝑏′.
Then, using the cancellation rule, 𝑎𝑏′ = 𝑎′𝑏 gives 𝑎 = 𝑎′ since 𝑏 = 𝑏′ ≠ 0. ■

Remark 6.11. Note that the function 𝜑 ∶ ℤ → ℚ
𝑛 ↦ 𝑛

1
is injective. Indeed, ∀𝑛, 𝑚 ∈ ℤ, 𝑛

1 = 𝑚
1 ⇔ 𝑛 = 𝑚.

Therefore we may see ℤ as a subset of ℚ by setting 𝑛 ≔ 𝑛
1 ∈ ℚ for 𝑛 ∈ ℤ.

More formally, 𝜑(ℤ) ⊂ ℚ and we may identify ℤ with 𝜑(ℤ) since 𝜑 ∶ ℤ → 𝜑(ℤ) is bijective.
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Proposition 6.12. The addition + ∶
ℚ × ℚ → ℚ

(
𝑎
𝑏 , 𝑐

𝑑 ) ↦ 𝑎𝑑+𝑏𝑐
𝑏𝑑

is well-defined.

Proof. We need to prove that the addition doesn’t depend on the choice of the representatives,
i.e. that if 𝑎

𝑏 = 𝑎′

𝑏′ and 𝑐
𝑑 = 𝑐′

𝑑′ then 𝑎
𝑏 + 𝑐

𝑑 = 𝑎′

𝑏′ + 𝑐′

𝑑′ .
Assume that 𝑎

𝑏 = 𝑎′

𝑏′ and 𝑐
𝑑 = 𝑐′

𝑑′ , i.e. 𝑎𝑏′ = 𝑏𝑎′ and 𝑐𝑑′ = 𝑑𝑐′.
Therefore (𝑎𝑑 + 𝑏𝑐)(𝑏′𝑑′) = 𝑎𝑑𝑏′𝑑′ + 𝑏𝑐𝑏′𝑑′ = 𝑏𝑎′𝑑𝑑′ + 𝑑𝑐′𝑏𝑏′ = (𝑎′𝑑′ + 𝑏′𝑐′)(𝑏𝑑), i.e. 𝑎𝑑+𝑏𝑐

𝑏𝑑 = 𝑎′𝑑′+𝑏′𝑐′

𝑏′𝑑′ . ■

Remark 6.13. Note that the addition defined on ℚ is compatible with the one on ℤ.
Indeed, if 𝑚, 𝑛 ∈ ℤ then 𝑚

1 + 𝑛
1 = 𝑚+𝑛

1 .

Proposition 6.14. The multiplication × ∶
ℚ × ℚ → ℚ

(
𝑎
𝑏 , 𝑐

𝑑 ) ↦ 𝑎𝑐
𝑏𝑑

is well-defined.

Proof. We need to prove that the multiplication doesn’t depend on the choice of the representatives,
i.e. that if 𝑎

𝑏 = 𝑎′

𝑏′ and 𝑐
𝑑 = 𝑐′

𝑑′ then 𝑎
𝑏 × 𝑐

𝑑 = 𝑎′

𝑏′ × 𝑐′

𝑑′ .
Assume that 𝑎

𝑏 = 𝑎′

𝑏′ and 𝑐
𝑑 = 𝑐′

𝑑′ , i.e. 𝑎𝑏′ = 𝑏𝑎′ and 𝑐𝑑′ = 𝑑𝑐′.
Therefore (𝑎𝑐)(𝑏′𝑑′) = 𝑎𝑏′𝑐𝑑′ = 𝑏𝑎′𝑑𝑐′ = (𝑎′𝑐′)(𝑏𝑑), i.e. 𝑎𝑐

𝑏𝑑 = 𝑎′𝑐′

𝑏′𝑑′ as desired. ■

Remark 6.15. Note that the multiplication defined on ℚ is compatible with the one on ℤ.
Indeed, if 𝑚, 𝑛 ∈ ℤ then 𝑚

1 × 𝑛
1 = 𝑚×𝑛

1 .

Definition 6.16. We define the binary relation ≤ on ℚ by
𝑎
𝑏 ≤ 𝑐

𝑑 ⇔ 0 ≤ (𝑏𝑐 − 𝑎𝑑)𝑏𝑑

where the order on the RHS of the equivalence is the order of ℤ.

Remark 6.17. The idea behind the above definition is the following:
• We want that 𝑎

𝑏 ≤ 𝑐
𝑑 if and only if 0 ≤ 𝑐

𝑑 − 𝑎
𝑏 = 𝑏𝑐−𝑎𝑑

𝑏𝑑 , and,
• we also want that 0 ≤ 𝑒

𝑓 if and only if 0 ≤ 𝑒𝑓 (i.e. the sign rule).

Remark 6.18. We have to check that the order doesn’t depend on the choice of representatives.

Remark 6.19. Note that the relation ≤ defined on ℚ is compatible with the usual order ≤ on ℤ.
Indeed, let 𝑚, 𝑛 ∈ ℤ then 𝑚

1 ≤ 𝑛
1 ⇔ 0 ≤ 𝑛 − 𝑚 ⇔ 𝑚 ≤ 𝑛.

Theorem 6.20. (ℚ, +, ×, ≤) is a (totally) ordered field, meaning that
• + is associative: ∀𝑥, 𝑦, 𝑧 ∈ ℚ, (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧)
• 0 is the unit of +: ∀𝑥 ∈ ℚ, 𝑥 + 0 = 0 + 𝑥 = 𝑥
• −𝑥 is the additive inverse of 𝑥: ∀𝑥 ∈ ℚ, 𝑥 + (−𝑥) = (−𝑥) + 𝑥 = 0
• + is commutative: ∀𝑥, 𝑦 ∈ ℚ, 𝑥 + 𝑦 = 𝑦 + 𝑥
• × is associative: ∀𝑥, 𝑦, 𝑧 ∈ ℚ, (𝑥𝑦)𝑧 = 𝑥(𝑦𝑧)
• × is distributive with respect to +: ∀𝑥, 𝑦, 𝑧 ∈ ℚ, 𝑥(𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧 and (𝑥 + 𝑦)𝑧 = 𝑥𝑧 + 𝑦𝑧
• 1 is the unit of × : ∀𝑥 ∈ ℚ, 1 × 𝑥 = 𝑥 × 1 = 𝑥
• If 𝑥 ≠ 0 then 𝑥−1 is the multiplicative inverse of 𝑥: ∀𝑥 ∈ ℚ ∖ {0}, 𝑥𝑥−1 = 𝑥−1𝑥 = 1
• × is commutative: ∀𝑥, 𝑦 ∈ ℚ, 𝑥𝑦 = 𝑦𝑥
• ≤ is reflexive: ∀𝑥 ∈ ℚ, 𝑥 ≤ 𝑥
• ≤ is antisymmetric: ∀𝑥, 𝑦 ∈ ℚ, (𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥) ⟹ 𝑥 = 𝑦
• ≤ is transitive: ∀𝑥, 𝑦, 𝑧 ∈ ℚ, (𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧) ⟹ 𝑥 ≤ 𝑧
• ≤ is total: ∀𝑥, 𝑦 ∈ ℚ, 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥
• ∀𝑥, 𝑦, 𝑟, 𝑠 ∈ ℚ, (𝑥 ≤ 𝑦 and 𝑟 ≤ 𝑠) ⇒ 𝑥 + 𝑟 ≤ 𝑦 + 𝑠
• ∀𝑥, 𝑦, 𝑧 ∈ ℚ, (𝑥 ≤ 𝑦 and 𝑧 > 0) ⇒ 𝑥𝑧 ≤ 𝑦𝑧
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Remark 6.21. If 𝑐
𝑑 ≠ 0, we set

𝑎
𝑏
𝑐
𝑑

≔ (
𝑐
𝑑 )

−1 𝑎
𝑏 = 𝑎𝑑

𝑏𝑐 .

Proposition 6.22. ∀𝑥, 𝑦 ∈ ℚ, 𝑥 < 𝑦 ⟹ (∃𝑧 ∈ ℚ, 𝑥 < 𝑧 < 𝑦)

Proof. Let 𝑥, 𝑦 ∈ ℚ be such that 𝑥 < 𝑦. Then 𝑧 = 𝑥+𝑦
2 is a suitable choice.

Indeed, 𝑥 < 𝑦 implies 2𝑥 < 𝑥 + 𝑦 and thus 𝑥 < 𝑧. Similarly 𝑥 + 𝑦 < 2𝑦, and thus 𝑧 < 𝑦. ■

Theorem 6.23 (ℚ is archimedean). ∀𝜀 ∈ ℚ>0, ∀𝐴 ∈ ℚ>0, ∃𝑁 ∈ ℕ, 𝑁𝜀 > 𝐴.

Proof. Since 𝐴
𝜀 > 0, we may find a representative 𝑎

𝑏 = 𝐴
𝜀 where 𝑎, 𝑏 ∈ ℕ ∖ {0}.

Then 𝑎 + 1 − 𝐴
𝜀 = 𝑎 + 1 − 𝑎

𝑏 = 𝑎(𝑏−1)+𝑏
𝑏 > 0, thus (𝑎 + 1)𝜀 > 𝐴. So 𝑁 = 𝑎 + 1 is a suitable choice. ■

Remark 6.24. The above theorem means that lim
𝑛→+∞

1
𝑛 = 0, or equivalently that ℚ doesn’t contain infinitesi-

mal elements (i.e. there is not infinitely large or infinitely small elements).
This property may seem obvious at first glance, but, even if it is a little bit beyond the scope of this course,
it is not too difficult to construct a (totally) ordered field with infinitesimal elements (i.e. with a positive
element which is less than or equal to any other positive elements).

Remark 6.25. Note that ℚ is not well-ordered.
Indeed ℚ>0 = {𝑥 ∈ ℚ ∶ 𝑥 > 0} is non-empty (and even bounded from below) but it has no least element.

Theorem 6.26 (The rational root theorem).
Let 𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 be a polynomial with integer coefficients 𝑎𝑘 ∈ ℤ.
If 𝑥 = 𝑝

𝑞 is a rational root of 𝑓 written in lowest terms (i.e. gcd(𝑝, 𝑞) = 1), then 𝑝|𝑎0 and 𝑞|𝑎𝑛.

Proof. By assumption we have that

𝑎𝑛 (
𝑝
𝑞 )

𝑛
+ 𝑎𝑛−1 (

𝑝
𝑞 )

𝑛−1
+ ⋯ + 𝑎1

𝑝
𝑞 + 𝑎0 = 0

Therefore
𝑎𝑛𝑝𝑛 + 𝑎𝑛−1𝑝𝑛−1𝑞 + ⋯ + 𝑎1𝑝𝑞𝑛−1 + 𝑎0𝑞𝑛 = 0

Thus 𝑝|𝑎0𝑞𝑛. Since gcd(𝑝, 𝑞) = 1, by Gauss’ lemma we obtain that 𝑝|𝑎0.
Similarly 𝑞|𝑎𝑛. ■

6.3 Infima and suprema
Recall that a binary relation ≤ on a set 𝐸 is an order if
(i) ∀𝑥 ∈ 𝐸, 𝑥 ≤ 𝑥 (reflexivity)
(ii) ∀𝑥, 𝑦 ∈ 𝐸, (𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥) ⟹ 𝑥 = 𝑦 (antisymmetry)
(iii) ∀𝑥, 𝑦, 𝑧 ∈ 𝐸, (𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧) ⟹ 𝑥 ≤ 𝑧 (transitivity)

Definition 6.27. Let (𝐸, ≤) be an ordered set and 𝐴 ⊂ 𝐸.
• We say that 𝑚 ∈ 𝐴 is the least element of 𝐴 if ∀𝑎 ∈ 𝐴, 𝑚 ≤ 𝑎.
• We say that 𝑀 ∈ 𝐴 is the greatest element of 𝐴 if ∀𝑎 ∈ 𝐴, 𝑎 ≤ 𝑀 .

Remark 6.28. Note that, if it exists, the least element (resp. greatest element) of 𝐴 is in 𝐴 by definition.

Remark 6.29. The least (resp. greatest) element may not exist, but if it exists then it is unique.
For instance {𝑛 ∈ ℤ ∶ 𝑛 ≤ 0} ⊂ ℤ and {𝑥 ∈ ℚ ∶ 0 < 𝑥 < 1} have no least element.
For the uniqueness, it is easy to prove: assume that 𝑚, 𝑚′ are two least elements of 𝐴, then

• 𝑚 ≤ 𝑚′ since 𝑚 is a least element of 𝐴 and 𝑚′ ∈ 𝐴, and,
• 𝑚′ ≤ 𝑚 since 𝑚′ is a least element of 𝐴 and 𝑚 ∈ 𝐴.

Hence 𝑚 = 𝑚′.
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Definition 6.30. Let (𝐸, ≤) be an ordered set and 𝐴 ⊂ 𝐸.
• We say that 𝐴 is bounded from below if it admits a lower bound, i.e.

∃𝑐 ∈ 𝐸, ∀𝑎 ∈ 𝐴, 𝑐 ≤ 𝑎

• We say that 𝐴 is bounded from above if it admits an upper bound, i.e.

∃𝐶 ∈ 𝐸, ∀𝑎 ∈ 𝐴, 𝑎 ≤ 𝐶

• We say that 𝐴 is bounded if it is bounded from below and from above.

Definition 6.31. Let (𝐸, ≤) be an ordered set and 𝐴 ⊂ 𝐸.
• If the greatest lower bound of 𝐴 exists, we denote it inf(𝐴) and call it the infimum of 𝐴.
• If the least upper bound of 𝐴 exists, we denote it sup(𝐴) and call it the supremum of 𝐴.

Remark 6.32. If it exists, the greatest element of the set of lower bounds of 𝐴 is unique (as shown above),
therefore the infimum is unique (if it exists). And similarly for the supremum.
However, it may not exist:

• If 𝐴 = {𝑛 ∈ ℤ ∶ 𝑛 ≤ 0} ⊂ ℤ then the set of lower bounds of 𝐴 is empty, so 𝐴 has no infimum.
• If 𝐴 = {𝑥 ∈ ℚ ∶ 𝑥 > 0 and 𝑥2 > 2} ⊂ ℚ then the set of lower bounds of 𝐴 is not empty but has no

greatest element, so 𝐴 has no infimum.
Note that the infimum (resp. supremum) may not be an element of 𝐴, but if it is then it is the least (resp.
greatest) element of 𝐴. For instance, the infimum of 𝐴 = {𝑥 ∈ ℚ ∶ 0 < 𝑥 < 1} ⊂ ℚ is 0 ∉ 𝐴.

6.4 Real numbers
The following results concerning ℝ that you learnt during your first year calculus course are equivalent:

• The Least Upper Bound principle
• The Monotone Convergence Theorem for sequences
• The Extreme Value Theorem
• The Intermediate Value Theorem
• Rolle’s Theorem/The Mean Value Theorem
• A continuous function on a segment line is Riemann-integrable
• Bolzano-Weierstrass Property of ℝ: a bounded sequence in ℝ admits a convergent subsequence
• Cut property:

∀𝐴, 𝐵 ⊂ ℝ,
𝐴, 𝐵 ≠ ∅

ℝ = 𝐴 ∪ 𝐵
∀𝑎 ∈ 𝐴, ∀𝑏 ∈ 𝐵, 𝑎 < 𝑏

⎫⎪
⎬
⎪⎭

⟹ ∃!𝑐 ∈ ℝ, ∀𝑎 ∈ 𝐴, ∀𝑏 ∈ 𝐵, 𝑎 ≤ 𝑐 ≤ 𝑏

We say that ℝ is Dedekind-complete to state that the above statements hold.

Intuitively, the Dedekind-completeness of the real line tells us two things:
1. There is no infinitely small positive real number (Archimedean property, which is already true for ℚ):

∀𝜀 > 0, ∀𝐴 > 0, ∃𝑛 ∈ ℕ, 𝑛𝜀 > 𝐴

2. There is no gap in the real line (e.g. any sequence of digits is the decimal expansion of a real number).
That’s the difference with ℚ. See for instance the following examples involving √2 ∉ ℚ:

• LUB: √2 = sup{𝑥 ∈ ℚ ∶ 𝑥2 < 2}.
• MCT: define a sequence by 𝑥0 = 1 and 𝑥𝑛+1 = 𝑥𝑛

2 + 1
𝑥𝑛
.

Then (𝑥𝑛) converges to some limit 𝑙 by the MCT. But this limit must satisfy 𝑙2 = 2.
• IVT: let 𝑓(𝑥) = 𝑥2 − 2. Then 𝑓(0) < 0 and 𝑓(2) > 0.

Hence we deduce from the IVT that 𝑓 has a root, i.e. ∃𝑥 ∈ ℝ, 𝑥2 − 2 = 0.
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The Dedekind-completeness of the real line has several consequences that you already know:
• The various results connecting the sign of 𝑓 ′ to the monotonicity of 𝑓 .
• 𝐴𝐶𝑉 ⟹ 𝐶𝑉 (for series and improper integrals).
• The Fundamental Theorem of Calculus.
• L’Hôpital’s rule.
• The BCT and the LCT (for series and improper integrals).
• Cauchy-completeness of ℝ: any Cauchy sequence converges.

Beware, despite very close names, without the Archimedean property Cauchy-completeness is strictly weaker
than Dedekind-completeness.

• ⋯
Hence a first year calculus course is basically about the Dedekind-completeness of ℝ and its consequences.

Theorem 6.33. Up to isomorphism3, there exists a unique (totally) ordered field (ℝ, +, ×, ≤) which is Dedekind-
complete, i.e. such that:

• + is associative: ∀𝑥, 𝑦, 𝑧 ∈ ℝ, (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧)
• 0 is the unit of +: ∀𝑥 ∈ ℝ, 𝑥 + 0 = 0 + 𝑥 = 𝑥
• Existence of the additive inverse: ∀𝑥 ∈ ℝ, ∃(−𝑥) ∈ ℝ, 𝑥 + (−𝑥) = (−𝑥) + 𝑥 = 0
• + is commutative: ∀𝑥, 𝑦 ∈ ℝ, 𝑥 + 𝑦 = 𝑦 + 𝑥
• × is associative: ∀𝑥, 𝑦, 𝑧 ∈ ℝ, (𝑥𝑦)𝑧 = 𝑥(𝑦𝑧)
• × is distributive with respect to +: ∀𝑥, 𝑦, 𝑧 ∈ ℝ, 𝑥(𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧 and (𝑥 + 𝑦)𝑧 = 𝑥𝑧 + 𝑦𝑧
• 1 is the unit of × : ∀𝑥 ∈ ℝ, 1 × 𝑥 = 𝑥 × 1 = 𝑥
• Existence of the multiplicative inverse: ∀𝑥 ∈ ℝ ∖ {0}, ∃𝑥−1 ∈ ℝ, 𝑥𝑥−1 = 𝑥−1𝑥 = 1
• × is commutative: ∀𝑥, 𝑦 ∈ ℝ, 𝑥𝑦 = 𝑦𝑥
• ≤ is reflexive: ∀𝑥 ∈ ℝ, 𝑥 ≤ 𝑥
• ≤ is antisymmetric: ∀𝑥, 𝑦 ∈ ℝ, (𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥) ⟹ 𝑥 = 𝑦
• ≤ is transitive: ∀𝑥, 𝑦, 𝑧 ∈ ℝ, (𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧) ⟹ 𝑥 ≤ 𝑧
• ≤ is total: ∀𝑥, 𝑦 ∈ ℝ, 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥
• ∀𝑥, 𝑦, 𝑟, 𝑠 ∈ ℝ, (𝑥 ≤ 𝑦 and 𝑟 ≤ 𝑠) ⇒ 𝑥 + 𝑟 ≤ 𝑦 + 𝑠
• ∀𝑥, 𝑦, 𝑧 ∈ ℝ, (𝑥 ≤ 𝑦 and 𝑧 > 0) ⇒ 𝑥𝑧 ≤ 𝑦𝑧
• ℝ is Dedekind-complete (for instance a non-empty subset which is bounded from above admits a supremum).

The theorem contains two parts: existence and uniqueness.

For the existence part, there are several ways to construct a field satisfying the above properties. Usually
each construction gives easily a version of the Dedekind-completeness from which we derive the other
equivalent statements.

One very common construction consists in defining ℝ as equivalence classes of rational Cauchy se-
quences: this way we obtain easily the archimedean property and the Cauchy-completeness (which are
together equivalent to the Dedekind-completeness).

Another common construction relies on Dedekind cuts (that I present in the appendix). This one gives
the cut property for free, from which we easily derive the least upper bound principle (quite often the LUB
principle is the start point of first year calculus courses).

The uniqueness part is a little bit delicate and I won’t prove it in this course. Nonetheless, let me try to
explain the rough idea.

Assume that we are given two fields ℝ and ℝ̃ satisfying the above properties. Note that each of them
contains a copy of ℚ. Then we can construct a order-preserving bijection 𝜑 ∶ ℝ → ℝ̃ compatible with the
addition and the multiplication as follows: first we map the copy of ℚ in ℝ to the one in ℝ̃ and then we use
the Dedekind-completeness to extend the bijection from ℚ to ℝ (the idea is to fill the gaps similarly in ℝ and
ℝ̃).

3It means that if we have two such fields, then there is a bijection between them preserving the addition, the multiplication and
the order, i.e. they are basically the same.
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Nonetheless, there is no need to give an explicit construction of ℝ: we can use the above properties as
axioms and then study their consequences. That’s the usual strategy in a first year calculus course. In the
sequel, concerning the Dedekind-completeness of ℝ, we assume that the least upper bound principle holds:

LUB Principle. A non-empty subset of ℝ which is bounded from above admits a supremum.

Proposition 6.34. ℚ ⊂ ℝ and +, ×, < for ℝ are compatible with the ones for ℚ.

Proof. That’s a sketch of proof (for concision I use equality instead of identification/bijection).
1. ℕ ⊂ ℝ: if 𝑛 ∈ ℕ then 𝑛 = 1 + 1 + ⋯ + 1 ∈ ℝ. So ℕ ⊂ ℝ.
2. ℤ ⊂ ℝ: if 𝑛 ∈ ℕ then −𝑛 ∈ ℝ. So ℤ ⊂ ℝ.
3. ℚ ⊂ ℝ: if (𝑎, 𝑏) ∈ ℤ × ℤ ∖ {0} then 𝑎

𝑏 ≔ 𝑎𝑏−1 ∈ ℝ. So ℚ ⊂ ℝ. ■

Proposition 6.35.
• ∀𝑥, 𝑦, 𝑧 ∈ ℝ, 𝑥 ≤ 𝑦 ⇒ 𝑥 + 𝑧 ≤ 𝑦 + 𝑧
• ∀𝑥, 𝑦, 𝑧 ∈ ℝ, (𝑥 ≤ 𝑦 and 0 ≤ 𝑧) ⇒ 𝑥𝑧 ≤ 𝑦𝑧
• ∀𝑥, 𝑦, 𝑢, 𝑣 ∈ ℝ, (𝑥 ≤ 𝑦 and 𝑢 ≤ 𝑣) ⇒ 𝑥 + 𝑢 ≤ 𝑦 + 𝑣
• ∀𝑥 ∈ ℝ, 0 < 𝑥 ⇔ 0 < 1

𝑥
• ∀𝑥, 𝑦 ∈ ℝ, ∀𝑧 ∈ ℝ∗

+, 𝑥 ≤ 𝑦 ⇔ 𝑥𝑧 ≤ 𝑦𝑧
• ∀𝑥, 𝑦, 𝑢, 𝑣 ∈ ℝ, (0 ≤ 𝑥 ≤ 𝑦 and 0 ≤ 𝑢 ≤ 𝑣) ⇒ 𝑥𝑢 ≤ 𝑦𝑣
• ∀𝑥, 𝑦 ∈ ℝ, 0 < 𝑥 < 𝑦 ⇔ 1

𝑦 < 1
𝑥

Definition 6.36. We define the absolue value by | ⋅ | ∶
ℝ → ℝ
𝑥 ↦ |𝑥| ≔ {

𝑥 si 𝑥 ≥ 0
−𝑥 si 𝑥 ≤ 0

Proposition 6.37.
• ∀𝑥 ∈ ℝ, |𝑥| = max(𝑥, −𝑥)
• ∀𝑥 ∈ ℝ, |𝑥| ≥ 0
• ∀𝑥 ∈ ℝ, 𝑥 = 0 ⇔ |𝑥| = 0
• ∀𝑥, 𝑦 ∈ ℝ, |𝑥| = |𝑦| ⇔ (𝑥 = 𝑦 or 𝑥 = −𝑦)
• ∀𝑥, 𝑦 ∈ ℝ, |𝑥𝑦| = |𝑥||𝑦|
• ∀𝑥 ∈ ℝ ∖ {0}, |

1
𝑥 | = 1

|𝑥|
• ∀𝑥, 𝑦 ∈ ℝ, |𝑥 + 𝑦| ≤ |𝑥| + |𝑦| (triangle inequality)
• ∀𝑥, 𝑦 ∈ ℝ, ||𝑥| − |𝑦|| ≤ |𝑥 − 𝑦| (reverse triangle inequality)

Proposition 6.38. For 𝑥, 𝑎 ∈ ℝ,
• |𝑥| ≤ 𝑎 ⇔ −𝑎 ≤ 𝑥 ≤ 𝑎
• |𝑥| < 𝑎 ⇔ −𝑎 < 𝑥 < 𝑎
• |𝑥| ≥ 𝑎 ⇔ (𝑥 ≥ 𝑎 or 𝑥 ≤ −𝑎)
• |𝑥| > 𝑎 ⇔ (𝑥 > 𝑎 or 𝑥 < −𝑎)
• If 𝑎 ≥ 0 then |𝑥| = 𝑎 ⇔ (𝑥 = 𝑎 or 𝑥 = −𝑎)

Proposition 6.39. Let 𝐴 ⊂ ℝ and 𝑀 ∈ ℝ. Then

𝑀 = sup(𝐴) ⇔ {
∀𝑥 ∈ 𝐴, 𝑥 ≤ 𝑀
∀𝜀 > 0, ∃𝑥 ∈ 𝐴, 𝑀 − 𝜀 < 𝑥

The first condition ensures that 𝑀 is an upper bound of 𝐴. The second one means it is the smallest one.

ℝ𝐴
𝑀𝑀 − 𝜀

𝜀

𝑥
Beware, for simplicity I represented 𝐴 as an interval in the above figure, but it may not be an interval!
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Proof.
⇒ Assume that 𝑀 = sup(𝐴). Then 𝑀 is an upper bound of 𝐴 so ∀𝑥 ∈ 𝐴, 𝑥 ≤ 𝑆.
We know that if 𝑇 is an other upper bound of 𝐴 then 𝑀 ≤ 𝑇 (since 𝑀 is the least upper bound).
So, by taking the contrapositive, if 𝑇 < 𝑀 then 𝑇 isn’t an upper bound of 𝐴.
Let 𝜀 > 0. Since 𝑀 − 𝜀 < 𝑀 , we know that 𝑀 − 𝜀 is not an upper bound of 𝐴, meaning that there exists
𝑥 ∈ 𝐴 such that 𝑀 − 𝜀 < 𝑥.

⇐ Assume that

{
∀𝑥 ∈ 𝐴, 𝑥 ≤ 𝑀
∀𝜀 > 0, ∃𝑥 ∈ 𝐴, 𝑀 − 𝜀 < 𝑥

Then, by the first condition, 𝑀 is an upper bound of 𝐴. Let’s prove it is the least one.
We will show the contrapositive: if 𝑇 < 𝑀 then 𝑇 isn’t an upper bound of 𝐴.
Let 𝑇 ∈ ℝ. Assume that 𝑇 < 𝑀 . Set 𝜀 = 𝑀 − 𝑇 > 0. Then there exists 𝑥 ∈ 𝐴 such that 𝑀 − 𝜀 < 𝑥, i.e. 𝑇 < 𝑥.
Hence 𝑇 isn’t an upper bound of 𝐴 ■

We have a similar characterization for the infimum.

Proposition 6.40. Let 𝐴 ⊂ ℝ and 𝑚 ∈ ℝ. Then

𝑚 = inf(𝐴) ⇔ {
∀𝑥 ∈ 𝐴, 𝑚 ≤ 𝑥
∀𝜀 > 0, ∃𝑥 ∈ 𝐴, 𝑥 < 𝑚 + 𝜀

Proposition 6.41. Given 𝐴, 𝐵 ⊂ ℝ two non-empty subsets of ℝ, we set
• 𝐴 + 𝐵 = {𝑥 ∈ ℝ ∶ ∃𝑎 ∈ 𝐴, ∃𝑏 ∈ 𝐵, 𝑥 = 𝑎 + 𝑏}
• −𝐴 = {𝑥 ∈ ℝ ∶ −𝑥 ∈ 𝐴}

Then
• If 𝐴 and 𝐵 are bounded from above then 𝐴 + 𝐵 is too and sup(𝐴 + 𝐵) = sup(𝐴) + sup(𝐵).
• If 𝐴 is bounded from above then −𝐴 is bounded from below and inf(−𝐴) = − sup(𝐴).
• If 𝐴 and 𝐵 are bounded from above then 𝐴 ∪ 𝐵 is too and sup(𝐴 ∪ 𝐵) = max(sup(𝐴), sup(𝐵))

Theorem 6.42 (ℝ is archimedean). ∀𝜀 > 0, ∀𝐴 > 0, ∃𝑛 ∈ ℕ, 𝑛𝜀 > 𝐴

Proof. Let 𝜀 > 0 and 𝐴 > 0.
Assume by contradiction that ∀𝑛 ∈ ℕ, 𝑛𝜀 ≤ 𝐴. Then 𝐸 = {𝑛𝜀 ∶ 𝑛 ∈ ℕ} is non-empty and bounded from
above so it admits a supremum 𝑀 = sup𝐸 by the least upper bound principle.
Since 𝑀 − 𝜀 < 𝑀 , 𝑀 − 𝜀 is not an upper bound of 𝐸, so there exists 𝑛 ∈ ℕ such that 𝑛𝜀 > 𝑀 − 𝜀.
Therefore (𝑛 + 1)𝜀 > 𝑀 , hence a contradiction. ■

Proposition 6.43. For every 𝑥 ∈ ℝ, there exists a unique 𝑛 ∈ ℤ such that 𝑛 ≤ 𝑥 < 𝑛 + 1.
We say that 𝑛 is the integer part (or the floor function value) of 𝑥 and we denote it by ⌊𝑥⌋.

Proof. Let 𝑥 ∈ ℝ.
Existence.

• First case: if 𝑥 ≥ 0.
We set 𝐸 = {𝑘 ∈ ℕ ∶ 𝑥 < 𝑘}.
By the archimedean property (with 𝜀 = 1), there exists 𝑚 ∈ ℕ such that 𝑚 > 𝑥. Hence 𝐸 ≠ ∅.
By the well-ordering principle, 𝐸 admits a least element 𝑝.
We have that 𝑥 < 𝑝 since 𝑝 ∈ 𝐸 and that 𝑝 − 1 ≤ 𝑥 since 𝑝 − 1 ∉ 𝐸.
Therefore 𝑛 = 𝑝 − 1 satisfies 𝑛 ≤ 𝑥 < 𝑛 + 1.

• Second case: if 𝑥 < 0. We show similarly that 𝑛 = −min {𝑘 ∈ ℕ ∶ −𝑥 ≤ 𝑘} suits the definition of ⌊𝑥⌋.
Uniqueness. Assume that 𝑛, 𝑛′ ∈ ℤ are two suitable integers, then

𝑛 ≤ 𝑥 < 𝑛 + 1 (6.1)

and
𝑛′ ≤ 𝑥 < 𝑛′ + 1
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We deduce from the last inequality that

−𝑛′ − 1 < −𝑥 ≤ −𝑛′ (6.2)

Summing (6.1) and (6.2), we get that 𝑛 − 𝑛′ − 1 < 0 < 𝑛 − 𝑛′ + 1.
Hence 𝑛 − 𝑛′ < 1, i.e. 𝑛 − 𝑛′ ≤ 0, and −1 < 𝑛 − 𝑛′ i.e. 0 ≤ 𝑛 − 𝑛′.
Therefore 𝑛 = 𝑛′. ■

Remark 6.44. We have ⌊𝑥⌋ ≤ 𝑥 < ⌊𝑥⌋ + 1, from which we derive 𝑥 − 1 < ⌊𝑥⌋ ≤ 𝑥.

Theorem 6.45 (ℚ is dense in ℝ). ∀𝑥, 𝑦 ∈ ℝ, 𝑥 < 𝑦 ⇒ (∃𝑞 ∈ ℚ, 𝑥 < 𝑞 < 𝑦)

Proof. Let 𝑥, 𝑦 ∈ ℝ be such that 𝑥 < 𝑦. Set 𝜀 = 𝑦 − 𝑥 > 0.
By the archimedean property, there exists 𝑛 ∈ ℕ ∖ {0} such that 𝑛𝜀 > 1, i.e. 1

𝑛 < 𝜀.
Set 𝑚 = ⌊𝑛𝑥⌋ + 1. Then 𝑛𝑥 < 𝑚 ≤ 𝑛𝑥 + 1, so 𝑥 < 𝑚

𝑛 ≤ 𝑥 + 1
𝑛 < 𝑥 + 𝜀 = 𝑦. ■

Remark 6.46. The above theorem is equivalent to the fact that any real number is the limit of a sequence of
rational numbers (that you will prove in Problem Set).

Definition 6.47. A subset 𝐼 ⊂ ℝ is an interval if ∀𝑥, 𝑦 ∈ 𝐼, ∀𝑧 ∈ ℝ, (𝑥 ≤ 𝑧 ≤ 𝑦 ⇒ 𝑧 ∈ 𝐼).

Proposition 6.48. If 𝐼 ⊂ ℝ is a non-empty interval not reduced to a singleton then 𝐼 ∩ ℚ ≠ ∅.

Proof. Since 𝐼 is non-empty and not reduced to a singleton, there exist 𝑥, 𝑦 ∈ 𝐼 with 𝑥 < 𝑦.
Then, since ℚ is dense in ℝ, there exists 𝑞 ∈ ℚ such that 𝑥 < 𝑞 < 𝑦.
Since 𝐼 is an interval, 𝑞 ∈ 𝐼 . Hence 𝑞 ∈ 𝐼 ∩ ℚ ≠ ∅. ■

Corollary 6.49. ∀𝑥, 𝑦 ∈ ℝ, 𝑥 < 𝑦 ⟹ (∃𝑠 ∈ ℝ ∖ ℚ, 𝑥 < 𝑠 < 𝑦)

Proof. Let 𝑥, 𝑦 ∈ ℝ be such that 𝑥 < 𝑦.
By Theorem 6.45, there exists 𝑞 ∈ ℚ such that 𝑥 < 𝑞 < 𝑦.
Still by Theorem 6.45, there exists 𝑝 ∈ ℚ such that 𝑥 < 𝑝 < 𝑞.
Hence we obtained 𝑝, 𝑞 ∈ ℚ such that 𝑥 < 𝑝 < 𝑞 < 𝑦.
Set 𝑠 = 𝑝 + √2

2 (𝑞 − 𝑝). Then 𝑠 ∈ ℝ ∖ ℚ (otherwise, by contradiction, √2 would be in ℚ, which is not the case

as you proved in the Week 4 of tutorials) and 𝑝 < 𝑠 < 𝑞 (notice that 0 < √2
2 < 1 so 𝑠 is a number between 𝑝

and 𝑞).
We obtained 𝑠 ∈ ℝ ∖ ℚ such that 𝑥 < 𝑠 < 𝑦. ■

Proposition 6.50. If 𝐼 ⊂ ℝ is an interval which is non-empty and not reduced to a singleton then 𝐼 ∩ (ℝ ∖ ℚ) ≠ ∅.

6.5 Decimal representation of real numbers
It is possible to generalize the decimal numeral system used to describe integers in order to describe real
numbers. In what follows I only work with decimal expansions but all the statements/proofs work if we
replace 10 by 𝑏 ≥ 2.

We start with a lemma that we will use several times in this section.

Lemma 6.51. Let (𝑎𝑘)𝑘≥1 be a sequence such that ∀𝑘 ∈ ℕ ∖ {0}, 𝑎𝑘 ∈ {0, 1, … , 9}. Then the series

𝑆 =
+∞

∑
𝑘=1

𝑎𝑘
10𝑘

is convergent and 𝑆 ≥ 0.
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Proof.

Note that 0 ≤ 𝑎𝑘
10𝑘 ≤ 9

10𝑘 and that
+∞

∑
𝑘=1

9
10𝑘 is convergent (geometric series with ratio 1

10 < 1).

Therefore we may conclude using the BCT. ■

Remark 6.52. Unfortunately the decimal representation may not be unique:

0.9999 … =
+∞

∑
𝑘=1

9
10𝑘 = 9

10 × 1
1 − 1

10
= 1.000 …

In order to achieve uniqueness we are going to restrict to expansions which don’t end with infinitely many
9, see the definition below.
Definition 6.53. Let 𝑥 ∈ ℝ. We say that

⌊𝑥⌋ +
+∞

∑
𝑘=1

𝑎𝑘
10𝑘

is a proper decimal expansion of 𝑥 if
(i) ∀𝑘 ∈ ℕ ∖ {0}, 𝑎𝑘 ∈ {0, 1, … , 9}

(ii) ∀𝑛 ∈ ℕ ∖ {0},
𝑛

∑
𝑘=1

𝑎𝑘
10𝑘 ≤ 𝑥 − ⌊𝑥⌋ <

𝑛

∑
𝑘=1

𝑎𝑘
10𝑘 + 1

10𝑛

Proposition 6.54. If ⌊𝑥⌋ +
+∞

∑
𝑘=1

𝑎𝑘
10𝑘 is a proper decimal expansion of 𝑥 ∈ ℝ then

1. 𝑥 = ⌊𝑥⌋ +
+∞

∑
𝑘=1

𝑎𝑘
10𝑘

2. ∀𝑁 ∈ ℕ ∖ {0}, ∃𝑘 > 𝑁, 𝑎𝑘 ≠ 9
Then we simply write 𝑥 = ⌊𝑥⌋.𝑎1𝑎2𝑎3 ….
Remark 6.55. The last item means that a proper decimal expansion can’t end with infinitely many 9.
Proof.

1. We already proved that 𝑆 =
+∞

∑
𝑘=1

𝑎𝑘
10𝑘 is convergent. Hence we get 𝑆 ≤ 𝑥 − ⌊𝑥⌋ ≤ 𝑆. So 𝑥 = ⌊𝑥⌋ + 𝑆.

2. Assume by contradiction that there exists 𝑁 ∈ ℕ ∖ {0} such that ∀𝑘 > 𝑁, 𝑎𝑘 = 9.

Then 𝑥 − ⌊𝑥⌋ =
+∞

∑
𝑘=1

𝑎𝑘
10𝑘 =

𝑁

∑
𝑘=1

𝑎𝑘
10𝑘 +

+∞

∑
𝑘=𝑁+1

9
10𝑘 =

𝑁

∑
𝑘=1

𝑎𝑘
10𝑘 + 1

10𝑁 . Which contradicts the definition of

proper decimal expansion (the strict inequality in 6.53.(ii)). ■
Theorem 6.56. A real number 𝑥 admits a unique proper decimal expansion.
Proof. Let 𝑥 ∈ ℝ. Up to replacing 𝑥 with 𝑥 − ⌊𝑥⌋, we may assume that ⌊𝑥⌋ = 0.

Assume that
+∞

∑
𝑘=1

𝑎𝑘
10𝑘 is a proper decimal expansion of 𝑥.

Then, from 6.53.(ii), we get that

𝑎𝑛 ≤ 10𝑛
⎛
⎜
⎜
⎝
𝑥 −

𝑛−1

∑
𝑘=1

𝑎𝑘
10𝑘

⎞
⎟
⎟
⎠

< 𝑎𝑛 + 1

So the only possible suitable sequence (𝑎𝑛) is given by 𝑎1 = ⌊10𝑥⌋ and 𝑎𝑛+1 =
⌊

10𝑛+1
(

𝑥 −
𝑛

∑
𝑘=1

𝑎𝑘
10𝑘 )⌋

.

It proves the uniqueness, but we still need to check that it is valid.
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(i) Since ⌊𝑥⌋ = 0, we have 0 ≤ 𝑥 < 1. Thus 0 ≤ 10𝑥 < 10. Therefore 𝑎1 = ⌊10𝑥⌋ ∈ {0, 1, … , 9}.
Let 𝑛 ∈ ℕ ∖ {0}, then

0 ≤ 10𝑛
⎛
⎜
⎜
⎝
𝑥 −

𝑛−1

∑
𝑘=1

𝑎𝑘
10𝑘

⎞
⎟
⎟
⎠

− 𝑎𝑛 < 1

Thus

0 ≤ 10𝑛+1
(

𝑥 −
𝑛

∑
𝑘=1

𝑎𝑘
10𝑘 )

< 10

Therefore 𝑎𝑛+1 ∈ {0, 1, … , 9}.

(ii) We have ∀𝑛 ∈ ℕ ∖ {0},
𝑛

∑
𝑘=1

𝑎𝑘
10𝑘 ≤ 𝑥 <

𝑛

∑
𝑘=1

𝑎𝑘
10𝑘 + 1

10𝑛 by construction. ■

Remark 6.57. It is easy to compute the decimal expansion of a rational number.
Indeed, let 𝑥 = 𝑎

𝑏 where 𝑎 ∈ ℤ and 𝑏 ∈ ℕ ∖ {0}.
By Euclidean division, 𝑎 = 𝑏𝑞0 + 𝑟0 where 0 ≤ 𝑟0 < 𝑏. Hence 𝑎

𝑏 = 𝑞0 + 𝑟0
𝑏 . Note that 𝑞0 = ⌊

𝑎
𝑏 ⌋.

Now, again by Euclidean division, 10𝑟0 = 𝑏𝑞1 + 𝑟1 where 0 ≤ 𝑟1 < 𝑏.
And we repeat: 10𝑟𝑘 = 𝑏𝑞𝑘+1 + 𝑟𝑘+1 where 0 ≤ 𝑟𝑘+1 < 𝑏.
According to the pigeonhole principle (or the Dirichlet’s drawer principle), since there are only 𝑏 possible re-
mainders, the process will start looping after at most 𝑏 steps.
But note that the (𝑞𝑘)𝑘≥1 defines exactly the decimal expansion of 𝑥.
Therefore the decimal expansion of a rational is eventually periodic.
Definition 6.58. We say that a proper decimal expansion is eventually periodic if

∃𝑟 ∈ ℕ, ∃𝑠 ∈ ℕ ∖ {0}, ∀𝑘 ∈ ℕ, 𝑎𝑟+𝑘+𝑠 = 𝑎𝑟+𝑘

It means that

𝑥 = ⌊𝑥⌋.𝑏1𝑏2 … 𝑏𝑟𝑐1𝑐2 … 𝑐𝑠

≔ ⌊𝑥⌋.𝑏1𝑏2 … 𝑏𝑟𝑐1𝑐2 … 𝑐𝑠𝑐1𝑐2 … 𝑐𝑠𝑐1 …

Example 6.59. We want to find the decimal expansion of 1529327
24975 .

1. 1529327 = 24975 × 61 + 5852
2. 58520 = 24975 × 2 + 8570
3. 85700 = 24975 × 3 + 10775
4. 107750 = 24975 × 4 + 7850
5. 78500 = 24975 × 3 + 3575
6. 35750 = 24975 × 1 + 10775

And we start to loop. Therefore 1529327
24975 = 61.234314

Theorem 6.60. A real number 𝑥 is rational if and only if its proper decimal expansion is eventually periodic.
Proof.
⇒ That’s exactly Remark 6.57.

⇐ Assume that the proper decimal expansion 𝑥 = ⌊𝑥⌋ +
+∞

∑
𝑘=1

𝑎𝑘
10𝑘 is eventually periodic,

i.e. ∃𝑟 ∈ ℕ, ∃𝑠 ∈ ℕ ∖ {0}, ∀𝑘 ∈ ℕ, 𝑎𝑟+𝑘+𝑠 = 𝑎𝑟+𝑘.

Then 𝑥 = ⌊𝑥⌋ +
𝑟

∑
𝑘=1

𝑎𝑘
10𝑘 + 10−𝑟

+∞

∑
𝑘=1

𝑎𝑟+𝑘
10𝑘 .

Hence it is enough to prove that 𝑦 =
+∞

∑
𝑘=1

𝑎𝑟+𝑘
10𝑘 ∈ ℚ.

Note that 10𝑠𝑦 = 𝑁 + 𝑦 where 𝑁 = 𝑎𝑟+1𝑎𝑟+2 … 𝑎𝑟+𝑠
10 ∈ ℕ. Hence 𝑦 = 𝑁

10𝑠−1 ∈ ℚ. ■
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Remark 6.61. According to the above proof,

𝑎𝑡𝑎𝑡−1 … 𝑎0.𝑏1𝑏2 … 𝑏𝑟𝑐1𝑐2 … 𝑐𝑠 = 𝑎𝑡𝑎𝑡−1 ⋯ 𝑎0
10 +

𝑟

∑
𝑘=1

𝑏𝑘
10𝑘 + 10−𝑟 𝑐1𝑐2 … 𝑐𝑠

10

10𝑠 − 1

= 𝑎𝑡𝑎𝑡−1 … 𝑎0
10 + 𝑏1𝑏2 … 𝑏𝑟

10

10𝑟 + 𝑐1𝑐2 … 𝑐𝑠
10

10𝑟+𝑠 − 10𝑟

= 𝑎𝑡𝑎𝑡−1 … 𝑎0𝑏1𝑏2 … 𝑏𝑟𝑐1𝑐2 … 𝑐𝑠
10 − 𝑎𝑡𝑎𝑡−1 … 𝑎0𝑏1𝑏2 … 𝑏𝑟

10

10𝑟+𝑠 − 10𝑟

Example 6.62.

• 61.234314 = 61234314 − 61234
106 − 103 = 61173080

999000

• 0.3 = 3 − 0
10 − 1 = 3

9 • 42.012 = 42012 − 42
103 − 1

= 41970
999

6.6 √2 is irrational

Using the IVT, we may prove that there exists a unique positive real number 𝑥 > 0 such that 𝑥2 = 2.
We denote it by √2.

Theorem 6.63. √2 ∉ ℚ

Below are some of my favorite proofs for the irrationality of √2.

Proof 1 (Fundamental Theorem of Arithmetic).
Assume by contradiction that √2 = 𝑎

𝑏 ∈ ℚ. Then 2𝑏2 = 𝑎2.
The prime factorization of the LHS has an odd number of primes (counted with exponents) whereas the
RHS has an even number of primes (counted with exponents).
Which is impossible since the prime factorization is unique up to order. ■

Proof 2 (Euclid’s lemma).
Assume by contradiction that √2 = 𝑎

𝑏 ∈ ℚ written in lowest form.
Then 2𝑏2 = 𝑎2. Therefore 2|𝑎2. By Euclid’s lemma, 2|𝑎, so 𝑎 = 2𝑘.
Thus 2𝑏2 = 4𝑘2, from which we get 𝑏2 = 2𝑘2. By Euclid’s lemma, 2|𝑏.
Hence 2|gcd(𝑎, 𝑏) = 1, which is a contradiction. ■

Proof 3 (Gauss’ lemma).
Assume by contradiction that √2 = 𝑎

𝑏 ∈ ℚ written in lowest form.
Then 2𝑏2 = 𝑎2. Therefore 𝑏|𝑎2.
Since gcd(𝑎, 𝑏) = 1, by Gauss’ lemma (applied twice), 𝑏|1 and hence 𝑏 = 1 (since 𝑏 ∈ ℕ ∖ {0} in lowest form).
Hence 𝑎2 = 2. Which is impossible (2 is not a perfect square: ∀𝑥 ∈ ℤ, 𝑥2 ≡ 0 (mod 3) or 𝑥2 ≡ 1 (mod 3)). ■

Proof 4 (proof by infinite descent).
Assume by contradiction that √2 = 𝑎

𝑏 ∈ ℚ where 𝑎 ∈ ℕ and 𝑏 ∈ ℕ ∖ {0}.
Then 2𝑏2 = 𝑎2. Then 𝑎(𝑎 − 𝑏) = 𝑎2 − 𝑎𝑏 = 2𝑏2 − 𝑎𝑏 = 𝑏(2𝑏 − 𝑎). Hence √2 = 𝑎

𝑏 = 2𝑏−𝑎
𝑎−𝑏 .

Note that 1 < √2 = 𝑎
𝑏 , thus 0 < 𝑎 − 𝑏. Therefore 0 < 2𝑏 − 𝑎, so 𝑎 − 𝑏 < 𝑏.

Therefore we obtained another expression of √2 with a smaller positive denominator.
By repeating this process, we may construct an infinite sequence √2 = 𝑎

𝑏 = 𝑎1
𝑏1

= 𝑎2
𝑏2

= ⋯ such that 𝑎𝑘 > 0
and 0 < 𝑏𝑘+1 < 𝑏𝑘.
Which is a contradiction since there is no decreasing infinite sequence of natural numbers. ■
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Proof 5 (by congruences).
Assume by contradiction that √2 = 𝑎

𝑏 ∈ ℚ written in lowest form. Then 2𝑏2 = 𝑎2.
Since gcd(𝑎, 𝑏) = 1, we can’t have 𝑎 ≡ 0 (mod 3) and 𝑏 ≡ 0 (mod 3) simulatenously (otherwise 3|gcd(𝑎, 𝑏)).

• Either 𝑎 ≡ ±1 (mod 3) and 𝑏 ≡ 0 (mod 3), then 𝑎2 − 2𝑏2 ≡ 1 (mod 3),
• or 𝑎 ≡ 0 (mod 3) and 𝑏 ≡ ±1 (mod 3), then 𝑎2 − 2𝑏2 ≡ 1 (mod 3),
• or 𝑎 ≡ ±1 (mod 3) and 𝑏 ≡ ±1 (mod 3), then 𝑎2 − 2𝑏2 ≡ 2 (mod 3).

