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Chapter 0

Logic and sets

0.1 Sets

Asin many areas of mathematics, we will use sets very often during this course. But we won't cover anything
about axiomatic set theory. Instead we will only use a naive informal intuitive definition of what is a set
and what is a function/map between two sets (you are already used to that from your linear algebra and
calculus courses).

Definition 0.1 (Informal). A set is a (well-defined) “collection” of elements (order doesn’t matter).
Two sets are equal if they contain the same elements, so {1,2,2,3} = {1, 2,3} since they contain 1,2, 3.

Remark 0.2. We usually define a set either by giving explicitely the elements it contains, e.g.

S = {apple,x,5}
or from an already constructed set by taking only the elements satisfying some property
S={nezZ : dkeZ n=2k}

Notation 0.3. Given a set .S, we write a € S to express that a is an element of S. It is read "a is in S” or “a
is an element of S”.

Example 0.4.

e apple € {apple,r,5}
e banana ¢ {apple, 7r,5}

Notation 0.5. Given two sets .S and T, we write S C T to express that every element of .S is an element of
T,ie.
YVae S,aeT

Itis read ".S is a subset of T” or ”S is included in T”.
Remark 0.6. Two sets S and T are equal if and only if they have the same elements, i.e.
S=Te (ScTandT CS)
Remark 0.7. There exists a unique set containing no element, it is denoted by @ and called the empty set.

Remark 0.8. Given a set E, the set of subsets of E is well-defined, it is denoted by P(E) := {§ : § C E}
and called the powerset of E.
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0.2 Cartesian product

Definition 0.9. An n-tuple is an ordered list of n elements (x, ..., x,). We say couple for a 2-tuple and triple
for a 3-tuple.

Fundamental property 0.10. (x,....x,) = (V(,....V,) © X =V}, X3 = Vo, ... X, = Y,

Remark 0.11.
o {1,2,3} ={3,2,1} (sets)
o (1,2,3) #(3,2,1) (tuples)

Remark 0.12.
o {1,2,2,3} ={1,2,3} (sets)
o (1,2,2,3) #(1,2,3) (tuples)
Theorem 0.13. Given two sets A and B, the following set is well-defined
AXB:={(a,b) : a€ A, b € B}

It is called the cartesian product of A and B.

Example 0.14. Set A = {r,e} and B = {1, 2, n} then

AXB= {(n, 1), <n, \/§> , (m, 1), (e, 1), (e, \/5) : (e,fr)}

Theorem 0.15. Given sets Ay, A,, ..., A,, the following set is well-defined
A XAy X XA, ={(a,ay,...,a,) . a; €EA;}
Remark 0.16. We will often identify the following sets although they are not formally equal:
o (AXB)XC > ((a,b),c)
e AX(BXC)>(a,(b,c))
e AXBXC > (a,b,c)
0.3 Basic logic

Definition 0.17. A statement is a sentence which is either “true” (T') or “false” (F).

Definition 0.18. The negation of a statement P is the statement denoted by =P (or no P) defined with the
following truth table:

P | -P
V| F
F\|V

Definition 0.19. The disjunction of two statements P and