Therefore 𝑎2 − 2𝑏2 ≢ 0 (mod 3) and so 𝑎2 − 2𝑏2 ≠ 0. Which is a contradiction. ■

Proof 6 (by the well-ordering principle).
Assume by contradiction that √2 = 𝑎

𝑏 ∈ ℚ. Then 𝑎 = √2𝑏.
Therefore 𝐸 = {𝑛 ∈ ℕ ∶ 𝑛√2 ∈ ℕ ∖ {0}} is not empty since it contains |𝑏| as √2|𝑏| = |𝑎|.
By the well-ordering principle, 𝐸 admits a least element 𝑝. Then 𝑝√2 ∈ ℕ ∖ {0}.
Set 𝑞 = 𝑝√2 − 𝑝. Then 𝑞 ∈ ℤ. Besides 𝑞 = 𝑝(√2 − 1) so that 0 < 𝑞 < 𝑝.
But 𝑞√2 = 2𝑝 − 𝑝√2 = 𝑝 − 𝑞 ∈ ℕ ∖ {0}. So 𝑞 ∈ 𝐸.
Which is a contradiction since 𝑝 is the least element of 𝐸 and 𝑞 < 𝑝. ■

Proof 7 (by the rational root theorem).
Assume by contradiction that √2 = 𝑎

𝑏 ∈ ℚ written in lowest form.
Since √2 = 𝑎

𝑏 is a root of 𝑥2 − 2 = 0, we deduce from the rational root theorem that 𝑎|2 and 𝑏|1.
So either √2 = ±1 or √2 = ±2.
We obtain a contradiction in both cases since (±1)2 = 1 ≠ 2 and (±2)2 = 4 ≠ 2. ■

Proof 8 (by the archimedean property).
For 𝑛 ∈ ℕ, set 𝑢𝑛 = (√2 − 1)

𝑛
. We may prove either by induction or using the binomial formula, that for

every 𝑛, there exist 𝑎𝑛, 𝑏𝑛 ∈ ℤ such that 𝑢𝑛 = 𝑎𝑛 + 𝑏𝑛√2.
Since4 0 < √2 − 1 < 1

2 , we may also prove that 0 < 𝑢𝑛 ≤ 1
2𝑛 .

Assume by contradiction that √2 = 𝑝
𝑞 ∈ ℚ, then

𝑢𝑛 = 𝑎𝑛 + 𝑏𝑛√2 = 𝑎𝑛 + 𝑏𝑛
𝑝
𝑞 = 𝑞𝑎𝑛 + 𝑝𝑏𝑛

𝑞

Since 𝑢𝑛 > 0 we get that |𝑞𝑎𝑛 + 𝑝𝑏𝑛| ≥ 1 and that 𝑢𝑛 ≥ 1
|𝑞| .

Therefore ∀𝑛 ∈ ℕ, 0 < 1
|𝑞| ≤ 𝑢𝑛 ≤ 1

2𝑛 . Which contradicts the archimedean property. ■

Proof 9 (geometric version of proof 4).
Assume by contradiction that √2 = 𝑎

𝑏 ∈ ℚ where 𝑎 ∈ ℕ and 𝑏 ∈ ℕ ∖ {0}. Then 𝑎 = √2𝑏 > 𝑏.

𝑎
𝑏

𝑏

𝑎
𝑏

𝑏

(𝑎 − 𝑏)2

(𝑎 − 𝑏)2

(2𝑏 − 𝑎)2

4Use the fact that (0, +∞) ∋ 𝑥 → 𝑥2 ∈ ℝ is increasing and that 2 ≤ (
3
2 )

2
to conclude that √2 ≤ 3

2 .
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By a direct computation of the side length, the square at the center has an area of 𝒜 = (2𝑏 − 𝑎)2.
But, by inclusion-exclusion, 𝒜 also satisfies 2(𝑎 − 𝑏)2 + 2𝑏2 − 𝒜 = 𝑎2.
So 𝒜 = 2(𝑎 − 𝑏)2 + 2𝑏2 − 𝑎2 = 2(𝑎 − 𝑏)2 since 𝑎2 = 2𝑏2.
Therefore 2(𝑎 − 𝑏)2 = 𝒜 = (2𝑏 − 𝑎)2. Thus 2 = (2𝑏−𝑎)2

(𝑎−𝑏)2 .
Hence √2 = 2𝑏−𝑎

𝑎−𝑏 with5 0 < 2𝑏 − 𝑎 and 0 < 𝑎 − 𝑏 < 𝑏.
By repeating this process, we may construct an infinite sequence √2 = 𝑎

𝑏 = 𝑎1
𝑏1

= 𝑎2
𝑏2

= ⋯ such that 𝑎𝑘 > 0
and 0 < 𝑏𝑘+1 < 𝑏𝑘.
Which is a contradiction since there is no decreasing infinite sequence of natural numbers. ■

Proof 10 (Pythagoras flavored).
Let 𝐴𝐵𝐶 be a isosceles right triangle in 𝐴. By the Pythagorean theorem 𝐵𝐶

𝐴𝐵
= √2.

Assuming that √2 is rational means geometrically that 𝐵𝐶 and 𝐴𝐵 are commensurable, i.e. they are both
integral multiple of a another length 𝑑6.
Put 𝐷 on [𝐵𝐶] such that 𝐵𝐷 = 𝐴𝐵.
Define 𝐸 as the intersection of (𝐴𝐶) with the line through 𝐷 which is perpendicular to (𝐵𝐶).
Note that7 𝐴𝐸 = 𝐸𝐷 = 𝐷𝐶 .
Thus 𝐶𝐷 = 𝐵𝐶 − 𝐴𝐵 and 𝐸𝐶 = 𝐴𝐶 − 𝐴𝐸 = 𝐴𝐵 − (𝐵𝐶 − 𝐴𝐵) = 2𝐴𝐵 − 𝐵𝐶 .
Therefore 𝐶𝐷 and 𝐸𝐶 are integral multiple of 𝑑.
Besides 𝐷𝐸𝐶 is a isosceles right triangle in 𝐷, therefore we may repeat this construction on the triangle
𝐷𝐸𝐶 in order to construct an infinite sequence of segment lines (𝐴𝐶, 𝐸𝐶, 𝐹 𝐶, …, see below) which are all
integral multiple of 𝑑 and with decreasing length.
Which is impossible.

𝐴 𝐵

𝐶

𝐴 𝐵

𝐶

𝐷

𝐸

𝐴 𝐵

𝐶

𝐷

𝐸

𝐹 𝐺

■

The above proof is actually another geometric version of Proof 4:

Algebraically: 2𝑏 − 𝑎
𝑎 − 𝑏 = 2 − 𝑎/𝑏

𝑎/𝑏 − 1 = 2 − √2
√2 − 1

= √2.

Geometrically: √2 = 𝐸𝐶
𝐶𝐷

= 2𝐴𝐵 − 𝐵𝐶
𝐵𝐶 − 𝐴𝐵

.

Proof 11 (my favorite one).
The proof is left as an exercise to the reader. ■

5See Proof 4 for 0 < 2𝑏 − 𝑎.
6That is the geometric version of irrationality used by ancient Greeks:

if √2 = 𝑎
𝑏 , set 𝑑 = 𝐴𝐵

𝑏 then 𝐴𝐵 = 𝑏𝑑 and 𝐵𝐶 = √2 × 𝐴𝐵 = 𝑎
𝑏 𝑏𝑑 = 𝑎𝑑.

7Compare the triangles 𝐵𝐴𝐸 and 𝐵𝐷𝐸 which are respectively right in 𝐴 and 𝐷 with common hypotenuse and 𝐴𝐵 = 𝐷𝐵, so,
by the Pythagorean theorem, 𝐴𝐸 = 𝐸𝐷. Besides the triangle 𝐶𝐷𝐸 is isosceles right in 𝐴 by angle considerations, thus 𝐸𝐷 = 𝐷𝐶 .
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Before leaving √2, I would like to show you a funny proof relying on the tertium non datur.

Proposition 6.64. There exist 𝑎, 𝑏 > 0 irrational numbers such that 𝑎𝑏 ∈ ℚ.

Proof.

• Assume that √2
√2

∈ ℚ. Then we can take 𝑎 = 𝑏 = √2.

• Assume that √2
√2

∉ ℚ. Thenwe can take 𝑎 = √2
√2

and 𝑏 = √2. Indeed,
(

√2
√2

)

√2

= √2
2

= 2. ■

Remark 6.65. Note that in the above proof it is not necessary to know whether √2
√2

is rational or not in
order to conclude! That’s really cool! By the way, it is not rational using Gelfond–Schneider Theorem.

6.7 𝑒 is irrational

You know from your first year calculus that 𝑒 =
+∞

∑
𝑛=0

1
𝑛! .

Theorem 6.66. 𝑒 ∉ ℚ

Proof 1. Assume by contradiction that 𝑒 = 𝑎
𝑏 where 𝑎, 𝑏 ∈ ℕ ∖ {0}. Note that 𝑏 > 1 since 𝑒 ∉ ℕ. Besides

𝑏!
⎛
⎜
⎜
⎝
𝑒 −

𝑏

∑
𝑛=0

1
𝑛!

⎞
⎟
⎟
⎠

= 𝑏!
( ∑

𝑛≥𝑏+1

1
𝑛!)

Note that the LHS is an integer. We are going to derive a contradiction by proving that the RHS is not an
integer. Indeed

0 < 𝑏!
( ∑

𝑛≥𝑏+1

1
𝑛!)

≤ ∑
𝑛≥1

1
(𝑏 + 1)𝑛 = 1

𝑏 < 1

■

It is also possible to use an approach similar to the eighth proof for the irrationality of √2:

Proof 2. For 𝑛 ∈ ℕ, set 𝑢𝑛 = ∫
1

0
𝑥𝑛𝑒𝑥d𝑥.

Using an induction and integration by part, we can prove that for 𝑛 ∈ ℕ, there exist 𝑎𝑛, 𝑏𝑛 ∈ ℤ such that
𝑢𝑛 = 𝑎𝑛 + 𝑒𝑏𝑛.
Assume by contradiction that 𝑒 = 𝑝

𝑞 where 𝑝, 𝑞 ∈ ℕ ∖ {0}. Then 0 < 𝑢𝑛 = 𝑎𝑛 + 𝑏𝑛
𝑝
𝑞 = 𝑞𝑎𝑛+𝑝𝑏𝑛

𝑞 .
Since 𝑢𝑛 > 0 we get that 𝑞𝑎𝑛 + 𝑝𝑏𝑛 ≥ 1 and that 𝑢𝑛 ≥ 1

𝑞 .

Therefore ∀𝑛 ∈ ℕ, 0 < 1
𝑞 ≤ 𝑢𝑛 ≤ ∫

1

0
𝑥𝑛𝑒d𝑥 = 𝑒

𝑛 + 1 .
Which is impossible. ■
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Exercises

Exercise 1.

Prove that √7 + 4√3 + √7 − 4√3 ∈ ℕ.

Exercise 2.

1. Prove that ∀𝑎, 𝑏 ∈ ℝ, 𝑎𝑏 ≤ 𝑎2 + 𝑏2

2 .

2. Prove that ∀𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐 ≤ 𝑎2 + 𝑏2 + 𝑐2.

3. Prove that ∀𝑎, 𝑏, 𝑐 ∈ ℝ, 3𝑎𝑏 + 3𝑏𝑐 + 3𝑎𝑐 ≤ (𝑎 + 𝑏 + 𝑐)2.

Exercise 3.
Prove that ∀𝑥 ∈ ℝ, |𝑥 − 1| ≤ 𝑥2 − 𝑥 + 1.

Exercise 4.
1. Prove that ∀𝑥, 𝑦 ∈ ℝ, |𝑥| + |𝑦| ≤ |𝑥 + 𝑦| + |𝑥 − 𝑦|.

2. Prove that ∀𝑥, 𝑦 ∈ ℝ, |𝑥 + 𝑦|
1 + |𝑥 + 𝑦| ≤ |𝑥|

1 + |𝑥| + |𝑦|
1 + |𝑦| .

Exercise 5.
Let 𝐴 ⊂ ℝ be non-empty and bounded. We set 𝐵 = {|𝑥 − 𝑦| ∶ 𝑥, 𝑦 ∈ 𝐴}.

1. Prove that 𝐵 admits a supremum.

2. Prove that sup𝐵 = sup𝐴 − inf𝐴.

Exercise 6.
Prove that if 𝑓 ∶ [0, 1] → [0, 1] is non-decreasing then 𝑓 admits a fixed point, i.e. ∃𝑎 ∈ [0, 1], 𝑓 (𝑎) = 𝑎.
Hint: study {𝑥 ∈ [0, 1] ∶ 𝑓(𝑥) ≥ 𝑥}.

Exercise 7.
Let 𝐴 ⊂ ℝ be non-empty and bounded from above. Set 𝑀 = sup(𝐴).
Prove that if 𝑀 ∉ 𝐴 then for all 𝜀 > 0 the set (𝑀 − 𝜀, 𝑀) ∩ 𝐴 contains infinitely many elements.

Exercise 8. Conway’s Soldiers, or why geometric series are useful
We consider an infinite checkerboard represented by ℤ×ℤ with pieces on it. The pieces are allowed tomove
using the peg solitaire rules: a move consists of one piece jumping over another piece into an empty cell
(either horizontally or vertically), the piece which was jumped over is then removed.

The goal of this exercise is to show that there is no initial configuration with finitely many pieces located on
ℤ × ℤ≤0 allowing to reach cells with 𝑦-coordinate 5.

1. Prove that there exists initial configurations allowing to reach cells with 𝑦-coordinate 1, 2, 3 and 4.

2. We denote by 𝜎 the positive root of 𝑥2 + 𝑥 − 1 = 0 and we fix a target cell on ℤ × ℤ.
We label each cell of ℤ × ℤ with 𝜎𝑛 where 𝑛 is the Manhattan distance from the target to the cell.
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𝜎0𝜎1

𝜎1
𝜎1

𝜎1 𝜎2

𝜎2

𝜎2

𝜎2

𝜎2

𝜎2

𝜎2
𝜎3

𝜎3

𝜎3𝜎3

𝜎3𝜎3

𝜎4

𝜎4

Given a finite configuration 𝐶 (i.e. finitely pieces on the checkerboard), we define 𝐹 (𝐶) = ∑𝑖∈𝐶 𝜎𝑛𝑖

where 𝑛𝑖 is the Manhattan from the target cell to the cell 𝑖.
Prove that if 𝐶′ is a configuration obtained after one move then 𝐹 (𝐶′) − 𝐹 (𝐶) ≤ 0.

3. Compute
+∞

∑
𝑛=2

𝜎𝑛.

4. Assume that the target cell is (0, 5). Compute 𝐹 (𝐶) where 𝐶 contains all the cells with non-positive
𝑦-coordinates (hence 𝐶 contains infinitely many cells).

5. Conclude that there is no finite initial configuration in ℤ × ℤ≤0 allowing to reach (0, 5).

Exercise 9.
1. Prove that ∀𝑥, 𝑦 ∈ ℝ, ⌊𝑥⌋ + ⌊𝑦⌋ ≤ ⌊𝑥 + 𝑦⌋ ≤ ⌊𝑥⌋ + ⌊𝑦⌋ + 1.

2. Prove that ∀𝑛 ∈ ℕ ∖ {0}, ∀𝑥 ∈ ℝ, ⌊
⌊𝑛𝑥⌋

𝑛 ⌋ = ⌊𝑥⌋.

Exercise 10.
1. Prove that ∀𝑛 ∈ ℕ, (2 + √3)

𝑛
+ (2 − √3)

𝑛
∈ 2ℕ.

2. Prove that for every 𝑛 ∈ ℕ, ⌊(2 + √3)
𝑛
⌋ is odd.

Exercise 11.
Let 𝐼 and 𝐽 be two open intervals of ℝ. Prove that (𝐼 ∩ ℚ) ∩ (𝐽 ∩ ℚ) = ∅ ⟹ 𝐼 ∩ 𝐽 = ∅.

Exercise 12.
1. Is the sum of two irrational numbers always an irrational number?
2. Is the product of two irrational numbers always an irrational number?
3. Prove that ∀𝑥 ∈ ℝ ∖ ℚ, ∀𝑦 ∈ ℚ, 𝑥 + 𝑦 ∉ ℚ.
4. Prove that ∀𝑥 ∈ ℝ ∖ ℚ, ∀𝑦 ∈ ℚ ∖ {0}, 𝑥𝑦 ∉ ℚ.

Exercise 13.
Prove that the following numbers are irrational

1. √3
2. √6
3. √11
4.

3
√3 + √11 ∉ ℚ

5. √2 + √3
6. (√2 + √3)

2

7. √2 + √3 + √6
8. (3√2 + 2√3 + √6)

2

9. √7 + √3.
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Exercise 14.
Prove that ∀𝑛 ∈ ℕ, √𝑛 ∈ ℚ ⇔ √𝑛 ∈ ℕ ⇔ ∃𝑚 ∈ ℕ, 𝑛 = 𝑚2.

Exercise 15.

Is
+∞

∑
𝑛=1

10− 𝑛(𝑛+1)
2 = 0.101001000100001000001 … a rational number?

Exercise 16.
1. We fix 𝑟 > 0 and 𝑛 ∈ ℕ. We define 𝑓 ∶ ℝ → ℝ by 𝑓(𝑥) = 1

𝑛! 𝑥
𝑛(1 − 𝑥)𝑛 and we set

𝐹 (𝑥) = ∑
𝑘≥0

(−1)𝑘𝑟2𝑛−2𝑘𝑓 (2𝑘+1)(𝑥)

(note that the sum is finite since 𝑓 is a polynomial).

(a) Prove that ∀𝑘 ∈ ℕ, 𝑓 (𝑘)(0) ∈ ℤ.
(b) Prove that ∀𝑘 ∈ ℕ, 𝑓 (𝑘)(1) ∈ ℤ.
(c) Prove that 𝐹 ″(𝑥) = −𝑟2𝐹 (𝑥) + 𝑟2𝑛+2𝑓(𝑥).
(d) Compute 𝑑

𝑑𝑥 (𝐹 ′(𝑥) sin(𝑟𝑥) − 𝑟𝐹 (𝑥) cos(𝑟𝑥)).

(e) Compute ∫1
0 𝑓(𝑥) sin(𝑟𝑥)d𝑥.

2. Prove that ∀𝑟 ∈ (0, 𝜋], 𝑟 ∈ ℚ ⟹ (sin(𝑟) ∉ ℚ or cos(𝑟) ∉ ℚ).

3. Prove that 𝜋 ∉ ℚ.



Chapter 7

Cardinality

Let’s start with a short story.

A conference about singularity theory is going to take place in the lovely village of Tarski, and partici-
pants start to arrive. Most of them decided to be hosted at the Aleph Nought Hotel. It is a huge hotel, built
especially for this occasion, with infinitely many rooms numbered using ℕ: 0, 1, 2, 3… Despite this large
number of rooms, the sign FULL lights up over the front door indicating that there is no vacancy!

A group of 42 late mathematicians from Nice show up at the front desk and are received by the recep-
tionist David H. who exclaims ”For Cantor’s sake! I thought that we were not expecting new guests! No worries, I
will find a solution”. Then he uses the intercom of the hotel to send the following message to all the current
guests: ”Sorry for the inconvenience, but I would need your cooperation in order to accomodate new guests. Please,
if your current room is labeled 𝑛 then could you move to the room 𝑛 + 42? Thank you so much and once again, sorry
of the inconvenience”. Therefore the rooms 0, 1, 2, …, 41 are now available for the latecomers and the already
hosted guests still have individual rooms.

Later a bus containing the canadian delegation reaches the hotel. The driver meets David H. and says
”Sorry for the delay, I got lost on the way. I have a bus full with infinitely many canadian mathematicians! We booked
infinitely rooms at your hotel and for your conveniency we gave to each of our member a card with a natural number:
0, 1, 2…”. Then David H. desperates ”Holy Dedekind! What a night! No worries, I will handle the situation!”.

And once again, he uses the intercom of the hotel to send the following message: ”If you are currently in
the room 𝑛, please could you move to the room 2𝑛 + 1? Sorry for the inconvenience.” This way the guests already in
the hotel still have individual rooms and now there are infinitely many empty rooms (the even numbered
ones) for the canadian participants. Next David H. asks the newcomers ”If your card shows the number 𝑚,
please go to the room 2𝑚”, and everyone gets an individual room1.

Our friendly receptionist is later awakened by a terrible loudly noise outside. He shouts ”In Gödel’s name,
what’s happening now?” and then he reaches the front door to see infinitely many flying saucers2 (numbered
0, 1, 2, …). An extraterrestrialmathematician goes tomeet DavidH. and tells ”Sorry for the delay, we come from
Proxima Centauri and we got stuck in traffic jams. Each of our ships contains infinitely countably many participants!”.

David H. doesn’t seem particularly concerned and send the following message to the current guests us-
ing his intercom: ”Dear guest, if you are currently in the room 𝑛, please could you move to the room 2𝑛?”. Therefore
the odd-numbered rooms are now free. Then David H. asks the 𝑘th passenger of the 𝑙th ship to go to the
room 3𝑘5𝑙, so that everyone gets an individual room3.

1The function ℕ ∋ 𝑛 ↦ 2𝑛 + 1 ∈ ℕ is one-to-one so the current guests keep individual rooms. Then ℕ ∋ 𝑚 ↦ 2𝑚 ∈ ℕ is also
one-to-one, so two different newcomers are sent to two different rooms (and these rooms are empty since even numbered).

2Until now, the story was quite realistic…
3By uniqueness of the prime factorization, ℕ ∋ (𝑘, 𝑙) ↦ 3𝑘5𝑙 ∈ ℕ is injective, so the newcomers are sent to different rooms, and

these rooms are free since odd-numbered.
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This story highlights something interesting about the behaviour of infinite sets such as ℕ. First we were
able to add 42 elements to ℕ without changing its size. Even less intuitively, then we added a copy of ℕ to ℕ
without changing its size. And finally, we were even able to add ℕ × ℕ (i.e. infinitely many copies of ℕ) to
ℕ without changing its size.

The goal of this chapter is to formally define the notion of size of a set (it will be called cardinality) and
to study its properties (which may be counter-intuitive, as above, for infinite sets).

7.1 Reviews about functions

Definition 7.1 (Informal4 definition of a function). A function (or map) is the data of two sets 𝐴 and 𝐵
together with a ”process” which assigns to each 𝑥 ∈ 𝐴 a unique 𝑓(𝑥) ∈ 𝐵:

𝑓 ∶ {
𝐴 → 𝐵
𝑥 ↦ 𝑓(𝑥)

Here, 𝑓 is the name of the function, 𝐴 is the domain of 𝑓 , and 𝐵 is the codomain of 𝑓 .

Remark 7.2. This process can be:
• A formula: define 𝑓 ∶ ℝ → ℝ by 𝑓(𝑥) = 𝑒𝑥2−𝜋 + 42.
• An exhaustive list: define 𝑓 ∶ {1, 2, 3} → ℝ by 𝑓(1) = 𝜋, 𝑓(2) = √2, 𝑓(3) = 𝑒.
• A property characterizing 𝑓 uniquely: log is the unique antiderivative of 𝑔 ∶ (0, +∞) → ℝ defined by

𝑔(𝑥) = 1
𝑥 such that log(1) = 0.

• By induction: we define the sequence 𝑢𝑛 ∶ ℕ → ℝ by 𝑢0 = 1 and ∀𝑛 ∈ ℕ, 𝑢𝑛+1 = 𝑢2
𝑛 + 1.

• The solution of a differential equation: the exponential function exp ∶ ℝ → ℝ is the unique differen-
tiable function such that exp′ = exp and exp(0) = 1.

• The solution of a functional equation: the exponential function with base 𝑎 ∈ ℝ denoted by exp𝑎 ∶
ℝ → ℝ is the unique monotonic function such that exp𝑎(𝑥 + 𝑦) = exp𝑎(𝑥)𝑎 exp(𝑦) and exp𝑎(1) = 𝑎.

• …

Remark 7.3. The domain and codomain are part of the definition of a function. For instance:

• 𝑓 ∶ {
ℝ → (0, +∞)
𝑥 ↦ 𝑒𝑥 and 𝑔 ∶ {

ℝ → ℝ
𝑥 ↦ 𝑒𝑥 are not the same function (the first one is

surjective but not the second one, see below).

• 𝑓 ∶ {
[0, +∞) → ℝ

𝑥 ↦ 𝑥2 + 1 and 𝑔 ∶ {
ℝ → ℝ
𝑥 ↦ 𝑥2 + 1 are not the same function (the first

one is injective but not the second one, see below).

A function is not simply a ”formula”, you need to specify the domain and the codomain.

Definitions 7.4. Given a function 𝑓 ∶ 𝐴 → 𝐵.
• The image of 𝐸 ⊂ 𝐴 by 𝑓 is 𝑓(𝐸) ≔ {𝑓(𝑥) ∶ 𝑥 ∈ 𝐸} ⊂ 𝐵.
• The image of f (or range of 𝑓) is Range(𝑓 ) ≔ 𝑓(𝐴).
• The preimage of 𝐹 ⊂ 𝐵 by 𝑓 is 𝑓 −1(𝐹 ) ≔ {𝑥 ∈ 𝐴 ∶ 𝑓(𝑥) ∈ 𝐹 }.
• The graph of 𝑓 is the set Γ𝑓 ≔ {(𝑥, 𝑦) ∈ 𝐴 × 𝐵 ∶ 𝑦 = 𝑓(𝑥)}.
• We say that 𝑓 is injective (or one-to-one) if ∀𝑥1, 𝑥2 ∈ 𝐴, 𝑥1 ≠ 𝑥2 ⟹ 𝑓(𝑥1) ≠ 𝑓(𝑥2)

or equivalently by taking the contrapositive ∀𝑥1, 𝑥2 ∈ 𝐴, 𝑓(𝑥1) = 𝑓(𝑥2) ⟹ 𝑥1 = 𝑥2
• We say that 𝑓 is surjective (or onto) if ∀𝑦 ∈ 𝐵, ∃𝑥 ∈ 𝐴, 𝑦 = 𝑓(𝑥)
• We say that 𝑓 is bijective if it is injective and surjective, i.e. ∀𝑦 ∈ 𝐵, ∃!𝑥 ∈ 𝐴, 𝑦 = 𝑓(𝑥)

4Formally, a function 𝑓 ∶ 𝐴 → 𝐵 is characterized by its graph Γ𝑓 ⊂ 𝐴 × 𝐵 which needs to satisfy ∀𝑥 ∈ 𝐴, ∃!𝑦 ∈ 𝐵, (𝑥, 𝑦) ∈ Γ𝑓 .
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Proposition 7.5. Let 𝑓 ∶ 𝐸 → 𝐹 and 𝑔 ∶ 𝐹 → 𝐺 be two functions.
1. If 𝑓 and 𝑔 are injective then so is 𝑔 ∘ 𝑓 .
2. If 𝑓 and 𝑔 are surjective then so is 𝑔 ∘ 𝑓 .
3. If 𝑔 ∘ 𝑓 is injective then 𝑓 is injective too.
4. If 𝑔 ∘ 𝑓 is surjective then 𝑔 is surjective too.

Proof.
1. Let 𝑥, 𝑦 ∈ 𝐸 be such that 𝑔(𝑓(𝑥)) = 𝑔(𝑓(𝑦)). Then 𝑓(𝑥) = 𝑓(𝑦) since 𝑔 is injective. Thus 𝑥 = 𝑦 since 𝑓 is

injective.
2. Let 𝑧 ∈ 𝐺. Since 𝑔 is surjective, it exists 𝑦 ∈ 𝐹 such that 𝑧 = 𝑔(𝑦). Since 𝑓 is surjective, it exists 𝑥 ∈ 𝐸

such that 𝑦 = 𝑓(𝑥). Therefore 𝑧 = 𝑔(𝑓(𝑥)).
3. Let 𝑥, 𝑦 ∈ 𝐸 such that 𝑓(𝑥) = 𝑓(𝑦). Then 𝑔(𝑓(𝑥)) = 𝑔(𝑓(𝑦)) and thus 𝑥 = 𝑦 since 𝑔 ∘ 𝑓 is injective.
4. Let 𝑧 ∈ 𝐺. Since 𝑔 ∘ 𝑓 is surjective, there exists 𝑥 ∈ 𝐸 such that 𝑧 = 𝑔(𝑓(𝑥)). Then 𝑦 = 𝑓(𝑥) ∈ 𝐹 satisfies

𝑔(𝑦) = 𝑧. ■

Proposition 7.6. 𝑓 ∶ 𝐴 → 𝐵 is bijective if and only if there exists 𝑔 ∶ 𝐵 → 𝐴 such that {
∀𝑥 ∈ 𝐴, 𝑔(𝑓(𝑥)) = 𝑥
∀𝑦 ∈ 𝐵, 𝑓(𝑔(𝑦)) = 𝑦 .

Then 𝑔 is unique, it is called the inverse of 𝑓 and denoted by 𝑓 −1 ∶ 𝐵 → 𝐴.

Proof. ⇒ Assume that 𝑓 is bijective, then ∀𝑦 ∈ 𝐵, ∃!𝑥𝑦 ∈ 𝐴, 𝑓(𝑥𝑦) = 𝑦. We define 𝑔 ∶ 𝐵 → 𝐴 by 𝑔(𝑦) = 𝑥𝑦.
Then 𝑔 satisfies the required properties.
⇐ Assume that there exists 𝑔 as in the statement. Then 𝑔 ∘ 𝑓 = 𝑖𝑑𝐴 is injective, so 𝑓 is too by Proposition 7.5.
And 𝑓 ∘ 𝑔 = 𝑖𝑑𝐵 is surjective, thus 𝑓 is too, still by Proposition 7.5. Therefore 𝑓 is bijective.

For the uniqueness: assume there exist two such functions 𝑔1, 𝑔2 ∶ 𝐵 → 𝐴. Let 𝑦 ∈ 𝐵. Then 𝑓(𝑔1(𝑦)) =
𝑦 = 𝑓(𝑔2(𝑦)). So 𝑔1(𝑦) = 𝑔2(𝑦) since 𝑓 is injective. ■

7.2 Finite sets

Definition 7.7. We say that a set 𝐸 is finite if there exists 𝑛 ∈ ℕ and a bijection 𝑓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → 𝐸.
Then we write |𝐸| = 𝑛.

Remark 7.8. Note that {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} = {0, 1, 2, … , 𝑛 − 1}.

We are first going to prove that if such a 𝑛 exists, then it is unique.

Lemma 7.9. Let 𝑛, 𝑝 ∈ ℕ. If there exists an injective function 𝑓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → {𝑘 ∈ ℕ ∶ 𝑘 < 𝑝} then
𝑛 ≤ 𝑝.

Proof. We prove the statement by induction on 𝑛.
• Base case at 𝑛 = 0: for any 𝑝 ∈ ℕ we have 𝑛 ≤ 𝑝.
• Induction step. Assume that the statement holds for some 𝑛 ∈ ℕ.

Let 𝑝 ∈ ℕ. Assume that there exists an injective function 𝑓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛 + 1} → {𝑘 ∈ ℕ ∶ 𝑘 < 𝑝}.
Define 𝑔 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → {𝑘 ∈ ℕ ∶ 𝑘 < 𝑝 − 1} as follows:

𝑔(𝑥) = {
𝑓(𝑥) if 𝑓(𝑥) < 𝑓(𝑛)

𝑓(𝑥) − 1 if 𝑓(𝑥) > 𝑓(𝑛)

Note that 𝑓(𝑥) ≠ 𝑓(𝑛) since 𝑓 is injective.



J.-B. Campesato Chapter 7. Cardinality 79

0
1
2
3
4
5

0
1
2
3
4
5
6
7

𝑓
0
1
2
3
4

0
1
2
3
4
5
6

𝑔

FIGURE: an example.

– Claim 1: 𝑔 is well-defined, i.e. ∀𝑥 ∈ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛}, 𝑔(𝑥) ∈ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑝 − 1}.
Let 𝑥 ∈ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛}.
So either 𝑓(𝑥) < 𝑓(𝑛), and then 𝑔(𝑥) = 𝑓(𝑥) < 𝑓(𝑛) < 𝑝, therefore 0 ≤ 𝑔(𝑥) < 𝑝 − 1.
Or 𝑓(𝑥) > 𝑓(𝑛), and then 𝑔(𝑥) = 𝑓(𝑥) − 1 < 𝑝 − 1, therefore 0 ≤ 𝑔(𝑥) < 𝑝 − 1.

– Claim 2: 𝑔 is injective.
Let 𝑥, 𝑦 ∈ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} be such that 𝑔(𝑥) = 𝑔(𝑦).
∗ First case: 𝑓(𝑥), 𝑓 (𝑦) < 𝑓(𝑛).

Then 𝑔(𝑥) = 𝑓(𝑥) and 𝑔(𝑦) = 𝑓(𝑦). So 𝑓(𝑥) = 𝑓(𝑦) and thus 𝑥 = 𝑦 since 𝑓 is injective.
∗ Second case: 𝑓(𝑥), 𝑓 (𝑦) ≥ 𝑓(𝑛).

Then 𝑔(𝑥) = 𝑓(𝑥) − 1 and 𝑔(𝑦) = 𝑓(𝑦) − 1. So 𝑓(𝑥) = 𝑓(𝑦) and thus 𝑥 = 𝑦 since 𝑓 is injective.
∗ Third case: 𝑓(𝑥) < 𝑓(𝑛) and 𝑓(𝑦) > 𝑓(𝑛).

Then 𝑔(𝑥) = 𝑓(𝑥) < 𝑓(𝑛) and 𝑔(𝑦) = 𝑓(𝑦) − 1 > 𝑓(𝑛) − 1 ≥ 𝑓(𝑛). Therefore, this case is
impossible.

∗ Fourth case: 𝑓(𝑦) < 𝑓(𝑛) and 𝑓(𝑥) > 𝑓(𝑛). Similar to the previous one.
Therefore, by the induction hypothesis, 𝑛 ≤ 𝑝 − 1, i.e. 𝑛 + 1 ≤ 𝑝. ■

Corollary 7.10. Let 𝐸 be a finite set. If |𝐸| = 𝑛 and |𝐸| = 𝑚, then 𝑚 = 𝑛.
Then we say that |𝐸| is the cardinal of 𝐸, which is uniquely defined.

Proof. Assume there exists a bijection 𝑓1 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → 𝐸 and a bijection 𝑓2 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑚} → 𝐸.
Then 𝑓 −1

2 ∘ 𝑓1 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → {𝑘 ∈ ℕ ∶ 𝑘 < 𝑚} is a bijection, so by the above lemma, 𝑛 ≤ 𝑚.
Similarly, 𝑓 −1

1 ∘ 𝑓2 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑚} → {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} is a bijection and thus 𝑚 ≤ 𝑛.
Therefore 𝑛 = 𝑚. ■

Remark 7.11. Informally, the cardinal of a finite set is its size, i.e. the number of elements it contains.

Remark 7.12. |𝐸| = 0 ⇔ 𝐸 = ∅
Indeed, if 𝐸 = ∅ then 𝑓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 0} → 𝐸 is always bijective: injectiveness and surjectiveness are
vacuously true. So |𝐸| = 0.
Otherwise, if 𝐸 ≠ ∅ then 𝑓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 0} → 𝐸 is never surjective, so |𝐸| ≠ 0.

Proposition 7.13. If 𝐸 ⊂ 𝐹 and 𝐹 is finite then 𝐸 is finite too, besides, |𝐸| ≤ |𝐹 |.

Proof. Let’s prove by induction on 𝑛 = |𝐹 | that if 𝐸 ⊂ 𝐹 then 𝐸 is finite and |𝐸| ≤ 𝑛.

• Base case at 𝑛 = 0: then 𝐹 = ∅, so the only possible subset is 𝐸 = ∅ and then |𝐸| = 0.

• Induction step. Assume that the statement holds for some 𝑛 ∈ ℕ.
Let 𝐹 be a set such that |𝐹 | = 𝑛 + 1.

– First case: 𝐸 = 𝐹 . Then the statement is obvious.
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– Second case: 𝐸 ≠ 𝐹 . Then there exists 𝑥 ∈ 𝐹 ∖ 𝐸.
There exists a bijection 𝑓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛 + 1} → 𝐹 .
Since 𝑓 is bijective, there exists a unique 𝑚 ∈ {0, 1, … , 𝑛} such that 𝑓(𝑚) = 𝑥.
Define 𝑔 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → 𝐹 ∖ {𝑥} by 𝑔(𝑘) = 𝑓(𝑘) for 𝑘 ≠ 𝑚 and, if 𝑚 ≠ 𝑛, 𝑔(𝑚) = 𝑓(𝑛).
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Figure 7.1: If 𝑚 ≠ 𝑛, i.e. 𝑓(𝑛) ≠ 𝑥
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Figure 7.2: If 𝑚 = 𝑛, i.e. 𝑓(𝑛) = 𝑥

Then 𝑔 is a bijection (check it), so 𝐹 ∖ {𝑥} is finite and |𝐹 ∖ {𝑥}| = 𝑛.
Since 𝐸 ⊂ 𝐹 ∖ {𝑥}, by the induction hypothesis, 𝐸 is finite and |𝐸| ≤ 𝑛 < 𝑛 + 1. ■

Proposition 7.14. Let 𝐸 ⊂ 𝐹 with 𝐹 finite. Then |𝐹 | = |𝐸| + |𝐹 ∖ 𝐸|.

Proof. Since 𝐹 ∖ 𝐸 ⊂ 𝐹 and 𝐸 ⊂ 𝐹 , we know that 𝐸 and 𝐹 ∖ 𝐸 are finite. Denote 𝑟 = |𝐸| and 𝑠 = |𝐹 ∖ 𝐸|.
There exist bijections 𝑓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑟} → 𝐸 and 𝑔 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑠} → 𝐹 ∖ 𝐸.

Define ℎ ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑟 + 𝑠} → 𝐹 by ℎ(𝑘) = {
𝑓(𝑘) if 𝑘 < 𝑟

𝑔(𝑘 − 𝑟) if 𝑘 ≥ 𝑟 .

• ℎ is well-defined:
Indeed, if 0 ≤ 𝑘 < 𝑟 then 𝑓(𝑘) is well-defined and 𝑓(𝑘) ∈ 𝐸 ⊂ 𝐹 .
If 𝑟 ≤ 𝑘 < 𝑟 + 𝑠 then 0 ≤ 𝑘 − 𝑟 < 𝑠 so that 𝑔(𝑘 − 𝑟) is well-defined and 𝑔(𝑘 − 𝑟) ∈ 𝐹 ∖ 𝐸 ⊂ 𝐹 .

• ℎ is a bijection:
– ℎ is injective: let 𝑥, 𝑦 ∈ {0, 1, … , 𝑟 + 𝑠 − 1} be such that ℎ(𝑥) = ℎ(𝑦).

Either ℎ(𝑥) = ℎ(𝑦) ∈ 𝐸 and then 𝑓(𝑥) = ℎ(𝑥) = ℎ(𝑦) = 𝑓(𝑦) thus 𝑥 = 𝑦 since 𝑓 is injective.
Or ℎ(𝑥) = ℎ(𝑦) ∈ 𝐹 ∖ 𝐸 and then 𝑔(𝑥 − 𝑟) = ℎ(𝑥) = ℎ(𝑦) = 𝑔(𝑦 − 𝑟) thus 𝑥 − 𝑟 = 𝑦 − 𝑟 since 𝑔 is
injective, hence 𝑥 = 𝑦.

– ℎ is surjective: let 𝑦 ∈ 𝐹 .
Either 𝑦 ∈ 𝐸, and then there exists 𝑥 ∈ {0, 1, … , 𝑟 − 1} such that 𝑓(𝑥) = 𝑦, since 𝑓 is surjective.
Then ℎ(𝑥) = 𝑓(𝑥) = 𝑦.
Or 𝑦 ∈ 𝐹 ∖ 𝐸, and then there exists 𝑥 ∈ {0, 1, … , 𝑠 − 1} such that 𝑔(𝑥) = 𝑦 since 𝑔 is surjective.
Then ℎ(𝑥 + 𝑟) = 𝑔(𝑥) = 𝑦.

Therefore |𝐹 | = 𝑟 + 𝑠 = |𝐸| + |𝐹 ∖ 𝐸|. ■

Proposition 7.15. Let 𝐸 and 𝐹 be two finite sets. Then
1. |𝐸 ∪ 𝐹 | = |𝐸| + |𝐹 | − |𝐸 ∩ 𝐹 |
2. |𝐸 × 𝐹 | = |𝐸| × |𝐹 |

Proof.

1. Using Proposition 7.14 twice, we get

|𝐸 ∪ 𝐹 | = |𝐸 ⊔ (𝐹 ∖ (𝐸 ∩ 𝐹 ))| = |𝐸| + |𝐹 ∖ (𝐸 ∩ 𝐹 )| = |𝐸| + |𝐹 | − |𝐸 ∩ 𝐹 |

2. We prove this proposition by induction on 𝑛 = |𝐹 | ∈ ℕ.

• Base case at 𝑛 = 0: then 𝐹 = ∅ so 𝐸 × 𝐹 = ∅ too and |𝐸 × 𝐹 | = 0 = |𝐸| × 0 = |𝐸| × |𝐹 |.
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• Case 𝑛 = 1: we will use this special case later in the proof.
Assume that 𝐹 = {∗} and that |𝐸| = 𝑝. Then there exists a bijection 𝑓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑝} → 𝐸.
Note that 𝑔 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑝} → 𝐸 × 𝐹 defined by 𝑔(𝑘) = (𝑓(𝑘), ∗) is a bijection.
Therefore |𝐸 × 𝐹 | = 𝑝 = 𝑝 × 1 = |𝐸| × |𝐹 |.

• Induction step. Assume that the statement holds for some 𝑛 ∈ ℕ.
Let 𝐹 be a set such that |𝐹 | = 𝑛 + 1.
Since |𝐹 | > 0, there exists 𝑥 ∈ 𝐹 and |𝐹 ∖ {𝑥}| = |𝐹 | − |{𝑥}| = 𝑛 + 1 − 1 = 𝑛. Then

|𝐸 × 𝐹 | = |(𝐸 × (𝐹 ∖ {𝑥})) ⊔ (𝐸 × {𝑥})|
= |𝐸 × (𝐹 ∖ {𝑥})| + |𝐸 × {𝑥}|
= |𝐸| × |𝐹 ∖ {𝑥}| + |𝐸| using the induction hypothesis and the case 𝑛 = 1
= |𝐸| × (|𝐹 | − 1) + |𝐸|
= |𝐸| × |𝐹 | ■

Proposition 7.16. Assume that 𝐸 ⊂ 𝐹 with 𝐹 finite. Then 𝐸 = 𝐹 ⇔ |𝐸| = |𝐹 |.

Proof.
⇒ It is obvious.
⇐ Assume that |𝐸| = |𝐹 |. Then |𝐹 ∖ 𝐸| = |𝐹 | − |𝐸| = 0. Thus 𝐹 ∖ 𝐸 = ∅, i.e. 𝐸 = 𝐹 . ■

Proposition 7.17. Let 𝐸 a finite set. Then 𝐹 is finite and |𝐸| = |𝐹 | if and only if there exists a bijection 𝑓 ∶ 𝐸 → 𝐹 .

Proof.
⇒ Assume that 𝐹 is finite and that |𝐸| = |𝐹 | = 𝑛.
Then there exist bijections 𝜑 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → 𝐸 and 𝜓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → 𝐹 .
Therefore 𝑓 = 𝜓 ∘ 𝜑−1 ∶ 𝐸 → 𝐹 is a bijection.
⇐ Assume that there exists a bijection 𝑓 ∶ 𝐸 → 𝐹 .
Since 𝐸 is finite there exists a bijection 𝜑 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < |𝐸|} → 𝐸.
Thus 𝑓 ∘ 𝜑 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < |𝐸|} → 𝐹 is a bijection. Therefore 𝐹 is finite and |𝐹 | = |𝐸|. ■

Proposition 7.18. Let 𝐸, 𝐹 be two finite sets such that |𝐸| = |𝐹 |. Let 𝑓 ∶ 𝐸 → 𝐹 . Then TFAE:
1. 𝑓 is injective,
2. 𝑓 is surjective,
3. 𝑓 is bijective.

Proof.
Assume that 𝑓 is injective.
There exists a bijection 𝜑 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < |𝐸|} → 𝐸.
Then 𝑓 ∘ 𝜑 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < |𝐸|} → 𝑓(𝐸) is a bijection. Thus |𝑓 (𝐸)| = |𝐸| = |𝐹 |.
Since 𝑓(𝐸) ⊂ 𝐹 and |𝑓 (𝐸)| = |𝐹 |, we get 𝑓(𝐸) = 𝐹 , i.e. 𝑓 is surjective.

Assume that 𝑓 is surjective.
Then for every 𝑦 ∈ 𝐹 , 𝑓 −1(𝑦) ⊂ 𝐸 is finite and non-empty, i.e. |𝑓 −1(𝑦)| ≥ 1.
Assume by contradiction that there exists 𝑦 ∈ 𝐹 such that |𝑓 −1(𝑦)| > 1.

Thus |𝐸| =
| ⨆
𝑦∈𝐹

𝑓 −1(𝑦)
|

= ∑
𝑦∈𝐹

|𝑓 −1(𝑦)| > |𝐹 | = |𝐸|.

Hence a contradiction. ■

Proposition 7.19. Let 𝐸 and 𝐹 be two finite sets. Then |𝐸| ≤ |𝐹 | if and only if there exists an injection 𝑓 ∶ 𝐸 → 𝐹 .

Proof.
⇒ Assume that |𝐸| ≤ |𝐹 |.
There exist bijections 𝜑 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < |𝐸|} → 𝐸 and 𝜓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < |𝐹 |} → 𝐹 .
Since |𝐸| ≤ |𝐹 |, 𝑓 = 𝜓 ∘ 𝜑−1 ∶ 𝐸 → 𝐹 is well-defined and injective.
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⇒ Assume that there exists an injection 𝑓 ∶ 𝐸 → 𝐹 .
Then 𝑓 induces a bijection 𝑓 ∶ 𝐸 → 𝑓(𝐸), so that |𝐸| = |𝑓(𝐸)|.
And since 𝑓(𝐸) ⊂ 𝐹 , we have |𝑓 (𝐸)| ≤ |𝐹 |. ■

Corollary 7.20 (The pigeonhole principle or Dirichlet’s drawer principle).
Let 𝐸 and 𝐹 be two finite sets. If |𝐸| > |𝐹 | then there is no injective function 𝐸 → 𝐹 .

Example 7.21. There are two non-bald people in Toronto with the exact same number of hairs on their
heads.

Example 7.22. During a post-covid party with 𝑛 > 1 participants, we may always find two people who
shook hands to the same number of people.

Remark 7.23. Since the cardinal of a finite set is a natural number, we deduce that given two finite sets 𝐸
and 𝐹 , exactly one of the followings occurs:

• either |𝐸| < |𝐹 | (i.e. there is an injection 𝐸 → 𝐹 but no bijection 𝐸 → 𝐹 ),
• or |𝐸| = |𝐹 | (i.e. there is a bijection 𝐸 → 𝐹 ),
• or |𝐸| > |𝐹 | (i.e. there is an injection 𝐹 → 𝐸 but no bijection 𝐸 → 𝐹 ).

7.3 Generalization to infinite sets
Definition 7.24. We say that a set is infinite if it is not finite.

Theorem 7.25. ℕ is infinite.

Proof. Assume by contradiction that ℕ is finite. Then ℕ ∖ {0} ⊂ ℕ so ℕ ∖ {0} is finite too.
We define 𝑓 ∶ ℕ → ℕ ∖ {0} by 𝑓(𝑛) = 𝑛 + 1. Note that 𝑓 is bijective with inverse 𝑓 −1 ∶ ℕ ∖ {0} → ℕ defined
by 𝑓 −1(𝑛) = 𝑛 − 1.
Thus |ℕ| = |ℕ ∖ {0}| = |ℕ| − |{0}| = |ℕ| − 1, i.e. 0 = 1.
Hence a contradiction. ■

So, we need to find a way in order to generalize the notion of cardinal from finite sets to all sets.

Definition 7.26. We say that two sets 𝐸 and 𝐹 have same cardinality, denoted by |𝐸| = |𝐹 |, if there exists a
bijection 𝑓 ∶ 𝐸 → 𝐹 .
We also say that 𝐸 and 𝐹 are equinumerous or equipotent.

Proposition 7.27.
1. If 𝐸 is a set then |𝐸| = |𝐸|.
2. Given two sets 𝐸 and 𝐹 , if |𝐸| = |𝐹 | then |𝐹 | = |𝐸|.
3. Given three sets 𝐸, 𝐹 and 𝐺, if |𝐸| = |𝐹 | and |𝐹 | = |𝐺| then |𝐸| = |𝐺|.

Proof.
1. 𝑖𝑑 ∶ 𝐸 → 𝐸 is a bijection.
2. Assume that |𝐸| = |𝐹 |, i.e. that there exists a bijection 𝑓 ∶ 𝐸 → 𝐹 .

Then 𝑓 −1 ∶ 𝐹 → 𝐸 is a bijection, so |𝐹 | = |𝐸|.
3. Assume that |𝐸| = |𝐹 | and |𝐹 | = |𝐺|, i.e. that there exist bijections 𝑓 ∶ 𝐸 → 𝐹 and 𝑔 ∶ 𝐹 → 𝐺.

Then 𝑔 ∘ 𝑓 ∶ 𝐸 → 𝐺 is a bijection, thus |𝐸| = |𝐺|. ■

Remark 7.28. At first glance, it seems that equipotence is an equivalence relation since it satisfies reflexivity,
symmetry and transitivity. Nonetheless, recall that an equivalence relation is a binary relation on a set.
If equipotence were an equivalence relation, then it would be a binary relation on the set of all sets, which
doesn’t exist (See Theorem 7.54).

Theorem 7.29. A set 𝐸 is infinite if and only if for every 𝑛 ∈ ℕ there exists 𝑆 ⊂ 𝐸 such that |𝑆| = 𝑛.
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Proof.
⇒ Assume that 𝐸 is infinite.
We are going to prove by induction that for every 𝑛 ∈ ℕ there exists 𝑆 ∈ 𝒫(𝐸) such that |𝑆| = 𝑛.

• Base case at 𝑛 = 0: ∅ ⊂ 𝐸 satisfies |∅| = 0.
• Induction step. Assume that for some 𝑛 ∈ ℕ there exists 𝑇 ⊂ 𝐸 such that |𝑇 | = 𝑛.

Note that 𝐸 ∖ 𝑇 ≠ ∅ (otherwise 𝐸 = 𝑇 , which is impossible since 𝐸 is infinite).
Therefore there exists 𝑥 ∈ 𝐸 ∖ 𝑇 . Define 𝑆 ≔ 𝑇 ⊔ {𝑥}, then 𝑆 ⊂ 𝐸 is finite and |𝑆| = |𝑇 | + 1 = 𝑛 + 1.
Which ends the induction step.

⇐ Let 𝐸 be a set such that for every 𝑛 ∈ ℕ there exists 𝑆 ⊂ 𝐸 such that |𝑆| = 𝑛.
Assume by contradiction that 𝐸 is finite. Then there exists 𝑘 ∈ ℕ such that |𝐸| = 𝑘.
Since 𝑘 + 1 ∈ ℕ, there exists 𝑆 ⊂ 𝐸 such that |𝑆| = 𝑘 + 1.
Since 𝑆 ⊂ 𝐸, we get 𝑘 + 1 = |𝑆| ≤ |𝐸| = 𝑘. Hence a contradiction. ■

Corollary 7.30. A set𝐸 is infinite if and only if for all 𝑛 ∈ ℕ there exists an injective function {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → 𝐸.
Definition 7.31. Given two sets 𝐸 and 𝐹 , we write |𝐸| ≤ |𝐹 | if there exists an injective function 𝑓 ∶ 𝐸 → 𝐹 .
Theorem 7.32 (Cantor–Schröder–Bernstein theorem).
Given two sets 𝐸 and 𝐹 , if |𝐸| ≤ |𝐹 | and |𝐹 | ≤ |𝐸| then |𝐸| = |𝐹 |.
Remark 7.33. The above theorem states that if there exist injections 𝐸 → 𝐹 and 𝐹 → 𝐸 then there exists a
bijection 𝐸 → 𝐹 . It is less trivial than it seems at first glance when you look at the above statement.

It was first stated in 1887 byCantorwhodidn’t provide a proof. The first knownproof is due toDedekind
on the same year, but he did not publish his proof (which was only found after he passed away). In 1895
Cantor published a proof relying on the trichotomoy principle (see Theorem 7.56), but Tarski later proved
that the latter is actually equivalent to the axiom of choice.

Around 1897, Bernstein, Schröder and Dedekind independently found proofs of the theorem (another
one for Dedekind). But Schröder’s proof later appeared to be incorrect. Several mathematicians subse-
quently gave alternative proofs, including Zermelo (1901, 1908) and König (1906).

Cantor–Schröber–Bernstein theorem is a little bit tricky to prove, so first I would like to informally ex-
plain the strategy of the proof before actually proving it.

We are given two injective functions 𝑓 ∶ 𝐸 → 𝐹 and 𝑔 ∶ 𝐹 → 𝐸.
Let’s fix 𝑥 ∈ 𝐸. We construct a chain 𝑥0, 𝑥1, 𝑥2, … of elements which are alternatively in 𝐸 and 𝐹 as

follows. First we set 𝑥0 = 𝑥 ∈ 𝐸 and then we define the next terms inductively by
• if 𝑥𝑛 ∈ 𝐸 then we define 𝑥𝑛+1 ∈ 𝐹 as the unique antecedant of 𝑥𝑛 by 𝑔 (if it exists, otherwise we stop

the construction at 𝑥𝑛),
• if 𝑥𝑛 ∈ 𝐹 then we define 𝑥𝑛+1 ∈ 𝐸 as the unique antecedant of 𝑥𝑛 by 𝑓 (if it exists, otherwise we stop

the construction at 𝑥𝑛).

𝐸

𝐹

𝑥0 = 𝑥

𝑥1

𝑔

𝑥2

𝑓

𝑥3

𝑔

𝑥4

𝑓

𝑥5

𝑔

𝑥6

𝑓

Then we face three possible cases:
1. Either the chain ends with an element in 𝐸, and then we put 𝑥 in 𝐸𝐸 ,
2. or the chain ends with an element in 𝐹 , and then we put 𝑥 in 𝐸𝐹 ,
3. or the inductive definition of the chain doesn’t stop, and then we put 𝑥 in 𝐸∞.

We have a partition 𝐸 = 𝐸𝐸 ⊔ 𝐸𝐹 ⊔ 𝐸∞. We perform the same construction with 𝑥0 = 𝑥 ∈ 𝐹 in order to
obtain 𝐹 = 𝐹𝐸 ⊔ 𝐹𝐹 ⊔ 𝐹∞.

Now assume that 𝑥 ∈ 𝐸𝐸 , for instance the chain stops at 𝑥4 as below. Then 𝑓(𝑥) ∈ 𝐹𝐸 , since its chain
continues at 𝑥0 and stops at 𝑥4 ∈ 𝐸.
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𝐸

𝐹𝑓(𝑥)

𝑓

𝑥0 = 𝑥

𝑥1

𝑔

𝑥2

𝑓

𝑥3

𝑔

𝑥4

𝑓

Therefore the function 𝑓|𝐸𝐸 ∶ 𝐸𝐸 → 𝐹𝐸 is well-defined. Besides, it is injective since 𝑓 is, and it is surjective
by definition of 𝐹𝐸 . Therefore 𝑓|𝐸𝐸 ∶ 𝐸𝐸 → 𝐹𝐸 is a bijection.

Similarly 𝑔|𝐹𝐹 ∶ 𝐹𝐹 → 𝐸𝐹 and 𝑓|𝐸∞ ∶ 𝐸∞ → 𝐹∞ are bijections. Finally, we glue them in order to obtain
a bijection ℎ ∶ 𝐸 → 𝐹 .

𝐸

𝐸∞

𝐸𝐹

𝐸𝐸

𝐹

𝐹∞

𝐹𝐹

𝐹𝐸
𝑓

𝑓

𝑔

Proof of Cantor–Schröder–Bernstein theorem.
Let 𝑓 ∶ 𝐸 → 𝐹 and 𝑔 ∶ 𝐹 → 𝐸 be two injective functions. Set

• 𝐸𝐸 = {𝑥 ∈ 𝐸 ∶ ∃𝑛 ∈ ℕ, ∃𝑟 ∈ 𝐸 ∖ Im(𝑔), 𝑥 = (𝑔 ∘ 𝑓)𝑛(𝑟)}

• 𝐸𝐹 = {𝑥 ∈ 𝐸 ∶ ∃𝑛 ∈ ℕ, ∃𝑠 ∈ 𝐹 ∖ Im(𝑓 ), 𝑥 = 𝑔 ((𝑓 ∘ 𝑔)𝑛(𝑠))}

• 𝐸∞ = 𝐸 ∖ (𝐸𝐸 ⊔ 𝐸𝐹 )

• 𝐹𝐸 = {𝑦 ∈ 𝐹 ∶ ∃𝑛 ∈ ℕ, ∃𝑟 ∈ 𝐸 ∖ Im(𝑔), 𝑦 = 𝑓 ((𝑔 ∘ 𝑓)𝑛(𝑟))}

• 𝐹𝐹 = {𝑦 ∈ 𝐹 ∶ ∃𝑛 ∈ ℕ, ∃𝑠 ∈ 𝐹 ∖ Im(𝑓 ), 𝑦 = (𝑓 ∘ 𝑔)𝑛(𝑠)}

• 𝐹∞ = 𝐹 ∖ (𝐹𝐸 ⊔ 𝐹𝐹 )

Note that if 𝑥 ∈ 𝐸𝐸 then 𝑓(𝑥) ∈ 𝐹𝐸 . So 𝑓|𝐸𝐸 ∶ 𝐸𝐸 → 𝐹𝐸 is well-defined. It is injective since 𝑓 is injective.
And it is surjective by definition of the sets. Thus it is bijective.
Similarly, 𝑔|𝐹𝐹 ∶ 𝐹𝐹 → 𝐸𝐹 is well-defined and bijective and 𝑓|𝐸∞ ∶ 𝐸∞ → 𝐹∞ is well-defined and bijective.

We define ℎ ∶ 𝐸 → 𝐹 by ℎ(𝑥) =
⎧⎪
⎨
⎪⎩

𝑓(𝑥) if 𝑥 ∈ 𝐸𝐸
𝑔−1(𝑥) if 𝑥 ∈ 𝐸𝐹
𝑓(𝑥) if 𝑥 ∈ 𝐸∞

.

Then ℎ is clearly a bijection (I can use ”clear”, but you can’t, and the same holds for ”trivial” and ”obvious” :-p). ■

Proposition 7.34.
1. If 𝐸 is a set then |𝐸| ≤ |𝐸|.
2. Given two sets 𝐸 and 𝐹 , if |𝐸| ≤ |𝐹 | and |𝐹 | ≤ |𝐸| then |𝐸| = |𝐹 |.
3. Given three sets 𝐸, 𝐹 and 𝐺, if |𝐸| ≤ |𝐹 | and |𝐹 | ≤ |𝐺| then |𝐸| ≤ |𝐺|.

Proof.
1. 𝑖𝑑 ∶ 𝐸 → 𝐸 is an injective function.
2. It is Cantor–Bernstein–Schröder theorem.
3. Assume that |𝐸| ≤ |𝐹 | and |𝐹 | ≤ |𝐺|, i.e. that there exist injections 𝑓 ∶ 𝐸 → 𝐹 and 𝑔 ∶ 𝐹 → 𝐺.

Then 𝑔 ∘ 𝑓 ∶ 𝐸 → 𝐺 is injective, thus |𝐸| ≤ |𝐺|. ■



J.-B. Campesato Chapter 7. Cardinality 85

Remark 7.35. Comparison of cardinals shares the characteristic properties of an order. Nonetheless, it is
not an order since it is not a binary relation on a set (as for equipotence).

Proposition 7.36. If 𝐸 ⊂ 𝐹 then |𝐸| ≤ |𝐹 |.

Proof. Indeed, 𝑓 ∶ 𝐸 → 𝐹 defined by 𝑓(𝑥) = 𝑥 is injective. ■

Proposition 7.37. If |𝐸1| = |𝐸2| and |𝐹1| = |𝐹2| then |𝐸1 × 𝐹1| = |𝐸2 × 𝐹2|.

Proof. Assume that |𝐸1| = |𝐸2| and |𝐹1| = |𝐹2| then there exist bijections 𝑓 ∶ 𝐸1 → 𝐸2 and 𝑔 ∶ 𝐹1 → 𝐹2.
We define ℎ ∶ 𝐸1 × 𝐹1 → 𝐸2 × 𝐹2 by ℎ(𝑥, 𝑦) = (𝑓(𝑥), 𝑔(𝑦)). Let’s check that ℎ is a bijection.

• ℎ is injective.
Let (𝑥, 𝑦), (𝑥′, 𝑦′) ∈ 𝐸1 × 𝐹1 be such that ℎ(𝑥, 𝑦) = ℎ(𝑥′, 𝑦′).
Then 𝑓(𝑥) = 𝑓(𝑥′) and 𝑔(𝑦) = 𝑔(𝑦′), thus 𝑥 = 𝑥′ and 𝑦 = 𝑦′ since 𝑓 and 𝑔 are injectives.
We proved that (𝑥, 𝑦) = (𝑥′, 𝑦′).

• ℎ is surjective.
Let (𝑧, 𝑤) ∈ 𝐸2 × 𝐹2. Since 𝑓 is surjective, there exists 𝑥 ∈ 𝐸1 such that 𝑧 = 𝑓(𝑥).
Since 𝑔 is surjective, there exists 𝑦 ∈ 𝐹1 such that 𝑤 = 𝑔(𝑦).
Then ℎ(𝑥, 𝑦) = (𝑓(𝑥), 𝑔(𝑦)) = (𝑧, 𝑤). ■

Theorem 7.38. Given two sets 𝐸 and 𝐹 , |𝐸| ≤ |𝐹 | if and only if there exists a surjective function 𝑔 ∶ 𝐹 → 𝐸.

Proof.
⇒ Assume that there exists an injective function 𝑓 ∶ 𝐸 → 𝐹 , then ̃𝑓 ∶ 𝐸 → 𝑓(𝐸) is bijective.
If 𝐸 = ∅, then there is nothing to prove. So we may assume that there exists 𝑢 ∈ 𝐸.

Define 𝑔 ∶ 𝐹 → 𝐸 by 𝑔(𝑦) = {
̃𝑓 −1(𝑦) if 𝑦 ∈ 𝑓(𝐸)
𝑢 otherwise

Let 𝑥 ∈ 𝐸, then 𝑔(𝑓(𝑥)) = ̃𝑓 −1(𝑓 (𝑥)) = 𝑥. Thus 𝑔 is surjective.

⇐ Assume that there exists a surjective function 𝑔 ∶ 𝐹 → 𝐸, then5 ∀𝑥 ∈ 𝐸, ∃𝑦𝑥 ∈ 𝑔−1(𝑥).
Define 𝑓 ∶ 𝐸 → 𝐹 by 𝑓(𝑥) = 𝑦𝑥. Then 𝑓 is injective, so |𝐸| ≤ |𝐹 |.
Indeed, assume that 𝑓(𝑥) = 𝑓(𝑥′) then 𝑔(𝑓(𝑥)) = 𝑔(𝑓(𝑥′)).
But 𝑔(𝑓(𝑥)) = 𝑔(𝑦𝑥) = 𝑥 and similarly 𝑔(𝑓(𝑥′)) = 𝑥′. Thus 𝑥 = 𝑥′. ■

Theorem 7.39. Given two sets 𝐸 and 𝐹 , if |𝐸| = |𝐹 | then |𝒫(𝐸)| = |𝒫(𝐹 )|.

Proof. Let 𝐸 and 𝐹 be such that |𝐸| = |𝐹 |. Then there exists a bijection 𝑓 ∶ 𝐸 → 𝐹 .
Note that ̃𝑓 ∶ 𝒫(𝐸) → 𝒫(𝐹 ) defined by ̃𝑓 (𝐴) = 𝑓(𝐴) is bijective too (prove it!).
Therefore |𝒫(𝐸)| = |𝒫(𝐹 )|. ■

7.4 Countable sets
In what follows, we set ℵ0 ≔ |ℕ| (pronounced aleph nought).

Definition 7.40. A set 𝐸 is countable if either 𝐸 is finite or |𝐸| = ℵ0.

Proposition 7.41. If 𝑆 ⊂ ℕ is infinite then |𝑆| = ℵ0.

Proof. Let’s define the function 𝑓 ∶ ℕ → 𝑆 by induction as follows.
Set 𝑓(0) = min𝑆 (which is well-defined by the well-ordering principle since 𝑆 ≠ ∅ as it is infinite).
And then, assuming that 𝑓(𝑛) is already defined, we set 𝑓(𝑛 + 1) = min{𝑘 ∈ 𝑆 ∶ 𝑘 > 𝑓(𝑛)} (which is well-
defined by the well-ordering principle: the involved set is non-empty since otherwise 𝑆 would be finite).
It is easy to check that 𝑓 is injective (note that ∀𝑛 ∈ ℕ, 𝑓(𝑛 + 1) > 𝑓(𝑛)), therefore ℵ0 ≤ |𝑆|.
But since 𝑆 ⊂ ℕ, we also have |𝑆| ≤ ℵ0.
Thus, by Cantor–Schröder–Bernstein theorem, |𝑆| = ℵ0. ■

5(AC) See Remark 7.57.
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Proposition 7.42. A set 𝐸 is countable if and only if |𝐸| ≤ ℵ0 (i.e. there exists an injection 𝑓 ∶ 𝐸 → ℕ),
otherwise stated 𝐸 is countable if and only if there exists a bijection between 𝐸 and a subset of ℕ.

Proof.
⇒ Assume that 𝐸 is countable.

• Either 𝐸 is finite and then there exists 𝑛 ∈ ℕ together with a bijection 𝑔 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → 𝐸.
We define 𝑓 ∶ 𝐸 → ℕ by 𝑓(𝑥) = 𝑔−1(𝑥) (which is well-defined since {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} ⊂ ℕ).
And 𝑓 is an injection since 𝑔−1 is.

• Or |𝐸| = ℵ0, i.e. there exists a bijection 𝑓 ∶ 𝐸 → ℕ.
⇐ Assume there exists an injection 𝑓 ∶ 𝐸 → ℕ.
Assume that 𝐸 is infinite. Then |𝐸| = |𝑓(𝐸)| = ℵ0 by Proposition 7.41.
Thus either 𝐸 is finite or |𝐸| = ℵ0. In both cases 𝐸 is countable. ■

Proposition 7.43. The set of finite subsets of ℕ is countably infinite, i.e. |{𝑆 ∈ 𝒫(ℕ) ∶ ∃𝑛 ∈ ℕ, |𝑆| = 𝑛}| = ℵ0.

Proof. Define 𝑓 ∶ {𝑆 ∈ 𝒫(ℕ) ∶ ∃𝑛 ∈ ℕ, |𝑆| = 𝑛} → ℕ by 𝑓(𝑆) = ∑𝑘∈𝑆 2𝑘.
Then 𝑓 is bijective by existence and uniqueness of the binary positional numeral system. ■

Proposition 7.44. |ℕ × ℕ| = ℵ0

Proof. Define 𝑓 ∶ ℕ×ℕ → ℕ by 𝑓(𝑎, 𝑏) = 2𝑎3𝑏. Then 𝑓 is injective by uniqueness of the prime decomposition.
Thus |ℕ × ℕ| ≤ ℵ0.
Besides {0} × ℕ ⊂ ℕ × ℕ, thus ℵ0 = |{0} × ℕ| ≤ |ℕ × ℕ|.
Hence |ℕ × ℕ| = ℵ0 by Cantor–Schröder–Bernstein theorem. ■

Theorem 7.45. A countable union of countable sets is countable,
i.e. if 𝐼 is countable and if for every 𝑖 ∈ 𝐼 , 𝐸𝑖 is countable then ⋃𝑖∈𝐼 𝐸𝑖 is countable.

Proof. WLOG we may now assume that 𝐼 ⊂ ℕ.
Let 𝑖 ∈ 𝐼 . Since 𝐸𝑖 is countable, there exists an injection 𝑓𝑖 ∶ 𝐸𝑖 → ℕ6.
We define 𝜑 ∶ ⋃𝑖∈𝐼 𝐸𝑖 → ℕ × ℕ by 𝜑(𝑥) = (𝑛, 𝑓𝑛(𝑥)) where 𝑛 = min{𝑖 ∈ 𝐼 ∶ 𝑥 ∈ 𝐸𝑖} (well-ordering principle).
It is not difficult to check that 𝜑 is injective. Therefore ⋃𝑖∈𝐼 𝐸𝑖 is countable. ■

Theorem 7.46. If 𝐸 is an infinite set then there exists 𝑇 ⊂ 𝐸 such that |𝑇 | = ℵ0, i.e. ℵ0 is the least infinite cardinal.

Proof. For 𝑛 ∈ ℕ, set 𝐸𝑛 = {𝑆 ∈ 𝒫(𝐸) ∶ |𝑆| = 𝑛}. By Theorem 7.29, 𝐸𝑛 ≠ ∅.
So for every 𝑛 ∈ ℕ, we can pick 𝑆𝑛 ∈ 𝐸𝑛

7.
Then 𝑇 ≔ ⋃𝑛∈ℕ 𝑆𝑛 is countable by Theorem 7.45.
Besides, ∀𝑛 ∈ ℕ, 𝑆𝑛 ⊂ 𝑇 and |𝑆𝑛| = 𝑛. Therefore 𝑇 is infinite by Theorem 7.29.
Thus |𝑇 | = ℵ0 as an infinite countable set. ■

Theorem 7.47. |ℤ| = ℵ0

Proof 1. Since ℕ ⊂ ℤ, we have |ℕ| ≤ |ℤ|.
Define 𝑓 ∶ ℤ → ℕ by 𝑓(𝑛) = {

2𝑛 if 𝑛 ≥ 0
3−𝑛 if 𝑛 < 0 .

Then 𝑓 is injective by uniqueness of the prime factorization. Therefore |ℤ| ≤ |ℕ|.
Hence |ℤ| = |ℕ| by Cantor–Schröder–Bernstein theorem. ■

Proof 2.

Define 𝑓 ∶ ℤ → ℕ by 𝑓(𝑛) = {
2𝑛 if 𝑛 ≥ 0

−(2𝑛 + 1) if 𝑛 < 0 .

Then 𝑓 is bijective with inverse 𝑓 −1(𝑚) = {
𝑘 if ∃𝑘 ∈ ℕ, 𝑚 = 2𝑘

−𝑘 − 1 if ∃𝑘 ∈ ℕ, 𝑚 = 2𝑘 + 1 .
Therefore |ℤ| = |ℕ|. ■

6(ACC) See Remark 7.58.
7(ACC) See Remark 7.59.
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Theorem 7.48. |ℚ| = ℵ0

Remark 7.49. This theorem asserts that there are as many rational numbers than natural numbers. Which
seems counter-intuitive. Since ℚ is dense in ℝ, we could expect that ℝ is also countable. That’s not the case
as we will see in the next section.

Proof 1. Note that ℕ ⊂ ℚ, therefore ℵ0 ≤ |ℚ|.
Define 𝑓 ∶ ℚ → ℤ × ℤ by 𝑓 (

𝑎
𝑏 ) = (𝑎, 𝑏) where 𝑎

𝑏 is in lowest form.
By uniqueness of the lowest form expression of a rational number, 𝑓 is well-defined and injective.
Thus |ℚ| ≤ |ℤ × ℤ|. Since |ℤ| = |ℕ|, we get |ℤ × ℤ| = |ℕ × ℕ| = ℵ0.
We conclude using Cantor–Schröder–Bernstein theorem. ■

Proof 2. Note that ℕ ⊂ ℚ, therefore ℵ0 ≤ |ℚ|.
The function 𝑓 ∶ ℤ × ℕ ∖ {0} → ℚ defined by 𝑓(𝑎, 𝑏) = 𝑎

𝑏 is surjective.
Thus, by Proposition 7.388, |ℚ| ≤ |ℤ × ℕ ∖ {0}|.
Since |ℤ| = |ℕ| and |ℕ ∖ {0}| = |ℕ|, we get |ℤ × ℕ ∖ {0}| = |ℕ × ℕ| = ℵ0.
We conclude using Cantor–Schröder–Bernstein theorem. ■

Proof 3.
Note that ℕ ⊂ ℚ, therefore ℵ0 ≤ |ℚ|.
Besides ℚ = ⋃(𝑎,𝑏)∈ℤ×ℕ∖{0} {

𝑎
𝑏 }, so that ℚ is countable by Theorem 7.459, i.e. |ℚ| ≤ ℵ0.

We conclude using Cantor–Schröder–Bernstein theorem. ■

7.5 Cantor’s diagonal argument
Theorem 7.50. ℵ0 < |ℝ|

The following proof relies on Cantor’s diagonal argument10. That’s a very general method that we will use
later to prove Cantor’s theorem11.

Proof. We are going to prove that there is no surjection ℕ → ℝ (and hence no such bijection).
Let 𝑓 ∶ ℕ → ℝ be a function. Given 𝑛 ∈ ℕ, we know12 that 𝑓(𝑛) has a unique proper decimal expansion

𝑓(𝑛) =
+∞

∑
𝑘=0

𝑎𝑛𝑘10−𝑘

where 𝑎𝑛0 ∈ ℤ and 𝑎𝑛𝑘 ∈ {0, 1, … , 9} for 𝑘 ≥ 1, i.e.

𝑓(0) = 𝑎00 . 𝑎01 𝑎02 𝑎03 𝑎04 𝑎05 …
𝑓(1) = 𝑎10 . 𝑎11 𝑎12 𝑎13 𝑎14 𝑎15 …
𝑓(2) = 𝑎20 . 𝑎21 𝑎22 𝑎23 𝑎24 𝑎25 …
𝑓(3) = 𝑎30 . 𝑎31 𝑎32 𝑎33 𝑎34 𝑎35 …
𝑓(4) = 𝑎40 . 𝑎41 𝑎42 𝑎43 𝑎44 𝑎45 …

⋮ ⋮

8Actually we only need a weak version of Proposition 7.38 which doesn’t involve the axiom of choice: using the well-ordering
principle, we can prove that a surjective function whose domain is ℕ admits a right inverse.

9The axiom of countable choice is not necessary here: the sets are singletons, so there is no choice.
10This elegant argument was published by Cantor in 1891, but he gave a previous proof of the uncountability of ℝ in 1874 (with

a modified version in 1879).
11It can also be used to prove that the box topology on ℝℕ is not first-countable, or to derive from Erdös–Kaplansky’s theorem

(if 𝐸 is an infinite dimensional vector space then dim𝐸∗ = |𝐸∗|) that if 𝐸 is an infinite dimensional vector space then 𝐸 is not
isomorphic to its dual 𝐸∗.

12Chapter 6, Theorem 56.
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Given 𝑘 ∈ ℕ, we set 𝑏𝑘 = {
1 if 𝑎𝑘𝑘 = 0
0 otherwise .

Then 𝑏 =
+∞

∑
𝑘=0

𝑏𝑘10−𝑘 is a real number written with its unique proper decimal expansion.

Note that for every 𝑛 ∈ ℕ, 𝑏 ≠ 𝑓(𝑛) since 𝑏𝑛 ≠ 𝑎𝑛𝑛 (we use the uniqueness of the proper decimal expansion).
Therefore 𝑏 ∉ Im(𝑓 ) and 𝑓 is not surjective. ■

Theorem 7.51 (Cantor’s theorem). Given a set 𝐸, |𝐸| < |𝒫(𝐸)|.

Remark 7.52. As a consequence, we get that there is no greatest cardinal.

Proof of Cantor’s theorem.
First, note that 𝑔 ∶ 𝐸 → 𝒫(𝐸) defined by 𝑔(𝑥) = {𝑥} is injective, therefore |𝐸| ≤ |𝒫(𝐸)|.
We are going to prove that there is no surjection 𝐸 → 𝒫(𝐸) (and hence no such bijection).
Let 𝑓 ∶ 𝐸 → 𝒫(𝐸) be a function. Define 𝑆 = {𝑥 ∈ 𝐸 ∶ 𝑥 ∉ 𝑓(𝑥)}.
Let 𝑥 ∈ 𝐸. If 𝑥 ∈ 𝑓(𝑥) then 𝑥 ∉ 𝑆. Otherwise, if 𝑥 ∉ 𝑓(𝑥) then 𝑥 ∈ 𝑆. Therefore 𝑓(𝑥) ≠ 𝑆 (since one contains
𝑥 but not the other one).
Thus 𝑆 ∉ Im(𝑓 ) and 𝑓 is not surjective. ■

We already know that |ℕ| < |ℝ| and that |ℕ| < |𝒫(ℕ)|.
The following theorem asserts that actually |ℝ| = |𝒫(ℕ)|.

Theorem 7.53. |ℝ| = |𝒫(ℕ)|

Proof.
Define 𝑓 ∶ 𝒫(ℕ) → ℝ by 𝑓(𝑆) = ∑

𝑛∈𝑆
10−𝑛.

Then 𝑓 is injective by uniqueness of the proper decimal expansion. Thus |𝒫(ℕ)| ≤ |ℝ|.

Define 𝑔 ∶ ℝ → 𝒫(ℚ) by 𝑔(𝑥) = {𝑞 ∈ ℚ ∶ 𝑞 < 𝑥}.
Then 𝑔 is injective. Indeed, let 𝑥, 𝑦 ∈ ℝ be such that 𝑥 < 𝑦. Since ℚ is dense in ℝ, there exists 𝑞 ∈ ℚ such
that 𝑥 < 𝑞 < 𝑦. So 𝑞 ∉ 𝑔(𝑥) but 𝑞 ∈ 𝑔(𝑦). Therefore 𝑔(𝑥) ≠ 𝑔(𝑦).
Hence |ℝ| ≤ |𝒫(ℚ)| = |𝒫(ℕ)| using Theorem 7.39 since |ℚ| = |ℕ|.

We conclude thanks to Cantor–Schröder–Bernstein theorem. ■

Appendix 7.A What is a set?
The notion of set turned out to be necessary in order to handle rigorous definitions of ℝ as the ones pro-
vided by Dedekind and later by Cantor. It is worth noting that set theory first observed a great resistance13,
probably because of the influence of Gauss and Kronecker who shared the horror of the infinite from ancient
Greek philosophers.

Originally Cantor defined a set as ”a gathering together into a whole of distinguishable objects (which are
called the elements of the set)”14. According to current standards, it is a very informal definition. This naive set
theorywas governed by two principles: the comprehension principle fromwhich any predicate (i.e. statement)
defines a set (i.e. we can define the set of all elements satisfying a given property) and the extension principle
asserting that two sets are equal if and only if they contain the same elements.

Such an intuitive approach is enough to manipulate sets in everyday mathematics (that’s what you did
in your courses about calculus, multivariable calculus, linear algebra…). Nonetheless it is not satisfactory

13Towhich Hilbert later replied with the following wonderful and well-known sentence: Aus dem Paradies, das Cantor uns geschaf-
fen, soll uns niemand vertreiben können [No one should be able to expel us out of the paradise that Cantor has created for us.].

14”Unter einer ’Menge’ verstehen wir jede Zusammenfassung M von bestimmten wohlunterscheidbaren Objekten M unserer Anschauung
oder unseres Denkens (welche die ’Elemente’ von M genannt werden) zu einem Ganzen”, in Beiträge zur Begründung der transfiniten Men-
genlehre by Cantor (1895).
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since it leads to several paradoxes such as Russell’s paradox15 that we can state as follows using modern
notations (and particularly Peano’s notation for set membership ∈).

Since any statement defines a set (comprehension principle), 𝑆 = {𝑥 ∶ 𝑥 ∉ 𝑥} must be a set. Therefore
either 𝑆 ∈ 𝑆 but then 𝑆 ∉ 𝑆 by definition of 𝑆, or 𝑆 ∉ 𝑆 but then 𝑆 ∈ 𝑆 by definition of 𝑆. Which leads to
a contradiction.

Zermelo (1908) was the first to suggest a more careful axiomatic set theory. Particularly the compre-
hension principle is weakened to the separation principle: given a set, we can define its subset of elements
satisfying a given predicate (that’s the set-builder notation {𝑥 ∈ 𝐸 ∶ 𝑃 (𝑥)}).

This theory has been subsequently refined by Fraenkel, Solem, von Neumann, and others, giving rise to
Zermelo–Fraenkel (ZF) set theory. It is a first order theory16 with equality and the set membership binary
predicate symbol ∈.

In such a theory, wedon’t definewhat is a set: they are the atomic objects overwhichweuse quantifiers17.
Instead, we have a list of axioms ensuring the existence of some sets and how to define new sets from already
defined ones.
There are several equivalent formulations of ZF, for instance this one:

• Axiom of extensionality:
∀𝑥∀𝑦(∀𝑧(𝑧 ∈ 𝑥 ⇔ 𝑧 ∈ 𝑦) ⇔ 𝑥 = 𝑦)

Intuitively, this axiom states that two sets are equal if and only if they contain the same elements. Particularly,
order doesn’t matter and {𝑎, 𝑎} = {𝑎}.

• Axiom of pairing:
∀𝑥∀𝑦∃𝑧∀𝑤(𝑤 ∈ 𝑧 ⇔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦))

This axiom asserts that given two sets 𝑥 and 𝑦, the set 𝑧 = {𝑥, 𝑦} containing 𝑥 and 𝑦 is well-defined.
It is often given as an axiom although it is a consequence of the axiom schema of replacement.
Note that for a given set 𝑥 the axiom of pairing and the axiom of extensionality allow us to define the singleton
{𝑥} = {𝑥, 𝑥}.

• Axiom of union:
∀𝑥∃𝑦∀𝑢(𝑢 ∈ 𝑦 ⇔ ∃𝑤 ∈ 𝑥(𝑢 ∈ 𝑤))

This axiom ensures that given a set 𝑥 (of sets, everything is a set here), the set ⋃𝑤∈𝑥 𝑤 is well-defined. We will
use the abbrevation ∪ in what follows.
By the way, note that we have to be more careful about intersections: what would be ⋂𝑤∈∅ 𝑤?

• Axiom of power set:
∀𝑥∃𝑦∀𝑧[𝑧 ⊂ 𝑥 ⇔ 𝑧 ∈ 𝑦]

Here 𝑧 ⊂ 𝑥 is an abbreviation for ∀𝑢(𝑢 ∈ 𝑧 ⟹ 𝑢 ∈ 𝑥). This axiom asserts that given a set 𝑥, the set 𝑦 = 𝒫(𝑥)
of its subsets is well-defined.

• Axiom of empty set:
∃𝑥∀𝑦¬(𝑦 ∈ 𝑥)

This axiom ensures that the empty set exists (and it is unique by extensionality), therefore, in what follows, we
introduce the term ∅ to denote the empty set.

15It was discovered by Zermelo in 1899, but he did not published it, and then rediscovered by Russell in 1901.
16A first order theory generalizes propositional calculus by introducing quantified variables.
17Actually, it is possible to work with a theory about more general objects: that’s for example the case in vonNeumann–Bernays–

Gödel theory where atomic objects are classes and where a set is defined as a class which is contained in another class. It is known
that the statements about sets that can be proved within vNBG coincides with the statement that can be proved within ZFC.
Additionally, it doesn’t involve axiom schema, i.e. it is described using only finitely many axioms.
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• Axiom of infinity:
∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥(𝑦 ∪ {𝑦} ∈ 𝑥))

This axiom states that there exists a set containing a copy of ℕ.
We are going to use it to give a construction of ℕ. Set 0 ≔ ∅ and 𝑠(𝑦) ≔ 𝑦 ∪ {𝑦} (that’s the successor function),
therefore 1 = {∅}, 2 = {∅, {∅}}, 3 = {∅, {∅}, {∅, {∅}}}…
By the axiom of infinity, there exists a set 𝐸 containing 0 which is closed by 𝑠. Then it is not too difficult to prove
that the intersection of all the subsets of 𝐸 containing 0 and closed by 𝑠 satisfies the induction principle. It is a
nice construction of ℕ where the order is given by inclusion.

• Axiom schema of replacement:

(∀𝑥 ∈ 𝑎∃!𝑦𝑃 (𝑥, 𝑦)) ⟹ (∃𝑏∀𝑦(𝑦 ∈ 𝑏 ⇔ ∃𝑥 ∈ 𝑎𝑃 (𝑥, 𝑦)))

This one is an axiom schema and not an axiom (i.e. we need it for all formulae 𝑃 (𝑥, 𝑦)).
It asserts that if a formula defines a ”function” then its ”range” is a set.
Together with the axiom of empty set, the axiom schema of replacement implies that given a set, we may define
a subset of elements satisfying a given property (set-builder notation): that’s a weak/restricted version of the
comprehension principle called the separation principle.

• Axiom of foundation:
∀𝑥(𝑥 ≠ ∅ ⇒ ∃𝑦 ∈ 𝑥(𝑥 ∩ 𝑦 = ∅))

This axiom is a little bit special: it doesn’t define new sets but it is here to avoid paradoxes by removing circular
arguments. Particularly, as a consequence of it, a set can’t be an element of itself: if 𝑥 satisfies 𝑥 ∈ 𝑥 then the
singleton {𝑥} doesn’t satisfy the axiom of foundation since 𝑥 ∩ {𝑥} = {𝑥}.

Note that during the interwar period, the French group Bourbaki started to formalize most of known
mathematics within set theory.

It is commonly believed that ZF is very likely to be consistent, i.e. there is no contradition (like Rus-
sell’s paradox). In what follows, I assume that ZF is consistent (otherwise every statement would be true).
Nonetheless, a consequence of Gödel’s second incompleteness theorem is that if ZF is consistent then we
can’t prove within ZF that it is.

You should keep in mind that such a theory was given in response to the foundational crisis of mathe-
matics in the late 19th century in order to free mathematics from contradictions and to add more rigor in it.
But most mathematicians work at a higher level, not directly from these axioms, and don’t care too much
about them (we did mathematics before set theory). So, should a contradiction be found, it probably won’t
impact that much other fields of mathematics: maybe it would be possible to simply fix the axioms in a way
to remove the contradiction, or otherwise to work on new foundations for mathematics… Anyway, some
choices were made and they can be changed (and even without finding a contradiction, some mathemati-
cians have objections about using set theory as foundations for mathematics, especially since some fields
of mathematics involve proper classes which are too big to be sets, so they are de facto excluded from set
theory).

Theorem 7.54. There is no set containing all sets.
Proof. Assume that such a set 𝑉 exists, then the powerset 𝒫(𝑉 ) exists too and 𝒫(𝑉 ) ⊂ 𝑉 by definition of 𝑉 .
Therefore |𝒫(𝑉 )| ≤ |𝑉 |, but |𝑉 | < |𝒫(𝑉 )| by Cantor’s theorem. Hence a contradiction. ■

We may similarly prove that there is no set containing all finite sets, or even containing all singletons.

Theorem 7.55. There is no set containing all singletons.
Proof. Assume that the set 𝑆 of all singletons exists.
Define 𝑓 ∶ 𝒫(𝑆) → 𝑆 by 𝑓(𝑥) = {𝑥} (which is well-defined). Since 𝑓 is one-to-one, we get that |𝒫(𝑆)| ≤ |𝑆|.
Which contradicts |𝑆| < |𝒫(𝑆)| (Cantor’s theorem). ■
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Appendix 7.B Un morceau de choix
The following statement is (a formulation of) the axiom of choice

∀𝑥((∅ ∉ 𝑥 ∧ ∀𝑢, 𝑣 ∈ 𝑥(𝑢 = 𝑣 ∨ 𝑢 ∩ 𝑣 = ∅)) ⟹ ∃𝑦∀𝑢 ∈ 𝑥∃𝑤(𝑢 ∩ 𝑦) = {𝑤}) (AC)

It asserts that given a set 𝑥 of non-empty pairwise disjoint sets, there exists a set 𝑦 which contains exactly
one element for each set in 𝑥. Informally, it means that given infinitely many non-empty sets, we can simul-
tanuously pick an element in each set.

We can also state it in the following way. For 𝐼 a set together with (𝑋𝑖)𝑖∈𝐼 a family of sets indexed by 𝐼 ,
we have

(∀𝑖 ∈ 𝐼, 𝑋𝑖 ≠ ∅) ⟹ ∏
𝑖∈𝐼

𝑋𝑖 ≠ ∅

i.e. there exists (𝑥𝑖)𝑖∈𝐼 where 𝑥𝑖 ∈ 𝑋𝑖 (we can simultaneously pick 𝑥𝑖 ∈ 𝑋𝑖 for each 𝑖 ∈ 𝐼).

Gödel and Cohen respectively showed that the axiom of choice is not disprovable in ZF and that it is not
provable in ZF (assuming that ZF is consistent)18. Therefore the axiom of choice can be added to ZF as an
axiom without changing its consistency, in this case the theory is denoted ZFC.

Acceptance of the axiom of choice is a little bit controversial: on the one hand it seems very natural
and useful in some areas of mathematics19 but some consequences are counter intuitive (for instance the
well-known Banach–Tarski paradox). For this reason, some mathematicians try to avoid it or to use weaker
versions (such as the axiom of countable choice, i.e. only when 𝐼 is countable).
Here is a (funny) quote summarizing the situation20:

”The axiom of choice is obviously true, the well-ordering principle obviously false, and who can tell about Zorn’s lemma?”
– Jerry L. Bona21.

A statement equivalent to the axiom of choice and which is related to the content of this chapter is the
following one (which generalizes Remark 7.23 to infinite sets):

Theorem 7.56 (Trichotomy principle for cardinality).
Given two sets 𝐴 and 𝐵, exactly one of the following occurs:

• |𝐴| < |𝐵|
• |𝐴| = |𝐵|
• |𝐴| > |𝐵|

WhenTarski submitted to theComptes Rendus de l’Académie des Scienceshis proof that the trichotomyprinciple
is equivalent to the axiom of choice, both Fréchet and Lebesgue refused it: Fréchet because ”an implication
between two well known propositions is not a new result”, and Lebesgue because ”an implication between two false
propositions is of no interest”22.

Below I highlight the places where I used either the axiom of choice or the axiom of countable choice in this
chapter.

Remark 7.57. In Proposition 7.38, the part that |𝐸| ≤ |𝐹 | implies the existence of a surjection 𝑔 ∶ 𝐹 → 𝐸 is
true in ZF even without the axiom of choice.
Nonetheless, I used the axiom of choice to prove the converse when I pick (𝑦𝑥)𝑥∈𝐸 ∈ ∏𝑥∈𝐸 𝑔−1(𝑥).
Actually the axiom of choice is equivalent to the fact a function is surjective if and only if it admits a right
inverse (i.e. 𝑔 ∶ 𝐹 → 𝐸 is surjective if and only if there exists 𝑓 ∶ 𝐸 → 𝐹 such that 𝑔 ∘ 𝑓 = 𝑖𝑑𝐸).

18According to Gödel’s first incompleteness theorem, ZF contains at least one statement which is undecidable, the axiom of
choice is such a statement.

19For instance, the axiom of choice is equivalent to the fact that every vector space has a basis.
20These three statements are equivalent.
21STEVEN G. KRANTZ. Handbook of Logic and Proof Techniques for Computer Science, p121. Birkhäuser (2002).
22JAN MYCIELSKI. A System of Axioms of Set Theory for the Rationalists. Notices of the AMS, Volume 53, Number 2.
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Remark 7.58. Within ZF, Theorem 7.45 is equivalent to the axiom of countable choice.
Nonetheless, using an induction, we can prove within ZF that a finite union of countable sets is countable
(see the first part of the proof of Theorem 7.45).
In the proof of Theorem 7.45, I used the axiom of countable choice to pick simultaneously injective functions
𝑓𝑖 ∶ 𝐸𝑖 → ℕ for every 𝑖 ∈ 𝐼 .
Remark 7.59. I used the axiom of countable choice in the proof Theorem 7.46 when applying Theorem 7.45.
A set is Dedekind–infinite if it contains an infinite countable subset23. It is true within ZF that a Dedekind–
infinite set is infinite. The converse requires the axiom of choice: there exist models of ZF containing amor-
phous sets, i.e. which are infinite and Dedekind–finite.

Appendix 7.C Cheatsheet: recollection of some results about cardinality
Definition. We say that two sets 𝐸 and 𝐹 have same cardinality, denoted by |𝐸| = |𝐹 |, if there exists a
bijection 𝑓 ∶ 𝐸 → 𝐹 .
Proposition.

1. If 𝐸 is a set then |𝐸| = |𝐸|.
2. Given two sets 𝐸 and 𝐹 , if |𝐸| = |𝐹 | then |𝐹 | = |𝐸|.
3. Given three sets 𝐸, 𝐹 and 𝐺, if |𝐸| = |𝐹 | and |𝐹 | = |𝐺| then |𝐸| = |𝐺|.

Theorem. A set 𝐸 is infinite if and only if for every 𝑛 ∈ ℕ there exists 𝑆 ⊂ 𝐸 such that |𝑆| = 𝑛.
Definition. Given two sets 𝐸 and 𝐹 , we write |𝐸| ≤ |𝐹 | if there exists an injective function 𝑓 ∶ 𝐸 → 𝐹 .
Proposition.

1. If 𝐸 is a set then |𝐸| ≤ |𝐸|.
2. Given two sets 𝐸 and 𝐹 , if |𝐸| ≤ |𝐹 | and |𝐹 | ≤ |𝐸| then |𝐸| = |𝐹 | Cantor–Schröder–Bernstein theorem.
3. Given three sets 𝐸, 𝐹 and 𝐺, if |𝐸| ≤ |𝐹 | and |𝐹 | ≤ |𝐺| then |𝐸| ≤ |𝐺|.

Proposition. If 𝐸 ⊂ 𝐹 then |𝐸| ≤ |𝐹 |.
Proposition. If |𝐸1| = |𝐸2| and |𝐹1| = |𝐹2| then |𝐸1 × 𝐹1| = |𝐸2 × 𝐹2|.
Theorem. Given two sets 𝐸 and 𝐹 , |𝐸| ≤ |𝐹 | if and only if there exists a surjective function 𝑔 ∶ 𝐹 → 𝐸.
Theorem. Given two sets 𝐸 and 𝐹 , if |𝐸| = |𝐹 | then |𝒫(𝐸)| = |𝒫(𝐹 )|.
Notation. We set ℵ0 ≔ |ℕ| (pronounced aleph nought).
Definition. A set 𝐸 is countable if either 𝐸 is finite or |𝐸| = ℵ0.
Proposition. If 𝑆 ⊂ ℕ is infinite then |𝑆| = ℵ0.
Proposition. A set 𝐸 is countable if and only if |𝐸| ≤ ℵ0 (i.e. there exists an injection 𝑓 ∶ 𝐸 → ℕ),
otherwise stated 𝐸 is countable if and only if there exists a bijection between 𝐸 and a subset of ℕ.
Proposition. |ℕ × ℕ| = ℵ0

Theorem. A countable union of countable sets is countable,
i.e. if 𝐼 is countable and if for every 𝑖 ∈ 𝐼 , 𝐸𝑖 is countable then ⋃𝑖∈𝐼 𝐸𝑖 is countable.
Theorem. If 𝐸 is an infinite set then there exists 𝑇 ⊂ 𝐸 such that |𝑇 | = ℵ0, i.e. ℵ0 is the least infinite cardinal.
Theorem. |ℤ| = ℵ0

Theorem. |ℚ| = ℵ0

Theorem. ℵ0 < |ℝ|
Theorem (Cantor’s theorem). Given a set 𝐸, |𝐸| < |𝒫(𝐸)|.
Theorem. |ℝ| = |𝒫(ℕ)|

23Another equivalent definition is: a set 𝐸 is Dedekind–complete if there exists 𝐴 ⊊ 𝐸 such that |𝐴| = |𝐸|.
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FROM: https://xkcd.com/982/

Below are a few other proof methods:

• Proof by Example/Generalization. The statement holds for 𝑛 = 42 so it holds for any 𝑛 ∈ ℕ.

• Proof by Intimidation. Don’t be silly, it is trivial.

• Proof by Terror. When proof by intimidation fails.

• Proof by Insignificance. Who really cares anyway?

• Proof by Homework. The proof is left as an exercise to the reader.

• Proof by Exhaustion. The result is an easy consequence of the following 271 pages.

• Proof by Obvious Induction. 3 is prime, 5 is prime, 7 is prime… hence any odd number greater than 2 is a
prime number.

• Proof by Omission. The reader may easily supply the remaining 314 cases in a similar way.

• Proof by the End of the Lecture. Since it is already the end of the lecture, I let you finish the proof at home.
(Sorry, I might have really used this one)

• Proof by Lazyness.

• Proof by Postponement. TODO :Finish the proof later.

• Proof by General Agreement. All in Favor?

• Proof by My Agreement. Do you believe me? I believe me…
(I have been told that I used this one often in MAT237… Can you believe that? I can’t believe that!)

• Proof by Intuition. I just have this gut feeling. (Usually that’s how we do research)

• Proof by Supplication. Oh please, let it be true. (Quite often, research looks like that)

• Proof by Definition. We define it to be true.

• Proof by Design. We add it as an axiom.

• Proof by Authority. I’ve just met Gauss in the elevator, he told me that was true, so it must be!

• Proof by Stubbornness. The favorite method of a former student of mine.

• The Only Valid Proof. It is too beautiful to be false.

https://xkcd.com/982/
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Exercises

Exercise 1.
Let 𝐸 be a set.

1. Prove that ∀𝐴, 𝐵, 𝐶 ∈ 𝒫(𝐸), 𝐴 ∪ 𝐵 = 𝐵 ∩ 𝐶 ⟹ 𝐴 ⊂ 𝐵 ⊂ 𝐶 .
2. Prove that ∀𝐴, 𝐵 ∈ 𝒫(𝐸), 𝐴 ∩ 𝐵 = 𝐴 ∪ 𝐵 ⟹ 𝐴 = 𝐵.

Exercise 2.
Let 𝑓 ∶ 𝐴 → 𝐵, 𝑔 ∶ 𝐵 → 𝐶 and ℎ ∶ 𝐶 → 𝐷 be three functions.
Prove that 𝑔 ∘ 𝑓 and ℎ ∘ 𝑔 are bijective if and only if 𝑓 , 𝑔 and ℎ are bijective.

Exercise 3.
Let 𝑓 ∶ 𝐸 → 𝐹 .

1. Prove that ∀𝐴 ∈ 𝒫(𝐸), 𝐴 ⊂ 𝑓 −1(𝑓 (𝐴)).
2. Prove that ∀𝐵 ∈ 𝒫(𝐹 ), 𝑓 (𝑓 −1(𝐵)) ⊂ 𝐵.
3. Can these inclusions be strict?

Exercise 4.
Let 𝑓 ∶ 𝐸 → 𝐹 .

1. Prove that ∀𝐴, 𝐵 ∈ 𝒫(𝐹 ), 𝐴 ⊂ 𝐵 ⟹ 𝑓 −1(𝐴) ⊂ 𝑓 −1(𝐵).
Does the converse hold?

2. Prove that ∀𝐴, 𝐵 ∈ 𝒫(𝐹 ), 𝑓 −1(𝐴 ∩ 𝐵) = 𝑓 −1(𝐴) ∩ 𝑓 −1(𝐵).
3. Prove that ∀𝐴, 𝐵 ∈ 𝒫(𝐹 ), 𝑓 −1(𝐴 ∪ 𝐵) = 𝑓 −1(𝐴) ∪ 𝑓 −1(𝐵).

Exercise 5.
Let 𝑓 ∶ 𝐸 → 𝐹 .

1. Prove that ∀𝐴, 𝐵 ∈ 𝒫(𝐸), 𝐴 ⊂ 𝐵 ⟹ 𝑓(𝐴) ⊂ 𝑓(𝐵).
Does the converse hold?

2. Prove that ∀𝐴, 𝐵 ∈ 𝒫(𝐸), 𝑓 (𝐴 ∩ 𝐵) ⊂ 𝑓(𝐴) ∩ 𝑓(𝐵).
Can the inclusion be strict?

3. Prove that ∀𝐴, 𝐵 ∈ 𝒫(𝐸), 𝑓 (𝐴 ∪ 𝐵) = 𝑓(𝐴) ∪ 𝑓(𝐵).

Exercise 6.
Let 𝑓 ∶ 𝐸 → 𝐹 . Prove that 𝑓 is injective if and only if ∀𝐴, 𝐵 ∈ 𝒫(𝐸), 𝑓 (𝐴 ∩ 𝐵) = 𝑓(𝐴) ∩ 𝑓(𝐵).

Exercise 7.
Let𝐸 be a finite set. For𝐴, 𝐵 ∈ 𝒫(𝐸)wedefine the symmetric difference of𝐴 and𝐵 by𝐴Δ𝐵 = (𝐴∪𝐵)∖(𝐴∩𝐵).
Prove that ∀𝐴, 𝐵 ∈ 𝒫(𝐸), |𝐴Δ𝐵| = |𝐴| + |𝐵| − 2|𝐴 ∩ 𝐵|.

Exercise 8.
Let 𝐸 and 𝐹 be two finite sets.

1. Prove that 𝐹 𝐸 (the set of functions 𝐸 → 𝐹 ) is finite and express |𝐹 𝐸| in terms of |𝐸| and |𝐹 |.
2. Prove that the set {𝑓 ∈ 𝐸𝐹 ∶ 𝑓 is injective} is finite and express its cardinal in terms of |𝐸| and |𝐹 |.
3. Prove that the set {𝑓 ∈ 𝐸𝐸 ∶ 𝑓 is bijective} is finite and express its cardinal in terms of |𝐸|.

The case of surjective functions is more tricky.

Exercise 9.
Let 𝐸 be a finite set and 𝑘 ∈ {0, 1, … , |𝐸|}. What is the cardinal of {𝐴 ∈ 𝒫(𝐸) ∶ |𝐴| = 𝑘}?

Exercise 10.
Prove that a set 𝐸 is finite if and only if 𝒫(𝐸) is finite.
In this case, give an expression of |𝒫(𝐸)| in terms of |𝐸|.
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Exercise 11. The pigeonhole principle or Dirichlet’s drawer principle
I had no enough time to cover this topic in lectures, so here it is :-).

1. Let 𝐸 and 𝐹 be two finite sets. Prove that |𝐸| ≤ |𝐹 | if and only if there exists an injection 𝑓 ∶ 𝐸 → 𝐹 .

2. Let 𝐸 and 𝐹 be two finite sets. Prove that if |𝐸| > |𝐹 | then there is no injective function 𝐸 → 𝐹 .
This statement is pigeonhole principle or Dirichlet’s drawer principle: if you have 𝑛 elements put in 𝑘 < 𝑛 boxes,
then at least one box contains two elements.

3. During a post-covid party with 𝑛 > 1 participants, we may always find two people who shook hands
to the same number of people.

4. Let 𝑛 ∈ ℕ ∖ {0}. Let 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ ℤ. Prove that there exists distinct 𝑖1, … , 𝑖𝑟 ∈ {1, … , 𝑛}, 𝑟 ≥ 1, so that
𝑛| ∑𝑟

𝑘=1 𝑎𝑖𝑘 .

5. Prove that among 13 distinct real numbers, there always exist two 𝑥, 𝑦 satisfying 0 < 𝑥 − 𝑦
1 + 𝑥𝑦 < 2 − √3.

Hint: it looks like a trigonometric formula you know!

Exercise 12.
Given three sets 𝐸, 𝐹 , 𝐺, prove that if 𝐸 ⊂ 𝐹 ⊂ 𝐺 and |𝐸| = |𝐺| then |𝐸| = |𝐹 |.

Exercise 13.
Given a set 𝑆, prove that |𝒫(𝑆)| = |{0, 1}𝑆 | where {0, 1}𝑆 denotes the set of functions 𝑆 → {0, 1}.
Remark: this formula generalizes the fact that if 𝑆 is a finite set with 𝑛 = |𝑆| then |𝒫(𝑆)| = 2𝑛.
Therefore it is common to denote the powerset of a set 𝑆 by 2𝑆 ≔ 𝒫(𝑆).

Exercise 14.
1. What is |{0, 1}ℕ|? i.e. what is the cardinality of the set of functions ℕ → {0, 1}?
2. What is |ℕ{0,1}|? i.e. what is the cardinality of the set of functions {0, 1} → ℕ?

Exercise 15.
1. What is the cardinality of 𝑆 = {𝐴 ∈ 𝒫(ℕ) ∶ 𝐴 is finite}.
2. Is 𝑇 = {𝐴 ∈ 𝒫(ℕ) ∶ 𝐴 is infinite} countable?

Exercise 16.
Prove that any set 𝑋 of pairwise disjoint intervals which are non-empty and not reduced to a singleton is
countable,
i.e. if 𝑋 ⊂ 𝒫(ℝ) satisfies
(i) ∀𝐼 ∈ 𝑋, 𝐼 is an interval which is non-empty and not reduced to a singleton
(ii) ∀𝐼, 𝐽 ∈ 𝑋, 𝐼 ≠ 𝐽 ⟹ 𝐼 ∩ 𝐽 = ∅

then 𝑋 is countable.

Exercise 17.
Prove that a set is infinite if and only if it admits a proper subset of same cardinality.

Exercise 18.
1. Prove that ℝ ∖ ℚ is not countable.
2. Prove that |ℝ ∖ ℚ| = |ℝ|.

Exercise 19.
Prove that |(0, 1)| = |ℝ|.
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Exercise 20.
1. Prove that |ℝ2| = |ℝ|.
2. Prove that ∀𝑛 ∈ ℕ ∖ {0}, |ℝ𝑛| = |ℝ|.
3. Prove that |ℝℕ| = |ℝ| where ℝℕ is the set of sequences/functions ℕ → ℝ.

Exercise 21.
Set 𝑆2 ≔ {(𝑥, 𝑦, 𝑧) ∈ ℝ3 ∶ 𝑥2 + 𝑦2 + 𝑧2 = 1}. Prove that |𝑆2| = |ℝ|.

Exercise 22.
What is the cardinality of the set 𝑆 of all circles in the plane?



Chapter 8

Sample solutions to the exercises

8.1 Chapter 1

Sample solutions to Exercise 1.
1. Given 𝑎 ∈ ℕ, we already know that 𝑎 × 0 = 0 by definition of the multiplication. So we only need to

prove that ∀𝑎 ∈ ℕ, 0 × 𝑎 = 0.
Set 𝐴 = {𝑎 ∈ ℕ ∶ 0 × 𝑎 = 0}, then

• 𝐴 ⊂ ℕ
• 0 ∈ 𝐴 since 0 × 0 = 0 by definition of the multiplication.
• 𝑠(𝐴) ⊂ 𝐴. Indeed, let 𝑚 ∈ 𝑠(𝐴), then 𝑚 = 𝑠(𝑎) for some 𝑎 ∈ 𝐴. Then

0 × 𝑚 = 0 × 𝑠(𝑎)
= 0 × 𝑎 + 0 by definition of the multiplication
= 0 + 0 since 𝑎 ∈ 𝐴
= 0

Thus 𝑚 ∈ 𝐴.

Therefore, by the induction principle, 𝐴 = ℕ. So ∀𝑎 ∈ ℕ, 0 × 𝑎 = 0.

2. Let 𝑎 ∈ ℕ. Then

𝑎 × 1 = 𝑎 × 𝑠(0) since 1 = 𝑠(0)
= 𝑎 × 0 + 𝑎 by definition of the multiplication
= 0 + 𝑎 by definition of the multiplication
= 𝑎

Sample solutions to Exercise 2.
1. Let 𝑚 ∈ ℕ then 𝑚1 = 𝑚𝑠(0) = 𝑚0 × 𝑚 = 1 × 𝑚 = 𝑚.

2. Let 𝑎, 𝑏 ∈ ℕ. Set 𝐴 = {𝑛 ∈ ℕ ∶ (𝑎𝑏)𝑛 = 𝑎𝑛𝑏𝑛}.

• 𝐴 ⊂ ℕ
• 0 ∈ 𝐴: indeed, (𝑎𝑏)0 = 1 and 𝑎0𝑏0 = 1 × 1 = 1.
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• 𝑠(𝐴) ⊂ 𝐴: let 𝑚 ∈ 𝑠(𝐴) then 𝑚 = 𝑠(𝑛) for some 𝑛 ∈ 𝐴. Next

(𝑎𝑏)𝑚 = (𝑎𝑏)𝑠(𝑛) since 𝑚 = 𝑠(𝑛)
= (𝑎𝑏)𝑛(𝑎𝑏) by definition of (𝑎𝑏)•

= 𝑎𝑛𝑏𝑛𝑎𝑏 since 𝑛 ∈ 𝐴
= (𝑎𝑛𝑎)(𝑏𝑛𝑏) by properties of the product
= 𝑎𝑠(𝑛)𝑏𝑠(𝑛) by definition of 𝑎• and 𝑏•

= 𝑎𝑚𝑏𝑚 since 𝑚 = 𝑠(𝑛)

Hence 𝑚 ∈ 𝐴.
Therefore, by the induction principle, 𝐴 = ℕ. So for all 𝑛 ∈ ℕ, (𝑎𝑏)𝑛 = 𝑎𝑛𝑏𝑛.

3. Let 𝑎, 𝑚 ∈ ℕ. Set 𝐴 = {𝑛 ∈ ℕ ∶ 𝑎𝑚+𝑛 = 𝑎𝑚𝑎𝑛}. Then
• 𝐴 ⊂ ℕ
• 0 ∈ 𝐴: indeed, 𝑎𝑚+0 = 𝑎𝑚 = 𝑎𝑚 × 1 = 𝑎𝑚 × 𝑎0

• 𝑠(𝐴) ⊂ 𝐴: let 𝑘 ∈ 𝑠(𝐴) then 𝑘 = 𝑠(𝑛) for some 𝑛 ∈ 𝐴. Next

𝑎𝑚+𝑘 = 𝑎𝑚+𝑠(𝑛) since 𝑘 = 𝑠(𝑛)
= 𝑎𝑠(𝑚+𝑛) by definition of the addition
= 𝑎𝑚+𝑛 × 𝑎 by definition of 𝑎•

= 𝑎𝑚𝑎𝑛𝑎 since 𝑛 ∈ 𝐴
= 𝑎𝑚𝑎𝑠(𝑛) by definition of 𝑎•

= 𝑎𝑚𝑎𝑘 since 𝑘 = 𝑠(𝑛)

Hence 𝑘 ∈ 𝐴.
Therefore, by the induction principle, 𝐴 = ℕ. So for all 𝑛 ∈ ℕ, 𝑎𝑚+𝑛 = 𝑎𝑚𝑎𝑛.

4. Let 𝑛 ∈ ℕ ∖ {0}. Then there exists 𝑚 ∈ ℕ such that 𝑛 = 𝑠(𝑚). Thus 0𝑛 = 0𝑠(𝑚) = 0𝑚 × 0 = 0.

5. Set 𝐴 = {𝑛 ∈ ℕ ∶ 1𝑛 = 1}. Then
• 𝐴 ⊂ ℕ
• 0 ∈ 𝐴: 10 = 1 by definition of 1•.
• 𝑠(𝐴) ⊂ 𝐴: let 𝑚 ∈ 𝑠(𝐴) then 𝑚 = 𝑠(𝑛) for some 𝑛 ∈ 𝐴. Next

1𝑚 = 1𝑠(𝑛) since 𝑚 = 𝑠(𝑛)
= 1𝑛 × 1 by definition of 1•

= 1 × 1 since 𝑛 ∈ 𝐴
= 1

Hence 𝑚 ∈ 𝐴.
Therefore, by the induction principle, 𝐴 = ℕ. So for all 𝑛 ∈ ℕ, 1𝑛 = 1.

Sample solutions to Exercise 3.
1. This binary relation is not an order since it is not reflexive.

Indeed, 1ℛ1 is false since 1 ≠ −1.

2. This binary relation is not an order since it is not antisymmetric.
Indeed, 0ℛ(2𝜋) and (2𝜋)ℛ0 are true but 0 ≠ 2𝜋.

3. The inclusion is an order on 𝒫(𝑆). Indeed
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• ∀𝐴 ∈ 𝒫(𝑆), 𝐴 ⊂ 𝐴 (reflexivity).
• ∀𝐴, 𝐵 ∈ 𝒫(𝑆), (𝐴 ⊂ 𝐵 and 𝐵 ⊂ 𝐴) ⟹ 𝐴 = 𝐵 (antisymmetry).
• ∀𝐴, 𝐵, 𝐶 ∈ 𝒫(𝑆), (𝐴 ⊂ 𝐵 and 𝐵 ⊂ 𝐶) ⟹ 𝐴 ⊂ 𝐶 (transitivity).

If 𝑆 = ∅ then 𝒫(𝑆) = {∅}: the order is obviously total.
If 𝑆 = {∗} has only one element then 𝒫(𝑆) = {∅, {∗}}: the order is obviously total.
If 𝑆 contains at least two elements 𝑎, 𝑏 then the order is not total.
Indeed, set 𝐴 = 𝑆 ∖ {𝑎} and 𝐵 = 𝑆 ∖ {𝑏}.
Then 𝐴 ⊄ 𝐵 since 𝑏 ∈ 𝐴 but 𝑏 ∉ 𝐵, and, 𝐵 ⊄ 𝐴 since 𝑎 ∈ 𝐵 but 𝑎 ∉ 𝐴.
Thus, if 𝑆 contains at least two elements, then ⊂ is not a total order on 𝒫(𝑆).

Sample solutions to Exercise 4.
1. • Reflexivity. Let 𝑥 ∈ ℕ. Then 𝑥 = 1 × 𝑥1. Hence 𝑥ℛ𝑥.

• Antisymmetry. Let 𝑥, 𝑦 ∈ ℕ be such that 𝑥ℛ𝑦 and 𝑦ℛ𝑥. Then 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥. Thus 𝑥 = 𝑦.
• Transitivity. Let 𝑥, 𝑦, 𝑧 ∈ ℕ be such that 𝑥ℛ𝑦 and 𝑦ℛ𝑧. Then 𝑦 = 𝑝𝑥𝑞 and 𝑧 = 𝑟𝑦𝑠 for some

𝑝, 𝑞, 𝑟, 𝑠 ∈ ℕ ∖ {0}. Hence 𝑧 = 𝑟𝑦𝑠 = 𝑟𝑝𝑠𝑥𝑞𝑠 with 𝑟𝑝𝑠, 𝑞𝑠 ∈ ℕ ∖ {0}. Thus 𝑥ℛ𝑧.

2. This order is not total since 0ℛ1 and 1ℛ0 are both false.

Sample solutions to Exercise 5.
1. • Reflexivity. Let (𝑥, 𝑦) ∈ ℕ2, then 𝑥 ≤ 𝑥 and 𝑦 ≤ 𝑦 hence (𝑥, 𝑦) ≺ (𝑥, 𝑦).

• Antisymmetry. Assume that (𝑥1, 𝑦1) ≺ (𝑥2, 𝑦2) and that (𝑥2, 𝑦2) ≺ (𝑥1, 𝑦1).
Then 𝑥1 ≤ 𝑥2, 𝑦1 ≤ 𝑦2, 𝑥2 ≤ 𝑥1 and 𝑦2 ≤ 𝑦1.
Since ≤ is an order on ℕ, we get that 𝑥1 = 𝑥2 and 𝑦1 = 𝑦2. Thus (𝑥1, 𝑦1) = (𝑥2, 𝑦2).

• Transitivity. Assume that (𝑥1, 𝑦1) ≺ (𝑥2, 𝑦2) and that (𝑥2, 𝑦2) ≺ (𝑥3, 𝑦3).
Then 𝑥1 ≤ 𝑥2, 𝑦1 ≤ 𝑦2, 𝑥2 ≤ 𝑥3 and 𝑦2 ≤ 𝑦3.
Since ≤ is an order on ℕ, we get that 𝑥1 ≤ 𝑥3 and 𝑦1 ≤ 𝑦3. Thus (𝑥1, 𝑦1) ≺ (𝑥3, 𝑦3).

2. Note that (1, 0) ≺ (0, 1) and (0, 1) ≺ (1, 0) are both false. Hence ≺ is not a total order on ℕ2.

Sample solutions to Exercise 6.
Method 1: using the definition.

1. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℕ. Assume that 𝑎 ≤ 𝑏 and 𝑐 ≤ 𝑑.
Then there exist 𝑘, 𝑙 ∈ ℕ such that 𝑏 = 𝑎 + 𝑘 and 𝑑 = 𝑐 + 𝑙.
Hence 𝑏 + 𝑑 = 𝑎 + 𝑘 + 𝑐 + 𝑙 = (𝑎 + 𝑐) + (𝑘 + 𝑙) with 𝑘 + 𝑙 ∈ ℕ.
Thus 𝑎 + 𝑐 ≤ 𝑏 + 𝑑.

2. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℕ. Assume that 𝑎 ≤ 𝑏 and 𝑐 ≤ 𝑑.
Then there exist 𝑘, 𝑙 ∈ ℕ such that 𝑏 = 𝑎 + 𝑘 and 𝑑 = 𝑐 + 𝑙.
Hence 𝑏𝑑 = (𝑎 + 𝑘)(𝑐 + 𝑙) = 𝑎𝑐 + (𝑎𝑙 + 𝑘𝑐 + 𝑘𝑙) with 𝑎𝑙 + 𝑘𝑐 + 𝑘𝑙 ∈ ℕ.
Thus 𝑎𝑐 ≤ 𝑏𝑑.

Method 2: using the properties proved in class.
1. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℕ be such that 𝑎 ≤ 𝑏 and 𝑐 ≤ 𝑑.

Then 𝑎 ≤ 𝑏 ⟹ 𝑎 + 𝑐 ≤ 𝑏 + 𝑐 and 𝑐 ≤ 𝑑 ⟹ 𝑏 + 𝑐 ≤ 𝑏 + 𝑑.
Finally {

𝑎 + 𝑐 ≤ 𝑏 + 𝑐
𝑏 + 𝑐 ≤ 𝑏 + 𝑑 ⟹ 𝑎 + 𝑐 ≤ 𝑏 + 𝑑.

2. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℕ be such that 𝑎 ≤ 𝑏 and 𝑐 ≤ 𝑑.
Then 𝑎 ≤ 𝑏 ⟹ 𝑎𝑐 ≤ 𝑏𝑐 and 𝑐 ≤ 𝑑 ⟹ 𝑏𝑐 ≤ 𝑏𝑑.
Finally {

𝑎𝑐 ≤ 𝑏𝑐
𝑏𝑐 ≤ 𝑏𝑑 ⟹ 𝑎𝑐 ≤ 𝑏𝑑.
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Sample solutions to Exercise 7.
• The statement is false for 𝑐 = 0, indeed, 2 × 0 ≤ 1 × 0 but 2 ≤ 1 is false.
• The statement is true for 𝑐 ≠ 0. We are going to prove the contrapositive, ∀𝑎, 𝑏 ∈ ℕ, 𝑏 < 𝑎 ⟹ 𝑏𝑐 < 𝑎𝑐.

Let 𝑎, 𝑏 ∈ ℕ be such that 𝑏 < 𝑎. Then 𝑏 ≤ 𝑎 and hence 𝑏𝑐 ≤ 𝑎𝑐.
Assume by contradiction that 𝑏𝑐 = 𝑎𝑐 then 𝑏 = 𝑎 since 𝑐 ≠ 0. Hence 𝑏𝑐 < 𝑎𝑐 as expected.

Sample solutions to Exercise 8.
Assume by contradiction that the set 𝐸 = {𝑛 ∈ ℕ ∶ 0 < 𝑛 < 1} is not empty.
Then, by the well-ordering principle, 𝐸 admits a least element, i.e. there exists 𝑙 ∈ 𝐸 such that ∀𝑛 ∈ ℕ, 𝑙 ≤ 𝑛.
Since 𝑙 ∈ 𝐸, we get that 𝑙 < 1. Note that 0 ∉ 𝐸, so 𝑙 ≠ 0. Hence 𝑙 < 1 ⟹ 𝑙2 < 𝑙.
We know that if 0 = 𝑙2 = 𝑙 × 𝑙 then 𝑙 = 0. Hence 𝑙2 is positive.
Finally 0 < 𝑙2 < 𝑙 < 1. So 𝑙2 ∈ 𝐸 which contradicts the fact that 𝑙 is the least element of 𝐸.

Sample solutions to Exercise 9.
1. We are going to prove by induction that ∀𝑛 ∈ ℕ, ∃𝑘 ∈ ℕ, 𝑛3 + 2𝑛 = 3𝑘.

• Base case at 𝑛 = 0: 03 + 2 × 0 = 3 × 0.
• Induction step: assume that for some 𝑛 ∈ ℕ there exists 𝑘 ∈ ℕ such that 𝑛3 + 2𝑛 = 3𝑘. Then

(𝑛 + 1)3 + 2(𝑛 + 1) = 𝑛3 + 3𝑛2 + 3𝑛 + 1 + 2𝑛 + 2
= 3𝑘 + 3𝑛2 + 3𝑛 + 3 by the induction hypothesis
= 3(𝑘 + 𝑛2 + 𝑛 + 1)

The induction step is proved since 𝑘 + 𝑛2 + 𝑛+ ∈ ℕ.

2. We are going to prove by induction that ∀𝑛 ∈ ℕ,
𝑛

∑
𝑘=0

𝑘
2𝑘 = 2 − 𝑛 + 2

2𝑛 .

• Base case at 𝑛 = 0:
0

∑
𝑘=0

𝑘
2𝑘 = 0 and 2 − 0+2

20 = 2 − 2 = 0.

• Induction step: assume that
𝑛

∑
𝑘=0

𝑘
2𝑘 = 2 − 𝑛 + 2

2𝑛 for some 𝑛 ∈ ℕ.

𝑛+1

∑
𝑘=0

𝑘
2𝑘 =

𝑛

∑
𝑘=0

𝑘
2𝑘 + 𝑛 + 1

2𝑛+1

= 2 − 𝑛 + 2
2𝑛 + 𝑛 + 1

2𝑛+1 by the induction hypothesis

= 2 − 2𝑛 + 4 − 𝑛 − 1
2𝑛+1 = 2 − (𝑛 + 1) + 2

2𝑛+1

which ends the induction step.

Sample solutions to Exercise 10.
We are going to prove by (strong) induction that ∀𝑛 ≥ 1, 𝑢𝑛 = 3𝑛.

• Base case at 𝑛 = 1: 𝑢1 = 3 × 1.
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• Induction step: assume that 𝑢𝑘 = 3𝑘 for 𝑘 = 1, … , 𝑛 where 𝑛 ≥ 1. Then

𝑢𝑛+1 = 2
𝑛 + 1

𝑛

∑
𝑘=1

𝑢𝑘

= 2
𝑛

𝑛

∑
𝑘=1

3𝑘 by the induction hypothesis

= 6
𝑛

𝑛

∑
𝑘=1

𝑘 = 6
𝑛

𝑛(𝑛 + 1)
2 = 3(𝑛 + 1)

which ends the induction step.

Sample solutions to Exercise 11.
Let 𝑥 ∈ [−1, +∞). We are going to prove by induction that ∀𝑛 ∈ ℕ, (1 + 𝑥)𝑛 ≥ 1 + 𝑛𝑥.

• Base case at 𝑛 = 0: (1 + 𝑥)0 = 1 and 1 + 0 × 𝑥 = 1.
• Induction step: assume that (1 + 𝑥)𝑛 ≥ 1 + 𝑛𝑥 for some 𝑛 ∈ ℕ. Then

(1 + 𝑥)𝑛+1 = (1 + 𝑥)𝑛(1 + 𝑥)
≥ (1 + 𝑛𝑥)(1 + 𝑥) by the induction hypothesis since 1 + 𝑥 ≥ 0
= 1 + 𝑥 + 𝑛𝑥 + 𝑛𝑥2

≥ 1 + 𝑥 + 𝑛𝑥 = 1 + (𝑛 + 1)𝑥

which ends the induction step.

Sample solutions to Exercise 12.
1. Let 𝑛 ≥ 3. Assume that 𝑃 (𝑛) is true, i.e. 2𝑛 > 𝑛2, and let’s prove 𝑃 (𝑛 + 1), i.e. 2𝑛+1 > (𝑛 + 1)2.

From the assumption, we get that 2𝑛+1 = 2 × 2𝑛 ≥ 2𝑛2. Hence it is enough to prove that 2𝑛2 > (𝑛 + 1)2

which is equivalent to 𝑛2 − 2𝑛 − 1 > 0.
We study the sign of the polynomial 𝑥2 − 2𝑥 − 1. It is a polynomial of degree 2 with positive leading
coefficient and its discriminant is (−2)2 − 4 × (−1) = 8 > 0. Therefore

𝑥

𝑥2 −2𝑥−1

−∞ 1 − √2 1 + √2 +∞

+ 0 − 0 +

Since 𝑛 ≥ 3 > 1 + √2, we know that 𝑛2 − 2𝑛 − 1 > 0. Hence 𝑃 (𝑛 + 1) holds.
2. 𝑃 (3) and 𝑃 (4) are false, but 𝑃 (5) is true. So by induction, ∀𝑛 ≥ 5, 𝑃 (𝑛) is true.

Beware: even if the induction step is true for 𝑛 ≥ 3, we can only start the induction proof at 𝑛 = 5! The
base case is very important in a proof by induction.

Sample solutions to Exercise 13.
The induction step is false when 𝑛 = 2 (it only holds for 𝑛 ≥ 3). Indeed, for 𝑛 = 2, we only have that
𝐴1, 𝐴2 ∈ 𝐿 and that 𝐴2, 𝐴3 ∈ 𝐿′. Which is not enough to get that 𝐿 = 𝐿′ since we only know that they have
one point in common (it works if they have at least two points in common).

Beware: if you start an induction proof with a base case at 𝑛0, you have to make sure that the induction
step 𝑃 (𝑛) ⟹ 𝑃 (𝑛 + 1) holds for every 𝑛 ≥ 𝑛0. Otherwise, you didn’t prove anything…

Sample solutions to Exercise 14.
Existence. We are going to prove the existence of such a couple (𝑎, 𝑏) by a strong induction on 𝑛.

• Base case at 𝑛 = 1: 1 = 20(2 × 0 + 1).
• Induction step. Assume that for 1, 2, … , 𝑛 admit such an expression for some 𝑛 ≥ 1.
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– First case: 𝑛 + 1 is even, i.e. 𝑛 + 1 = 2𝑘 for some 𝑘 ∈ ℕ.
Note that 𝑘 ≠ 0 since otherwise 1 ≤ 𝑛 + 1 = 0.
Since 1 < 2 and 𝑘 ≠ 0, we get that 𝑘 < 2𝑘 = 𝑛 + 1, so that 𝑘 ≤ 𝑛.
Hence, by the induction hypothesis, 𝑘 = 2𝑎(2𝑏 + 1) for some (𝑎, 𝑏) ∈ ℕ2.
Then 𝑛 + 1 = 2𝑘 = 2𝑎+1(2𝑏 + 1).

– Second case: 𝑛 + 1 is odd, i.e. 𝑛 + 1 = 2𝑘 + 1 for some 𝑘 ∈ ℕ. But then 𝑛 + 1 = 20(2 × 𝑘 + 1).
Which ends the induction step.

Uniqueness. Assume that 2𝑎(2𝑏 + 1) = 2𝛼(2𝛽 + 1) for 𝑎, 𝑏, 𝛼, 𝛽 ∈ ℕ.
If 𝑎 < 𝛼 then, by cancellation, we obtain 2𝑏 + 1 = 2𝛼−𝑎(2𝛽 + 1). Which is impossible since the LHS is odd
whereas the RHS is even.
If 𝛼 < 𝑎 then, by cancellation, we obtain 2𝑎−𝛼(2𝑏 + 1) = 2𝛽 + 1. Which is impossible since the RHS is odd
whereas the LHS is even.
Therefore 𝑎 = 𝛼, and by cancellation we obtain 2𝑏 + 1 = 2𝛽 + 1, hence 2𝑏 = 2𝛽 and finally 𝑏 = 𝛽.
We proved that (𝑎, 𝑏) = (𝛼, 𝛽).

Sample solutions to Exercise 15.
The function 𝑓 ∶ ℕ → ℕ defined by 𝑓(𝑛) = 𝑛 satisfies the conditions of the question. Actually, as we are
going to prove, it is the only one.
From now on, we assume that 𝑓 ∶ ℕ → ℕ satisfigies 𝑓(2) = 2 and ∀𝑝, 𝑞 ∈ ℕ, 𝑓(𝑝𝑞) = 𝑓(𝑝)𝑓(𝑞), and we want
to prove that ∀𝑛 ∈ ℕ, 𝑓(𝑛) = 𝑛.

• We know that 0 < 1 < 2 hence 0 ≤ 𝑓(0) < 𝑓(1) < 𝑓(2) = 2.
Therefore, the only possibility is that 𝑓(0) = 0 and 𝑓(1) = 1.

• Let’s prove by strong induction that ∀𝑛 ∈ ℕ, 𝑓(𝑛) = 𝑛.

– Base case at 𝑛 = 0: 𝑓(0) = 0.

– Induction step. Assume that 𝑓(0) = 0, 𝑓(1) = 1, 𝑓(2) = 2, 𝑓(3) = 3, … , 𝑓(𝑛) = 𝑛 for some 𝑛 ≥ 0.
∗ First case: 𝑛 + 1 is even, i.e. there exists 𝑘 ∈ ℕ such that 𝑛 + 1 = 2𝑘.

Note that 𝑘 ≠ 0 since otherwise 1 ≤ 𝑛 + 1 = 0.
Since 1 < 2 and 𝑘 ≠ 0, we get that 𝑘 < 2𝑘 = 𝑛 + 1, so that 𝑘 ≤ 𝑛.
Then, by the induction hypothesis, 𝑓(𝑛 + 1) = 𝑓(2𝑘) = 𝑓(2)𝑓(𝑘) = 2𝑘 = 𝑛 + 1.

∗ Second case: 𝑛 + 1 is odd, i.e. there exists 𝑘 ∈ ℕ such that 𝑛 + 1 = 2𝑘 + 1.
Either 𝑘 = 0 and then 𝑓(𝑛 + 1) = 𝑓(1) = 1 = 𝑛 + 2.
Or 𝑘 ≠ 0 and then 𝑘 + 1 < 2𝑘 + 1 = 𝑛 + 1, i.e. 𝑘 ≤ 𝑛.
Then 𝑓(𝑛 + 2) = 𝑓(2(𝑘 + 1)) = 𝑓(2)𝑓(𝑘 + 1) = 𝑛 + 2 by the induction hypothesis.
Thus 𝑛 = 𝑓(𝑛) < 𝑓(𝑛 + 1) ≤ 𝑓(𝑛 + 2) = 𝑛 + 2.
The only possible value is that 𝑓(𝑛 + 1) = 𝑛 + 1.

Sample solutions to Exercise 16.
1. Let 𝑚, 𝑚′ ∈ 𝑆 be two greatest elements of 𝑆.

Since 𝑚 ∈ 𝑆 and 𝑚′ is a greatest element, we have 𝑚 ≤ 𝑚′.
Similarly, since 𝑚′ ∈ 𝑆 and 𝑚 is a greatest element of 𝑆, we have 𝑚′ ≤ 𝑚.
Hence 𝑚 = 𝑚′.

That’s why we say the greatest element: if it exists, it is unique (whereas we say an upper bound).

2. Let’s prove that a non-empty finite subset 𝑆 ⊂ ℤ has a greatest element, by induction on 𝑛 = #𝑆.

• Base case at 𝑛 = 1: if 𝑆 is a singleton, then its unique element is its greatest element.
• Induction step. Assume that the statement holds for sets of cardinal 𝑛, for some 𝑛 ≥ 1.

Let 𝑆 ⊂ ℤ be such that #𝑆 = 𝑛 + 1.
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Particulalry 𝑆 ≠ ∅, so there exists 𝑎 ∈ 𝑆.
Set 𝑇 = 𝑆 ∖ {𝑎}. Then #𝑇 = 𝑛, so by the induction hypothesis 𝑇 admits a greatest element 𝑚 ∈ 𝑇 .
I claim that 𝑀 = max(𝑚, 𝑎) ∈ 𝑇 ∪ {𝑎} = 𝑆 is the greatest element of 𝑆.
Indeed, let 𝑛 ∈ 𝑆, either 𝑛 = 𝑎 and then 𝑎 ≤ 𝑀 , or 𝑛 ∈ 𝑇 and then 𝑛 ≤ 𝑚 ≤ 𝑀 .
Which ends the inductive step.

Sample solutions to Exercise 17.
We are going to prove by induction on 𝑛 ≥ 1 that if one square of a 2𝑛 × 2𝑛 chessboard is removed, then the
remaining squares can be covered with L-shaped trominoes.

• Base case at 𝑛 = 1. There are only four possible cases and for each of them the remaining is exactly one
𝐿-shaped tromino:

• Assume that the statement holds for some 𝑛 ≥ 1 and consider a 2𝑛+1 ×2𝑛+1 chessboard with a removed
square.
We may split this chessboard into four 2𝑛 × 2𝑛 chessboards as follows:

Wemay place an 𝐿-shaped tromino such that it covers the corner situated at the center for each 2𝑛 ×2𝑛

chessboard without a removed square, see below.

Now, each of the 2𝑛 × 2𝑛 chessboards has a removed square: we may apply the induction hypothesis
in order to cover the remaining squares with 𝐿-shaped trominoes.
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8.2 Chapter 2

Sample solutions to Exercise 1.
Let 𝑎, 𝑏 ∈ ℤ such that 𝑎2 = 𝑏2. Then 0 = 𝑎2 − 𝑏2 = (𝑎 − 𝑏)(𝑎 + 𝑏). Hence either 𝑎 = 𝑏 or 𝑎 = −𝑏. In both cases
|𝑎| = |𝑏|.

Sample solutions to Exercise 2.
Consider 𝑛 consecutive integers 𝑎, 𝑎 + 1, … , 𝑎 + (𝑛 − 1).
By Euclidean division, there exists 𝑏, 𝑞 ∈ ℤ such that 𝑎 + (𝑛 − 1) = 𝑏𝑛 + 𝑟 and 0 ≤ 𝑟 < 𝑛.
Then 𝑎 + (𝑛 − 1) − 𝑟 = 𝑏𝑛 and 0 ≤ (𝑛 − 1) − 𝑟 ≤ 𝑛 − 1. Thus 𝑎 + (𝑛 − 1) − 𝑟 is an element of the above list which
is divisible by 𝑛.

Sample solutions to Exercise 3.
1. We use Euclid’s algorithm:

2260 = 816 × 2 + 628
816 = 628 × 1 + 188
628 = 188 × 3 + 64
188 = 64 × 2 + 60
64 = 60 × 1 + 4
60 = 4 × 15 + 0

Thus gcd(816, 2260) = 4.

2. To find a Bézout’s relation for 816 and 2260, we follow Euclid’s algorithm backward: at each step we
plug the previous remainder starting from the last Euclidean division with non-zero remainder.

4 = 64 − 60
= 64 − (188 − 64 × 2)
= −188 + 64 × 3
= −188 + (628 − 188 × 3) × 3
= 628 × 3 + 188 × (−10)
= 628 × 3 + (816 − 628) × (−10)
= 816 × (−10) + 628 × 13
= 816 × (−10) + (2260 − 816 × 2) × 13

4 = 2260 × 13 + 816 × (−36)

Sample solutions to Exercise 4.
1. Divisibility doesn’t define an order on ℤ since it is not antisymmetric.

Indeed 1| − 1 and −1|1 but −1 ≠ 1.

2. Divisibility defines an order on ℕ:
• Reflexivity. Let 𝑎 ∈ ℕ then 𝑎 = 𝑎 × 1 so that 𝑎|𝑎.
• Transitivity. Let 𝑎, 𝑏, 𝑐 ∈ ℕ be such that 𝑎|𝑏 and 𝑏|𝑐. Then 𝑏 = 𝑘𝑎 and 𝑐 = 𝑙𝑏 for some 𝑘, 𝑙 ∈ ℤ.

Thus 𝑐 = 𝑙𝑘 = 𝑙𝑘𝑎. Henre 𝑎|𝑐.
• Antisymmetry. Let 𝑎, 𝑏 ∈ ℕ such that 𝑎|𝑏 and 𝑏|𝑎. Then |𝑎| = |𝑏|. But since 𝑎, 𝑏 ∈ ℕ, |𝑎| = 𝑎 and

|𝑏| = 𝑏. Therefore 𝑎 = 𝑏.
It is not total since 2 ∤ 3 and 3 ∤ 2.
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Sample solutions to Exercise 5.
Let’s prove by induction that ∀𝑛 ∈ ℕ, 7|32𝑛+1 + 24𝑛+2.
Base case at 𝑛 = 0: 32×0+1 + 24×0+2 = 7 and 7|7.
Induction step: assume that 7|32𝑛+1 + 24𝑛+2 for some 𝑛 ∈ ℕ.
Then 32𝑛+1 + 24𝑛+2 = 7𝑘 for some 𝑘 ∈ ℤ and

32(𝑛+1)+1 + 24(𝑛+1)+2 = 9 × 32𝑛+1 + 16 × 24𝑛+2

= (7 + 2) × 32𝑛+1 + (7 × 2 + 2) × 24𝑛+2

= 7 × (32𝑛+1 + 2 × 24𝑛+2) + 2 × (32𝑛+1 + 24𝑛+2)
= 7 × (32𝑛+1 + 24𝑛+3) + 6 × 7𝑘
= 7 × (32𝑛+1 + 24𝑛+3 + 6𝑘)

Hence 7|32(𝑛+1)+1 + 24(𝑛+1)+2 which ends the induction step.

Sample solutions to Exercise 6.
Since 𝑎𝑑 + 𝑏𝑐 divides 𝑎, 𝑏, 𝑐, 𝑑, there exist 𝛼, 𝛽, 𝛿 such that 𝑎 = 𝛼(𝑎𝑑 + 𝑏𝑐), 𝑏 = 𝛽(𝑎𝑑 + 𝑏𝑐), 𝑐 = 𝛾(𝑎𝑑 + 𝑏𝑐) and
𝑑 = 𝛿(𝑎𝑑 + 𝑏𝑐).
Then 𝑎𝑑 + 𝑏𝑐 = 𝛼(𝑎𝑑 + 𝑏𝑐)𝛿(𝑎𝑑 + 𝑏𝑐) + 𝛽(𝑎𝑑 + 𝑏𝑐)𝛾(𝑎𝑑 + 𝑏𝑐) = (𝛼𝛿 + 𝛽𝛾)(𝑎𝑑 + 𝑏𝑐)2.
Since 𝑎𝑑 + 𝑏𝑐 ≠ 0, we get that 1 = (𝛼𝛿 + 𝛽𝛾)(𝑎𝑑 + 𝑏𝑐).
Therefore (𝑎𝑑 + 𝑏𝑐)|1, and obviously 1|(𝑎𝑑 + 𝑏𝑐), hence |𝑎𝑑 + 𝑏𝑐| = |1| = 1.

Sample solutions to Exercise 7.
Let 𝑛 ∈ ℕ. Set 𝑑 = gcd(𝑛2 + 𝑛, 2𝑛 + 1). Then 𝑑| ((2𝑛 + 1)2 − 4(𝑛2 + 𝑛)) = 1. Thus 𝑑 = 1.

Sample solutions to Exercise 8.
Let 𝑎, 𝑏 ∈ ℤ be such that gcd(𝑎, 𝑏) = 1.
By Bézout’s identity, there exist 𝑢, 𝑣 ∈ ℤ such that 𝑎𝑢 + 𝑏𝑣 = 1.
Hence 1 = (𝑎𝑢 + 𝑏𝑣)3 = 𝑎2(𝑎𝑢3 + 3𝑢2𝑏𝑣) + 𝑏2(𝑏𝑣3 + 3𝑎𝑢𝑣2).
Thus if 𝑑|𝑎2 and 𝑑|𝑏2 then 𝑑|𝑎2(𝑎𝑢3 + 3𝑢2𝑏𝑣) + 𝑏2(𝑏𝑣3 + 3𝑎𝑢𝑣2) = 1.
Therefore gcd(𝑎2, 𝑏2) = 1.

Sample solutions to Exercise 9.
1. Let 𝑎, 𝑏 ∈ ℤ ∖ {0} such that 𝑎2|𝑏2.

Set 𝑑 = gcd(𝑎, 𝑏), then 𝑎 = 𝛼𝑑 and 𝑏 = 𝛽𝑑 for some 𝛼, 𝛽 ∈ ℤ.
Then 𝑑 = gcd(𝑎, 𝑏) = 𝑑 gcd(𝛼, 𝛽), thus gcd(𝛼, 𝛽) = 1.
And gcd(𝑎2, 𝑏2) = gcd(𝑑2𝛼2, 𝑑2𝛽2) = 𝑑2 gcd(𝛼2, 𝛽2) = 𝑑2 from the previous exercise.
Since 𝑎2|𝑏2, we know that gcd(𝑎2, 𝑏2) = 𝑎2.
Hence 𝑎2 = 𝑑2 and thus 𝑑 = ±𝑎.
Therefore 𝑎 = ±𝑑|𝑏.

2. Let 𝑎, 𝑏, 𝑐 ∈ ℤ ∖ {0} be such that gcd(𝑎, 𝑏) = 1 and 𝑐|𝑏.
From Bézout’s identity, there exist 𝑢, 𝑣 ∈ ℤ such that 𝑎𝑢 + 𝑏𝑣 = 1.
Let 𝑑 ∈ ℤ such that 𝑑|𝑎 and 𝑑|𝑐. Then, 𝑑|𝑏 since 𝑐|𝑏.
Hence 𝑑|𝑎𝑢 + 𝑏𝑣 = 1.
Therefore gcd(𝑎, 𝑏) = 1.

Sample solutions to Exercise 10.
1. Let 𝑎, 𝑏 ∈ ℤ be such that gcd(𝑎, 𝑏) = 1. From Bézout’s identity, there exist 𝑢, 𝑣 ∈ ℤ such that 𝑎𝑢+𝑏𝑣 = 1.

Squaring both sides, we get 𝑎2𝑢2 + 𝑏2𝑣2 + 2𝑎𝑏𝑢𝑣 = 1.
Let 𝑑 = gcd(𝑎 + 𝑏, 𝑎𝑏). Note that 𝑎2 = 𝑎(𝑎 + 𝑏) − 𝑎𝑏, 𝑏2 = 𝑏(𝑎 + 𝑏) − 𝑎𝑏 hence 𝑑|𝑎2 and 𝑑|𝑏2. Besides 𝑑|𝑎𝑏.
Therefore 𝑑| (𝑎2𝑢2 + 𝑏2𝑣2 + 2𝑎𝑏𝑢𝑣) = 1. Hence 𝑑 = 1.

2. Take 𝑎 = 𝑏 = 1. Then gcd(𝑎, 𝑏) = 1 but gcd (𝑎 + 𝑏, 𝑎2 + 𝑏2) = 2. So the statement is false.
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Sample solutions to Exercise 11.
First, he replaces days with numbers as follows:

• Sunday ↔ 0
• Monday ↔ 1
• Tuesday ↔ 2
• Wednesday ↔ 3
• Thursday ↔ 4
• Friday ↔ 5
• Saturday ↔ 6

So we can assume that the sticky notes contain a number between 0 and 6 (included).
Then he numbers the participants (including himself) from 0 to 6 (which is possible since there are seven
friends).
And then he explains: ”each of us will add to the sum of the six days he can see, the unique number of {0, 1, … , 6}
such that the remainder of the Euclidean division by 7 of the obtained sum corresponds to its assigned number.”

Let me explain why it works.
First, by Euclidean division, the actual sum 𝑁 of the seven numbers sticked on their forheads can be
uniquely written 𝑁 = 7 × 𝑞 + 𝑟 with 0 ≤ 𝑟 < 7, i.e. the possible remainders are 𝑟 ∈ {0, 1, … , 6}.
I claim that the participant whose assigned number is 𝑟 gets the correct answer.
Indeed, if the sum of the six numbers he sees is 𝑀 , then there is a unique 𝑎 ∈ {0, 1, … , 6} such that the
Euclidean division of 𝑀 + 𝑎 by 7 is 𝑟, i.e. 𝑀 + 𝑎 = 7 × 𝑞′ + 𝑟.
Since 𝑁 − 𝑀 ∈ {0, 1, … , 6} and since 𝑁 and 𝑀 + 𝑎 have same remainder by 7, then necessarily 𝑁 = 𝑀 + 𝑎.
So 𝑎 is exactly the day on the sticky note of the participant whose assigned number is 𝑟. And he gets the
good answer.

Sample solutions to Exercise 12.
We are going to use the pigeonhole principle also called Dirichlet’s drawer principle.

1. The remainder of an Euclidean division by 41 satisfies 0 ≤ 𝑟 < 41. Hence, there are 41 possible
remainders. Therefore, among 42 distinct integers, at least two, say 𝑎 and 𝑏, have the same remainder
(otherwise the number of remainders will be 42). Then 𝑎 = 41𝑞 + 𝑟 and 𝑏 = 41𝑞′ + 𝑟 for 𝑞, 𝑞′, 𝑟 ∈ ℤ
such that 0 ≤ 𝑟 < 41. And finally 𝑏 − 𝑎 = 41(𝑞′ − 𝑞).

2. Either we can find 3 of these integers which have the same remainder by Euclidean division by 3, i.e.
𝑥1 = 3𝑞1 + 𝑟, 𝑥2 = 3𝑞2 + 𝑟, 𝑥3 = 3𝑞3 + 𝑟. And then 𝑥1 + 𝑥2 + 𝑥3 = 3(𝑞1 + 𝑞2 + 𝑞3 + 𝑟).
Otherwise, we can find one integer for all the possible remainders: 𝑥1 = 3𝑞1 + 0, 𝑥2 = 3𝑞2 + 1 and
𝑥3 = 3𝑞3 + 2. And then 𝑥1 + 𝑥2 + 𝑥3 = 3(𝑞1 + 𝑞2 + 𝑞3 + 1).

Sample solutions to Exercise 13.
The positive divisors of 25 are 1, 5 and 25. Hence, gcd(3123 − 5, 25) has to be equal to one of these numbers.
Assume by contradiction that gcd(3123 − 5, 25) = 5 or gcd(3123 − 5, 25) = 25. In both cases, 5|3123 − 5 and so
5|3123 = (3123 − 5) + 5. Contradiction.
Therefore gcd(3123 − 5, 25) = 1.

Sample solutions to Exercise 14.
Let 𝑛 ∈ ℤ.
Since 𝑛, 𝑛 + 1 and 𝑛 + 2 are three consecutive integers, one is divisible by 2 and one is divisible by 3.
Hence 𝑛(𝑛 + 1)(𝑛 + 2) = 2𝑘 and 𝑛(𝑛 + 1)(𝑛 + 2) = 3𝑙 for some 𝑘, 𝑙 ∈ ℤ.
Then 2𝑘 = 3𝑙, so that 2|3𝑙. Besides gcd(2, 3) = 1 thus 2|𝑙 by Gauss’ lemma, i.e. 𝑙 = 2𝑚 for some 𝑚 ∈ ℤ.
Therefore 𝑛(𝑛 + 1)(𝑛 + 2) = 3𝑙 = 6𝑚 and 6|𝑛(𝑛 + 1)(𝑛 + 2).
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Sample solutions to Exercise 15.
In my solutions I use that gcd(𝑎, 𝑏) = gcd(𝑎 + 𝑘𝑏, 𝑏) (see Proposition 35 of Chapter 2).

1. gcd(2𝑛, 2𝑛 + 2) = gcd(2𝑛, (2𝑛 + 2) − 2𝑛) = gcd(2𝑛, 2) = gcd(2𝑛 − 2 × 𝑛, 2) = gcd(0, 2) = 2.

2. gcd(2𝑛−1, 2𝑛+1) = gcd(2𝑛−1, (2𝑛+1)−(2𝑛−1)) = gcd(2𝑛−1, 2) = gcd((2𝑛−1)−2×𝑛, 2) = gcd(−1, 2) = 1.

3. gcd(5𝑎 + 3𝑏, 13𝑎 + 8𝑏) = gcd(5𝑎 + 3𝑏, (13𝑎 + 8𝑏) − 2 × (5𝑎 + 3𝑏))
= gcd(5𝑎 + 3𝑏, 3𝑎 + 2𝑏) = gcd((5𝑎 + 3𝑏) − (3𝑎 + 2𝑏), 3𝑎 + 2𝑏)
= gcd(2𝑎 + 𝑏, 3𝑎 + 2𝑏) = gcd(2𝑎 + 𝑏, (3𝑎 + 2𝑏) − (2𝑎 + 𝑏))
= gcd(2𝑎 + 𝑏, 𝑎 + 𝑏) = gcd((2𝑎 + 𝑏) − 𝑏, 𝑏)
= gcd(𝑎 + 𝑏, 𝑏) = gcd(𝑎, 𝑏)

Sample solutions to Exercise 16.
(a) Let 𝑥, 𝑦 ∈ ℤ. Then

𝑥𝑦 = 2𝑥 + 3𝑦 ⇔ (𝑥 − 3)(𝑦 − 2) = 6
⇔ (𝑥 − 3, 𝑦 − 2) ∈ {(1, 6), (2, 3), (3, 2), (6, 1), (−1, −6), (−2, −3), (−3, −2), (−6, −1)}
⇔ (𝑥, 𝑦) ∈ {(4, 8), (5, 5), (6, 4), (9, 3), (2, −4), (1, −1), (0, 0), (−3, 1)}

(b) Let 𝑥, 𝑦 ∈ ℤ ∖ {0}. Then

1
𝑥 + 1

𝑦 = 1
5 ⇔ 5𝑦 + 5𝑥 = 𝑥𝑦

⇔ (𝑥 − 5)(𝑦 − 5) = 25
⇔ (𝑥 − 5, 𝑦 − 5) ∈ {(1, 25), (5, 5), (25, 1), (−1, −25), (−25, −1)} since 𝑥, 𝑦 ≠ 0
⇔ (𝑥, 𝑦) ∈ {(6, 30), (10, 10), (30, 6), (4, −20), (−20, 4)}

(c) Let 𝑥, 𝑦 ∈ ℤ. Then

𝑥 + 𝑦 = 𝑥𝑦 ⇔ 𝑥 + 𝑦 − 𝑥𝑦 + 1 = 1
⇔ (𝑥 − 1)(𝑦 − 1) = 1
⇔ (𝑥 − 1, 𝑦 − 1) = (−1, −1) or (𝑥 − 1, 𝑦 − 1) = (1, 1)
⇔ (𝑥, 𝑦) = (0, 0) or (𝑥, 𝑦) = (2, 2)

(d) For the next questions, see Section 2.8.

Sample solutions to Exercise 17.
1. Let 𝑎, 𝑏 ∈ ℤ not both zero. Set 𝑑 = gcd(𝑎, 𝑏).

Since 𝑑|𝑎 and 𝑑|𝑏, we know that 𝑎 = 𝑑𝑎′ and that 𝑏 = 𝑑𝑏′ for some 𝑎′, 𝑏′ ∈ ℤ.
Then 𝑑 = gcd (𝑎, 𝑏) = gcd (𝑑𝑎′, 𝑑𝑏′) = 𝑑 gcd (𝑎′, 𝑏′). Hence gcd(𝑎′, 𝑏′) = 1.

2. Method 1: Let 𝑎, 𝑏, 𝑐 ∈ ℤ ∖ {0} be such that 𝑐|𝑎𝑏.
Set 𝑑 = gcd(𝑎, 𝑐) and 𝛿 = gcd(𝑏, 𝑐). Then 𝑎 = 𝑑𝑎′, 𝑐 = 𝑑𝑐′, 𝑏 = 𝛿𝑏″, 𝑐 = 𝛿𝑐″ where gcd(𝑎′, 𝑐′) = 1 and
gcd(𝑏″, 𝑐″) = 1.
Therefore 𝑐|𝑎𝑏 becomes 𝑑𝑐′|𝑑𝑎′𝛿𝑏″, hence 𝑐′|𝑎′𝛿𝑏″. Since gcd(𝑎′, 𝑐′) = 1, by Gauss’ lemma, 𝑐′|𝛿𝑏″.
Hence 𝛿𝑐″ = 𝑐 = 𝑑𝑐′|𝑑𝛿𝑏″, so that 𝑐″|𝑑𝑏″. Since gcd(𝑐″, 𝑏″) = 1, by Gauss’ lemma, 𝑐″|𝑑.
Finally 𝑐 = 𝛿𝑐″|𝛿𝑑|𝑑𝑎′𝛿𝑏″ = 𝑎𝑏.

Method 2: Let 𝑎, 𝑏, 𝑐 ∈ ℤ ∖ {0} be such that 𝑐|𝑎𝑏.
Write 𝑎 = 𝑝𝛼1

1 𝑝𝛼2
2 ⋯ 𝑝𝛼𝑟

𝑟 , 𝑏 = 𝑝𝛽1
1 𝑝𝛽2

2 ⋯ 𝑝𝛽𝑟
𝑟 and 𝑐 = 𝑝𝛾1

1 𝑝𝛾2
2 ⋯ 𝑝𝛾𝑟

𝑟 where the 𝑝𝑖 are prime numbers and
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𝛼𝑖, 𝛽𝑖, 𝛾𝑖 ∈ ℕ.
Then gcd(𝑎, 𝑐) = 𝑝min(𝛼1,𝛾1)

1 𝑝min(𝛼2,𝛾2)
2 ⋯ 𝑝min(𝛼𝑟,𝛾𝑟)

𝑟 and gcd(𝑏, 𝑐) = 𝑝min(𝛽1,𝛾1)
1 𝑝min(𝛽2,𝛾2)

2 ⋯ 𝑝min(𝛽𝑟,𝛾𝑟)
𝑟 .

Hence gcd(𝑎, 𝑐) gcd(𝑏, 𝑐) = 𝑝min(𝛼1,𝛾1)+min(𝛽1,𝛾1)
1 𝑝min(𝛼2,𝛾2)+min(𝛽2,𝛾2)

2 ⋯ 𝑝min(𝛼𝑟,𝛾𝑟)+min(𝛽𝑟,𝛾𝑟)
𝑟 .

Thus 𝑐| gcd(𝑎, 𝑐) gcd(𝑏, 𝑐) if and only if 𝛾1 ≤ min(𝛼1, 𝛾1) + min(𝛽1, 𝛾1), …, 𝛾𝑟 ≤ min(𝛼𝑟, 𝛾𝑟) + min(𝛽𝑟, 𝛾𝑟).
First case: if min(𝛼𝑖, 𝛾𝑖) = 𝛾𝑖 or min(𝛽𝑖, 𝛾𝑖) = 𝛾𝑖 then 𝛾𝑖 ≤ min(𝛼𝑖, 𝛾𝑖) + min(𝛽𝑖, 𝛾𝑖).
Otherwise: min(𝛼𝑖, 𝛾𝑖) + min(𝛽𝑖, 𝛾𝑖) = 𝛼𝑖 + 𝛽𝑖 but since 𝑐|𝑎𝑏, we know that 𝛾1 ≤ 𝛼1 + 𝛽1, …, 𝛾𝑟 ≤ 𝛼𝑟 + 𝛽𝑟.

Sample solutions to Exercise 18.
1. ((𝑎 + 𝑏)2 + 𝑏2) ((𝑎 − 𝑏)2 + 𝑏2) = (𝑎2 + 2𝑏2 + 2𝑎𝑏) (𝑎2 + 2𝑏2 − 2𝑎𝑏)

= (𝑎2 + 2𝑏2)
2 − (2𝑎𝑏)2

= 𝑎4 + 4𝑎2𝑏2 + 4𝑏4 − 4𝑎2𝑏2 = 𝑎4 + 4𝑏4

2. 344 + 429 = (311)4 + 4 × (47)4 = ((311 + 47)
2 + 414

) ((311 − 47)
2 + 414

) is non-trivial (i.e. none of the
factor is ±1, check it).

3. If 𝑛 = 2𝑘 with 𝑘 ∈ ℕ ∖ {0} then 𝑛4 + 4𝑛 is even and greater than 2, so it is composite.
If 𝑛 = 2𝑘 + 1 with 𝑘 ∈ ℕ ∖ {0} then 𝑛4 + 4𝑛 = (2𝑘 + 1)4 + 4 × (2𝑘)4 which has a non-trivial factorization
using Germain’s identity (check it), so it is a composite.

Sample solutions to Exercise 19.
Let 𝑘 ∈ ℕ ∖ {0}. Assume by contradiction that (3𝑘 + 2)2 = 𝑛2 + 𝑝 where 𝑛 ∈ ℕ and 𝑝 is a prime number.
Then 𝑝 = (3𝑘 + 2)2 − 𝑛2 = (3𝑘 − 𝑛 + 2)(3𝑘 + 𝑛 + 2).

• If 3𝑘 − 𝑛 + 2 = 1 then 𝑛 = 3𝑘 + 1 so 𝑝 = 3𝑘 + 𝑛 + 2 = 6𝑘 + 3 = 3(2𝑘 + 1) is not prime, which leads to a
contradiction.

• If 3𝑘 + 𝑛 + 2 = 1 then 3𝑘 = −𝑛 − 1 < 0, which is not possible since 𝑘 > 0.
Therefore 𝑝 admits a non-trivial factorization. Which is a contradiction.

Sample solutions to Exercise 20.
Compare with Wilson’s theorem from Chapter 4.
We are going to prove the contrapositive: ∀𝑛 ∈ ℕ, 𝑛 is not prime ⟹ 𝑛 ∤ (𝑛 − 1)! + 1.
Let 𝑛 ∈ ℕ. Assume that 𝑛 is not prime. Then there exists 𝑘 ∈ ℕ such that 1 < 𝑘 < 𝑛 and 𝑘|𝑛.
Assume by contradiction that 𝑛|(𝑛 − 1)! + 1. Then 𝑘|(𝑛 − 1)! + 1. But 𝑘|(𝑛 − 1)! since 1 < 𝑘 < 𝑛.
Thus 𝑘|(𝑛 − 1)! + 1 − (𝑛 − 1)! = 1. Which is a contradiction.
Therefore 𝑛 ∤ (𝑛 − 1)! + 1.

Sample solutions to Exercise 21.
Let 𝑛 ∈ ℕ ∖ {0}. Consider the following 𝑛 consecutive natural numbers

(𝑛 + 1)! + 2, (𝑛 + 1)! + 3, (𝑛 + 1)! + 4, … , (𝑛 + 1)! + (𝑛 + 1)

Take (𝑛 + 1)! + 𝑘 in the previous list (i.e. 𝑘 = 2, … , (𝑛 + 1)). Then 𝑘|(𝑛 + 1)! + 𝑘 but 1 < 𝑘 < (𝑛 + 1)! + 𝑘.
Therefore (𝑛 + 1)! + 𝑘 has a non-trivial divisor.

Sample solutions to Exercise 22.
1. Assume by contradiction that log10 2 = 𝑎

𝑏 ∈ ℚ. Then

log 2
log 10 = 𝑎

𝑏 ⇔ 𝑏 log 2 = 𝑎 log 10 ⇔ log(2𝑎) = log(10𝑏) ⇔ 2𝑎 = 10𝑏 ⇔ 2𝑎 = 2𝑏5𝑏

By uniqueness of the prime factorization, 𝑎 = 𝑏 = 0. Contradiction.



J.-B. Campesato Chapter 8. Sample solutions to the exercises 109

2. Assume by contradiction that √2 = 𝑎
𝑏 ∈ ℚ. Then 2𝑏2 = 𝑎2.

The prime factorization of the LHS has an odd number of primes (counted with exponents) whereas
the RHS has an even number of primes (counted with exponents). Which is impossible since the
prime factorization is unique up to order.

Sample solutions to Exercise 23.
Assume by contradiction that 49|𝑛3 − 𝑛2 − 2𝑛 + 1 for some 𝑛 ∈ ℤ.
Note that 𝑛3 − 𝑛2 − 2𝑛 + 1 = (𝑛 + 2)3 − 7𝑛2 − 14𝑛 − 7.
Since 7|49|𝑛3 − 𝑛2 − 2𝑛 + 1 and 7|7𝑛2 + 14𝑛 + 7 then 7|(𝑛3 − 𝑛2 − 2𝑛 + 1) + 7𝑛2 + 14𝑛 + 7 = (𝑛 + 2)3.
By Euclid’s lemma, since 7 is prime, 7|(𝑛 + 2)2 and similarly 7|𝑛 + 2.
Therefore, there exists 𝑘 ∈ ℤ such that 𝑛 = 7𝑘 − 2.
Then 𝑛3 − 𝑛2 − 2𝑛 + 1 = 49(7𝑘3 − 7𝑘2 + 2𝑘) − 7.
Therefore 49|49(7𝑘3 − 7𝑘2 + 2𝑘) − (𝑛3 − 𝑛2 − 2𝑛 + 1) = 7. Which is a contradiction.

Sample solutions to Exercise 24.
It is a special case of Dirichlet’s theorem on arithmetic progressions.
Assume that there are only finitely many primes 3 = 𝑝1 < 𝑝2 < ⋯ < 𝑝𝑟 such that 𝑝𝑚 = 4𝑘𝑚 + 3 with 𝑘𝑚 ∈ ℝ.
Set 𝑛 = 4𝑝1𝑝2 ⋯ 𝑝𝑟 − 1. Then 𝑛 = 4(𝑝1𝑝2 ⋯ 𝑝𝑟 − 1) + 3
Write 𝑛 = ∏𝑠

𝑖=1 𝑞𝑖 as a product of prime numbers.
Note that each 𝑞𝑖 is not one of the 𝑝𝑚 nor 2 (otherwise 𝑞𝑖|1 or 2|1).
Therefore 𝑞𝑖 = 4𝑟𝑖 + 1 (the only possible remainder is 1).
Hence 𝑛 = ∏𝑠

𝑖=1(4𝑟𝑖 + 1) = 4𝛼 + 1 for some 𝛼 ∈ ℕ.
We obtain a contradiction with the uniqueness of the Euclidean division (the remainder of the Euclidean
division of 𝑛 by 4 can’t 3 and 1).

Sample solutions to Exercise 25.
1. Let 𝑛 ∈ ℕ. We are going to prove by induction on 𝑘 ≥ 1 that

∀𝑘 ∈ ℕ ∖ {0}, 22𝑛+𝑘 − 1 = (22𝑛 − 1) ×
𝑘−1

∏
𝑖=0

(22𝑛+𝑖 + 1)

Base case at 𝑘 = 1: (22𝑛 − 1) ×
0

∏
𝑖=0

(22𝑛+𝑖 + 1) = (22𝑛 − 1) × (22𝑛 + 1) = (22𝑛
)

2
− 12 = 22𝑛+1 − 1.

Induction step. Assume that 22𝑛+𝑘 − 1 = (22𝑛 − 1) ×
𝑘−1

∏
𝑖=0

(22𝑛+𝑖 + 1) holds for some 𝑘 ≥ 1. Then

(22𝑛 − 1) ×
(𝑘+1)−1

∏
𝑖=0

(22𝑛+𝑖 + 1) = (22𝑛 − 1) ×
𝑘

∏
𝑖=0

(22𝑛+𝑖 + 1)

= (22𝑛 − 1) ×
⎛
⎜
⎜
⎝

𝑘−1

∏
𝑖=0

(22𝑛+𝑖 + 1)
⎞
⎟
⎟
⎠

× (22𝑛+𝑘 + 1)

= (22𝑛+𝑘 − 1) × (22𝑛+𝑘 + 1) by the induction hypothesis

= ((22𝑛+𝑘
)

2
− 12

)

= (22𝑛+𝑘+1 − 1)

Which ends the induction step.
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2. We may assume without lost of generality that 𝑛 < 𝑚, i.e. 𝑚 = 𝑛 + 𝑘 for some 𝑘 ∈ ℕ ∖ {0}.
Write 𝐹𝑖 = 22𝑖 + 1 then from the first question we get that

𝐹𝑚 + 2 = (22𝑛 − 1) ×
𝑘−1

∏
𝑖=0

𝐹𝑛+𝑖

Let 𝑔 = gcd(𝐹𝑚, 𝐹𝑛). Then 𝑑 divides 𝐹𝑚 and 𝐹𝑛 thus 𝑑 divides 2 = (22𝑛 − 1) × (∏𝑘−1
𝑖=0 𝐹𝑛+𝑖) − 𝐹𝑚.

So either 𝑑 = 2 or 𝑑 = 1. Since 𝐹𝑚 is even, we get that 𝑑 = 1.
Therefore gcd(𝐹𝑚, 𝐹𝑛) = 1.

Sample solutions to Exercise 26.
1. Assume that 𝑎𝑛 − 1 is prime.

Note that 𝑎𝑛 − 1 = (𝑎 − 1) (𝑎𝑛−1 + 𝑎𝑛−2 + ⋯ + ⋯ + 𝑎 + 1).
Since 𝑎𝑛 − 1 is prime, then it has no trivial divisor, therefore either 𝑎 − 1 = 1 or 𝑎 − 1 = 𝑎𝑛 − 1.
The latter is not possible since 𝑎, 𝑛 ≥ 2, thus 𝑎 − 1 = 1, i.e. 𝑎 = 2.

Assume that 𝑛 = 𝑝𝑞 with 𝑝, 𝑞 ∈ ℕ. Then 2𝑛 − 1 = 2𝑝𝑞 − 1 = (2𝑝 − 1) ((2𝑝)𝑞−1 + (2𝑝)𝑞−2 + ⋯ + 2𝑝 + 1).
Since 2𝑛 − 1 is a prime number, then either 2𝑝 − 1 = 1 or 2𝑝 − 1 = 2𝑝𝑞 − 1.
In the first case 𝑝 = 1 and in the other case 𝑝 = 𝑝𝑞 = 𝑛.
Hence the only positive divisors of 𝑛 are 1 and itself, i.e. 𝑛 is a prime number.

2. No, 211 − 1 = 2047 = 23 × 89.

Sample solutions to Exercise 27.
Since 1 + 2 + 3 + ⋯ + 𝑛 = 𝑛(𝑛+1)

2 must be divisible by 3, either 3|𝑛 or 3|𝑛 + 1. It is easy to check that this
necessary condition is also sufficient when 𝑛 > 3.

Sample solutions to Exercise 28.
Note that 69 = 3 × 23, 1150 = 2 × 52 × 23 and 4140 = 22 × 32 × 5 × 23. Note that only positive common
divisors are 1 and 23. Assuming the pirate is not alone, the treasure is shared between 23 people so there
are 22 sailors.



J.-B. Campesato Chapter 8. Sample solutions to the exercises 111

8.3 Chapter 3

Sample solutions to Exercise 1.
1. Note that 22 = 4 ≡ −1 (mod 5) and that 32 = 9 ≡ −1 (mod 5). Therefore, for 𝑛 ∈ ℕ, we have

22𝑛+1 + 32𝑛+1 = (22)𝑛 × 2 + (32)𝑛 × 3 ≡ (−1)𝑛 × 2 + (−1)𝑛 × 3 (mod 5) ≡ (−1)𝑛 × 5 (mod 5) ≡ 0 (mod 5).

2. Let 𝑛 ∈ ℕ, then
27𝑛+1 + 32𝑛+1 + 510𝑛+1 + 76𝑛+1 ≡ 9𝑛 × 2 + 9𝑛 × 3 + 9𝑛 × 5 + 9𝑛 × 7 (mod 17) ≡ 9𝑛 × 17 (mod 17) ≡ 0 (mod 17)

Sample solutions to Exercise 2.
We first compute 𝑥2 + 3 (mod 7) in terms of 𝑥 (mod 7):

𝑥 (mod 7) 0 1 2 3 4 5 6
𝑥2 (mod 7) 0 1 4 2 2 4 1

𝑥2 + 3 (mod 7) 3 4 0 5 5 0 4
Let 𝑥 ∈ ℤ. Then 𝑥2 + 3 ≡ 0 (mod 7) if and only if 𝑥 ≡ 2 (mod 7) or 𝑥 ≡ 5 (mod 7)
if and only if 𝑥 ∈ {2 + 7𝑘 ∶ 𝑘 ∈ ℤ} ∪ {5 + 7𝑘 ∶ 𝑘 ∈ ℤ}.

Sample solutions to Exercise 3.
1. We first look for the least 𝑘 ∈ ℕ ∖ {0} such that 2𝑘 ≡ 1 (mod 5):

• 21 ≡ 2 (mod 5)
• 22 ≡ 4 (mod 5)
• 23 ≡ 3 (mod 5)
• 24 ≡ 1 (mod 5)

Hence it is 4.
We perform the Euclidean division of 𝑛 ∈ ℕ by 4: 𝑛 = 4𝑞 + 𝑟 where 0 ≤ 𝑟 < 4.
Then 2𝑛 = 24𝑞+𝑟 = (24)𝑞2𝑟 ≡ 1𝑞2𝑟 (mod 5) ≡ 2𝑟 (mod 5).
Thus

• If 𝑛 ≡ 0 (mod 4) then 2𝑛 ≡ 20 (mod 5) ≡ 1 (mod 5), so the remainder is 1.
• If 𝑛 ≡ 1 (mod 4) then 2𝑛 ≡ 21 (mod 5) ≡ 2 (mod 5), so the remainder is 2.
• If 𝑛 ≡ 2 (mod 4) then 2𝑛 ≡ 22 (mod 5) ≡ 4 (mod 5), so the remainder is 4.
• If 𝑛 ≡ 3 (mod 4) then 2𝑛 ≡ 23 (mod 5) ≡ 3 (mod 5), so the remainder is 3.

2. Note that 1357 = 1355 + 2 ≡ 2 (mod 5). Therefore 13572021 ≡ 22021 (mod 5).
Since 2021 = 505 × 4 + 1 ≡ 1 (mod 4) we get that the remainder of 13572021 by 5 is 2.

Sample solutions to Exercise 4.
1. Note that 10 ≡ 0 (mod 5), hence

5|𝑎𝑟𝑎𝑟−1 … 𝑎0
10 ⇔ 𝑎𝑟𝑎𝑟−1 … 𝑎0

10 ≡ 0 (mod 5)

⇔
𝑟

∑
𝑘=0

𝑎𝑘10𝑘 ≡ 0 (mod 5)

⇔ 𝑎0 ≡ 0 (mod 5)

Therefore 5|𝑎𝑟𝑎𝑟−1 … 𝑎0
10 if and only if 𝑎0 = 0 or 𝑎0 = 5.
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2. Note that 103 = 175 × 8 ≡ 0 (mod 8), hence

8|𝑎𝑟𝑎𝑟−1 … 𝑎0
10 ⇔ 𝑎𝑟𝑎𝑟−1 … 𝑎0

10 ≡ 0 (mod 8)

⇔
𝑟

∑
𝑘=0

𝑎𝑘10𝑘 ≡ 0 (mod 8)

⇔ 102𝑎2 + 10𝑎1 + 𝑎0 ≡ 0 (mod 8)
⇔ 4𝑎2 + 2𝑎1 + 𝑎0 ≡ 0 (mod 8)

Therefore 8|𝑎𝑟𝑎𝑟−1 … 𝑎0
10 if and only if 8|(4𝑎2 + 2𝑎1 + 𝑎0).

Note that 8|958547 if and only if 8|4 × 5 + 2 × 4 + 7 = 35 = 8 × 4 + 3. Therefore 8 ∤ 958547.
Note that 8|123456789336 if and only if 8|4 × 3 + 2 × 3 + 6 = 24 = 8 × 3. Therefore 8|123456789336.

3. Note that 10 ≡ −1 (mod 11), hence

11|𝑎𝑟𝑎𝑟−1 … 𝑎0
10 ⇔ 𝑎𝑟𝑎𝑟−1 … 𝑎0

10 ≡ 0 (mod 11)

⇔
𝑟

∑
𝑘=0

𝑎𝑘10𝑘 ≡ 0 (mod 11)

⇔
𝑟

∑
𝑘=0

(−1)𝑘𝑎𝑘 ≡ 0 (mod 11)

Therefore 11|𝑎𝑟𝑎𝑟−1 … 𝑎0
10 if and only if 11|(−1)𝑟𝑎𝑟 + (−1)𝑟−1𝑎𝑟−1 + ⋯ + 𝑎2 − 𝑎1 + 𝑎0.

Note that 11|123456789 if and only if 11|9 − 8 + 7 − 6 + 5 − 4 + 3 − 2 + 1 = 5. Therefore 118 ∤ 123456789.
Note that 11|715 if and only if 11|5 − 1 + 7 = 11. Therefore 11|715.

Sample solutions to Exercise 5.
1. If (𝑥, 𝑦) ∈ ℤ2 is a solution then 𝑥2 ≡ 3 (mod 5). But

• if 𝑥 ≡ 0 (mod 5) then 𝑥2 ≡ 0 (mod 5),
• if 𝑥 ≡ ±1 (mod 5) then 𝑥2 ≡ 1 (mod 5),
• if 𝑥 ≡ ±2 (mod 5) then 𝑥2 ≡ 4 (mod 5).

Thus the equation has no integer solution.

2. Assume that (𝑥, 𝑦) ∈ ℤ2 is a solution, then taking congruences modulo 3, the equation becomes

0𝑥2 − (−1)𝑦2 ≡ 0 (mod 3)

i.e. 𝑦2 ≡ 0 (mod 3).
𝑦 (mod 3) 0 1 2
𝑦2 (mod 3) 0 1 1

Therefore 𝑦 ≡ 0 (mod 3), i.e. 𝑦 = 3𝑘 for some 𝑘 ∈ ℤ, and the equation becomes 15𝑥2 − 63𝑘2 = 9.
Dividing by 3, we get 5𝑥2 − 21𝑘2 = 3. Taking congruences modulo 3, we obtain −𝑥2 ≡ 0 (mod 3).
As above, the only possibility is that 𝑥 ≡ 0 (mod 3), i.e. 𝑥 = 3𝑙 for some 𝑙 ∈ ℤ.
Then the equation becomes 45𝑙2 − 21𝑘2 = 3, and dividing by 3, we get 15𝑙2 − 7𝑘2 = 1.
Modulo 3, we finally get −𝑘2 ≡ 1 (mod 3), i.e. 𝑘2 ≡ −1 (mod 3) ≡ 2 (mod 3).
Which is impossible (a square modulo 3 is either congruent to 0 or 1, according to the above array).
Thus the equation has no integer solution.
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3. Below are the possible values for 𝑥2 (mod 4) depending on 𝑥 (mod 4).

𝑥 (mod 4) 0 1 2 3
𝑥2 (mod 4) 0 1 0 1

Therefore either 𝑥2 ≡ 0 (mod 4) or 𝑥2 ≡ 1 (mod 4) and similarly either 𝑦2 ≡ 0 (mod 4) or 𝑦2 ≡ 1 (mod 4).
Thus either 𝑥2 + 𝑦2 ≡ 0 (mod 4), or 𝑥2 + 𝑦2 ≡ 1 (mod 4), or 𝑥2 + 𝑦2 ≡ 2 (mod 4).
Since 4003 = 4 × 1000 + 3 ≡ 3 (mod 4), there is no integer solutions.

Sample solutions to Exercise 6.
Note that 33 ≡ 1 (mod 13). Since 126 = 3 × 42, we get 3126 ≡ (33)42 (mod 13) ≡ 142 (mod 13) ≡ 1 (mod 13).
Note that 54 ≡ 1 (mod 13). Since 126 = 4 × 31 + 2, we get 5126 ≡ (54)31 × 52 (mod 13) ≡ 131 × 25 (mod 13) ≡
−1 (mod 13).
Therefore 3126 + 5126 ≡ 0 (mod 13).

Sample solutions to Exercise 7.
1. Let 𝑛 ∈ ℕ.

• If 𝑛 is even, i.e. 𝑛 = 2𝑘, then 3𝑛 + 4𝑛 + 1 = 9𝑘 + 8𝑘 + 1 ≡ 1𝑘 + 0 + 1 (mod 8) ≡ 2 (mod 8).
• If 𝑛 is odd, i.e. 𝑛 = 2𝑘+1, then 3𝑛 +4𝑛+1 = 9𝑘 ×3+8𝑘+4+1 ≡ 1𝑘 ×3+0+4+1 (mod 8) ≡ 0 (mod 8).

Therefore 8|3𝑛 + 4𝑛 + 1 if and only if 𝑛 is odd.

2. Let 𝑛 ∈ ℕ. Note that 26 = 64 = 21 × 3 + 1 ≡ 1 (mod 21).
Therefore, if 𝑛 = 6𝑞 + 𝑟 with 0 ≤ 𝑟 < 6, we have that 2𝑛 = (26)𝑞 × 2𝑟 ≡ 2𝑟 (mod 21).
Thus 2𝑛 (mod 21) depends only on 𝑛 (mod 6). Let’s study the cases separately.

𝑛 (mod 6) 0 1 2 3 4 5
2𝑛 (mod 21) 1 2 4 8 16 11
22𝑛 (mod 21) 2 4 −5 4 16 −10

22𝑛 + 2𝑛 + 1 (mod 21) 4 7 0 13 12 2

Therefore 21|22𝑛 + 2𝑛 + 1 if and only if 𝑛 ≡ 2 (mod 6).

Sample solutions to Exercise 8.
1. For 𝑎, 𝑏 ∈ ℤ, we compute 𝑎2 + 𝑏2 (mod 3) depending on 𝑎 (mod 3) and 𝑏 (mod 3):

𝑎 (mod 3)
𝑏 (mod 3) 0 1 2

0 0 1 1
1 1 2 2
2 1 2 2

We see that 𝑎2 + 𝑏2 ≡ 0 (mod 3) if and only if 𝑎 ≡ 0 (mod 3) and 𝑏 ≡ 0 (mod 3).

2. Same as above.

3. Let 𝑎, 𝑏 ∈ ℤ. Assume that 21|𝑎2 + 𝑏2. Then 3|𝑎2 + 𝑏2, thus 3|𝑎 and 3|𝑏 from the first question.
Similarly 7|𝑎 and 7|𝑏 from the second question.
Therefore the least common divisor of 3 and 7 divides 𝑎 and 𝑏, i.e. 21|𝑎 and 21|𝑏.
Hence 𝑎 = 21𝑘 and 𝑏 = 21𝑙, so 𝑎2 + 𝑏2 = 441(𝑘2 + 𝑙2).
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Sample solutions to Exercise 9.
Note that 24 ≡ 1 (mod 1)5. Since 445 = 4 × 111 + 1 we get

2445 + 7 = (24)111 × 2 + 7 ≡ 1111 × 2 + 7 (mod 15) ≡ 9 (mod 15)

Therefore, there exists 𝑘 ∈ ℤ such that 2445 + 7 = 15𝑘 + 9.
Finally gcd (2445 + 7, 15) = gcd(15𝑘 + 9, 15) = gcd(9, 15) = 3.

Sample solutions to Exercise 10.
Note that 2 doesn’t work and that 3 works.
Assume that 𝑝 is a prime number greater than 3, then

2𝑝 + 𝑝2 ≡ (−1)𝑝 + (±1)2 (mod 3) ≡ −1 + 1 (mod 3) ≡ 0 (mod 3)

so 3|2𝑝 + 𝑝2 and thus 2𝑝 + 𝑝2 is not prime.
The only prime number 𝑝 such that 2𝑝 + 𝑝2 is also prime is 𝑝 = 3.

Sample solutions to Exercise 11.
Note that 72 ≡ −1 (mod 10) so 74 ≡ 1 (mod 10).
Therefore if 𝑛 = 4𝑞 + 𝑟 with 0 ≤ 𝑟 < 4, we get that 7𝑛 = (74)𝑞 × 7𝑟 ≡ 1𝑞 × 7𝑟 (mod 10) ≡ 7𝑟 (mod 10).
Hence it is enough to compute 384 (mod 4). Note that 32 = 9 ≡ 1 (mod 4), therefore

384 = 383×8 = (32)83×4 ≡ 183×4 (mod 4) ≡ 1 (mod 4)

and 384 = 4𝑞 + 1 for some 𝑞 ∈ ℕ Therefore 7384
= 74𝑞+1 ≡ 7 (mod 10). So the last digit in the decimal

expansion of 7384
is 7.

Sample solutions to Exercise 12.
1. 𒄴𒐌 𒄭𒈫 𒐈 𒌋 𒁹 = 57 × 603 + 42 × 602 + 3 × 60 + 11 × 1 = 12463391

2. We perform successive Euclidean division by 60:

42137 = 702 × 60 + 17
= (11 × 60 + 42) × 60 + 17
= 11 × 602 + 42 × 60 + 17
= 𒌋 𒁹 𒄭𒈫 𒌋𒐌

3. 𝐹 42𝐶16 = 15 × 164 + 4 × 163 + 2 × 162 + 0 × 16 + 12 = 999948

4. We perform successive Euclidean division by 16:

11211 = 700 × 16 + 11
= (43 × 16 + 12) × 16 + 11
= ((2 × 16 + 11) × 16 + 12) × 16 + 11
= 2 × 163 + 11 × 162 + 12 × 16 + 11

= 2𝐵𝐶𝐵16

5.

1 1

9AB 7
+3C0D
=D6C4
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6. 9𝐴𝐵716 = 9 × 163 + 10 × 162 + 11 × 16 + 7 = 39607
3𝐶0𝐷16 = 3 × 163 + 12 × 162 + 0 × 16 + 13 = 15373
39607 + 15373 = 54980
58820 = 3436×16+4 = (214×16+12)×16+4 = ((13×16+6)×16+12)×16+4 = 13×163+6×162+12×16+4
Therefore 9𝐴𝐵716 + 3𝐶0𝐷16 = 𝐷6𝐶416

I think it is easier to directly compute in base 16!

Sample solutions to Exercise 13.
Let’s denote the number of blue, green, and red chameleons respectively by 𝑏, 𝑔 and 𝑟.

• If a blue and a green chameleonsmeet, the new repartition bescomes 𝑏′ = 𝑏−1, 𝑔′ = 𝑔−1 and 𝑟′ = 𝑟+2.
Therefore 𝑏′ − 𝑔′ = 𝑏 − 𝑔, 𝑏′ − 𝑟′ = 𝑏 − 𝑟 − 3 and 𝑔′ − 𝑟′ = 𝑔 − 𝑟 − 3.

• Similarly, if a blue and a red chameleons meet, we have 𝑏′ = 𝑏 − 1, 𝑔′ = 𝑔 + 2 and 𝑟′ = 𝑟 − 1.
Therefore 𝑏′ − 𝑔′ = 𝑏 − 𝑔 − 3, 𝑏′ − 𝑟′ = 𝑏 − 𝑟 and 𝑔′ − 𝑟′ = 𝑔 − 𝑟 + 3.

• Finally, if a green and a red chameleons meet, we have 𝑏′ = 𝑏 + 2, 𝑔′ = 𝑔 − 1 and 𝑟′ = 𝑟 − 1.
Therefore 𝑏′ − 𝑔′ = 𝑏 − 𝑔 + 3, 𝑏′ − 𝑟′ = 𝑏 − 𝑟 + 3 and 𝑔′ − 𝑟′ = 𝑔 − 𝑟.

Note that in all the cases we have

𝑏′ − 𝑔′ ≡ 𝑏 − 𝑔 (mod 3) 𝑏′ − 𝑟′ ≡ 𝑏 − 𝑟 (mod 3) 𝑔′ − 𝑟′ ≡ 𝑔 − 𝑟 (mod 3)

Therefore these three quantities modulo 3 don’t change when the chameleons meet, they always stay con-
stant, mathematically we say that they are invariant.
At the beginning, we have

𝑏 − 𝑔 ≡ 2 (mod 3) 𝑏 − 𝑟 ≡ 1 (mod 3) 𝑔 − 𝑟 ≡ 2 (mod 3)

Assume by contradiction that all the chameleons become blue after several meetings (i.e. 𝑏 = 45, 𝑔 = 0 and
𝑟 = 0), then

𝑏 − 𝑔 ≡ 0 (mod 3) 𝑏 − 𝑟 ≡ 0 (mod 3) 𝑔 − 𝑟 ≡ 0 (mod 3)
Since these quantities don’t change when chameleons meet, we obtain a contradiction. Therefore, it is not
possible to obtain an island with only blue chameleons from the initial situation.
We conclude similarly for the other colors. Thus, it is not possible to obtain a monochromatic island!
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8.4 Chapter 4

Sample solutions to Exercise 1.
By Fermat’s little theorem, we know that 24103 ≡ 24 (mod 103).
Therefore the remainder of the Euclidean division of 24103 by 103 is 24.

Sample solutions to Exercise 2.
Let 𝑛 ∈ ℤ. Set 𝐴𝑛 = 5𝑛7 + 7𝑛5 + 23𝑛.
By Fermat’s little theorem, 𝑛5 ≡ 𝑛 (mod 5) so 𝐴𝑛 ≡ 30𝑛 (mod 5) ≡ 0 (mod 5), i.e. 5|𝐴𝑛.
Similarly 𝑛7 ≡ 𝑛 (mod 7), so 𝐴𝑛 ≡ 28𝑛 (mod 7) ≡ 0 (mod 7), i.e. 7|𝐴𝑛.
Therefore 35 = 5 × 7|𝐴𝑛, so

𝑛7

7 + 𝑛5

5 + 23𝑛
35 = 𝐴𝑛

35 ∈ ℤ.

Sample solutions to Exercise 3.
Let 𝑝 be an odd prime number and 𝑛 ∈ ℤ.

• By Fermat’s little theorem, {
(𝑛 + 1)𝑝 ≡ 𝑛 + 1 (mod 𝑝)
𝑛𝑝 ≡ 𝑛 (mod 𝑝)

Therefore (𝑛 + 1)𝑝 − (𝑛𝑝 + 1) ≡ 0 (mod 𝑝), i.e. 𝑝|(𝑛 + 1)𝑝 − (𝑛𝑝 + 1).

• Note that ∀𝑥 ∈ ℤ, ∀𝑘 ∈ ℕ ∖ {0}, 𝑥𝑘 ≡ 𝑥 (mod 2):
𝑎 (mod 2) 0 1
𝑎2 (mod 2) 0 1

Therefore {
(𝑛 + 1)𝑝 ≡ 𝑛 + 1 (mod 2)
𝑛𝑝 ≡ 𝑛 (mod 2) .

Thus (𝑛 + 1)𝑝 − (𝑛𝑝 + 1) ≡ 0 (mod 2), i.e. 2|(𝑛 + 1)𝑝 − (𝑛𝑝 + 1).
Since 2 and 𝑝 are two distinct prime numbers, 2𝑝|(𝑛 + 1)𝑝 − (𝑛𝑝 + 1), i.e. (𝑛 + 1)𝑝 − (𝑛𝑝 + 1) ≡ 0 (mod 2𝑝).

Sample solutions to Exercise 4.
We are going to prove the statement by induction on 𝑘 ∈ ℕ.

• Base case at 𝑘 = 0: it is exactly Fermat’s little theorem (v2).

• Induction step: assume that the statement hold for some 𝑘 ∈ ℕ, i.e.

∀𝑛 ∈ ℤ ∖ {0}, gcd(𝑛, 𝑝) = 1 ⟹ (𝑛𝑝−1)
𝑝𝑘

≡ 1 (mod 𝑝𝑘+1)
Let 𝑛 ∈ ℤ be such that gcd(𝑛, 𝑝) = 1.
By induction hypothesis, there exists 𝜆 ∈ ℤ such that (𝑛𝑝−1)

𝑝𝑘
= 1 + 𝜆𝑝𝑘+1. Then

(𝑛𝑝−1)
𝑝𝑘+1

= (𝑛𝑝−1)
𝑝𝑘×𝑝 = ((𝑛𝑝−1)

𝑝𝑘

)
𝑝

= (1 + 𝜆𝑝𝑘+1)
𝑝 =

𝑝

∑
𝑖=0

(
𝑝
𝑖)𝜆𝑖𝑝𝑖(𝑘+1) = 1 +

𝑝

∑
𝑖=1

(
𝑝
𝑖)𝜆𝑖𝑝𝑖(𝑘+1) ≡ 1 (mod 𝑝𝑘+1)

Which ends the induction step.

Sample solutions to Exercise 5.
Let 𝑝 and 𝑞 be two distinct prime numbers.
Since gcd(𝑝, 𝑞) = 1, by Fermat’s little theorem we get that 𝑝𝑞−1 ≡ 1 (mod 𝑞).
Besides 𝑞𝑝−1 ≡ 0 (mod 𝑞) (since 𝑝 ≥ 2).
Therefore 𝑝𝑞−1 + 𝑞𝑝−1 ≡ 1 (mod 𝑝), i.e. 𝑝| (𝑝𝑞−1 + 𝑞𝑝−1 − 1).
Similarly, we may prove that 𝑞| (𝑝𝑞−1 + 𝑞𝑝−1 − 1).
Thus 𝑝𝑞| (𝑝𝑞−1 + 𝑞𝑝−1 − 1).
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Sample solutions to Exercise 6.
Let 𝑥, 𝑦 ∈ ℤ.
By Fermat’s little theorem, 𝑥4 ≡ 1 (mod 5) (if 5 ∤ 𝑥) or 𝑥4 ≡ 0 (mod 5) (if 5|𝑥).
Therefore 𝑥4 + 781 ≡ 1 (mod 5) or 𝑥4 + 781 ≡ 2 (mod 5).
But 3𝑦4 ≡ 3 (mod 5) (if 5 ∤ 𝑦) or 3𝑦4 ≡ 0 (mod 5) (if 5|𝑦).
Therefore ∀𝑥, 𝑦 ∈ ℤ, 𝑥4 + 781 ≢ 3𝑦4 (mod 5).

Sample solutions to Exercise 7.
Let 𝑛 ≥ 5 be such that 𝑛 + 2 is prime.
By Wilson’s theorem (𝑛 + 1)! ≡ −1 (mod 𝑛 + 2). Thus 𝑛 + 2|(𝑛 + 1)! + 1.
Besides (𝑛 + 1)! + 1 = (𝑛 + 2)𝑛! − 𝑛! + 1.
Thus 𝑛 + 2|𝑛! − 1 = (𝑛 + 2)𝑛! − ((𝑛 + 1)! + 1).
Since 𝑛 ≥ 4, we have 𝑛! > 𝑛 + 3 (prove it).
Therefore 𝑛! − 1 admits at least three positive divisors: 1, 𝑛 + 2, 𝑛! − 1, so that 𝑛 is composite.

Sample solutions to Exercise 8.
Let 𝑝 be an odd prime number.
By Wilson’s theorem (𝑝 − 1)! ≡ −1 (mod 𝑝), thus 2(𝑝 − 3)!(𝑝 − 2)(𝑝 − 1) ≡ −2 (mod 𝑝).
But we also have that 2(𝑝 − 3)!(𝑝 − 2)(𝑝 − 1) ≡ 4(𝑝 − 3)! (mod 𝑝).
Thus 4(𝑝 − 3)! ≡ −2 (mod 𝑝), i.e. 𝑝|4(𝑝 − 3)! + 2 = 2(2(𝑝 − 3)! + 1).
Since gcd(2, 𝑝) = 1 (as 𝑝 is an odd prime number), by Gauss’ lemma we get 𝑝|2(𝑝 − 3)! + 1,
i.e. 2(𝑝 − 3)! ≡ −1 (mod 𝑝).

Sample solutions to Exercise 9.
⇒ Assume that 𝑛 and 𝑛 + 2 are both prime then,

• By Wilson’s theorem, (𝑛 − 1)! ≡ −1 (mod 𝑛), so 4((𝑛 − 1)! + 1) + 𝑛 ≡ 0 (mod 𝑛),
i.e. 𝑛|4((𝑛 − 1)! + 1) + 𝑛.

• By Wilson’s theorem, (𝑛 + 1)! ≡ −1 (mod 𝑛 + 2).
Besides 2 ≡ −𝑛 (mod 𝑛 + 2) ≡ (𝑛 + 1)𝑛 (mod 𝑛 + 2).
Thus
4((𝑛 − 1)! + 1) + 𝑛 = 2(2(𝑛 − 1)!) + 4 + 𝑛 ≡ 2((𝑛 + 1)𝑛(𝑛 − 1)!) + 2 (mod 𝑛 + 2) ≡ 2((𝑛 + 1)! + 1) ≡ 0 (mod 𝑛 + 2)
i.e. 𝑛 + 2|4((𝑛 − 1)! + 1) + 𝑛.

Since gcd(𝑛, 𝑛 + 2) = 1, we get that 𝑛(𝑛 + 2)|4((𝑛 − 1)! + 1) + 𝑛.

Sample solutions to Exercise 10.
Let 𝑝 be a prime number. Let 𝑛 ∈ ℤ.
By Fermat’s little theorem 𝑛𝑝 ≡ 𝑛 (mod 𝑝) and by Wilson’s theorem (𝑝 − 1)! ≡ −1 (mod 𝑝).
Therefore 𝑛𝑝 + (𝑝 − 1)!𝑛 ≡ 𝑛 + (−1)𝑛 (mod 𝑝) ≡ 0 (mod 𝑝).

Sample solutions to Exercise 11.
This property is false: 𝜑(2 × 2) = 22 − 2 = 2 but 𝜑(2)𝜑(2) = 1 × 1.

Sample solutions to Exercise 12.

1 + 2 + 22 + 23 + ⋯ + 2100 =
100

∑
𝑘=0

2𝑘 = 1 − 2101

1 − 2 = 2101 − 1 (geometric sum, Cherge’s favorite formula).

Note that 𝜑(125) = 𝜑(53) = 53 − 52 = 100.
Therefore, since gcd(2, 101) = 1, Euler’s theorem gives

2101 − 1 = 2 × 2100 − 1 ≡ 2 × 1 − 1 (mod 125) ≡ 1 (mod 125)

Hence the remainder of the Euclidean division of 1 + 2 + 22 + 23 + ⋯ + 2100 by 125 is 1.
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Sample solutions to Exercise 13.
Note that 𝜑(1000) = 𝜑(2353) = (23 − 22)(53 − 52) = 400.
Therefore, since gcd(1000, 3) = 1, Euler’s theorem gives

32021 = 35×400+21 = (3400)5321 ≡ 15 × 321 (mod 1000)
≡ 3103103 (mod 1000)
≡ 59049 × 59049 × 3 (mod 1000)
≡ 49 × 49 × 3 (mod 1000)
≡ 7203 (mod 1000)
≡ 203 (mod 1000)

Thus the last 3 digits of 32021 are 203.

Sample solutions to Exercise 14.
Let 𝑛, 𝑘 ∈ ℕ ∖ {0}.

Write the prime factorization 𝑛 =
𝑟

∏
𝑖=1

𝑝𝛼𝑖
𝑖 where the 𝑝𝑖 are pairwise distinct prime numbers and 𝛼𝑖 ∈ ℕ ∖ {0}.

Then 𝑛𝑘 =
𝑟

∏
𝑖=1

𝑝𝑘𝛼𝑖 and 𝜑 (𝑛𝑘) =
𝑟

∏
𝑖=1

(𝑝𝑘𝛼𝑖
𝑖 − 𝑝𝑘𝛼𝑖−1

𝑖 ) =
𝑟

∏
𝑖=1

𝑝(𝑘−1)𝛼𝑖
𝑖

𝑟

∏
𝑖=1

(𝑝𝛼𝑖
𝑖 − 𝑝𝛼𝑖−1

𝑖 ) = 𝑛𝑘−1𝜑(𝑛).

Sample solutions to Exercise 15.
Let 𝑎, 𝑏 ∈ ℕ ∖ {0}. Assume that gcd(𝑎, 𝑏) = 1.
Since gcd(𝑎, 𝑏) = 1, by Euler’s theorem 𝑎𝜑(𝑏) ≡ 1 (mod 𝑏).
Since 𝜑(𝑎) ≥ 1, 𝑏𝜑(𝑎) ≡ 0 (mod 𝑏).
Thus 𝑎𝜑(𝑏) + 𝑏𝜑(𝑎) ≡ 1 (mod 𝑏), i.e. 𝑏|𝑎𝜑(𝑏) + 𝑏𝜑(𝑎) − 1.
Swapping 𝑎 and 𝑏, we get similarly that 𝑎|𝑎𝜑(𝑏) + 𝑏𝜑(𝑎) − 1.
Since gcd(𝑎, 𝑏) = 1, we derive from Exercise 1 that 𝑎𝑏|𝑎𝜑(𝑏) + 𝑏𝜑(𝑎) − 1, i.e. 𝑎𝜑(𝑏) + 𝑏𝜑(𝑎) ≡ 1 (mod 𝑎𝑏).

Sample solutions to Exercise 16.
Let 𝑎 ∈ ℤ and 𝑛 ∈ ℕ ∖ {0}. Assume that gcd(𝑎, 𝑛) = gcd(𝑎 − 1, 𝑛) = 1.
Since gcd(𝑎, 𝑏) = 1, by Euler’s theorem we get

(𝑎 − 1)
𝜑(𝑛)−1

∑
𝑘=0

𝑎𝑘 = 𝑎𝜑(𝑛) − 1 ≡ 0 (mod 𝑛)

So 𝑛|(𝑎 − 1)
𝜑(𝑛)−1

∑
𝑘=0

𝑎𝑘.

By Gauss’ lemma, since gcd(𝑛, 𝑎 − 1) = 1, we get that 𝑛|
𝜑(𝑛)−1

∑
𝑘=0

𝑎𝑘, i.e.
𝜑(𝑛)−1

∑
𝑘=0

𝑎𝑘 ≡ 0 (mod 𝑛).

Sample solutions to Exercise 17.
Let 𝑎 ∈ ℕ ∖ {0, 1} and 𝑘 ∈ ℕ ∖ {0}.
By Euclidean division, there exist 𝑞, 𝑟 ∈ ℤ such that 𝜑 (𝑎𝑘 − 1) = 𝑘𝑞 + 𝑟 and 0 ≤ 𝑟 < 𝑘.
Since gcd(𝑎𝑘 − 1, 𝑎) = gcd(−1, 𝑎) = 1, we deduce from Euler’s theorem that 𝑎𝜑(𝑎𝑘−1) ≡ 1 (mod 𝑎𝑘 − 1).
But 𝑎𝜑(𝑎𝑘−1) = 𝑎𝑘𝑞+𝑟 = (𝑎𝑘)𝑞𝑎𝑟 ≡ 1𝑞𝑎𝑟 (mod 𝑎𝑘 − 1) ≡ 𝑎𝑟 (mod 𝑎𝑘 − 1).
Therefore 𝑎𝑟 ≡ 1 (mod 𝑎𝑘 − 1), i.e. 𝑎𝑘 − 1|𝑎𝑟 − 1.
But since 0 ≤ 𝑟 < 𝑘, we get that 0 ≤ 𝑎𝑟 − 1 < 𝑎𝑘 − 1.
Thence, 𝑎𝑟 − 1 = 0, i.e. 𝑟 = 0.
So 𝜑 (𝑎𝑘 − 1) = 𝑘𝑞, i.e. 𝑘|𝜑 (𝑎𝑘 − 1).
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Sample solutions to Exercise 18.

First note that if 𝑛 ∈ ℕ ∖ {0} then {
𝜑(𝑛) ≤ 𝑛 − 1 if 𝑛 ≥ 2

𝜑(𝑛) = 1 if 𝑛 = 1 .
Therefore 𝑢𝑘+1 = 𝜑(𝑢𝑘) ≤ 𝑢𝑘, so that the sequence is decreasing.
Since it is bounded from below then it is eventually constant.
Assume by contradiction that ∀𝑘 ≥ 𝑁, 𝑢𝑘+1 = 𝑢𝑘 > 1, then 𝑢𝑘+1 = 𝜑(𝑢𝑘) ≤ 𝑢𝑘 − 1 < 𝑢𝑘. Which is a
contradiction.
Therefore the sequence (𝑢𝑘)𝑘 is eventually constant equal to 1.
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8.5 Chapter 5

Sample solutions to Exercise 1.

𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1)
⇔ 𝜑(𝑛) = 𝑝𝑞 − 𝑝 − 𝑞 + 1
⇔ 𝜑(𝑛) = 𝑛 − 𝑝 − 𝑛

𝑝 + 1

⇔ 𝑝𝜑(𝑛) = 𝑝𝑛 − 𝑝2 − 𝑛 + 𝑝
⇔ 𝑝2 − (𝑛 − 𝜑(𝑛) + 1)𝑝 + 𝑛 = 0

Therefore 𝑝 (and similarly for 𝑞) is a root of the equation 𝑋2 − (𝑛 − 𝜑(𝑛) + 1)𝑋 + 𝑛 = 0.

Sample solutions to Exercise 2.
Let 𝑙 ∈ ℕ and 𝑚 ∈ ℤ.

• Let’s prove that 𝑚1+𝑙𝜑(𝑝𝑞) ≡ 𝑚 (mod 𝑝).

– If 𝑝|𝑚 then both sides are congruent to 0 (mod 𝑝), therefore 𝑚1+𝑙𝜑(𝑝𝑞) ≡ 𝑚 (mod 𝑝).
– If 𝑝 ∤ 𝑚 then gcd(𝑚𝑞−1, 𝑝) = 1 (check it), therefore, using Fermat’s little theorem, we get that

(𝑚𝑞−1)
𝑝−1 ≡ 1 (mod 𝑝)

Thus 𝑚1+𝑙𝜑(𝑝𝑞) = 𝑚 × 𝑚𝑙(𝑝−1)(𝑞−1) = 𝑚 × ((𝑚𝑞−1)
𝑝−1

)
𝑙

≡ 𝑚 × 1𝑙 (mod 𝑝) ≡ 𝑚 (mod 𝑝).

• We prove similarly that 𝑚1+𝑙𝜑(𝑝𝑞) ≡ 𝑚 (mod 𝑞).

Therefore 𝑝|𝑚1+𝑙𝜑(𝑝𝑞) − 𝑚 and 𝑞|𝑚1+𝑙𝜑(𝑝𝑞) − 𝑚.
Since gcd(𝑝, 𝑞) = 1, we deduce from Exercise 1 that 𝑝𝑞|𝑚1+𝑙𝜑(𝑝𝑞) − 𝑚, i.e. 𝑚1+𝑙𝜑(𝑝𝑞) ≡ 𝑚 (mod 𝑝𝑞)

Sample solutions to Exercise 3.
1. Here 𝜑(𝑛) = (61 − 1)(97 − 1) = 60 × 96 = 5760.

Note that 5760 = 338 × 17 + 14, so gcd(𝜑(𝑛), 𝑒) = gcd(5760, 17) = gcd(14, 17) = 1.
Therefore 𝑒 = 17 is a suitable choice for 𝑛 = 5917.
Furthermore 𝑒𝑑 = 17 × 2033 = 34561 = 6 × 5760 + 1 ≡ 1 (mod 𝜑(𝑛)).
Therefore 𝑑 is a suitable choice for 𝑒 = 17 and 𝑛 = 5917.

2. 𝑚𝑒 = 4217 ≡ 3838 (mod 5917), so Bob should send 𝑐 = 3838 to Alice.
Then Alice will perform the computation 𝑐𝑑 = 38382033 ≡ 42 (mod 5917).

3. 𝑐𝑑 = 31412033 ≡ 4630 (mod 5917), therefore the original message is 4630.

Sample solutions to Exercise 4.
Using a computer, it is easy to see that 1003 = 17 × 59.
Therefore 𝜑(𝑛) = 16 × 58 = 928. Let’s look for a multiplicative inverse of 𝑒 = 11 modulo 𝜑(𝑛) = 928.
We apply Euclid’s algorithm:

928 = 11 × 84 + 4
11 = 4 × 2 + 3
4 = 3 × 1 + 1
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Therefore

1 = 4 − 3
= 4 − (11 − 4 × 2)
= 4 × 3 − 11
= (928 − 11 × 84) × 3 − 11
= 928 × 3 − 11 × (84 × 3 + 1)

1 = 928 × 3 + 11 × (−253)

Note that we want 𝑑 > 0, so we take 𝑑 = −253 + 𝜑(𝑛) = 928 − 253 = 675.
Therefore we may decipher the message with the private key (𝑛, 𝑑) = (1003, 675).
Finally 𝑐𝑑 = 271675 ≡ 951 (mod 1003). So the original message sent by Bob to Alice is 951.

Sample solutions to Exercise 5.
Alice keys are (𝑛, 𝑒) and (𝑛, 𝑑).
She wants to send the message 𝑚 ∈ {0, 1, … , 𝑛 − 1} to Bob in a way that Bob can authenticate her as the
sender.
For this purpose she finds the unique 𝑠 ∈ {0, … , 𝑛 − 1} such that 𝑠 ≡ 𝑚𝑑 (mod 𝑛) (using her private key), i.e.
𝑠 is the remainder of 𝑚𝑑 by 𝑛.
She sends to Bob both the message 𝑚 and the signature 𝑠.
Then Bob checks that 𝑚 ≡ 𝑠𝑒 (mod 𝑛). If so, then Alice was the sender (or at least someone knowing Alice’s
private key).
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8.6 Chapter 6

Sample solutions to Exercise 1.

Set 𝛼 = √7 + 4√3 + √7 − 4√3 then

𝛼2 = 14 + 2√(7 + 4√3) (7 − 4√3) = 14 + 2√72 − 42 × 3 = 14 + 2√1 = 16

So 𝛼 = ±4, but since 𝛼 > 0, we get 𝛼 = 4.

Sample solutions to Exercise 2.
1. Let 𝑎, 𝑏 ∈ ℝ, then 0 ≤ (𝑎 − 𝑏)2 = 𝑎2 + 𝑏2 − 2𝑎𝑏, so that 𝑎𝑏 ≤ 𝑎2+𝑏2

2 .

2. Let 𝑎, 𝑏, 𝑐 ∈ ℝ. We know from the previous question that 𝑎𝑏 ≤ 𝑎2+𝑏2

2 , 𝑏𝑐 ≤ 𝑏2+𝑐2

2 and 𝑎𝑐 ≤ 𝑎2+𝑐2

2 .
By summing these three inequalities, we get 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐 ≤ 𝑎2+𝑏2+𝑏2+𝑐2+𝑎2+𝑐2

2 = 𝑎2 + 𝑏2 + 𝑐2.

3. Let 𝑎, 𝑏, 𝑐 ∈ ℝ. Then

(𝑎 + 𝑏 + 𝑐)2 = 𝑎2 + 𝑏2 + 𝑐2 + 2𝑎𝑏 + 2𝑏𝑐 + 2𝑎𝑐
≥ 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑐 + 2𝑎𝑏 + 2𝑏𝑐 + 2𝑎𝑐 from the previous question.
= 3𝑎𝑐 + 3𝑏𝑐 + 3𝑎𝑐

Sample solutions to Exercise 3.
Let 𝑥 ∈ ℝ.

• First case: 𝑥 ≤ 1 then 𝑥2 − 𝑥 + 1 − |𝑥 − 1| = 𝑥2 − 𝑥 + 1 + (𝑥 − 1) = 𝑥2 ≥ 0, therefore |𝑥 − 1| ≤ 𝑥2 − 𝑥 + 1.

• Second case: 𝑥 > 1 then 𝑥2 − 𝑥 + 1 − |𝑥 − 1| = 𝑥2 − 𝑥 + 1 − (𝑥 − 1) = 𝑥2 − 2𝑥 + 2 = (𝑥 − 1)2 + 1 > 0,
therefore |𝑥 − 1| ≤ 𝑥2 − 𝑥 + 1.

Sample solutions to Exercise 4.
1. Let 𝑥, 𝑦 ∈ ℝ. Then 2|𝑥| = |2𝑥| = |(𝑥 + 𝑦) + (𝑥 − 𝑦)| ≤ |𝑥 + 𝑦| + |𝑥 − 𝑦| and similarly 2|𝑦| ≤ |𝑥 + 𝑦| + |𝑥 − 𝑦|.

Summing these two inequalities, we obtain 2(|𝑥| + |𝑦|) ≤ 2(|𝑥 + 𝑦| + |𝑥 − 𝑦|).

2. Define 𝑓 ∶ [0, +∞) → ℝ by 𝑓(𝑢) = 𝑢
1+𝑢 then 𝑓 is differentiable and 𝑓 ′(𝑢) = 1

(1+𝑢)2 > 0.
Therefore 𝑓 is increasing.
Let 𝑥, 𝑦 ∈ ℝ. Since |𝑥 + 𝑦| ≤ |𝑥| + |𝑦|, we obtain

|𝑥 + 𝑦|
1 + |𝑥 + 𝑦| ≤ |𝑥| + |𝑦|

1 + |𝑥| + |𝑦| = |𝑥|
1 + |𝑥| + |𝑦| + |𝑦|

1 + |𝑥| + |𝑦| ≤ |𝑥|
1 + |𝑥| + |𝑦|

1 + |𝑦|

Sample solutions to Exercise 5.
1. Since 𝐴 is non-empty, there exists 𝑥 ∈ 𝐴 and then 0 = |𝑥 − 𝑥| ∈ 𝐵. Therefore 𝐵 is non-empty.

Since 𝐴 is bounded, there exists 𝑀 ∈ ℝ such that ∀𝑥 ∈ 𝐴, |𝑥| ≤ 𝑀 .
Therefore, if 𝑥, 𝑦 ∈ 𝐴, then |𝑥 − 𝑦| ≤ |𝑥| + |𝑦| ≤ 2𝑀 . Thus 2𝑀 is an upper bound of 𝐵.
Since 𝐵 is a non-empty subset of ℝ which is bounded from above, it admits a supremum.

2. Since 𝐴 is non-empty and bounded from below, there exists 𝑚 = inf(𝐴).
Similarly, since 𝐴 is non-empty and bounded from above, there exists 𝑀 = sup(𝐴).
Let 𝑥, 𝑦 ∈ 𝐴, then 𝑚 ≤ 𝑥 ≤ 𝑀 and −𝑀 ≤ −𝑦 ≤ −𝑚, thus −(𝑀 −𝑚) ≤ 𝑥−𝑦 ≤ 𝑀 −𝑚, i.e. |𝑥−𝑦| ≤ 𝑀 −𝑚.
Thus 𝑀 − 𝑚 is an upper bound of 𝐵. Let’s check it is the least one.
Let 𝜀 > 0. Since 𝑚 = inf(𝐴), there exists 𝑦 ∈ 𝐴 such that 𝑦 ≤ 𝑚 + 𝜀

2 . Since 𝑀 = sup(𝐴), there exists
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𝑥 ∈ 𝐴 such that 𝑀 − 𝜀
2 ≤ 𝑥. Therefore |𝑥 − 𝑦| ≥ 𝑥 − 𝑦 ≥ 𝑀 − 𝑚 + 𝜀.

We proved that for every 𝜀 > 0, there exists |𝑥 − 𝑦| ∈ 𝐵 such that |𝑥 − 𝑦| ≥ 𝑀 − 𝑚 + 𝜀.
Therefore sup(𝐵) = 𝑀 − 𝑚.

Sample solutions to Exercise 6.
Set 𝐸 = {𝑥 ∈ [0, 1] ∶ 𝑓(𝑥) ≥ 𝑥}. Since 𝑓(0) ∈ [0, 1], we have that 𝑓(0) ≥ 0, so 0 ∈ 𝐸.
Besides 𝐸 is bounded from above by 1.
Thence, by the least upper bound principle, 𝐸 admits a supremum 𝑎 = sup(𝐸).
Assume by contradiction that 𝑓(𝑎) ≠ 𝑎, then

• Either 𝑓(𝑎) < 𝑎. Since 𝑎 is the least upper bound of 𝐸, 𝑓(𝑎) is not an upper bound, so there exists 𝑏 ∈ 𝐸
such that 𝑓(𝑎) < 𝑏 ≤ 𝑎.
But then 𝑏 ≤ 𝑎 and 𝑓(𝑎) < 𝑏 ≤ 𝑓(𝑏) (since 𝑏 ∈ 𝐸), which is impossible since 𝑓 is non-decreasing.

• Or 𝑓(𝑎) > 𝑎. Then, since 𝑓 is non-decreasing, we get 𝑓(𝑓(𝑎)) ≥ 𝑓(𝑎). So 𝑓(𝑎) ∈ 𝐸. Which is impossible
since for every 𝑥 ∈ [0, 1], 𝑥 ≤ 𝑎 < 𝑓(𝑎) (since 𝑎 is an upper bound).

Sample solutions to Exercise 7.
Let 𝜀 > 0. Assume by contradiction that (𝑀 − 𝜀, 𝑀) ∩ 𝐴 contains finitely many elements, i.e.

(𝑀 − 𝜀, 𝑀) ∩ 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑝}.

Note that 𝑎 ≔ max(𝑎1, … , 𝑎𝑝) < 𝑀 .
Set 𝛿 = 𝑀 − 𝑎. Since 𝛿 > 0, there exists 𝑏 ∈ 𝐴 such that 𝑀 − 𝛿 < 𝑏 ≤ 𝑀 .
Since 𝑀 ∉ 𝐴, we have 𝑏 < 𝑀 . Besides 𝑏 > 𝑀 − 𝛿 = 𝑎 ≥ 𝑀 − 𝜀.
Therefore 𝑏 ∈ (𝑀 − 𝜀, 𝑀) ∩ 𝐴.
But, ∀𝑖 = 1, … , 𝑝, 𝑏 > 𝑎 > 𝑎𝑖.
Hence a contradiction

Sample solutions to Exercise 8.
1. To reach the first row:

To reach the second row:

I let you continue for the third and fourth rows!

2. There are three cases to handle:

• The piece moves towards the target cell: then if the piece is initially located at a cell labeled 𝜎𝑛,
then it jumps over piece in a cell labeled 𝜎𝑛−1 to reach a cell labeled 𝜎𝑛−2.
Therefore 𝐹 (𝐶′) − 𝐹 (𝐶) = −𝜎𝑛 − 𝜎𝑛−1 + 𝜎𝑛−2 = 𝜎𝑛−2(−𝜎2 − 𝜎 + 1) = 0.
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• The piece remains at the same distance to the target cell: then if the piece is initially located at a
cell labeled 𝜎𝑛, then it jumps over piece in a cell labeled 𝜎𝑛−1 to reach a cell labeled 𝜎𝑛.
Therefore 𝐹 (𝐶′) − 𝐹 (𝐶) = −𝜎𝑛 − 𝜎𝑛−1 + 𝜎𝑛 = −𝜎𝑛−1.

• The piece moves away from the target cell: then if the piece is initially located at a cell labeled 𝜎𝑛,
then it jumps over piece in a cell labeled 𝜎𝑛+1 to reach a cell labeled 𝜎𝑛+2.
Therefore 𝐹 (𝐶′) − 𝐹 (𝐶) = −𝜎𝑛 − 𝜎𝑛+1 + 𝜎𝑛+2 = 𝜎𝑛(−1 − 𝜎 + 𝜎2) = −2𝜎𝑛+1.

3. For those who like geometric series, like Cherge: since 0 < 𝜎 < 1, we have

+∞

∑
𝑛=2

𝜎𝑛 = 𝜎2

1 − 𝜎 = 1

Otherwise, if you don’t like geometric series: since ∀𝑛 ∈ ℕ, 𝜎𝑛+2 = 𝜎𝑛 − 𝜎𝑛+1, we have a telescoping
series:

𝐾

∑
𝑛=2

𝜎𝑛 =
𝐾−2

∑
𝑛=0

𝜎𝑛+2 =
𝐾−2

∑
𝑛=0

(𝜎𝑛 − 𝜎𝑛+1) = 𝜎0 − 𝜎𝐾−1 −−−−−→
𝐾→+∞

1 − 0 = 1

4.

𝜎10

𝜎11

𝜎12

𝜎9

𝜎10

𝜎11

𝜎8

𝜎9

𝜎10

𝜎7

𝜎8

𝜎9

𝜎6

𝜎7

𝜎8

𝜎5

𝜎6

𝜎7

𝜎6

𝜎7

𝜎8

𝜎7

𝜎8

𝜎9

𝜎8

𝜎9

𝜎10

𝜎9

𝜎10

𝜎11

𝜎10

𝜎11

𝜎12 ⋯
⋯
⋯

⋯
⋯
⋯

The cells on 𝑦 = 0 give

𝜎5 + 2𝜎6
+∞

∑
𝑘=0

𝜎𝑘 = 𝜎5 + 2𝜎6

1 − 𝜎 = 𝜎5 + 2𝜎4 = 𝜎3 (𝜎2 + 2𝜎) = 𝜎3(1 + 𝜎) = 𝜎2(𝜎 + 𝜎2) = 𝜎2

Therefore, the cells on 𝑦 = 𝑛 give 𝜎2+𝑛 and

𝐹 (𝐶) =
+∞

∑
𝑛=2

𝜎𝑛 = 1

5. Assume that we have a finite initial configuration 𝐶0, then 𝐹 (𝐶0) < 𝐹 (𝐶) = 1 from the previous
question.
If 𝐶𝑛 is a configuration obtained after 𝑛 moves then (𝐹 (𝐶𝑛))𝑛 is decreasing by Question 2.
Assume that we reach 5 after 𝑛 moves then 𝐹 (𝐶𝑛) ≥ 𝜎0 = 1 (since it contains at least a piece located at
(5, 0)). But 𝐹 (𝐶𝑛) ≤ 𝐹 (𝐶0) < 1. Hence a contradiction.
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Sample solutions to Exercise 9.
1. Let 𝑥, 𝑦 ∈ ℝ. By definition of the floor function, we know that ⌊𝑥⌋ ≤ 𝑥 < ⌊𝑥⌋ + 1 and ⌊𝑦⌋ ≤ 𝑦 < ⌊𝑦⌋ + 1.

Therefore ⌊𝑥⌋ + ⌊𝑦⌋ ≤ 𝑥 + 𝑦.
Since ⌊𝑥 + 𝑦⌋ is the greater integer less than or equal to 𝑥 + 𝑦, we get that ⌊𝑥⌋ + ⌊𝑦⌋ ≤ ⌊𝑥 + 𝑦⌋.
Finally ⌊𝑥⌋ + ⌊𝑦⌋ ≤ ⌊𝑥 + 𝑦⌋ ≤ 𝑥 + 𝑦 ≤ ⌊𝑥⌋ + ⌊𝑦⌋ + 2.
So, either ⌊𝑥 + 𝑦⌋ = ⌊𝑥⌋ + ⌊𝑦⌋ or ⌊𝑥 + 𝑦⌋ = ⌊𝑥⌋ + ⌊𝑦⌋ + 1.
In both cases we have ⌊𝑥⌋ + ⌊𝑦⌋ ≤ ⌊𝑥 + 𝑦⌋ ≤ ⌊𝑥⌋ + ⌊𝑦⌋ + 1.

2. Let 𝑛 ∈ ℕ ∖ {0} and 𝑥 ∈ ℝ. Since ⌊𝑥⌋ ≤ 𝑥 < ⌊𝑥⌋ + 1, we get 𝑛⌊𝑥⌋ ≤ 𝑛𝑥 < 𝑛⌊𝑥⌋ + 𝑛.
Since ⌊𝑛𝑥⌋ is the greatest integer less than or equal to 𝑛𝑥, we obtain 𝑛⌊𝑥⌋ ≤ ⌊𝑛𝑥⌋ ≤ 𝑛𝑥 < 𝑛⌊𝑥⌋ + 𝑛.
Thus ⌊𝑥⌋ ≤ ⌊𝑛𝑥⌋

𝑛 < ⌊𝑥⌋ + 1 and hence ⌊𝑥⌋ = ⌊
⌊𝑛𝑥⌋

𝑛 ⌋.

Sample solutions to Exercise 10.
1. Let 𝑛 ∈ ℕ. Then

(2 + √3)
𝑛

+ (2 − √3)
𝑛

=
𝑛

∑
𝑘=0

(
𝑛
𝑘)2𝑛−𝑘√3

𝑘
+

𝑛

∑
𝑘=0

(
𝑛
𝑘)2𝑛−𝑘(−1)𝑘√3

𝑘

=
𝑛

∑
𝑘=0

(
𝑛
𝑘) (1 + (−1)𝑘) 2𝑛−𝑘√3

𝑘

Note that if 𝑘 is odd then (1 + (−1)𝑘) = 0 and that if 𝑘 = 2𝑙 is even then

(
𝑛
𝑘) (1 + (−1)𝑘) 2𝑛−𝑘√3

𝑘
= (

𝑛
2𝑙) × 2 × 2𝑛−2𝑙 × 3𝑙 ∈ 2ℕ

Therefore (2 + √3)
𝑛

+ (2 − √3)
𝑛

∈ 2ℕ.

2. Let 𝑛 ∈ ℕ. Since 2 − √3 ∈ (0, 1), we have that 0 < (2 − √3)
𝑛

< 1.

Therefore, if we set 𝑆 = (2 + √3)
𝑛

+ (2 − √3)
𝑛
, then 𝑆 < (2 + √3)

𝑛
< 𝑆 − 1, thus

𝑆 − 1 ≤ (2 + √3)
𝑛

< 𝑆

i.e. ⌊(2 + √3)
𝑛
⌋ = 𝑆 − 1 which is odd according to the previous question.

Sample solutions to Exercise 11.
Let’s prove the contrapositive, i.e. 𝐼 ∩ 𝐽 ≠ ∅ ⟹ (𝐼 ∩ ℚ) ∩ (𝐽 ∩ ℚ) ≠ ∅.
Assume that 𝐼 ∩ 𝐽 ≠ ∅, then there exists 𝑎 ∈ 𝐼 ∩ 𝐽 .
Since 𝐼 is an open interval, there exists 𝜀 > 0 such that (𝑎 − 𝜀, 𝑎 + 𝜀) ⊂ 𝐼 .
Similarly, there exists 𝜂 > 0 such that (𝑎 − 𝜂, 𝑎 + 𝜂) ⊂ 𝐽 .
Set 𝛿 = min(𝜀, 𝜂), then (𝑎 − 𝛿, 𝑎 + 𝛿) ⊂ 𝐼 ∩ 𝐽 .
Since between two reals there exists a rational, we know that there exists 𝑞 ∈ ℚ such that 𝑎 − 𝛿 < 𝑞 < 𝑎 + 𝛿.
Therefore 𝑞 ∈ 𝐼 ∩ ℚ and 𝑞 ∈ 𝐽 ∩ ℚ, so that (𝐼 ∩ ℚ) ∩ (𝐽 ∩ ℚ) ≠ ∅.

Sample solutions to Exercise 12.
1. No: √2 and −√2 are both irrational but (√2) + (−√2) = 0 ∈ ℚ.

2. No: (√2)(√2) = 2 ∈ ℚ.

3. Let 𝑥 ∈ ℝ ∖ ℚ and 𝑦 ∈ ℚ. Assume by contradiction that 𝑥 + 𝑦 ∈ ℚ then 𝑥 = (𝑥 + 𝑦) − 𝑦 ∈ ℚ.
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4. Let 𝑥 ∈ ℝ ∖ ℚ and 𝑦 ∈ ℚ ∖ {0}. Assume by contradiction that 𝑥𝑦 ∈ ℚ then 𝑥 = 𝑥𝑦
𝑦 ∈ ℚ.

Sample solutions to Exercise 13.
1. Assume by contradiction that √3 ∈ ℚ then √3 = 𝑎

𝑏 where 𝑎 ∈ ℕ and 𝑏 ∈ ℕ ∖ {0}. Hence 𝑎2 = 3𝑏2.
The prime factorization of 𝑎2 contains an even number of primes whereas the prime factorization of
3𝑏2 contains an odd number of primes.
Therefore it contradicts the uniqueness of the prime factorization.

2. Assume by contradiction that √6 ∈ ℚ then √6 = 𝑎
𝑏 where 𝑎 ∈ ℕ, 𝑏 ∈ ℕ ∖ {0} and gcd(𝑎, 𝑏) = 1.

Therefore 6𝑏2 = 𝑎2. So 2|𝑎2. By Euclid’s lemma, 2|𝑎, so there exists 𝑘 ∈ ℕ such that 𝑎 = 2𝑘.
Hence we may rewrite 6𝑏2 = 4𝑘2, which implies 3𝑏2 = 2𝑘2. So 2|3𝑏2.
Since gcd(2, 3) = 1, by Gauss’ lemma we get 2|𝑏2 and then by Euclid’s lemma, we get 2|𝑏.
Therefore 2|gcd(𝑎, 𝑏) = 1. Hence a contradiction.

3. Same as for √3..

4. Assume by contradiction that 𝑥 =
3

√3 + √11 ∈ ℚ. Then 𝑥3 = 3 + √11. So √11 = 𝑥3 − 3 ∈ ℚ.

5. Assume by contradiction that √2 + √3 ∈ ℚ.
Then (√2 + √3)2 = 2 + 3 + 2√6 ∈ ℚ. Therefore √6 = (√2+√3)2−5

2 ∈ ℚ.

6. Assume by contradiction that (√2 + √3)
2

∈ ℚ.

Since (√2 + √3)
2

= 2 + 3 + 2√6, we get √6 = (√2+√3)
2
−5

2 ∈ ℚ.

7. Assume by contradiction that 𝑥 = √2 + √3 + √6 ∈ ℚ.
Then √2 + √3 = 𝑥 − √6. Squaring both sides, we get 5 + 2√6 = 𝑥2 + 6 − 2𝑥√6.
Therefore √6 = 𝑥2+1

2+2𝑥 ∈ ℚ.

8. Assume by contradiction that (3√2 + 2√3 + √6)
2

∈ ℚ.

Since (3√2 + 2√3 + √6)
2

= 36+12 (√2 + √3 + √6), we get √2+√3+√6 = (3√2+2√3+√6)
2
−36

12 ∈ ℚ.

9. There is an elegant method using the complex conjugate.
Assume by contradiction that √7 + √3 ∈ ℚ. Then (√7 + √3) (√7 − √3) = 7 − 3 = 4. Thus
√7 − √3 = 4

√7+√3
∈ ℚ.

Hence √3 = (√7+√3)−(√7−√3)
2 ∈ ℚ.

Sample solutions to Exercise 14.
Let 𝑛 ∈ ℕ.

• √𝑛 ∈ ℚ ⇒ √𝑛 ∈ ℕ:
Assume that √𝑛 ∈ ℚ, then there exists (𝑎, 𝑏) ∈ ℕ ∖ {0} such that √𝑛 = 𝑎

𝑏 and gcd(𝑎, 𝑏) = 1.
Then 𝑎2 = 𝑛𝑏2, thus 𝑏|𝑎2. By Gauss’ lemma applied twice 𝑏|𝑎 and then 𝑏|1. Thus 𝑏 = 1 and √𝑛 = 𝑎 ∈ ℕ.

• √𝑛 ∈ ℕ ⇒ ∃𝑚 ∈ ℕ, 𝑛 = 𝑚2: assume that √𝑛 ∈ ℕ. Then 𝑛 = (√𝑛)
2
. So we can take 𝑚 = √𝑛.

• ∃𝑚 ∈ ℕ, 𝑛 = 𝑚2 ⇒ √𝑛 ∈ ℚ: assume that there exists 𝑚 ∈ ℕ such that 𝑛 = 𝑚2. Then √𝑛 = 𝑚 ∈ ℕ ⊂ ℚ.
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Sample solutions to Exercise 15.

No,
+∞

∑
𝑛=1

10− 𝑛(𝑛+1)
2 = 0.101001000100001000001 … is not rational since its decimal expansion is not eventually

periodic.
We denote the decimals by (𝑎𝑘)𝑘≥1: 𝑎𝑘 = 1 if ∃𝑛 ∈ ℕ, 𝑘 = 𝑛(𝑛+1)

2 and 𝑎𝑘 = 0 otherwise.
Let 𝑟 ∈ ℕ and 𝑠 ∈ ℕ ∖ {0}.
Then there exists 𝑘 ∈ ℕ such that 𝑟 + 𝑘 > 𝑠(𝑠+1)

2 and 𝑎𝑟+𝑘 = 1, so that 0 = 𝑎𝑟+𝑘+𝑠 ≠ 𝑎𝑟+𝑘 = 1.

Sample solutions to Exercise 16.

1. (a) Note that 𝑓(𝑥) = 1
𝑛!

𝑛

∑
𝑘=0

(
𝑛
𝑘)(−1)𝑘𝑥𝑛+𝑘 = 1

𝑛!

2𝑛

∑
𝑘=𝑛

(
𝑛

𝑘 − 𝑛)(−1)𝑘−𝑛𝑥𝑘.

Let 𝑘 ∈ ℕ. If 𝑘 < 𝑛 or 𝑘 > 2𝑛 then 𝑓 (𝑘)(0) = 0.
Otherwise, if 𝑛 ≤ 𝑘 ≤ 2𝑛 then 𝑓 (𝑘)(0) = (−1)𝑘−𝑛 𝑘!

𝑛! (
𝑛

𝑘 − 𝑛) ∈ ℤ.

(b) Let 𝑘 ∈ ℕ. Since 𝑓(𝑥) = 𝑓(1 − 𝑥), we get 𝑓 (𝑘)(1) = (−1)𝑘𝑓 (𝑘)(0) ∈ ℤ.
(c) 𝐹 ″(𝑥) = ∑

𝑘≥0
(−1)𝑘𝑟2𝑛−2𝑘𝑓 (2(𝑘+1)+1)(𝑥)

= −𝑟2
∑
𝑘≥0

(−1)𝑘+1𝑟2𝑛−2(𝑘+1)𝑓 (2(𝑘+1)+1)(𝑥)

= −𝑟2
∑
𝑘≥1

(−1)𝑘𝑟2𝑛−2𝑘𝑓 (2𝑘+1)(𝑥)

= −𝑟2 (𝐹 (𝑥) − 𝑟2𝑛𝑓(𝑥))
= −𝑟2𝐹 (𝑥) + 𝑟2𝑛+2𝑓(𝑥)

(d)𝑑
𝑑𝑥 (𝐹 ′(𝑥) sin(𝑟𝑥) − 𝑟𝐹 (𝑥) cos(𝑟𝑥)) = 𝐹 ″(𝑥) sin(𝑟𝑥) + 𝑟𝐹 ′(𝑥) cos(𝑟𝑥) − 𝑟𝐹 ′(𝑥) cos(𝑟𝑥) + 𝑟𝐹 (𝑥) sin(𝑟𝑥)

= 𝐹 ″(𝑥) sin(𝑟𝑥) + 𝑟𝐹 (𝑥) sin(𝑟𝑥)
= (𝐹 ″(𝑥) + 𝑟𝐹 (𝑥)) sin(𝑟𝑥)
= 𝑟2𝑛+2𝑓(𝑥) sin(𝑟𝑥)

(e) ∫
1

0
𝑓(𝑥) sin(𝑟𝑥)d𝑥 = 1

𝑟2𝑛+2 ∫
1

0
𝑟2𝑛+2𝑓(𝑥) sin(𝑟𝑥)d𝑥

= 1
𝑟2𝑛+2 [𝐹 ′(𝑥) sin(𝑟𝑥) − 𝑟𝐹 (𝑥) cos(𝑟𝑥)]

1
0

= 1
𝑟2𝑛+2 (𝐹 ′(1) sin(𝑟) − 𝑟𝐹 (1) cos(𝑟) + 𝑟𝐹 (0))

2. Let 𝑟 ∈ (0, 𝜋]∩ℚ. Assume by contradiction that sin(𝑟), cos(𝑟) ∈ ℚ. Then, wemaywrite 1
𝑟 = 𝑎

𝑑 , sin(𝑟) = 𝑏
𝑑

and cos(𝑟) = 𝑐
𝑑 where 𝑎, 𝑏, 𝑐 ∈ ℤ and 𝑑 ∈ ℕ ∖ {0}.

Let 𝑛 ∈ ℕ, then using 1.(e), 1.(a) and 1.(b) we get that 𝐼𝑛 = 𝐴𝑛
𝑑2𝑛+3 for some 𝐴𝑛 ∈ ℤ.

Since 𝐼𝑛 > 0, we get that 𝐴𝑛 ≥ 1, and thus that 𝐼𝑛 ≥ 1
𝑑2𝑛+3 .

But we also have that

𝐼𝑛 = ∫
1

0
𝑓(𝑥) sin(𝑟𝑥)d𝑥

≤ ∫
1

0
𝑓(𝑥)d𝑥 since sin > 0 on (0, 𝜋)

≤ 1
𝑛! since 𝑓(𝑥) ≤ 1

𝑛! on [0, 1]

Therefore 1
𝑑2𝑛+3 ≤ 𝐼𝑛 ≤ 1

𝑛! and thus 𝑛! ≤ 𝑑2𝑛+3. Which leads to a contradiction for 𝑛 large enough.
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3. We use the contrapositive of the previous question: since 𝜋 ∈ (0, 𝜋] and since sin(𝜋) = 0 ∈ ℚ and
cos(𝜋) = −1 ∈ ℚ, we get that 𝜋 ∉ ℚ.
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8.7 Chapter 7

Sample solutions to Exercise 1.
1. Let 𝐴, 𝐵, 𝐶 ∈ 𝒫(𝐸). Assume that 𝐴 ∪ 𝐵 = 𝐵 ∩ 𝐶 .

Let 𝑥 ∈ 𝐴 then 𝑥 ∈ 𝐴 ∪ 𝐵 = 𝐵 ∩ 𝐶 . Therefore 𝑥 ∈ 𝐵. So 𝐴 ⊂ 𝐵.
Let 𝑥 ∈ 𝐵 then 𝑥 ∈ 𝐴 ∪ 𝐵 = 𝐵 ∩ 𝐶 . Therefore 𝑥 ∈ 𝐶 . So 𝐵 ⊂ 𝐶 .

2. Using the previous question.
Let 𝐴, 𝐵 ∈ 𝒫(𝐸). Assume that 𝐴 ∩ 𝐵 = 𝐴 ∪ 𝐵.
From the previous question we get that 𝐴 ⊂ 𝐵 ⊂ 𝐴. Hence 𝐴 = 𝐵.

Direct proof.
Let 𝐴, 𝐵 ∈ 𝒫(𝐸). Assume that 𝐴 ∩ 𝐵 = 𝐴 ∪ 𝐵.
Let 𝑥 ∈ 𝐴 then 𝑥 ∈ 𝐴 ∪ 𝐵 = 𝐴 ∩ 𝐵. Thus 𝑥 ∈ 𝐵. Therefore 𝐴 ⊂ 𝐵.
Let 𝑥 ∈ 𝐵 then 𝑥 ∈ 𝐴 ∪ 𝐵 = 𝐴 ∩ 𝐵. Thus 𝑥 ∈ 𝐴. Therefore 𝐵 ⊂ 𝐴.
Hence 𝐴 = 𝐵.

Proof by contrapositive.
Let 𝐴, 𝐵 ∈ 𝒫(𝐸). Assume that 𝐴 ≠ 𝐵. Then

• either 𝐴 ∖ 𝐵 ≠ ∅ and then there exists 𝑥 ∈ 𝐸 such that 𝑥 ∈ 𝐴 and 𝑥 ∉ 𝐵. Thus 𝑥 ∈ 𝐴 ∪ 𝐵 but
𝑥 ∉ 𝐴 ∩ 𝐵. Therefore 𝐴 ∩ 𝐵 ≠ 𝐴 ∪ 𝐵.

• or 𝐵 ∖𝐴 ≠ ∅ and then there exists 𝑥 ∈ 𝐸 such that 𝑥 ∈ 𝐵 and 𝑥 ∉ 𝐴. Thus 𝑥 ∈ 𝐴∪𝐵 but 𝑥 ∉ 𝐴∩𝐵.
Therefore 𝐴 ∩ 𝐵 ≠ 𝐴 ∪ 𝐵.

Sample solutions to Exercise 2.
⇐ Assume that 𝑓 , 𝑔 and ℎ are bijective then 𝑔 ∘ 𝑓 and ℎ ∘ 𝑔 are too.
⇒ Assume that 𝑔 ∘ 𝑓 and ℎ ∘ 𝑔 are bijective.
Since 𝑔 ∘ 𝑓 is surjective, 𝑔 is too. Since ℎ ∘ 𝑔 is injective, 𝑔 is too.
Hence 𝑔 is bijective, so it admits an inverse 𝑔−1 ∶ 𝐶 → 𝐵.
Then 𝑓 = 𝑔−1 ∘ (𝑔 ∘ 𝑓) and ℎ = (ℎ ∘ 𝑔) ∘ 𝑔−1 are bijective as composition of bijective functions.

Sample solutions to Exercise 3.
1. Let 𝐴 ∈ 𝒫(𝐸). Let 𝑥 ∈ 𝐴. Then 𝑓(𝑥) ∈ 𝑓(𝐴). Therefore 𝑥 ∈ 𝑓 −1(𝑓 (𝐴)).

We proved that 𝐴 ⊂ 𝑓 −1(𝑓 (𝐴)).

2. Let 𝐵 ⊂ 𝒫(𝐹 ). Let 𝑦 ∈ 𝑓(𝑓 −1(𝐵)). Then there exists 𝑥 ∈ 𝑓 −1(𝐵) such that 𝑦 = 𝑓(𝑥). But since
𝑥 ∈ 𝑓 −1(𝐵), 𝑦 = 𝑓(𝑥) ∈ 𝐵.
We proved that 𝑓(𝑓 −1(𝐵)) ⊂ 𝐵.

3. Define

𝑓 ∶
⎧⎪
⎨
⎪⎩

{1, 2} → {1, 2}
1 ↦ 1
2 ↦ 1

Then 𝑓(𝑓 −1({1, 2})) = 𝑓({1, 2}) = {1} ⊊ {1, 2}.
And 𝑓 −1(𝑓 ({1})) = 𝑓 −1({1}) = {1, 2} ⊋ {1}.

Sample solutions to Exercise 4.
1. Let 𝐴, 𝐵 ∈ 𝒫(𝐹 ) be such that 𝐴 ⊂ 𝐵. Take 𝑥 ∈ 𝑓 −1(𝐴). Then 𝑓(𝑥) ∈ 𝐴 ⊂ 𝐵. Thus 𝑥 ∈ 𝑓 −1(𝐵).

The converse doesn’t hold. Indeed, define

𝑓 ∶ {
{1} → {1, 2}
1 ↦ 1

then 𝑓 −1({2}) = ∅ ⊂ 𝑓 −1({1}). But {2} ⊄ {1}.
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2. Let 𝐴, 𝐵 ∈ 𝒫(𝐹 ).
Since 𝐴 ∩ 𝐵 ⊂ 𝐴 and 𝐴 ∩ 𝐵 ⊂ 𝐵, we get that 𝑓 −1(𝐴 ∩ 𝐵) ⊂ 𝑓 −1(𝐴) and 𝑓 −1(𝐴 ∩ 𝐵) ⊂ 𝑓 −1(𝐵). Thus
𝑓 −1(𝐴 ∩ 𝐵) ⊂ 𝑓 −1(𝐴) ∩ 𝑓 −1(𝐵).
For the other inclusion, let 𝑥 ∈ 𝑓 −1(𝐴) ∩ 𝑓 −1(𝐵). Then 𝑓(𝑥) ∈ 𝐴 and 𝑓(𝑥) ∈ 𝐵. Thus 𝑓(𝑥) ∈ 𝐴 ∩ 𝐵 so
that 𝑥 ∈ 𝑓 −1(𝐴 ∩ 𝐵). Thus 𝑓 −1(𝐴) ∩ 𝑓 −1(𝐵) ⊂ 𝑓 −1(𝐴 ∩ 𝐵).

3. Let 𝐴, 𝐵 ∈ 𝒫(𝐹 ).
Since 𝐴, 𝐵 ⊂ 𝐴 ∪ 𝐵, we get 𝑓 −1(𝐴), 𝑓 −1(𝐵) ⊂ 𝑓 −1(𝐴 ∪ 𝐵). Thus 𝑓 −1(𝐴) ∪ 𝑓 −1(𝐵) ⊂ 𝑓 −1(𝐴 ∪ 𝐵).
For the other inclusion, let 𝑥 ∈ 𝑓 −1(𝐴 ∪ 𝐵). Then 𝑓(𝑥) ∈ 𝐴 ∪ 𝐵. Either 𝑓(𝑥) ∈ 𝐴 and then 𝑥 ∈ 𝑓 −1(𝐴) ⊂
𝑓 −1(𝐴) ∪ 𝑓 −1(𝐵) or 𝑓(𝑥) ∈ 𝐵 and then 𝑥 ∈ 𝑓 −1(𝐵) ⊂ 𝑓 −1(𝐴) ∪ 𝑓 −1(𝐵). Thus 𝑥 ∈ 𝑓 −1(𝐴) ∪ 𝑓 −1(𝐵). We
proved that 𝑓 −1(𝐴 ∪ 𝐵) ⊂ 𝑓 −1(𝐴) ∪ 𝑓 −1(𝐵).

Sample solutions to Exercise 5.
1. Let 𝐴, 𝐵 ∈ 𝒫(𝐸) be such that 𝐴 ⊂ 𝐵. Let 𝑦 ∈ 𝑓(𝐴). Then 𝑦 = 𝑓(𝑥) for some 𝑥 ∈ 𝐴. But 𝑥 ∈ 𝐴 ⊂ 𝐵.

Thus 𝑦 = 𝑓(𝑥) ∈ 𝑓(𝐵). We proved that 𝑓(𝐴) ⊂ 𝑓(𝐵).
The converse doesn’t hold. Indeed define

𝑓 ∶
⎧⎪
⎨
⎪⎩

{1, 2} → {1}
1 ↦ 1
2 ↦ 1

then 𝑓({1}) = 𝑓({2}) = {1} but {1} ⊄ {2}.

2. Let 𝐴, 𝐵 ∈ 𝒫(𝐸). Since 𝐴 ∩ 𝐵 ⊂ 𝐴, 𝐵 we get 𝑓(𝐴 ∩ 𝐵) ⊂ 𝑓(𝐴), 𝑓 (𝐵). Thus 𝑓(𝐴 ∩ 𝐵) ⊂ 𝑓(𝐴) ∩ 𝑓(𝐵).
The inclusion can be strict using the same example as above.

3. Let 𝐴, 𝐵 ∈ 𝒫(𝐸). Since 𝐴, 𝐵 ⊂ 𝐴 ∪ 𝐵, we get 𝑓(𝐴), 𝑓 (𝐴) ⊂ 𝑓(𝐴 ∪ 𝐵). Thus 𝑓(𝐴) ∪ 𝑓(𝐵) ⊂ 𝑓(𝐴 ∪ 𝐵).
For the other inclusion, let 𝑦 ∈ 𝑓(𝐴 ∪ 𝐵). Then 𝑦 = 𝑓(𝑥) for some 𝑥 ∈ 𝐴 ∪ 𝐵. So either 𝑥 ∈ 𝐴 and then
𝑦 = 𝑓(𝑥) ∈ 𝑓(𝐴) ⊂ 𝑓(𝐴) ∪ 𝑓(𝐵), or 𝑥 ∈ 𝐵 and then 𝑦 = 𝑓(𝑥) ∈ 𝑓(𝐵) ⊂ 𝑓(𝐴) ∪ 𝑓(𝐵). In both cases
𝑦 ∈ 𝑓(𝐴) ∪ 𝑓(𝐵). So we proved that 𝑓(𝐴 ∪ 𝐵) ⊂ 𝑓(𝐴) ∪ 𝑓(𝐵).

Sample solutions to Exercise 6.
⇒ Assume that 𝑓 is injective. Let 𝐴, 𝐵 ∈ 𝒫(𝐸).
We already know that 𝑓(𝐴 ∩ 𝐵) ⊂ 𝑓(𝐴) ∩ 𝑓(𝐵) holds (see the previous exercise).
Let’s prove that 𝑓(𝐴) ∩ 𝑓(𝐵) ⊂ 𝑓(𝐴 ∩ 𝐵).
Let 𝑦 ∈ 𝑓(𝐴) ∩ 𝑓(𝐵). Then 𝑦 = 𝑓(𝑥1) for some 𝑥1 ∈ 𝐴 and 𝑦 = 𝑓(𝑥2) for some 𝑥2 ∈ 𝐵.
Since 𝑓(𝑥1) = 𝑓(𝑥2) and 𝑓 is injective, we obtain that 𝑥1 = 𝑥2 ∈ 𝐴 ∩ 𝐵. Therefore 𝑦 = 𝑓(𝑥1) ∈ 𝑓(𝐴 ∩ 𝐵).
We proved that 𝑓(𝐴) ∩ 𝑓(𝐵) ⊂ 𝑓(𝐴 ∩ 𝐵). Thus 𝑓(𝐴) ∩ 𝑓(𝐵) = 𝑓(𝐴 ∩ 𝐵).

⇐ Assume that ∀𝐴, 𝐵 ∈ 𝒫(𝐸), 𝑓 (𝐴 ∩ 𝐵) = 𝑓(𝐴) ∩ 𝑓(𝐵).
Let 𝑥1, 𝑥2 ∈ 𝐸 be such that 𝑓(𝑥1) = 𝑓(𝑥2). Set 𝑦 ≔ 𝑓(𝑥1) = 𝑓(𝑥2).
Then 𝑓({𝑥1} ∩ {𝑥2}) = 𝑓({𝑥1}) ∩ 𝑓({𝑥2}) = {𝑦} ∩ {𝑦} = {𝑦}.
Particularly {𝑥1} ∩ {𝑥2} ≠ ∅, thus 𝑥1 = 𝑥2.

Sample solutions to Exercise 7.

|𝐴Δ𝐵| = |(𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵)|
= |𝐴 ∪ 𝐵| − |𝐴 ∩ 𝐵|
= |𝐴| + |𝐵| − |𝐴 ∩ 𝐵| − |𝐴 ∩ 𝐵|
= |𝐴| + |𝐵| − 2|𝐴 ∩ 𝐵|
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Sample solutions to Exercise 8.
1. Let 𝜑 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < |𝐸|} → 𝐸.

Then 𝜓 ∶ 𝐹 𝐸 → 𝐹 |𝐸| defined by 𝜓(𝑓) = (𝑓(𝜑(0)), … , 𝑓(𝜑(|𝐸| − 1))) is a bijection (prove it).
Therefore |𝐹 𝐸| = |𝐹 |𝐸|| = |𝐹 ||𝐸|.

2. According to the last exercise, there exists an injective function 𝐸 → 𝐹 if and only if |𝐸| ≤ |𝐹 |.
Next, since 𝐸 is finite, there exists a bijection 𝜑 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < |𝐸|} → 𝐸.
For 𝑓(𝜑(0)) we have |𝐹 | possible choices. For 𝑓(𝜑(1)) we have |𝐹 ∖ {𝑓(𝜑(0))}| = |𝐹 | − 1 choices. For
𝑓(𝜑(2)) we have |𝐹 ∖ {𝑓(𝜑(0)), 𝑓 (𝜑(1))}| = |𝐹 | − 2 choices. And so on.
Therefore, |{𝑓 ∈ 𝐸𝐹 ∶ 𝑓 is injective}| = |𝐹 |(|𝐹 | − 1) ⋯ (|𝐹 | − |𝐸| + 1) = |𝐹 |!

(|𝐹 |−|𝐸|)! .

Thus |{𝑓 ∈ 𝐸𝐹 ∶ 𝑓 is injective}| =
{

0 if |𝐸| > |𝐹 |
|𝐹 |!

(|𝐹 |−|𝐸|)! if |𝐸| ≤ |𝐹 | .

3. It a special case of the above question when |𝐸| = |𝐹 |: |{𝑓 ∈ 𝐸𝐸 ∶ 𝑓 is bijective}| = |𝐸|!
(|𝐸|−|𝐸|)! = |𝐸|!.

Sample solutions to Exercise 9.
The number of subsets with cardinality 𝑘 included in a set of cardinality 𝑛 is denoted (

𝑛
𝑘) read ”𝑛 choose

𝑘”.
We are going to prove that (

𝑛
𝑘) = 𝑛!

(𝑛−𝑘)!𝑘! .
Let 𝐸 a finite set. Set 𝑛 = |𝐸|. Fix 𝑘 ∈ {0, 1, … , 𝑛}.
An ordered list of 𝑘 distinct elements is the same as fixing an injection {0, 1, … , 𝑘 − 1} → 𝐸. So, using the
previous question there are 𝑛!

(𝑛−𝑘)! such ordered lists.
Two ordered lists of 𝑘 elements give the same subset if and only if one is obtained from the other one
permuting its elements, which is the same as constructing a bijection {0, 1, … , 𝑘 − 1} → {0, 1, … , 𝑘 − 1}.
From the previous question there are 𝑘! such bijections.

Therefore (
𝑛
𝑘) =

𝑛!
(𝑛−𝑘)!

𝑘! = 𝑛!
(𝑛−𝑘)!𝑘! .

Sample solutions to Exercise 10.
⇒
Method 1 (by induction):
Let’s prove by induction on 𝑛 = |𝐸| that 𝒫(𝐸) is finite and that |𝒫(𝐸)| = 2|𝐸|.

• Base case at 𝑛 = 0: if 𝐸 = ∅ then 𝒫(𝐸) = {∅} is finite.

• Induction step: assume that the statement holds for some 𝑛 ∈ ℕ, i.e. if 𝐸 is a set with |𝐸| = 𝑛 then 𝒫(𝐸)
is finite and |𝒫(𝐸)| = 2𝑛.
Let 𝐸 be a set such that |𝐸| = 𝑛 + 1. Since |𝐸| > 0, there exists 𝑥 ∈ 𝐸.
By the induction hypothesis, since |𝐸 ∖ {𝑥}| = 𝑛, we get that 𝒫(𝐸 ∖ {𝑥}) is finite and |𝒫(𝐸 ∖ {𝑥})| = 2𝑛.
Note that 𝒫(𝐸 ∖ {𝑥}) = {𝐴 ∈ 𝒫(𝐸) ∶ 𝑥 ∉ 𝐴} and that

{𝐴 ∈ 𝒫(𝐸) ∶ 𝑥 ∉ 𝐴} → {𝐴 ∈ 𝒫(𝐸) ∶ 𝑥 ∈ 𝐴}
𝐴 ↦ 𝐴 ∪ {𝑥}

is a bijection.
Therefore 𝒫(𝐸) = {𝐴 ∈ 𝒫(𝐸) ∶ 𝑥 ∉ 𝐴} ⊔ {𝐴 ∈ 𝒫(𝐸) ∶ 𝑥 ∈ 𝐴} is finite and
|𝒫(𝐸)| = |{𝐴 ∈ 𝒫(𝐸) ∶ 𝑥 ∉ 𝐴}| + |{𝐴 ∈ 𝒫(𝐸) ∶ 𝑥 ∈ 𝐴}| = 2𝑛 + 2𝑛 = 2𝑛+1.

Method 2 (using the previous exercise):
Let 𝐸 be a finite set. We know that for 𝑘 = 0, … , |𝐸|, the number of subsets with 𝑘 elements is (

𝑛
𝑘).
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Therefore the number of subsets included in 𝐸 is

|𝒫(𝐸)| =
|𝐸|

∑
𝑘=0

(
𝑛
𝑘) =

|𝐸|

∑
𝑘=0

(
𝑛
𝑘)1𝑘1|𝐸|−𝑘 = (1 + 1)|𝐸| = 2|𝐸|

Method 3 (which generalizes to infinite sets):

Let 𝐸 be a finite set. We define 𝜓 ∶ 𝒫(𝐸) → {0, 1}𝐸 by 𝜓(𝐴)(𝑥) = {
1 if 𝑥 ∈ 𝐴
0 otherwise .

Then 𝜓 is a bijection thus 𝒫(𝐸) is finite since {0, 1}𝐸 is and moreover |𝒫(𝐸)| = |{0, 1}𝐸| = 2|𝐸|.

⇐ Let 𝐸 be a set. Assume that 𝒫(𝐸) is finite.
Note that Φ ∶ 𝐸 → 𝒫(𝐸) defined by Φ(𝑥) = {𝑥} is injective. Therefore 𝐸 is finite too.

Sample solutions to Exercise 11.
1. ⇒ Assume that |𝐸| ≤ |𝐹 |.

There exist bijections 𝜑 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < |𝐸|} → 𝐸 and 𝜓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < |𝐹 |} → 𝐹 .
Since |𝐸| ≤ |𝐹 |, 𝑓 = 𝜓 ∘ 𝜑−1 ∶ 𝐸 → 𝐹 is well-defined and injective.
⇒ Assume that there exists an injection 𝑓 ∶ 𝐸 → 𝐹 .
Then 𝑓 induces a bijection 𝑓 ∶ 𝐸 → 𝑓(𝐸), so that |𝐸| = |𝑓(𝐸)|.
And since 𝑓(𝐸) ⊂ 𝐹 , we have |𝑓 (𝐸)| ≤ |𝐹 |.

2. It is a consequence of the previous question.

3. A participant shook either 0, 1,… or 𝑛 − 1 hands. So we have 𝑛 ”boxes”. Not that it is not possible
to have at the same time the boxes 0 and 𝑛 − 1 non-empty. Therefore we have only 𝑛 − 1 boxes for 𝑛
participants, so two participants must have shaken the same number of boxes.
Formally:

• First case: there is at least one participant who didn’t shake any hand. Then 𝑓 ∶ {participants} →
{0, 1, … , 𝑛 − 2} mapping each participant to the number of hands he shook is well-defined. Since
|{participants}| = 𝑛 > 𝑛 − 1 = |{0, 1, … , 𝑛 − 2}|, 𝑓 can’t be injective. Therefore at least two
participants shooke the same number of hands.

• Second case: all participants shooke at least one hand. Then 𝑓 ∶ {participants} → {1, … , 𝑛 − 1}
mapping eachparticipant to the number of hands he shook iswell-defined. Since |{participants}| =
𝑛 > 𝑛 − 1 = |{1, 2, … , 𝑛 − 1}|, 𝑓 can’t be injective. Therefore at least two participants shooke the
same number of hands.

4. For 𝑟 = 1, 2, … , 𝑛, set 𝑠𝑟 = ∑𝑟
𝑘=1 𝑎𝑘.

• First case: there exists 𝑟 such that 𝑛|𝑠𝑟. Then we are done.
• Second case: otherwise, we have 𝑛 numbers 𝑠1, … , 𝑠𝑛 whose remainders for the Euclidean divi-

sion by 𝑛 are among 1, … , 𝑛 − 1 (i.e. 𝑛 − 1 possible remainders). Hence at least two have the same
remainders, let’s say 𝑠𝑝 and 𝑠𝑞 with 𝑞 > 𝑝. Then 𝑛|𝑠𝑞 − 𝑠𝑝 = ∑𝑞

𝑘=𝑝+1 𝑎𝑘.

5. First, note that tan 𝑎−tan 𝑏
1+tan 𝑎 tan 𝑏 = tan(𝑎 − 𝑏) and that

tan 𝜋
12 = tan(

𝜋
3 − 𝜋

4 ) =
tan 𝜋

3 − tan 𝜋
4

1 + tan 𝜋
3 tan 𝜋

4
= √3 − 1

1 + √3
=

(√3 − 1)
2

2 = 2 − √3

Let 𝑥1, … , 𝑥13 be 13 distinct real numbers. We set 𝛼𝑘 = arctan 𝑥𝑘 ∈ (− 𝜋
2 , 𝜋

2 ). Note that the 𝛼𝑘 are
distinct since arctan is injective.
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Note that (− 𝜋
2 , 𝜋

2 ) = 𝐼1 ⊔ 𝐼2 ⊔ 𝐼3 ⊔ ⋯ ⊔ 𝐼12 where

𝐼1 = (−𝜋
2 , −𝜋

2 + 𝜋
12] , 𝐼2 = (−𝜋

2 + 𝜋
12, −𝜋

2 + 2 𝜋
12] , … , 𝐼11 = (−𝜋

2 + 10 𝜋
12, 𝜋

2 + 11 𝜋
12] , 𝐼12 = (−𝜋

2 + 11 𝜋
12, 𝜋

2 )
We define 𝑓 ∶ {𝛼1, … , 𝛼13} → {1, … , 12} by 𝑓(𝛼𝑘) = 𝑟 where 𝛼𝑘 ∈ 𝐼𝑟.
Since |{𝛼1, … , 𝛼13}| = 13 > 12 = |{1, … , 12}|, 𝑓 is not injective. So there exists 𝑎𝑙𝑝ℎ𝑎𝑘 < 𝛼𝑙 and
𝑟 = 1, … , 12 such that 𝛼𝑘, 𝛼𝑙 ∈ 𝐼𝑟. Then 0 < 𝛼𝑙 − 𝛼𝑘 < 𝜋

12 .
Since tan is increasing on (− 𝜋

2 , 𝜋
2 ), we get that tan 0 < tan(𝛼𝑙 − 𝛼𝑘) < tan 𝜋

12 = 2 − √3.
Note that tan(𝛼𝑙 − 𝛼𝑘) = tan 𝛼𝑙−tan 𝛼𝑘

1+tan 𝛼𝑙 tan 𝛼𝑘
= 𝑥𝑙−𝑥𝑘

1+𝑥𝑙𝑥𝑘
. Thus 0 < 𝑥𝑙−𝑥𝑘

1+𝑥𝑙𝑥𝑘
<= 2 − √3 as requested.

Sample solutions to Exercise 12.
Since 𝐸 ⊂ 𝐹 , we know that |𝐸| ≤ |𝐹 |.
Besides, since 𝐹 ⊂ 𝐺, we have |𝐹 | ≤ |𝐺| = |𝐸|.
By Cantor–Schröder–Bernstein theorem, we have |𝐸| = |𝐹 |.

Sample solutions to Exercise 13.

We define 𝜓 ∶ 𝒫(𝑆) → {0, 1}𝑆 by 𝜓(𝐴)(𝑥) = {
1 if 𝑥 ∈ 𝐴
0 otherwise .

Let’s prove that 𝜓 is a bijection:
• 𝜓 is injective.

Let 𝐴, 𝐵 ⊂ 𝑆 be such that 𝐴 ≠ 𝐵.
WLOG we may assume that there exists 𝑥 ∈ 𝑆 such that 𝑥 ∈ 𝐴 and 𝑥 ∉ 𝐵.
Therefore 𝜓(𝐴)(𝑥) = 1 and 𝜓(𝐵)(𝑥) = 0. Thus 𝜓(𝐴) ≠ 𝜓(𝐵).

• 𝜓 is surjective.
Let 𝑓 ∶ 𝑆 → {0, 1} be a function. Define 𝐴 = {𝑥 ∈ 𝑆 ∶ 𝑓(𝑥) = 1}. Then 𝑓 = 𝜓(𝐴).

Therefore |𝒫(𝑆)| = |{0, 1}𝑆 |.

Sample solutions to Exercise 14.
1. |{0, 1}ℕ| = |𝒫(ℕ)| = |ℝ|

2. The idea here is that a function {0, 1} → ℕ is characterized by the values of 0 and 1.
Define 𝜓 ∶ ℕ{0,1} → ℕ × ℕ by 𝜓(𝑓) = (𝑓(0), 𝑓 (1)).

• 𝜓 is injective: let 𝑓, 𝑔 ∶ ℕ → {0, 1} be such that 𝜓(𝑓) = 𝜓(𝑔). Then (𝑓 (0), 𝑓 (1)) = (𝑔(0), 𝑔(1)) so
that 𝑓(0) = 𝑔(0) and 𝑓(1) = 𝑔(1). Therefore 𝑓 = 𝑔.

• 𝜓 is surjective: let (𝑎, 𝑏) ∈ ℕ × ℕ. Define 𝑓 ∶ {0, 1} → ℕ by 𝑓(0) = 1 and 𝑓(1) = 𝑏. Then
𝜓(𝑓) = (𝑎, 𝑏).

Therefore |ℕ{0,1}| = |ℕ × ℕ| = ℵ0.

Sample solutions to Exercise 15.
1. Define 𝑓 ∶ 𝑆 → ℕ by 𝑓(𝐴) = ∑

𝑘∈𝐴
2𝑘.

Then 𝑓 is bijective by existence and uniqueness of the binary positional representation of a natural
number. Therefore |𝑆| = |ℕ| = ℵ0.

2. Assume that 𝑇 is countable then 𝒫(ℕ) = 𝑆 ⊔ 𝑇 is countable as the union of countable sets.
Which is a contradiction since |𝒫(ℕ)| = |ℝ| > ℵ0.
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Sample solutions to Exercise 16.
Let 𝑋 be as in the statement.
For 𝐼 ∈ 𝑋, we can find 𝑞𝐼 ∈ 𝐼 ∩ ℚ since 𝐼 is an interval which is non-empty and not reduced to a singleton.
Define 𝑓 ∶ 𝑋 → ℚ by 𝑓(𝐼) = 𝑞𝐼 . Let’s prove that 𝑓 is injective.
Let 𝐼, 𝐽 ∈ 𝑋 such that 𝑞 ≔ 𝑓(𝐼) = 𝑓(𝐽). Then 𝑞 = 𝑞𝐼 ∈ 𝐼 and 𝑞 = 𝑞𝐽 ∈ 𝐽 . Therefore 𝑞 ∈ 𝐼 ∩ 𝐽 ≠ ∅. Thus
𝐼 = 𝐽 (use the contrapositive of (ii)).
Hence |𝑋| ≤ |ℚ| = ℵ0. So 𝑋 is countable.

Sample solutions to Exercise 17.
⇒ Let’s prove that any infinite set admits a proper subset of same cardinality.
Let 𝑋 be an infinite set. We want to construct 𝑆 ⊊ 𝑋 satisfying |𝑆| = |𝑋|.
Since 𝑋 is infinite, ℵ0 ≤ |𝑋|, i.e. there exists an injective function 𝑓 ∶ ℕ → 𝑋.

We define 𝑔 ∶
⎧⎪
⎨
⎪⎩

𝑋 → 𝑋
𝑥 ↦ 𝑓(𝑛 + 1) if ∃𝑛 ∈ ℕ, 𝑥 = 𝑓(𝑛)
𝑥 ↦ 𝑥 if 𝑥 ∉ Im(𝑓 )

.

• 𝑔 is well-defined: given 𝑥 ∈ 𝑋, if ∃𝑛, 𝑚 ∈ ℕ, 𝑥 = 𝑓(𝑛) = 𝑓(𝑚) then 𝑛 = 𝑚 since 𝑓 is injective.

• 𝑔 is injective: let 𝑥, 𝑦 ∈ 𝑋 be such that 𝑔(𝑥) = 𝑔(𝑦).
– First case: 𝑔(𝑥) = 𝑔(𝑦) ∈ Im(𝑓 ) then there exists 𝑛, 𝑚 ∈ ℕ such that 𝑥 = 𝑓(𝑛) and 𝑦 = 𝑓(𝑚).

Since 𝑓(𝑛 + 1) = 𝑔(𝑥) = 𝑔(𝑦) = 𝑓(𝑚 + 1), we get that 𝑛 = 𝑚 by injectiveness of 𝑓 . Therefore
𝑥 = 𝑓(𝑛) = 𝑓(𝑚) = 𝑦.

– Second case: 𝑔(𝑥) = 𝑔(𝑦) ∉ Im(𝑓 ) then 𝑥 = 𝑔(𝑥) = 𝑔(𝑦) = 𝑦.
Note that 𝑓(0) ∉ Im(𝑔), thus 𝑓(0) ∈ 𝑋 ∖ Im(𝑔). Besides 𝑔 ∶ 𝑋 → Im(𝑔) is a bijection. Hence 𝑆 = Im(𝑔)
satisfies 𝑆 ⊊ 𝑋 and |𝑋| = |𝑆|.

⇐ We are going to prove the contrapositive: if a set is finite then it doesn’t admit a proper subset of same
cardinality.
Let 𝑋 be a finite set. Let 𝑆 ⊊ 𝑋 be a proper subset.
Then there exists 𝑥0 ∈ 𝑋 ∖ 𝑆 so that 𝑆 ⊔ {𝑥0} ⊂ 𝑋 and hence |𝑆 ⊔ {𝑥0}| = |𝑆| + 1 ≤ |𝐸|, i.e. |𝑆| < |𝐸|.

Sample solutions to Exercise 18.
1. Assume by contradiction that ℝ ∖ ℚ is countable. Then ℝ = (ℝ ∖ ℚ) ∪ ℚ is countable as the union of

two countable sets. Hence a contradiction.

2. One way to solve this question is to take an injective function ℝ → ℝ whose range is a proper interval
of ℝ and then tomove the rational values in the complement of the range aftermaking them irrational.
For instance:
Define 𝑓 ∶ ℝ → ℝ ∖ ℚ by

𝑓(𝑥) = {
𝑒𝑥 if 𝑒𝑥 ∉ ℚ

−𝑒𝑥 − 𝑒 otherwise

• 𝑓 is well-defined: if 𝑒𝑥 ∈ ℚ then −𝑒𝑥 − 𝑒 ∈ ℝ ∖ ℚ (since −𝑒𝑥 ∈ ℚ and −𝑒 ∈ ℝ ∖ ℚ).
• 𝑓 is injective: let 𝑥, 𝑦 ∈ ℝ be such that 𝑓(𝑥) = 𝑓(𝑦).

– First case: 𝑓(𝑥) = 𝑓(𝑦) > 0 then 𝑓(𝑥) = 𝑒𝑥 and 𝑓(𝑦) = 𝑒𝑦 thus 𝑒𝑥 = 𝑓(𝑥) = 𝑓(𝑦) = 𝑒𝑦 and then
𝑥 = 𝑦 since exp is injective.

– Second case: 𝑓(𝑥) = 𝑓(𝑦) < 0 then 𝑓(𝑥) = −𝑒𝑥 − 𝑒 and 𝑓(𝑦) = −𝑒𝑦 − 𝑒 thus −𝑒𝑥 − 𝑒 = 𝑓(𝑥) =
𝑓(𝑦) = −𝑒𝑦 − 𝑒, so that 𝑒𝑥 = 𝑒𝑦 and hence 𝑥 = 𝑦 since exp is injective.

Note that 𝑓(𝑥) = 𝑓(𝑦) ≠ 0 since 0 ∈ ℚ.

Thus |ℝ| ≤ |ℝ ∖ ℚ|. Besides |ℝ ∖ ℚ| ≤ |ℝ| since ℝ ∖ ℚ ⊂ ℝ.
Hence |ℝ| = |ℝ ∖ ℚ| by Cantor–Schröder–Bernstein theorem.
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Comment: (using the axiom of choice) it is true that if 𝐴 and 𝐵 are infinite sets then |𝐴 ∪ 𝐵| = max(|𝐴|, |𝐵|)
(but this statement was not proved in class, so you can’t use it).
Therefore, since |ℚ| < |ℝ ∖ ℚ|, |ℝ| = |(ℝ ∖ ℚ) ∪ ℚ| = max(|ℝ ∖ ℚ|, |ℚ|) = |ℝ ∖ ℚ|.

Sample solutions to Exercise 19.

Define 𝑓 ∶ ℝ → (0, 1) by 𝑓(𝑥) = arctan(𝑥)+ 𝜋
2

𝜋 . Then
• 𝑓 is well-defined:

for 𝑥 ∈ ℝ, − 𝜋
2 < arctan(𝑥) < 𝜋

2 thus 0 < arctan(𝑥)+ 𝜋
2 < 𝜋 and hence 0 < arctan(𝑥)+ 𝜋

2
𝜋 < 1, i.e. 𝑓(𝑥) ∈ (0, 1).

• 𝑓 is bijective: prove it using that arctan ∶ ℝ → (− 𝜋
2 , 𝜋

2 ) is bijective.
Therefore |(0, 1)| = |ℝ|.

There are lots of such bijections, for instance:

(0, 1) → ℝ
𝑥 ↦ 1

1+𝑒𝑥

(0, 1) → ℝ
𝑥 ↦ 2𝑥−1

𝑥−𝑥2

ℝ → (0, 1)
𝑥 ↦ 𝑒−𝑒𝑥

Sample solutions to Exercise 20.
1. First method:

We define 𝑓 ∶ (0, 1) × (0, 1) → (0, 1) as follows. Let (𝑥, 𝑦) ∈ (0, 1) × (0, 1).

Denote the proper decimal expansions of 𝑥 and 𝑦 by 𝑥 =
+∞

∑
𝑘=1

𝑎𝑘10−𝑘 = 0.𝑎1𝑎2 … where 𝑎𝑘 ∈ {0, 1, … , 9}

are not all equal to 0 and 𝑦 =
+∞

∑
𝑘=1

𝑏𝑘10−𝑘 = 0.𝑏1𝑏2 … similarly.

Then we set 𝑓(𝑥, 𝑦) =
+∞

∑
𝑘=0

𝑎𝑘10−(2𝑘+1) +
+∞

∑
𝑘=1

𝑏𝑘10−2𝑘 = 0.𝑎1𝑏1𝑎2𝑏2 … =
+∞

∑
𝑘=1

𝑐𝑘10−𝑘 where

𝑐𝑘 = {
𝑎𝑛 if ∃𝑛 ∈ ℕ ∖ {0}, 𝑘 = 2𝑛
𝑏𝑛 if ∃𝑛 ∈ ℕ, 𝑘 = 2𝑛 + 1

Then 𝑓 a bijection by existence and uniqueness of the proper decimal expansion.
Hence |(0, 1) × (0, 1)| = |(0, 1)|.
Since |(0, 1)| = |ℝ, we get |ℝ × ℝ| = |(0, 1) × (0, 1)| = |(0, 1)| = |ℝ|.

Second method:
Define 𝑓 ∶ 𝒫(ℕ) × 𝒫(ℕ) → 𝒫(ℕ) by 𝑓(𝐴, 𝐵) = {2𝑘 ∶ 𝑘 ∈ 𝐴} ∪ {2𝑙 + 1 ∶ 𝑙 ∈ 𝐵}.
Then 𝑓 is bijective (prove it).
Thus |𝒫(ℕ) × 𝒫(ℕ)| = |𝒫(ℕ)|.
Since |ℝ| = |𝒫(ℕ)|, we get |ℝ × ℝ| = |𝒫(ℕ) × 𝒫(ℕ)| = |𝒫(ℕ)| = |ℝ|.

2. Let’s prove by induction on 𝑛 ∈ ℕ ∖ {0} that |ℝ𝑛| = |ℝ|.

• Base case at 𝑛 = 1: then ℝ1 = ℝ thus |ℝ1| = |ℝ|.
• Inductive step: assume that |ℝ𝑛| = |ℝ| for some 𝑛 ∈ ℕ ∖ {0}. Then

|ℝ𝑛+1| = |ℝ𝑛 × ℝ|
= |ℝ × ℝ| since |ℝ𝑛| = |ℝ| and |ℝ| = |ℝ|
= |ℝ| by the previous question

3. One idea here is to notice that |ℝℕ| = |({0, 1}ℕ)
ℕ

| = |{0, 1}ℕ×ℕ| = |{0, 1}ℕ| = |ℝ|.
Since we have not covered arithmetic of cardinals, we need to prove each equality.
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• Since |ℝ| = |𝒫(ℕ)| = |{0, 1}ℕ|, there exists a bijection 𝜓 ∶ ℝ → {0, 1}ℕ.
We define 𝜑 ∶ ℝℕ → ({0, 1}ℕ)

ℕ by 𝜑(𝑓) = 𝜓 ∘ 𝑓 ∶ ℕ → {0, 1}ℕ.
Then 𝜑 is a bijection (check it), and thus |ℝℕ| = |({0, 1}ℕ)

ℕ
|.

• We define 𝜉 ∶ {0, 1}ℕ×ℕ → ({0, 1}ℕ)
ℕ by 𝜉(𝑓) ∶ {

ℕ → {0, 1}ℕ

𝑛 ↦ (𝑚 ↦ 𝑓(𝑛, 𝑚)) .

Check that 𝜉 is a bijection. Therefore |({0, 1}ℕ)
ℕ

| = |{0, 1}ℕ×ℕ|.
• Since |ℕ × ℕ| = |ℕ|, there exists a bijection 𝜁 ∶ ℕ × ℕ → ℕ.

We define 𝛾 ∶ {0, 1}ℕ → {0, 1}ℕ×ℕ by 𝛾(𝑓) = 𝑓 ∘ 𝜁 .
Check that 𝛾 is a bijection. Therefore |{0, 1}ℕ×ℕ| = |{0, 1}ℕ|.

Sample solutions to Exercise 21.
Define 𝑓 ∶ (0, 1) → 𝑆2 by 𝑓(𝑡) = (cos 𝑡, sin 𝑡, 0). Then 𝑓 is well-defined and injective.
Thus |ℝ| = |(0, 1)| ≤ |𝑆2|.
Besides, since 𝑆2 ⊂ ℝ3, we have that |𝑆2| ≤ |ℝ3| = |ℝ|.
By Cantor–Schröder–Bernstein theorem, we get that |𝑆2| = |ℝ|.

Sample solutions to Exercise 22.
A circle is characterized by its center and its radius. Therefore there is a bijection ℝ2 ×(0, +∞) → 𝑆 mapping
(𝑥, 𝑦, 𝑟) to the circle centered at (𝑥, 𝑦) of radius 𝑟.
Thus |𝑆| = |ℝ2 × (0, +∞)|.
Since exp ∶ ℝ → (0, +∞) is a bijection, we have |(0, +∞)| = |ℝ|. Hence |ℝ2 × (0, +∞)| = |ℝ3| = |ℝ|.
Therefore |𝑆| = |ℝ|.
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Due on February 5th, 2021

Except otherwise stated, you can only use the material covered from Jan 12 to Jan 26 (i.e. Chapter 1 & Chapter 2 up
to §3).

Exercise 1.
We define the binary relation ≺ on ℕ2 by (𝑥1, 𝑦1) ≺ (𝑥2, 𝑦2) ⇔ (𝑥1 < 𝑥2 or (𝑥1 = 𝑥2 and 𝑦1 ≤ 𝑦2)).
Is it an order? If so, is it total?

Exercise 2.
Prove that given 𝑛 ∈ ℕ ⧵ {0} there exist finitely many 𝛼1, … , 𝛼𝑚 ∈ ℕ pairwise distinct such that

𝑛 = 2𝛼1 + 2𝛼2 + ⋯ + 2𝛼𝑚

Exercise 3.
Solve 4𝑥(𝑥 + 1) = 𝑦(𝑦 + 1) for (𝑥, 𝑦) ∈ ℕ2.

Your answer can only rely on the properties of ℕ proved in Chapter 1.
Particularly, your proof should not involve negative integers, rationals, calculus…
Hint: compare 2𝑥 and 𝑦.

Exercise 4.
Prove that for every 𝑛 ≥ 3, there exist 𝑥1, … , 𝑥𝑛 ∈ ℕ ⧵ {0} pairwise distinct such that

1 = 1
𝑥1

+ 1
𝑥2

+ ⋯ + 1
𝑥𝑛

In this exercise, you may assume that you already know ℚ or ℝ so that 1
𝑥𝑖

is well-defined.
Hint: 1 = 1

2 + 1
2 .



2 Problem Set 1

Sample solution to Exercise 1.
We are going to prove that ≺ is a total order on ℕ2. It is actually called the lexicographic order.
It is the one used in dictionaries: you compare the first letter, if it is the same, then you look at the next one…

• Reflexivity. Let (𝑥, 𝑦) ∈ ℕ2. Then 𝑥 = 𝑥 and 𝑦 ≤ 𝑦. Thus (𝑥, 𝑦) ≺ (𝑥, 𝑦).

• Antisymmetry. Let (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ ℕ2 satisfying (𝑥1, 𝑦1) ≺ (𝑥2, 𝑦2) and (𝑥2, 𝑦2) ≺ (𝑥1, 𝑦1).
Assume by contradiction that 𝑥1 < 𝑥2, then (𝑥2, 𝑦2) ⊀ (𝑥1, 𝑦1). Which is a contradiction.
Assume by contradiction that 𝑥2 < 𝑥1, then (𝑥1, 𝑦1) ⊀ (𝑥2, 𝑦2). Which is a contradiction.
Thus 𝑥1 = 𝑥2.
Since (𝑥1, 𝑦1) ≺ (𝑥2, 𝑦2), we know that 𝑦1 ≤ 𝑦2. Since (𝑥2, 𝑦2) ≺ (𝑥1, 𝑦1), we know that 𝑦2 ≤ 𝑦1.
Thus 𝑦1 = 𝑦2.
We proved that (𝑥1, 𝑦1) = (𝑥2, 𝑦2).

• Transitivity. Let (𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3) ∈ ℕ2 satisfying (𝑥1, 𝑦1) ≺ (𝑥2, 𝑦2) and (𝑥2, 𝑦2) ≺ (𝑥3, 𝑦3).
– Case 1: 𝑥1 = 𝑥2 and 𝑥2 = 𝑥3.

Then 𝑥1 = 𝑥3. Furthemore 𝑦1 ≤ 𝑦2 and 𝑦2 ≤ 𝑦3, so 𝑦1 ≤ 𝑦3.
Hence (𝑥1, 𝑦1) ≺ (𝑥3, 𝑦3).

– Case 2: 𝑥1 = 𝑥2 and 𝑥2 < 𝑥3.
Then 𝑥1 < 𝑥3. Hence (𝑥1, 𝑦1) ≺ (𝑥3, 𝑦3).

– Case 3: 𝑥1 < 𝑥2 and 𝑥2 = 𝑥3.
Then 𝑥1 < 𝑥3. Hence (𝑥1, 𝑦1) ≺ (𝑥3, 𝑦3).

– Case 4: 𝑥1 < 𝑥2 and 𝑥2 < 𝑥3.
Then 𝑥1 < 𝑥3. Hence (𝑥1, 𝑦1) ≺ (𝑥3, 𝑦3).

• ≺ is a total order. Let (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ ℕ2. According to the lectures, exactly one of the follows occurs.
– Case 1: 𝑥1 < 𝑥2. Then (𝑥1, 𝑦1) ≺ (𝑥2, 𝑦2).
– Case 2: 𝑥2 < 𝑥1. Then (𝑥2, 𝑦2) ≺ (𝑥1, 𝑦1).
– Case 3: 𝑥1 = 𝑥2. Since ≤ is a total order on ℕ then

∗ either 𝑦1 ≤ 𝑦2 and then (𝑥1, 𝑦1) ≺ (𝑥2, 𝑦2)
∗ or 𝑦2 ≤ 𝑦1 and then (𝑥2, 𝑦2) ≺ (𝑥1, 𝑦1).

Sample solution to Exercise 2.
That’s the existence of the positional numeral system with base 2 (binary numeral system).

Method 1:
We are going to prove by strong induction that for every 𝑛 ≥ 1, there exist finitely many 𝛼1, … , 𝛼𝑚 ∈ ℕ
pairwise distinct such that 𝑛 = 2𝛼1 + 2𝛼2 + ⋯ + 2𝛼𝑚 .

• Base case at 𝑛 = 1. 1 = 20.

• Induction step. Assume that the statement holds for 1, 2, … , 𝑛 where 𝑛 ≥ 1.
By Euclidean division, 𝑛 + 1 = 2𝑞 + 𝑟 where 𝑞 ∈ ℕ and 𝑟 ∈ {0, 1}.
Note that 𝑞 ≠ 0 since otherwise 1 < 𝑛 + 1 = 𝑟 ≤ 1.
Hence 1 ≤ 𝑞 < 2𝑞 + 𝑟 = 𝑛 + 1.
Thus, by the induction hypothesis, 𝑞 = 2𝛼1 + 2𝛼2 + ⋯ + 2𝛼𝑚 where 𝛼1 > 𝛼2 > ⋯ > 𝛼𝑚 are natural
numbers.
Therefore 𝑛 + 1 = 2𝑞 + 𝑟 = 2𝛼1+1 + 2𝛼2+1 + ⋯ + 2𝛼𝑚+1 + 𝑟20.
Note that 𝛼1 + 1 > 𝛼2 + 1 > ⋯ > 𝛼𝑚 + 1 > 0. Hence the exponents are pairwise distinct (it is possible
for 20 to not appear if 𝑟 = 0).
Which ends the induction step.
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Method 2:
We are going to prove by strong induction that for every 𝑛 ≥ 1, there exist finitely many 𝛼1, … , 𝛼𝑚 ∈ ℕ
pairwise distinct such that 𝑛 = 2𝛼1 + 2𝛼2 + ⋯ + 2𝛼𝑚 .

• Base case at 𝑛 = 1. 1 = 20.

• Induction step. Assume that the statement holds for 1, 2, … , 𝑛 where 𝑛 ≥ 1.

(i) First case: 𝑛 + 1 is even. Then 𝑛 + 1 = 2𝑘 for some 𝑘 ∈ ℕ.
Note that 𝑘 ≠ 0 since otherwise 1 ≤ 𝑛 + 1 = 2𝑘 = 0.
Since 𝑘 ≠ 0, we get that 𝑘 < 2𝑘 = 𝑛 + 1, i.e. 𝑘 ≤ 𝑛.
Thus, by the induction hypothesis, 𝑘 = 2𝛼1 + 2𝛼2 + ⋯ + 2𝛼𝑚 where the 𝛼1, … , 𝛼𝑚 ∈ ℕ are pairwise
distinct.
So 𝑛 + 1 = 2 × (2𝛼1 + 2𝛼2 + ⋯ + 2𝛼𝑚) = 2𝛼1+1 + 2𝛼2+1 + ⋯ + 2𝛼𝑚+1.
Assume by contradiction that there exist 𝑖 ≠ 𝑗 such that 𝛼𝑖 + 1 = 𝛼𝑗 + 1. Then, by the cancellation
rule, 𝛼𝑖 = 𝛼𝑗 . Which is a contradiction since the 𝛼𝑖 are pairwise distinct.
Therefore the 𝛼1 + 1, 𝛼2 + 1, … , 𝛼𝑚 + 1 are pairwise distinct as requested.

(ii) Second case: 𝑛 + 1 is odd. Then 𝑛 + 1 = 2𝑘 + 1 for some 𝑘 ∈ ℕ.
Note that 𝑘 ≠ 0 since otherwise 𝑛 + 1 = 2 × 0 + 1 = 1 ⟹ 𝑛 = 0. Hence, as above, 𝑘 < 2𝑘 = 𝑛.
Thus, by the induction hypothesis, 𝑘 = 2𝛼1 + 2𝛼2 + ⋯ + 2𝛼𝑚 where the 𝛼1, … , 𝛼𝑚 ∈ ℕ are pairwise
distinct.
Hence 𝑛 + 1 = 1 + 2𝑘 = 20 + 2 × (2𝛼1 + 2𝛼2 + ⋯ + 2𝛼𝑚) = 20 + 2𝛼1+1 + 2𝛼2+1 + ⋯ + 2𝛼𝑚+1.
As above, the 𝛼𝑖 + 1 are pairwise distinct. Moreover 𝛼𝑖 + 1 > 0. Therefore the 0, 𝛼1 + 1, 𝛼2 +
1, … , 𝛼𝑚 + 1 are pairwise distinct, as requested.

Which ends the induction step.

Sample solution to Exercise 3.
Let (𝑥, 𝑦) ∈ ℕ2 be such that 4𝑥(𝑥 + 1) = 𝑦(𝑦 + 1).

1. First case: assume that 𝑦 ≤ 2𝑥. Then

𝑦(𝑦 + 1) ≤ 2𝑥(2𝑥 + 1) ≤ 2𝑥(2𝑥 + 2) = 4𝑥(𝑥 + 1) = 𝑦(𝑦 + 1)

Hence 2𝑥(2𝑥 + 1) ≤ 2𝑥(2𝑥 + 2) and 2𝑥(2𝑥 + 2) = 𝑦(𝑦 + 1) ≤ 2𝑥(2𝑥 + 1).
Thus 2𝑥(2𝑥 + 1) = 2𝑥(2𝑥 + 2), from which we get that 𝑥(2𝑥 + 1) = 𝑥(2𝑥 + 2).

• Either 𝑥 = 0 and then 𝑦 ≤ 0 so 𝑦 = 0.
• Or 𝑥 ≠ 0 and then, by cancellation, we get 2𝑥 + 1 = 2𝑥 + 2.

We derive from the previous equality that 1 = 2, which is impossible.
Thus the only possible solution in this case is (𝑥, 𝑦) = (0, 0).

2. Second case: assume that 2𝑥 < 𝑦, i.e. 2𝑥 + 1 ≤ 𝑦. Then

𝑦(𝑦 + 1) ≥ (2𝑥 + 1)(2𝑥 + 2) ≥ 2𝑥(2𝑥 + 2) = 𝑦(𝑦 + 1)

Hence, as above, (2𝑥 + 1)(2𝑥 + 2) = 2𝑥(2𝑥 + 2).
Note that 2𝑥 + 2 ≠ 0 since 2𝑥 + 2 ≥ 2 > 0.
So, by cancellation, 2𝑥 = 2𝑥 + 1 and hence 0 = 1, which is impossible.
Therefore there is no solution (𝑥, 𝑦) ∈ ℕ2 satisfying 2𝑥 < 𝑦.

We proved that the only possible solution is (𝑥, 𝑦) = (0, 0).
We have to check that conversely it is a solution, which is the case since then 4𝑥(𝑥 + 1) = 0 = 𝑦(𝑦 + 1).
So the only solution is (𝑥, 𝑦) = (0, 0).
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Sample solution to Exercise 4.
Method 1 (using my hint):
We are going to prove the statement by induction on 𝑛.

• Base case at 𝑛 = 3. Note that 1 = 1
2 + 1

3 + 1
6

• Induction step. Assume that the statement holds for some 𝑛 ≥ 3.
By the induction hypothesis, there exist 𝑥1 < … < 𝑥𝑛 in ℕ ⧵ {0} such that 1 = 1

𝑥1
+ 1

𝑥2
+ ⋯ + 1

𝑥𝑛
.

Note that 𝑥1 ≠ 1 since otherwise 1
𝑥1

+ 1
𝑥2

+ ⋯ + 1
𝑥𝑛

= 1 + 1
𝑥2

+ ⋯ + 1
𝑥𝑛

> 1. Thus 𝑥1 > 1.

Hence 1 = 1
2 + 1

2 = 1
2 + 1

2 (
1
𝑥1

+ 1
𝑥2

+ ⋯ + 1
𝑥𝑛 ) = 1

2 + 1
2𝑥1

+ 1
2𝑥2

+ ⋯ + 1
2𝑥𝑛

.
Besides, since 1 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛, we get that 2 < 2𝑥1 < 2𝑥2 < ⋯ < 2𝑥𝑛.
So the 𝑛 + 1 denominators are pairwise distinct.

Method 2:
We are going to prove the following stronger statement by induction on 𝑛: for 𝑛 ≥ 3, there exist 1 < 𝑥1 <
𝑥2 < ⋯ < 𝑥𝑛 such that 1 = 1

𝑥1
+ 1

𝑥2
+ ⋯ + 1

𝑥𝑛
and 𝑥𝑛 is even.

• Base case at 𝑛 = 3. Note that 1 = 1
2 + 1

3 + 1
6

• Induction step. Assume that the statement holds for some 𝑛 ≥ 3.
By the induction hypothesis, there exist 1 < 𝑥1 < … < 𝑥𝑛 in ℕ such that 1 = 1

𝑥1
+ 1

𝑥2
+ ⋯ + 1

𝑥𝑛
and 𝑥𝑛

is even.
Hence 𝑥𝑛 = 2𝑘 for some 𝑘 ∈ ℕ ⧵ {0}.
Note that 1

𝑥𝑛
= 1

2𝑘 = 1
3𝑘 + 1

6𝑘 .
Hence

1 = 1
𝑥1

+ 1
𝑥2

+ ⋯ + 1
𝑥𝑛−1

+ 1
3𝑘 + 1

6𝑘
Besides 6𝑘 is even and 1 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 = 2𝑘 < 3𝑘 < 6𝑘.
So the 𝑛 + 1 denominators are pairwise distinct.

Method 3:
We are going to prove the statement by induction on 𝑛.

• Base case at 𝑛 = 3. Note that 1 = 1
2 + 1

3 + 1
6

• Induction step. Assume that the statement holds for some 𝑛 ≥ 3.
By the induction hypothesis, there exist 𝑥1 < … < 𝑥𝑛 in ℕ ⧵ {0} such that 1 = 1

𝑥1
+ 1

𝑥2
+ ⋯ + 1

𝑥𝑛
.

Note that 𝑥1 ≠ 1 since otherwise 1
𝑥1

+ 1
𝑥2

+ ⋯ + 1
𝑥𝑛

= 1 + 1
𝑥2

+ ⋯ + 1
𝑥𝑛

> 1. Thus 𝑥1 > 1.

Note that for 𝑥 ≠ 0, 1
𝑥(𝑥 + 1) + 1

𝑥 + 1 = 𝑥 + 1
𝑥(𝑥 + 1) = 1

𝑥 .
Therefore

1 = 1
𝑥1

+ 1
𝑥2

+ ⋯ + 1
𝑥𝑛−1

+ 1
𝑥𝑛

= 1
𝑥1

+ 1
𝑥2

+ ⋯ + 1
𝑥𝑛−1

+ 1
𝑥𝑛 + 1 + 1

𝑥𝑛(𝑥𝑛 + 1)
Since 1 < 𝑥𝑛 and 0 < 𝑥𝑛 + 1, we get 𝑥𝑛 + 1 < 𝑥𝑛(𝑥𝑛 + 1).
Therefore 1 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 < 𝑥𝑛 + 1 < 𝑥𝑛(𝑥𝑛 + 1).
So the 𝑛 + 1 denominators are pairwise distinct.
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Except otherwise stated, you can only use the material covered in Chapters 1, 2 & 3.
You can also use the results proved in the exercise sheets 1, 2, 3 & 4.

Write your solutions concisely but without skipping important steps.
Make sure that your submission is readable on Crowdmark.

Exercise 1.
Find all 𝑛 ∈ ℤ such that 𝑛 − 4|3𝑛 − 17.

Exercise 2.
Find the integer solutions of 𝑥2 + 6𝑥 = 𝑦2 + 12.

Exercise 3.
1. Prove that

∀𝑎, 𝑥1, 𝑥2 ∈ ℤ ⧵ {0}, (gcd(𝑎, 𝑥1) = gcd(𝑎, 𝑥2) = 1) ⟹ gcd(𝑎, 𝑥1𝑥2) = 1

2. Let 𝑛 ≥ 2 be an integer. Prove that

∀𝑎, 𝑥1, … , 𝑥𝑛 ∈ ℤ ⧵ {0}, (gcd(𝑎, 𝑥1) = gcd(𝑎, 𝑥2) = ⋯ = gcd(𝑎, 𝑥𝑛) = 1) ⟹ gcd (𝑎, 𝑥1𝑥2 ⋯ 𝑥𝑛) = 1

Exercise 4.
Prove that the equation 𝑥3 − 𝑥2 + 𝑥 + 1 = 0 has no rational solution.

For this question, you can assume that ℚ = {
𝑝
𝑞 ∶ 𝑝 ∈ ℤ, 𝑞 ∈ ℕ ⧵ {0}, gcd(𝑝, 𝑞) = 1} with the usual operations.



2 Problem Set 2

Sample solution to Exercise 1.
Let 𝑛 ∈ ℤ such that 𝑛 − 4|3𝑛 − 17.
Since 𝑛 − 4|𝑛 − 4 and 𝑛 − 4|3𝑛 − 17 then 𝑛 − 4|(3𝑛 − 17) − 3(𝑛 − 4) = −5.
Hence the only possible solutions are 𝑛 − 4 = −5, −1, 1, 5, i.e. 𝑛 = −1, 3, 5, 9.
Conversely, we need to check which are solutions:

• 𝑛 = −1: then 𝑛 − 4 = −5 and 3𝑛 − 17 = −20. So it is a solution since −5| − 20
• 𝑛 = 3: then 𝑛 − 4 = −1. So it is a solution since −1 divides any integer.
• 𝑛 = 5: then 𝑛 − 4 = 1. So it is a solution since 1 divides any integer.
• 𝑛 = 9: then 𝑛 − 4 = 5 and 3𝑛 − 17 = 10. So it is a solution since 5|10.

Sample solution to Exercise 2.
Let 𝑥, 𝑦 ∈ ℤ, then

𝑥2 + 6𝑥 = 𝑦2 + 12 ⇔ (𝑥 + 3)2 = 𝑦2 + 21 ⇔ (𝑥 + 3)2 − 𝑦2 = 21 ⇔ (𝑥 + 𝑦 + 3)(𝑥 − 𝑦 + 3) = 21

Since the divisors of 21 are ±1, ±3, ±7 and ±21, we get the following cases:

1. {
𝑥 + 𝑦 + 3 = 21
𝑥 − 𝑦 + 3 = 1 ⇔ (𝑥, 𝑦) = (8, 10)

2. {
𝑥 + 𝑦 + 3 = −21
𝑥 − 𝑦 + 3 = −1 ⇔ (𝑥, 𝑦) = (−14, −10)

3. {
𝑥 + 𝑦 + 3 = 7
𝑥 − 𝑦 + 3 = 3 ⇔ (𝑥, 𝑦) = (2, 2)

4. {
𝑥 + 𝑦 + 3 = −7
𝑥 − 𝑦 + 3 = −3 ⇔ (𝑥, 𝑦) = (−8, −2)

5. {
𝑥 + 𝑦 + 3 = 3
𝑥 − 𝑦 + 3 = 7 ⇔ (𝑥, 𝑦) = (2, −2)

6. {
𝑥 + 𝑦 + 3 = −3
𝑥 − 𝑦 + 3 = −7 ⇔ (𝑥, 𝑦) = (−8, 2)

7. {
𝑥 + 𝑦 + 3 = 1
𝑥 − 𝑦 + 3 = 21 ⇔ (𝑥, 𝑦) = (8, −10)

8. {
𝑥 + 𝑦 + 3 = −1
𝑥 − 𝑦 + 3 = −21 ⇔ (𝑥, 𝑦) = (−14, 10)

Hence the integer solutions are (8, ±10), (−14, ±10), (2, ±2), (−8, ±2).
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Sample solution to Exercise 3.
1. Method 1 (with Bézout’s theorem):

Let 𝑎, 𝑥1, 𝑥2 ∈ ℤ ⧵ {0} be such that gcd(𝑎, 𝑥1) = gcd(𝑎, 𝑥2) = 1.
By Bézout’s identity, there exist 𝑢, 𝑣, 𝑢′, 𝑣′ ∈ ℤ such that 𝑎𝑢 + 𝑥1𝑣 = 1 and 𝑎𝑢′ + 𝑥2𝑣′ = 1.
Then 1 = (𝑎𝑢 + 𝑥1𝑣)(𝑎𝑢′ + 𝑥2𝑣′) = 𝑎(𝑎𝑢𝑢′ + 𝑢𝑥2𝑣′ + 𝑥1𝑣𝑢′) + 𝑥1𝑥2(𝑣𝑣′).
Therefore gcd(𝑎, 𝑥1𝑥2) = 1.

Method 2 (with Euclid’s lemma):
Let 𝑎, 𝑥1, 𝑥2 ∈ ℤ ⧵ {0} be such that gcd(𝑎, 𝑥1) = gcd(𝑎, 𝑥2) = 1.
Assume by contradiction that 𝑑 = gcd(𝑎, 𝑥1𝑥2) > 1, then there exists a prime number 𝑝 such that 𝑝|𝑑.
Since 𝑝|𝑑 and 𝑑|𝑎, we have that 𝑝|𝑎.
Since 𝑝|𝑑 and 𝑑|𝑥1𝑥2, we have that 𝑝|𝑥1𝑥2.
By Euclid’s lemma, either 𝑝|𝑥1 or 𝑝|𝑥2. WLOG, we may assume that 𝑝|𝑥1.
Then 𝑝|𝑥1 and 𝑝|𝑎, therefore 𝑝|gcd(𝑎, 𝑥1) = 1. Which is a contradiction.

Method 3 (with prime factorization):
Let 𝑎, 𝑥1, 𝑥2 ∈ ℤ ⧵ {0} be such that gcd(𝑎, 𝑥1) = gcd(𝑎, 𝑥2) = 1.
Write the prime decompositions 𝑎 = ∏𝑝 𝑝𝛼𝑝 , 𝑥1 = ∏𝑝 𝑝𝛽1𝑝 and 𝑥2 = ∏𝑝 𝑝𝛽2𝑝 .
Since gcd(𝑎, 𝑥𝑖) = 1, we know that, for 𝑝 prime, we have min(𝛼𝑝, 𝛽𝑖𝑝) = 0.
Therefore, for 𝑝 prime, we have min(𝛼𝑝, 𝛽1𝑝 + 𝛽2𝑝) ≤ min(𝛼𝑝, 𝛽1𝑝) + min(𝛼𝑝, 𝛽2𝑝) = 0.
Note that 𝑥1𝑥2 = ∏𝑝 𝑝𝛽1𝑝+𝛽2𝑝 .
Thus gcd(𝑎, 𝑥1𝑥2) = ∏𝑝 𝑝min(𝛼𝑝,𝛽1𝑝+𝛽2𝑝) = 1.

2. Let’s prove by induction on 𝑛 ≥ 2 that

∀𝑎, 𝑥1, … , 𝑥𝑛 ∈ ℤ ⧵ {0}, (gcd(𝑎, 𝑥1) = gcd(𝑎, 𝑥2) = ⋯ = gcd(𝑎, 𝑥𝑛) = 1) ⟹ gcd (𝑎, 𝑥1𝑥2 ⋯ 𝑥𝑛) = 1

• Base case at 𝑛 = 2: it is exactly the previous question.
• Induction step. Assume that the statement holds for some 𝑛 ≥ 2.

Let 𝑎, 𝑥1, … , 𝑥𝑛, 𝑥𝑛+1 ∈ ℤ ⧵ {0} such that gcd(𝑎, 𝑥1) = gcd(𝑎, 𝑥2) = ⋯ = gcd(𝑎, 𝑥𝑛+1) = 1.
By the induction hypothesis, gcd (𝑎, 𝑥1𝑥2 ⋯ 𝑥𝑛) = 1.
Since

gcd (𝑎, 𝑥1𝑥2 ⋯ 𝑥𝑛) = gcd(𝑎, 𝑥𝑛+1) = 1
by the previous question, we get that

gcd(𝑎, 𝑥1𝑥2 … 𝑥𝑛+1) = 1

Which proves the induction step.

Sample solution to Exercise 4.
Assume by contradiction that there exists 𝑥 ∈ ℚ such that 𝑥3 − 𝑥2 + 𝑥 + 1 = 0.
Then 𝑥 = 𝑝

𝑞 where 𝑝 ∈ ℤ, 𝑞 ∈ ℕ ⧵ {0} and gcd(𝑝, 𝑞) = 1.
Therefore 𝑥3−𝑥2+𝑥+1 = 0 implies (𝑝/𝑞)3−(𝑝/𝑞)2+𝑝/𝑞+1 = 0 fromwhichwe derive that 𝑝3−𝑝2𝑞+𝑝𝑞2+𝑞3 = 0.
Hence 𝑝|𝑞3 = −𝑝3 + 𝑝2𝑞 − 𝑝𝑞2.
Since gcd(𝑝, 𝑞) = 1, by Gauss’ lemma, 𝑝|𝑞2 and similarly 𝑝|𝑞.
Hence gcd(𝑝, 𝑞) = |𝑝|. So either 𝑝 = −1 or 𝑝 = 1.
Similarly 𝑞|𝑝3 = 𝑝2𝑞 − 𝑝𝑞2 − 𝑞3 so 𝑞 = 1.
Thence the only possible rational solutions are −1 and 1.
But they don’t satisfy the equation.
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You can only use the material covered in class up to lecture 12 (i.e. Chapters 1, 2, 3 and 4 up to section 5 included).
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Exercise 1.
Let 𝑝 be a prime number. Prove that

∀𝑠 ∈ ℕ ⧵ {0}, ∀𝑛 ∈ ℕ ⧵ {0}, ∀𝑥1, … , 𝑥𝑛 ∈ ℤ,
(

𝑛

∑
𝑘=1

𝑥𝑘)

𝑝𝑠

≡
𝑛

∑
𝑘=1

𝑥𝑝𝑠

𝑘 (mod 𝑝)

Exercise 2.
The following questions are independent.

1. For which 𝑛 ∈ ℕ, is 5𝑛 − 3𝑛 a prime number?

2. For which 𝑛 ∈ ℕ, is 22𝑛 + 5 a prime number?

Exercise 3.

Solve for 𝑥, 𝑦 ∈ ℕ ⧵ {0},
𝑥

∑
𝑘=1

(𝑘!) = 𝑦2.

Exercise 4.
Let 𝑝 be a prime number and 𝑛 ∈ ℕ satisfying 1 ≤ 𝑛 ≤ 𝑝 − 1.
Prove that (𝑝 − 𝑛)!(𝑛 − 1)! ≡ (−1)𝑛 (mod 𝑝).
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Sample solution to Exercise 1.
Method 1:
Let’s prove the statement by induction on 𝑠 ≥ 1.

• Base case at 𝑠 = 1:
Let 𝑛 ∈ ℕ ⧵ {0} and 𝑥1, … , 𝑥𝑛 ∈ ℤ.
By Fermat’s theorem we have:

•
(

𝑛

∑
𝑘=1

𝑥𝑘)

𝑝

≡
𝑛

∑
𝑘=1

𝑥𝑘 (mod 𝑝), and,

• For 𝑘 = 1, … , 𝑛, 𝑥𝑝
𝑘 ≡ 𝑥𝑘 (mod 𝑝).

Thus
(

𝑛

∑
𝑘=1

𝑥𝑘)

𝑝

≡
𝑛

∑
𝑘=1

𝑥𝑘 (mod 𝑝) ≡
𝑛

∑
𝑘=1

𝑥𝑝
𝑘 (mod 𝑝)

• Induction step: assume that the statement of the question holds for some 𝑠 ≥ 1.
Let 𝑛 ∈ ℕ ⧵ {0} and 𝑥1, … , 𝑥𝑛 ∈ ℤ.
Then

(

𝑛

∑
𝑘=1

𝑥𝑘)

𝑝𝑠+1

=
⎛
⎜
⎜
⎝
(

𝑛

∑
𝑘=1

𝑥𝑘)

𝑝𝑠
⎞
⎟
⎟
⎠

𝑝

≡
(

𝑛

∑
𝑘=1

𝑥𝑝𝑠

𝑘 )

𝑝

(mod 𝑝) by induction hypothesis

≡
𝑛

∑
𝑘=1

(𝑥𝑝𝑠

𝑘 )
𝑝

(mod 𝑝) by the case 𝑠 = 1

≡
𝑛

∑
𝑘=1

𝑥𝑝𝑠+1

𝑘 (mod 𝑝)

Method 2:
Lemma. Let’s first prove by induction on 𝑠 that ∀𝑠 ∈ ℕ ⧵ {0}, ∀𝑥 ∈ ℤ, 𝑥𝑝𝑠 ≡ 𝑥 (mod 𝑝).

• Base case at 𝑠 = 1: Let 𝑥 ∈ ℤ then 𝑥𝑝 ≡ 𝑥 (mod 𝑝) by Fermat’s theorem.

• Induction step: assume that the statement of the question holds for some 𝑠 ≥ 1.
Let 𝑥 ∈ ℤ then

𝑥𝑝𝑠+1 = (𝑥𝑝𝑠
)

𝑝

≡ 𝑥𝑝 (mod 𝑝) by the inductive hypothesis
≡ 𝑥 (mod 𝑝) by Fermat’s theorem

Which proves the lemma.

Let’s prove the statement of the question:
Let 𝑠 ∈ ℕ ⧵ {0}, 𝑥1, … , 𝑥𝑛 ∈ ℤ then

(

𝑛

∑
𝑘=1

𝑥𝑘)

𝑝𝑠

=
𝑛

∑
𝑘=1

𝑥𝑘 by the lemma

=
𝑛

∑
𝑘=1

𝑥𝑝𝑠

𝑘 by the lemma
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Sample solution to Exercise 2.
1. If 𝑛 = 0 then 50 − 30 = 0 is not prime.

If 𝑛 = 1 then 51 − 31 = 2 is prime.
If 𝑛 > 1 then 5𝑛 − 3𝑛 ≡ 1𝑛 − 1𝑛 (mod 2) ≡ 0 (mod 2). Thus 5𝑛 − 3𝑛 is even but 5𝑛 − 3𝑛 > 2, therefore it is
not prime.
Conclusion: 5𝑛 − 3𝑛 is prime for 𝑛 = 1 only.

2. If 𝑛 = 0 then 220 + 5 = 21 + 5 = 7 is prime.
If 𝑛 ≥ 1 then 22𝑛 + 5 ≡ (−1)2𝑛 + 2 (mod 3) ≡ 1 + 2 (mod 3) ≡ 0 (mod 3) (since 2𝑛 is even as 𝑛 ≥ 1).
Therefore 3|22𝑛 + 5 but 22𝑛 + 5 > 3. Thus 22𝑛 + 5 is not prime.
Conclusion: 22𝑛 + 5 is prime for 𝑛 = 0 only.

Sample solution to Exercise 3.
We first compute 𝑦2 (mod 5) in terms of 𝑦 (mod 5):

𝑦 (mod 5) 0 1 2 3 4
𝑦2 (mod 5) 0 1 4 4 1

We treat several cases.

1. Let 𝑥 = 1 then
𝑥

∑
𝑘=1

(𝑘!) = 1.

The unique 𝑦 ∈ ℕ ⧵ {0} such that 𝑦2 = 1 is 𝑦 = 1.

2. Let 𝑥 = 2 then
𝑥

∑
𝑘=1

(𝑘!) = 1! + 2! ≡ 3 (mod 5).

So there exists no 𝑦 ∈ ℤ such that
2

∑
𝑘=1

(𝑘!) = 𝑦2 by the above table.

3. Let 𝑥 = 3 then
𝑥

∑
𝑘=1

(𝑘!) = 1! + 2! + 3! = 9.

The unique 𝑦 ∈ ℕ ⧵ {0} such that 𝑦2 = 9 is 𝑦 = 3.

4. Let 𝑥 ≥ 4.
Note that for 𝑘 ≥ 5, we have 5|𝑘!.

Thus
𝑥

∑
𝑘=1

(𝑘!) ≡ 1! + 2! + 3! + 4! (mod 5) ≡ 33 (mod 5) ≡ 3 (mod 5).

So there exists no 𝑦 ∈ ℤ such that
𝑥

∑
𝑘=1

(𝑘!) = 𝑦2 when 𝑥 ≥ 4, by the above table.

So the solutions are (𝑥, 𝑦) = (1, 1) and (𝑥, 𝑦) = (3, 3).

Sample solution to Exercise 4.
Let 𝑝 be a prime number and 𝑛 ∈ ℕ satisfying 1 ≤ 𝑛 ≤ 𝑝 − 1.
Note that

(𝑝 − 1)! = (𝑝 − 𝑛)!(𝑝 − (𝑛 − 1))(𝑝 − (𝑛 − 2)) ⋯ (𝑝 − 1)
≡ (𝑝 − 𝑛)!(−(𝑛 − 1))(−(𝑛 − 2)) ⋯ (−1) (mod 𝑝)
≡ (𝑝 − 𝑛)!(−1)𝑛−1(𝑛 − 1)(𝑛 − 2) ⋯ 1 (mod 𝑝)
≡ (𝑝 − 𝑛)!(−1)𝑛−1(𝑛 − 1)! (mod 𝑝)

Since, by Wilson’s theorem, (𝑝 − 1)! ≡ −1 (mod 𝑝), we get that (𝑝 − 𝑛)!(−1)𝑛−1(𝑛 − 1)! ≡ −1 (mod 𝑝) and thus,
multiplying both side by (−1)𝑛−1, that (𝑝 − 𝑛)!(𝑛 − 1)! ≡ (−1)𝑛 (mod 𝑝).
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You can only use the material covered in class up to lecture 17 (i.e. up to Chapter 6, §4).
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Make sure that your submission is readable on Crowdmark.

Exercise 1.
Prove that ∀𝑎, 𝑏 ∈ ℕ ⧵ {0}, 𝜑(𝑎𝑏)𝜑(gcd(𝑎, 𝑏)) = 𝜑(𝑎)𝜑(𝑏) gcd(𝑎, 𝑏).

Make sure to explain each step.

Exercise 2.
Alice posted her RSA public key on her website: (𝑛, 𝑒) = (4559, 17).

1. Eve wants to spy on Alice: help her to find a suitable private key (𝑛, 𝑑).

2. Eve intercepts the ciphered message 𝑐 = 2741 that Bob sent to Alice. What is the original message?

You may use a computer to compute modular exponentiations, nonetheless, you need to explain your steps.
You can use the list of prime numbers less than 100 given in the lecture notes.

Exercise 3.

1. Let 𝑥 ∈ ℝ. Compute lim
𝑛→+∞

∑𝑛
𝑘=1⌊𝑘𝑥⌋

𝑛2 .

2. Use the above question to prove that any real number is the limit of a sequence of rational numbers.

For this question, you can use results about sequences from your first year calculus course.

Exercise 4.
Let 𝐴, 𝐵 ⊂ ℝ be such that inf(𝐴) and sup(𝐵) exist.

1. Prove that if inf(𝐴) = sup(𝐵) then 𝐴 ∩ 𝐵 contains at most one element.

2. Under the assumption that inf(𝐴) = sup(𝐵), is it possible for 𝐴 ∩ 𝐵 to be empty?
You need to justify your answer.
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Sample solution to Exercise 1.
Method 1:
Let 𝑎, 𝑏 ∈ ℕ ⧵ {0}. Write the prime factorization of gcd(𝑎, 𝑏) as

gcd(𝑎, 𝑏) =
𝑟

∏
𝑖=1

𝑝𝛿𝑖
𝑖

where 𝑟 ∈ ℕ, the 𝑝𝑖 are pairwise distinct prime numbers and 𝛿𝑖 ∈ ℕ ⧵ {0}. We set 𝑟 = 0 when gcd(𝑎, 𝑏) = 1.
Since gcd(𝑎, 𝑏)|𝑎, we may write

𝑎 =
𝑟

∏
𝑖=1

𝑝𝛿𝑖+𝛾𝑖
𝑖

𝑠

∏
𝑗=1

𝑞𝛼𝑗
𝑗

where 𝑠 ∈ ℕ, the 𝑞𝑗 are prime numbers such that the 𝑝𝑖, 𝑞𝑗 are pairwise distinct, 𝛾𝑖 ∈ ℕ and 𝛼𝑗 ∈ ℕ ⧵ {0}.
We allow 𝑠 = 0, with the convention that the product is then equal to 1.
Since gcd(𝑎, 𝑏)|𝑏, we may write

𝑏 =
𝑟

∏
𝑖=1

𝑝𝛿𝑖+ ̃𝛾𝑖
𝑖

𝑡

∏
𝑘=1

𝑚𝛽𝑘
𝑘

where 𝑡 ∈ ℕ, the 𝑚𝑘 are prime numbers such that the 𝑝𝑖, 𝑚𝑘 are pairwise distinct, ̃𝛾𝑖 ∈ ℕ and 𝛽𝑘 ∈ ℕ ⧵ {0}.
We allow 𝑡 = 0, with the convention that the product is then equal to 1.
Note that {𝑞1, … , 𝑞𝑠} ∩ {𝑚1, … , 𝑚𝑡} = ∅ since otherwise a common prime number would divide gcd(𝑎, 𝑏).
Then the prime factorization of 𝑎𝑏 is

𝑎𝑏 =
𝑟

∏
𝑖=1

𝑝𝛿𝑖+𝛾𝑖+ ̃𝛾𝑖
𝑖

𝑠

∏
𝑗=1

𝑞𝛼𝑗
𝑗

𝑡

∏
𝑘=1

𝑚𝛽𝑘
𝑘

where the 𝑝𝑖, 𝑞𝑗 , 𝑚𝑘 are pairwise distinct prime numbers.
As seen in class, we have

𝜑(gcd(𝑎, 𝑏)) = gcd(𝑎, 𝑏)
𝑟

∏
𝑖=1 (1 − 1

𝑝𝑖 )

𝜑(𝑎) = 𝑎
𝑟

∏
𝑖=1 (1 − 1

𝑝𝑖 )
𝑠

∏
𝑗=1 (1 − 1

𝑞𝑗 )

𝜑(𝑏) = 𝑏
𝑟

∏
𝑖=1 (1 − 1

𝑝𝑖 )
𝑡

∏
𝑘=1 (1 − 1

𝑚𝑘 )

𝜑(𝑎𝑏) = 𝑎𝑏
𝑟

∏
𝑖=1 (1 − 1

𝑝𝑖 )
𝑠

∏
𝑗=1 (1 − 1

𝑞𝑗 )
𝑡

∏
𝑘=1 (1 − 1

𝑚𝑘 )

Therefore

𝜑(𝑎𝑏)𝜑(gcd(𝑎, 𝑏)) = 𝑎𝑏
𝑟

∏
𝑖=1 (1 − 1

𝑝𝑖 )
𝑠

∏
𝑗=1 (1 − 1

𝑞𝑗 )
𝑡

∏
𝑘=1 (1 − 1

𝑚𝑘 )gcd(𝑎, 𝑏)
𝑟

∏
𝑖=1 (1 − 1

𝑝𝑖 )

=
⎛
⎜
⎜
⎝
𝑎

𝑟

∏
𝑖=1 (1 − 1

𝑝𝑖 )
𝑠

∏
𝑗=1 (1 − 1

𝑞𝑗 )
⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝
𝑏

𝑟

∏
𝑖=1 (1 − 1

𝑝𝑖 )
𝑡

∏
𝑘=1 (1 − 1

𝑚𝑘 )
⎞
⎟
⎟
⎠
gcd(𝑎, 𝑏)

= 𝜑(𝑎)𝜑(𝑏) gcd(𝑎, 𝑏)
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Method 2:
Let 𝑎, 𝑏 ∈ ℕ ⧵ {0}. Given a prime divisor 𝑝 of 𝑎𝑏, by Euclid’s lemma, exactly one of the following occurs:

• Either 𝑝 divides 𝑎 but not 𝑏,
• Or 𝑝 divides 𝑏 but not 𝑎,
• Or 𝑝 divides both 𝑎 and 𝑏, i.e. 𝑝|gcd(𝑎, 𝑏).

According to the lecture notes,

𝜑(𝑎𝑏) = 𝑎𝑏 ∏
𝑝 prime,

𝑝|𝑎𝑏

(1 − 1
𝑝)

𝜑(𝑎) = 𝑎 ∏
𝑝 prime,

𝑝|𝑎

(1 − 1
𝑝)

𝜑(𝑏) = 𝑏 ∏
𝑝 prime,

𝑝|𝑏

(1 − 1
𝑝)

𝜑(gcd(𝑎, 𝑏)) = gcd(𝑎, 𝑏) ∏
𝑝 prime,

𝑝|𝑎 and 𝑝|𝑏

(1 − 1
𝑝)

Therefore

𝜑(𝑎𝑏) = 𝑎𝑏 ∏
𝑝 prime,

𝑝|𝑎𝑏

(1 − 1
𝑝)

= 𝑎𝑏 ∏
𝑝 prime,

𝑝|𝑎 and 𝑝∤𝑏

(1 − 1
𝑝) ∏

𝑝 prime,
𝑝∤𝑎 and 𝑝|𝑏

(1 − 1
𝑝) ∏

𝑝 prime,
𝑝|𝑎 and 𝑝|𝑏

(1 − 1
𝑝)

=

⎛
⎜
⎜
⎜
⎜
⎝

𝑎 ∏
𝑝 prime,

𝑝|𝑎 and 𝑝∤𝑏

(1 − 1
𝑝) ∏

𝑝 prime,
𝑝|𝑎 and 𝑝|𝑏

(1 − 1
𝑝)

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

𝑏 ∏
𝑝 prime,

𝑝∤𝑎 and 𝑝|𝑏

(1 − 1
𝑝) ∏

𝑝 prime,
𝑝|𝑎 and 𝑝|𝑏

(1 − 1
𝑝)

⎞
⎟
⎟
⎟
⎟
⎠

∏
𝑝 prime,

𝑝|𝑎 and 𝑝|𝑏

(1 − 1
𝑝)

=

⎛
⎜
⎜
⎜
⎜
⎝

𝑎 ∏
𝑝 prime,

𝑝|𝑎

(1 − 1
𝑝)

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

𝑏 ∏
𝑝 prime,

𝑝|𝑏

(1 − 1
𝑝)

⎞
⎟
⎟
⎟
⎟
⎠

∏
𝑝 prime,

𝑝|𝑎 and 𝑝|𝑏

(1 − 1
𝑝)

= gcd(𝑎, 𝑏) 𝜑(𝑎)𝜑(𝑏)
𝜑(gcd(𝑎, 𝑏))



4 Problem Set 4

Sample solution to Exercise 2.
1. Note that 𝑛 = 4559 = 47 × 97 where 47 and 97 are prime numbers (see Example 3 of Chapter 3).

Therefore 𝜑(𝑛) = (47 − 1)(97 − 1) = 46 × 96 = 4416.
Let’s find a Bézout’s identity for 𝜑(𝑛) = 4416 and 𝑒 = 17:

4416 = 17 × 259 + 13
17 = 13 × 1 + 4
13 = 4 × 3 + 1

Therefore

1 = 13−4×3 = 13−(17−13)×3 = 17×(−3)+13×4 = 17×(−3)+(4416−17×259)×4 = 17×(−1039)+4416×4

Thus, if we set 𝑑 = −1039 + 4416 = 3377 then 𝑑 > 0 and 𝑒𝑑 ≡ 1 (mod 𝜑(𝑛)):

𝑒𝑑 = 17 × (−1039 + 4416) ≡ 17 × (−1039) + 4416 × 4 (mod 4416) ≡ 1 (mod 4416)

Thus (𝑛, 𝑑) = (4459, 3377) is a suitable private key.

2. 𝑐𝑒 = 27413377 ≡ 2718 (mod 4559), then 𝑚 = 2718 is the original message since 𝑚 ∈ {0, 1, … , 4558}.

Sample solution to Exercise 3.
1. Since ∀𝑘 ∈ ℕ, ⌊𝑘𝑥⌋ ≤ 𝑘𝑥 < ⌊𝑘𝑥⌋ + 1, we get

∑𝑛
𝑘=1⌊𝑘𝑥⌋

𝑛2 ≤
∑𝑛

𝑘=1 𝑘𝑥
𝑛2 = 𝑥𝑛(𝑛 + 1)

2𝑛2 = 𝑥𝑛 + 1
2𝑛

and
∑𝑛

𝑘=1⌊𝑘𝑥⌋
𝑛2 >

∑𝑛
𝑘=1(𝑘𝑥 − 1)

𝑛2 = 𝑥𝑛 + 1
2𝑛 − 1

𝑛
Therefore

𝑥𝑛 + 1
2𝑛 − 1

𝑛 <
∑𝑛

𝑘=1⌊𝑘𝑥⌋
𝑛2 ≤ 𝑥𝑛 + 1

2𝑛

Since lim
𝑛→+∞

𝑥𝑛 + 1
2𝑛 − 1

𝑛 = lim
𝑛→+∞

𝑥𝑛 + 1
2𝑛 = 𝑥

2 , we get from the Squeeze Theorem that

lim
𝑛→+∞

∑𝑛
𝑘=1⌊𝑘𝑥⌋

𝑛2 = 𝑥
2

2. Let 𝑥 ∈ ℝ. For 𝑛 ∈ ℕ ⧵ {0}, set 𝑢𝑛 = 2 ∑𝑛
𝑘=1⌊𝑘𝑥⌋

𝑛2 .
Then ∀𝑛 ∈ ℕ ⧵ {0}, 𝑢𝑛 ∈ ℚ and 𝑥 = lim

𝑛→+∞
𝑢𝑛 from the previous question.

Sample solution to Exercise 4.
1. Let 𝐴, 𝐵 ⊂ ℝ be such that inf(𝐴) and sup(𝐵) exist.

We are going to prove the contrapositive: if 𝐴 ∩ 𝐵 contains at least two elements then inf(𝐴) ≠ sup(𝐵).
Assume that there exist 𝑥, 𝑦 ∈ 𝐴 ∩ 𝐵 such that 𝑥 < 𝑦.
Then, since sup(𝐵) is an upper bound of 𝐵 and 𝑦 ∈ 𝐵, we have 𝑦 ≤ sup(𝐵).
Since inf(𝐴) is a lower bound of 𝐴 and 𝑥 ∈ 𝐴, we have inf(𝐴) ≤ 𝑥.
Therefore inf(𝐴) ≤ 𝑥 < 𝑦 ≤ sup(𝐵), so inf(𝐴) ≠ sup(𝐵).

2. Let 𝐴 = (0, 42) and 𝐵 = (−𝜋, 0). Then inf(𝐴) = sup(𝐵) = 0 and 𝐴 ∩ 𝐵 = ∅.
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Exercise 1.
Prove that ∀𝑥 ∈ ℝ ⧵ ℚ, ∀𝑎, 𝑏, 𝑐, 𝑑 ∈ ℚ, 𝑎𝑑 − 𝑏𝑐 ≠ 0 ⟹ 𝑎𝑥+𝑏

𝑐𝑥+𝑑 ∉ ℚ.

Remark: note that 𝑐𝑥 + 𝑑 ≠ 0 under the given assumptions.
Either 𝑐 = 0 but then 𝑐𝑥 + 𝑑 = 𝑑 ≠ 0 since 𝑎𝑑 − 𝑏𝑐 ≠ 0. Or 𝑐 ≠ 0 but then 𝑐𝑥 ∈ ℝ ⧵ ℚ and −𝑑 ∈ ℚ thus 𝑐𝑥 + 𝑑 ≠ 0.

Exercise 2.
Let 𝐸 be a finite set. Express

|{(𝐴, 𝐵) ∈ 𝒫(𝐸) × 𝒫(𝐸) ∶ 𝐴 ∪ 𝐵 = 𝐸}|
in terms of |𝐸|.

Hint: you may start studying the case where the cardinality of 𝐴 is fixed.

Exercise 3.
The following questions are independent.

1. Does it exist a set 𝐸 such that |𝒫(𝐸)| = ℵ0?

2. Prove that |[0, 1]| = |(0, 1)|.

Exercise 4.
We set

𝑆 = {𝑥 ∈ ℝ ∶ ∃𝑛 ∈ ℕ, ∃𝑎0, 𝑎1, … , 𝑎𝑛 ∈ ℤ, 𝑎𝑛 ≠ 0 and 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = 0}

What is |𝑆|?

Remark: you can use basic facts concerning polynomials and their roots.
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Sample solution to Exercise 1.
Let 𝑥 ∈ ℝ ⧵ ℚ. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℚ be such that 𝑎𝑑 − 𝑏𝑐 ≠ 0.
Assume by contradiction that 𝑞 ≔ 𝑎𝑥+𝑏

𝑐𝑥+𝑑 ∈ ℚ, then

𝑎𝑥 + 𝑏
𝑐𝑥 + 𝑑 = 𝑞 ⇔ 𝑥(𝑎 − 𝑞𝑐) = 𝑞𝑑 − 𝑏

• First case: if 𝑎 ≠ 𝑞𝑐 then 𝑥 = 𝑞𝑑−𝑏
𝑎−𝑞𝑐 ∈ ℚ, so there is a contradiction.

• Second case: if 𝑎 = 𝑞𝑐 then 𝑞𝑑 − 𝑏 = 𝑥(𝑎 − 𝑞𝑐) = 0, i.e. 𝑏 = 𝑞𝑑.
Therefore 𝑎𝑑 − 𝑏𝑐 = 𝑞𝑐𝑑 − 𝑞𝑑𝑐 = 0, so there is a contradiction.

Sample solution to Exercise 2.
Set 𝑛 ≔ |𝐸|.
Let 𝑖 = 0, … , 𝑛. Set Ω𝑖 ≔ {(𝐴, 𝐵) ∈ 𝒫(𝐸) × 𝒫(𝐸) ∶ 𝐴 ∪ 𝐵 = 𝐸 and |𝐴| = 𝑖}.
There are (

𝑛
𝑖) subsets 𝐴 ∈ 𝒫(𝐸) such that |𝐴| = 𝑖 (See Q10E09).

For a given 𝐴 as above, in order to have 𝐴 ∪ 𝐵 = 𝐸, 𝐵 must be of the form 𝐵 = 𝐴𝑐 ⊔ 𝐶 where 𝐶 ⊂ 𝐴.
There are 2𝑖 = |𝒫(𝐴)| choices for such a subset 𝐶 , and hence for 𝐵 (See Q10E10).
Therefore |Ω𝑖| = (

𝑛
𝑖)2𝑖.

Finally

|{(𝐴, 𝐵) ∈ 𝒫(𝐸) × 𝒫(𝐸) ∶ 𝐴 ∪ 𝐵 = 𝐸}| =
|

𝑛

⨆
𝑖=0

Ω𝑖|
=

𝑛

∑
𝑖=0

|Ω𝑖|

=
𝑛

∑
𝑖=0

(
𝑛
𝑖)2𝑖 =

𝑛

∑
𝑖=0

(
𝑛
𝑖)2𝑖1𝑛−𝑖 = (2 + 1)𝑛 = 3𝑛 = 3|𝐸|

Sample solution to Exercise 3.
1. Let 𝐸 be a set, then:

• Either 𝐸 is finite and then 𝒫(𝐸) is finite too by Q10E10, so that |𝒫(𝐸)| < ℵ0.
• Or 𝐸 is infinite and then ℵ0 ≤ |𝐸| < |𝑃 (𝐸)| by Cantor’s theorem.

In both cases |𝒫(𝐸)| ≠ ℵ0, so there is no set 𝐸 such that |𝒫(𝐸)| = ℵ0.

2. Method 1.
Note that (0, 1) ⊂ [0, 1], therefore |(0, 1)| ≤ |[0, 1]|.
Define 𝑓 ∶ [0, 1] → (0, 1) by 𝑓(𝑥) = 𝑥+1

3 .
Note that 𝑓 is well-defined since if 0 ≤ 𝑥 ≤ 1 then 0 < 1

3 ≤ 𝑥+1
3 ≤ 2

3 < 1.
Besides 𝑓 is injective since if 𝑥, 𝑦 ∈ [0, 1] satisfy 𝑓(𝑥) = 𝑓(𝑦), then 𝑥+1

3 = 𝑦+1
3 which implies 𝑥 = 𝑦.

Therefore |[0, 1]| ≤ |(0, 1)|.
By Cantor–Schröder–Bernstein theorem, we conclude that |[0, 1]| = |(0, 1)|.

Method 2.
We know that (0, 1) ⊂ [0, 1] ⊂ ℝ and that |(0, 1)| = |ℝ| (see Q11E08).
Therefore |[0, 1]| = |(0, 1)| (see Q11E01).
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Sample solution to Exercise 4.
Comment: a complex number that is the root of a non-zero polynomial with integers (or rational, it is equivalent)
coefficients is said to be an algebraic number. Complex numbers which are not roots of such polynomials are called
transcendental numbers.
The field of algebraic real numbers is quite often denoted by

ℝalg ≔ {𝑥 ∈ ℝ ∶ ∃𝑛 ∈ ℕ, ∃𝑎0, 𝑎1, … , 𝑎𝑛 ∈ ℤ, 𝑎𝑛 ≠ 0 and 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = 0}

The goal of this exercise was to prove that |ℝalg| = ℵ0, i.e. there are infinitely countably many algebraic real numbers,
so that almost all real numbers are transcendental (but it is usually quite difficult to prove that a number is tran-
scendental: we still don’t know whether 𝜋 + 𝑒 or 𝜋𝑒 are transcendental or not). This was first proved by Cantor in is
famous article Ueber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen published 1874.

Claim. ∀𝑛 ∈ ℕ ⧵ {0}, |ℤ𝑛| = ℵ0.
Proof by induction on 𝑛 ≥ 1.
Base case at 𝑛 = 1: |ℤ1| = |ℤ| = ℵ0 (from the lecture notes).
Induction step. Assume that |ℤ𝑛| = ℵ0 for some 𝑛 ≥ 1.
Since |ℤ𝑛| = |ℕ| and |ℤ| = |ℕ|, we have |ℤ𝑛+1| = |ℤ𝑛 × ℤ| = |ℕ × ℕ| = ℵ0.

Method 1.
For 𝑛 ∈ ℕ and 𝑎0, 𝑎1, … , 𝑎𝑛 ∈ ℤ with 𝑎𝑛 ≠ 0, the set

{𝑥 ∈ ℝ ∶ 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = 0}

is finite since a polynomial of degree 𝑛 has at most 𝑛 roots.
For 𝑛 ∈ ℕ, we set

𝐴𝑛 = ⋃
(𝑎0,𝑎1,…,𝑎𝑛)∈ℤ𝑛×(ℤ⧵{0})

{𝑥 ∈ ℝ ∶ 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = 0}

Since |ℤ𝑛| = |ℕ| and |ℤ ⧵ {0}| = |ℕ|, we have that |ℤ𝑛 × (ℤ ⧵ {0})| = |ℕ × ℕ| = ℵ0.
Therefore 𝐴𝑛 is countable as a countable union of finite sets.
Hence 𝑆 = ⋃𝑛∈ℕ 𝐴𝑛 is countable as a countable union of countable sets.
Note that ℤ ⊂ 𝑆, since 𝑚 ∈ ℤ is a root of 𝑥 − 𝑚 = 0.
Therefore 𝑆 is countably infinite, i.e. |𝑆| = ℵ0.

Method 2.
For 𝑛 ∈ ℕ, we denote by 𝑃𝑛 the set of polynomials of degree 𝑛 with integer coefficients.
Note that |𝑃𝑛| = |ℤ𝑛 × ℤ ⧵ {0}| since a polynomial 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 of degree 𝑛 is characterized
by its coefficients (𝑎0, 𝑎1, … , 𝑎𝑛) ∈ ℤ𝑛 × (ℤ ⧵ {0}).
Since |ℤ𝑛| = |ℕ| and |ℤ ⧵ {0}| = |ℕ|, we have that |𝑃𝑛| = |ℤ𝑛 × (ℤ ⧵ {0})| = |ℕ × ℕ| = ℵ0.
Hence the set 𝑃 = ⋃

𝑛∈ℕ
𝑃𝑛 of non-zero polynomials with integer coefficients is countable as a countable union

of countable sets.
Given 𝑓 ∈ 𝑃 , 𝑓 −1({0}) = {𝑥 ∈ ℝ ∶ 𝑓(𝑥) = 0} is finite since a polynomial of degree 𝑛 has at most 𝑛 roots.
Therefore 𝑆 = ⋃

𝑓∈𝑃
𝑓 −1(0) is countable as a countable union of finite sets.

Note that ℤ ⊂ 𝑆, since 𝑚 ∈ ℤ is a root of 𝑥 − 𝑚 = 0.
Therefore 𝑆 is countably infinite, i.e. |𝑆| = ℵ0.
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Exercise 1. 15 P.
Prove that ∀𝑛 ∈ ℕ ⧵ {0, 1}, 2𝑛 − 1 > 𝑛.

Exercise 2. 20 P.

1. Prove that ∀𝑚 ∈ ℕ ⧵ {0}, ∀𝑥 ∈ ℝ, 𝑥𝑚 − 1 = (𝑥 − 1)
⎛
⎜
⎜
⎝

𝑚−1

∑
𝑘=0

𝑥𝑘
⎞
⎟
⎟
⎠
.

2. Let 𝑛 ∈ ℕ ⧵ {0}. Prove that if 𝑛 is a composite number then 2𝑛 − 1 is composite too.
Recall that a natural number 𝑛 is composite if and only if there exist 𝑎, 𝑏 ∈ ℕ ⧵ {0, 1} such that 𝑛 = 𝑎𝑏.

3. We say that 𝑛 ∈ ℕ ⧵ {0, 1} is 2-prime if 2𝑛 ≡ 2 (mod 𝑛).
Prove that if 𝑛 is 2-prime then 2𝑛 − 1 is 2-prime too.

4. Deduce that there are infinitely many composite 2-prime numbers.
We admit that 341 is 2-prime.

Exercise 3. 15 P.
Let 𝑝 be a prime number. Prove that ∀𝑎, 𝑏 ∈ ℤ, 𝑎𝑝 ≡ 𝑏𝑝 (mod 𝑝) ⟹ 𝑎𝑝 ≡ 𝑏𝑝 (mod 𝑝2).

Exercise 4. 15 P.
We set 𝐷 ≔ {

𝑚
2𝑛 ∶ 𝑚 ∈ ℤ, 𝑛 ∈ ℕ}.

Prove that 𝐷 is dense in ℝ, i.e. prove that ∀𝑥, 𝑦 ∈ ℝ, 𝑥 < 𝑦 ⟹ ∃𝑑 ∈ 𝐷, 𝑥 < 𝑑 < 𝑦.

Exercise 5. 20 P.
Define 𝜃 ∶ ℤ × ℤ → ℝ by 𝜃(𝑎, 𝑏) = 𝑎 + 𝑏√2.

1. Is 𝜃 surjective?

2. Prove that 𝜃 is injective.

3. We set ℤ [√2] ≔ {𝑎 + 𝑏√2 ∶ 𝑎, 𝑏 ∈ ℤ}. Prove that |ℤ [√2]| = ℵ0.

Exercise 6. 15 P.
1. Prove that |ℝℚ| = |ℝ| where ℝℚ is the set of functions ℚ → ℝ.

2. We denote by 𝒞0(ℝ) the set of continuous functions ℝ → ℝ.

Prove that Φ ∶ {
𝒞0(ℝ) → ℝℚ

𝑓 ↦ 𝑓|ℚ
is injective, where 𝑓|ℚ denotes the restriction of 𝑓 to ℚ.

Remark: recall from your calculus course that if 𝑓 ∈ 𝒞0(ℝ) and lim
𝑛→+∞

𝑥𝑛 = ℓ then lim
𝑛→+∞

𝑓(𝑥𝑛) = 𝑓(ℓ).
Hint: don’t forget you can use results from problem sets.

3. Prove that |𝒞0(ℝ)| = |ℝ|.
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Sample solutions to Exercise 1.
Let’s prove the statement by induction on 𝑛 ≥ 2.

• Base case at 𝑛 = 2: 2𝑛 − 1 = 22 − 1 = 3 > 2 = 𝑛.

• Induction step. Assume that 2𝑛 − 1 > 𝑛 holds for some 𝑛 ≥ 2. Then

2𝑛+1 − 1 = 2 × 2𝑛 − 1 = 2(2𝑛 − 1) + 1
> 2𝑛 + 1 by the induction hypothesis
> 𝑛 + 1 since 𝑛 > 0

Which ends the induction step.

Comment: I asked this question to evaluate your writings for proof by inductions (since I insisted a lot on it this term) and I
picked this statement to prove by induction because it is useful for Exercises 2 and 4.

Sample solutions to Exercise 2.
1. Comment: Several students complained by e-mail that there is an issue when 𝑥 = 0 because 00 is undefined, but you use

the convention 00 = 1 all the time for such formulae, e.g.:

• Binomial formula: ∀𝑥, 𝑦 ∈ ℝ, ∀𝑛 ∈ ℕ, (𝑥 + 𝑦)𝑛 = ∑𝑛
𝑘=0 (

𝑛
𝑘)𝑥𝑘𝑦𝑛−𝑘

• Geometric sum: ∀𝑥 ∈ ℝ ⧵ {1}, ∀𝑛 ∈ ℕ, ∑𝑛
𝑘=0 𝑥𝑘 = 1−𝑥𝑛+1

1−𝑥
• When defining a polynomial function 𝑓 ∶ ℝ → ℝ by 𝑓(𝑥) = ∑𝑛

𝑘=0 𝑎𝑘𝑥𝑘

• When we proved that for finite sets |𝐸𝐹 | = |𝐸||𝐹 | (including the case 𝐸 = 𝐹 = ∅)
• …

Method 1:
Let 𝑥 ∈ ℝ.

We are going to prove that ∀𝑚 ∈ ℕ ⧵ {0}, 𝑥𝑚 − 1 = (𝑥 − 1)
⎛
⎜
⎜
⎝

𝑚−1

∑
𝑘=0

𝑥𝑘
⎞
⎟
⎟
⎠
by induction on 𝑚 ≥ 1.

• Base case at 𝑚 = 1: (𝑥 − 1)
⎛
⎜
⎜
⎝

1−1

∑
𝑘=0

𝑥𝑘
⎞
⎟
⎟
⎠

= (𝑥 − 1)𝑥0 = 𝑥 − 1 = 𝑥1 − 1.

• Induction step. Assume that 𝑥𝑚 − 1 = (𝑥 − 1)
⎛
⎜
⎜
⎝

𝑚−1

∑
𝑘=0

𝑥𝑘
⎞
⎟
⎟
⎠
for some 𝑚 ≥ 1. Then

(𝑥 − 1)
(

𝑚

∑
𝑘=0

𝑥𝑘
)

= (𝑥 − 1)
⎛
⎜
⎜
⎝

𝑚−1

∑
𝑘=0

𝑥𝑘 + 𝑥𝑚
⎞
⎟
⎟
⎠

= (𝑥 − 1)
𝑚−1

∑
𝑘=0

𝑥𝑘 + (𝑥 − 1)𝑥𝑚

= (𝑥𝑚 − 1) + (𝑥 − 1)𝑥𝑚 by induction hypothesis
= 𝑥𝑚 − 1 + 𝑥𝑚+1 − 𝑥𝑚 = 𝑥𝑚+1 − 1

which ends the induction step.

Method 2:
Let 𝑚 ∈ ℕ ⧵ {0} and 𝑥 ∈ ℝ. Then we have the following telescoping sum:

(𝑥 − 1)
⎛
⎜
⎜
⎝

𝑚−1

∑
𝑘=0

𝑥𝑘
⎞
⎟
⎟
⎠

= 𝑥
⎛
⎜
⎜
⎝

𝑚−1

∑
𝑘=0

𝑥𝑘
⎞
⎟
⎟
⎠

−
𝑚−1

∑
𝑘=0

𝑥𝑘 =
𝑚−1

∑
𝑘=0

𝑥𝑘+1 −
𝑚−1

∑
𝑘=0

𝑥𝑘 =
𝑚

∑
𝑘=1

𝑥𝑘 −
𝑚−1

∑
𝑘=0

𝑥𝑘 = 𝑥𝑚 − 𝑥0 = 𝑥𝑚 − 1
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2. Let 𝑛 be a composite number. Then 𝑛 = 𝑎𝑏 for some 𝑎, 𝑏 ∈ ℕ ⧵ {0, 1}.
Therefore

2𝑛 − 1 = 2𝑎𝑏 − 1 = (2𝑎)𝑏 − 1 = (2𝑎 − 1)
⎛
⎜
⎜
⎝

𝑏−1

∑
𝑘=0

2𝑎𝑘
⎞
⎟
⎟
⎠

by Question 1 since 𝑏 ∈ ℕ ⧵ {0}

Since 𝑎 > 1, by Exercise 1, 2𝑎 − 1 > 𝑎 > 1.

Besides
𝑏−1

∑
𝑘=0

2𝑎𝑘 ≥ 20 + 2𝑎 > 1 since 𝑏 > 1.

Therefore 2𝑛 − 1 is composite.

3. Method 1:
Let 𝑛 ∈ ℕ ⧵ {0, 1} be a 2-prime number. Then 2𝑛 ≡ 2 (mod 𝑛), so that 2𝑛 = 2 + 𝜆𝑛 for some 𝜆 ∈ ℤ.
Note that, by Exercise 1 as 𝑛 ∈ ℕ ⧵ {0, 1}, 2𝑛 − 1 > 𝑛 ≥ 2. Thus 2𝑛 − 1 ∈ ℕ ⧵ {0, 1} and 𝜆 > 0.
Therefore

22𝑛−1−2 = 22+𝜆𝑛−1−2 = 21+𝜆𝑛−2 = 2 (2𝜆𝑛 − 1) = 2 ((2𝑛)
𝜆 − 1)) = 2 (2𝑛 − 1)

⎛
⎜
⎜
⎝

𝜆−1

∑
𝑘=0

2𝑛𝑘
⎞
⎟
⎟
⎠

by Q1 since 𝜆 > 0.

So 2𝑛 − 1|22𝑛−1 − 2, i.e. 22𝑛−1 ≡ 2 (mod 2𝑛 − 1).
Hence 2𝑛 − 1 is 2-prime.

Method 2:
Let 𝑛 ∈ ℕ ⧵ {0, 1} be a 2-prime number. Then 2𝑛 ≡ 2 (mod 𝑛), so that 2𝑛 = 2 + 𝜆𝑛 for some 𝜆 ∈ ℤ.
Note that, by Exercise 1 as 𝑛 ∈ ℕ ⧵ {0, 1}, 2𝑛 − 1 > 𝑛 ≥ 2. Thus 2𝑛 − 1 ∈ ℕ ⧵ {0, 1} and 𝜆 > 0.
Therefore 22𝑛−1 = 22+𝜆𝑛−1 = 21+𝜆𝑛 = 2 × (2𝑛)𝜆 ≡ 2 × 1𝜆 (mod 2𝑛 − 1) ≡ 2 (mod 2𝑛 − 1).
Hence 2𝑛 − 1 is 2-prime.

4. Assume by contradiction that the set of composite 2-prime numbers is finite, then it is bounded.
Besides it is non-empty since 341 = 11 × 31 is a composite 2-prime number.
Therefore there exists a greatest composite 2-prime number 𝑁 (Chapter 2, Theorem 17).
By Questions 2 and 3, 2𝑁 − 1 is a composite 2-prime number too since 𝑁 ≥ 341 > 1.
Besides 2𝑁 − 1 > 𝑁 by Exercise 1 since 𝑁 ≥ 341 > 1.
Hence a contradiction since 𝑁 is the greatest composite 2-prime number.

Sample solutions to Exercise 3.
Let 𝑎, 𝑏 ∈ ℤ be such that 𝑎𝑝 ≡ 𝑏𝑝 (mod 𝑝).
By Fermat’s little theorem, since 𝑝 is prime, we know that 𝑎𝑝 ≡ 𝑎 (mod 𝑝) and that 𝑏𝑝 ≡ 𝑏 (mod 𝑝).
Therefore 𝑎 ≡ 𝑏 (mod 𝑝). Thus there exists 𝜆 ∈ ℤ such that 𝑎 = 𝑏 + 𝜆𝑝.

Then 𝑎𝑝 = (𝑏+𝜆𝑝)𝑝 =
𝑝

∑
𝑘=0

(
𝑝
𝑘)𝑏𝑝−𝑘(𝜆𝑝)𝑘 = 𝑏𝑝 +𝑝𝑏𝑝−1𝜆𝑝+

𝑝

∑
𝑘=2

(
𝑝
𝑘)𝑏𝑝−𝑘𝜆𝑘𝑝𝑘 ≡ 𝑏𝑝 +0+

𝑝

∑
𝑘=2

0 (mod 𝑝2) ≡ 𝑏𝑝 (mod 𝑝2)

(note that 𝑝2|𝑝𝑏𝑝−1𝜆𝑝 = 𝑝2𝑏𝑝−1𝜆 and that 𝑝2|𝑝𝑘 for 𝑘 ≥ 2).

Sample solutions to Exercise 4.
We adapt the proof of Theorem 45 from Chapter 6, using 2𝑛 as denominator instead of 𝑛.
Let 𝑥, 𝑦 ∈ ℝ be such that 𝑥 < 𝑦.
Set 𝜀 = 𝑦 − 𝑥 > 0.
By the archimedean property of ℝ, there exists 𝑛 ∈ ℕ such that 𝑛𝜀 > 1.
Note that 𝑛 > 0, since otherwise 0 > 1. Therefore 1

𝑛 < 𝜀.
Note that 2𝑛 > 𝑛. Indeed if 𝑛 > 1 then 2𝑛 > 𝑛 + 1 > 𝑛 by Exercise 1, otherwise if 𝑛 = 1 then 21 = 2 > 1.
Thus 0 < 1

2𝑛 < 1
𝑛 < 𝜀.

Set 𝑚 = ⌊2𝑛𝑥⌋ + 1, then 2𝑛𝑥 < 𝑚 ≤ 2𝑛𝑥 + 1, so 𝑥 < 𝑚
2𝑛 ≤ 𝑥 + 1

2𝑛 < 𝑥 + 𝜀 = 𝑦.
Hence 𝑑 = 𝑚

2𝑛 ∈ 𝐷 satisfies 𝑥 < 𝑑 < 𝑦.



4 Final Exam

Sample solutions to Exercise 5.
1. Method 1:

We are going to prove that √3 ∉ Im(𝜃).
Assume by contradiction that there exists (𝑎, 𝑏) ∈ ℤ2 such that 𝜃(𝑎, 𝑏) = √3. Then √3 = 𝑎 + 𝑏√2.

• If 𝑎 = 0, then √3 = 𝑏√2, so that 3 = 2𝑏2 with 𝑏2 ∈ ℤ. Then 2|3 which is impossible.
(alternatively: if 𝑎 = 0 then 3

2 = 𝑏2 ∈ ℤ, which is impossible).
Hence 𝑎 ≠ 0.

• If 𝑏 = 0, then √3 = 𝑎 ∈ ℚ. Which is impossible.
Hence 𝑏 ≠ 0.

Squaring √3 = 𝑎 + 𝑏√2, we get 3 = 𝑎2 + 2𝑏2 + 2𝑎𝑏√2, so that √2 = 3−𝑎2−2𝑏2

2𝑎𝑏 ∈ ℚ.
Which is a contradiction. Hence √3 ∉ Im(𝜃) and 𝜃 is not surjective.

Method 2:
We are going to prove that √3 ∉ Im(𝜃).
Assume by contradiction that there exists (𝑎, 𝑏) ∈ ℤ2 such that 𝜃(𝑎, 𝑏) = √3.
Then √3 = 𝑎 + 𝑏√2, so that √3 − 𝑏√2 = 𝑎.
Squaring the previous equality, we get 3 + 2𝑏2 − 2𝑏√6 = 𝑎2.
Note that 𝑏 ≠ 0 since otherwise √3 = 𝑎 ∈ ℚ which is impossible.
Therefore √6 = 3+2𝑏2−𝑎2

2𝑏 ∈ ℚ which is a contradiction. Hence √3 ∉ Im(𝜃) and 𝜃 is not surjective.

Method 3:
We are going to prove that 314

42 ∉ Im(𝜃) (or anything in ℚ ⧵ ℤ).
Assume by contradiction that there exists (𝑎, 𝑏) ∈ ℤ2 such that 𝜃(𝑎, 𝑏) = 314

42 . Then 314
42 = 𝑎 + 𝑏√2.

• First case: if 𝑏 = 0 then 314
42 = 𝑎 ∈ ℤ. Hence a contradiction.

• Second case: if 𝑏 ≠ 0 then 𝑏√2 ∉ ℚ by Week 9, Ex 4.4, since √2 ∉ ℚ and 𝑏 ∈ ℚ ⧵ {0}.
But 𝑏√2 = 314

42 − 𝑎 ∈ ℚ. Hence a contradiction.

Therefore 314
42 ∉ Im(𝜃) and 𝜃 is not surjective.

Method 4: We are going to prove that 1
2 ∉ Im(𝜃).

Assume by contradiction that there exists (𝑎, 𝑏) ∈ ℤ2 such that 𝜃(𝑎, 𝑏) = 1
2 .

Then 1
2 = 𝑎 + 𝑏√2 ⟹ 𝑏√2 = 1

2 − 𝑎 ⟹ 2𝑏2 = 1
4 + 𝑎2 − 𝑎 ⟹ 1

4 = 2𝑏2 − 𝑎2 + 𝑎 ∈ ℤ.
Hence a contradiction.
Therefore 1

2 ∉ Im(𝜃) and 𝜃 is not surjective.

Method 5: We are going to prove that √2
2 ∉ Im(𝜃).

Assume by contradiction that there exists (𝑎, 𝑏) ∈ ℤ2 such that 𝜃(𝑎, 𝑏) = √2
2 .

Then √2
2 = 𝑎 + 𝑏√2, so that (

1
2 − 𝑏) √2 = 𝑎. Note that 1

2 ∉ ℤ so that 𝑏 ≠ 1
2 , hence √2 = 𝑎

1/2−𝑏 ∈ ℚ.

Hence a contradiction. Therefore √2
2 ∉ Im(𝜃) and 𝜃 is not surjective.

Method 6: Since |ℕ| = |ℤ|, we have |ℤ × ℤ| = |ℕ × ℕ| = |ℕ| = ℵ0 < |ℝ|.
Therefore, there is no surjection ℤ × ℤ → ℝ, so that 𝜃 can’t be surjective.
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2. Let (𝑎, 𝑏), (𝑐, 𝑑) ∈ ℤ2 be such that 𝜃(𝑎, 𝑏) = 𝜃(𝑐, 𝑑).
Then 𝑎 + 𝑏√2 = 𝑐 + 𝑑√2, i.e. (𝑎 − 𝑐) + (𝑏 − 𝑑)√2 = 0.

• If 𝑏 ≠ 𝑑, then √2 = 𝑐−𝑎
𝑏−𝑑 ∈ ℚ, which is impossible.

• If 𝑏 = 𝑑, then 𝑎 − 𝑐 = 0, so that (𝑎, 𝑏) = (𝑐, 𝑑).
Therefore 𝜃 is injective.

3. Method 1:
Note that Im(𝜃) = ℤ [√2] by definition of ℤ [√2].

Therefore ̃𝜃 ∶ ℤ × ℤ → ℤ [√2] defined by ̃𝜃(𝑎, 𝑏) = 𝜃(𝑎, 𝑏) is well-defined and surjective.
Besides, it is injective (and hence bijective) by the previous question.
Hence |ℤ [√2]| = |ℤ × ℤ| = |ℕ × ℕ| = ℵ0 since |ℤ| = |ℕ|.

Method 2:
Since |ℤ| = |ℕ|, we get |ℤ2| = |ℤ × ℤ| = |ℕ × ℕ| = ℵ0.
So ℤ [√2] = ⋃

(𝑎,𝑏)∈ℤ2
{𝑎 + 𝑏√2} is countable as a countable union of countable sets (singletons).

Thus |ℤ [√2]| ≤ ℵ0.

Besides ℤ ⊂ ℤ [√2], hence ℵ0 = |ℤ| ≤ |ℤ [√2]|.

Finally, by Cantor–Schröder–Bernstein theorem, we get that |ℤ [√2]| = ℵ0 as required.

Sample solutions to Exercise 6.
1. Since |ℚ| = |ℕ|, there exists a bijective function 𝜓 ∶ ℚ → ℕ.

We define Ψ ∶ ℝℕ → ℝℚ by Ψ(𝑓) = 𝑓 ∘ 𝜓 . Note that Ψ is bijective with inverse Ψ−1(𝑔) = 𝑔 ∘ 𝜓−1.
Indeed, for 𝑓 ∈ ℝℕ, Ψ−1(Ψ(𝑓)) = 𝑓 ∘ 𝜓 ∘ 𝜓−1 = 𝑓 , and for 𝑔 ∈ ℝℚ, Ψ(Ψ−1(𝑔)) = 𝑔 ∘ 𝜓−1 ∘ 𝜓 = 𝑔.
Therefore |ℝℚ| = |ℝℕ| = |ℝ| by Week 11 Exercise 9.

2. Let 𝑓, 𝑔 ∈ 𝒞0(ℝ) be such that Φ(𝑓) = Φ(𝑔), i.e. 𝑓|ℚ = 𝑔|ℚ (otherwise stated, ∀𝑥 ∈ ℚ, 𝑓(𝑥) = 𝑔(𝑥)).
Let 𝑥 ∈ ℝ. By PS4, Exercise 3, there exists a sequence (𝑞𝑛)𝑛 of rational numbers such that lim

𝑛→+∞
𝑞𝑛 = 𝑥.

Then

𝑓(𝑥) = lim
𝑛→+∞

𝑓(𝑞𝑛) since 𝑓 is continuous

= lim
𝑛→+∞

𝑔(𝑞𝑛) since ∀𝑛, 𝑞𝑛 ∈ ℚ and 𝑓|ℚ = 𝑔|ℚ

= 𝑔(𝑥) since 𝑔 is continuous

Therefore, ∀𝑥 ∈ ℝ, 𝑓(𝑥) = 𝑔(𝑥), so that 𝑓 = 𝑔.

3. Since Φ is injective, we know that |𝒞0(ℝ)| ≤ |ℝℚ| = |ℝ|.
Note that Γ ∶ ℝ → 𝒞0(ℝ) mapping 𝑥0 to the constant function

Γ(𝑥0) ∶ ℝ → ℝ
𝑥 ↦ 𝑥0

is well-defined (since a constant function is continuous) and injective.
Therefore |ℝ| ≤ |𝒞0(ℝ)|.
From Cantor–Schröder–Bernstein theorem, we get that |𝒞0(ℝ)| = |ℝ|.
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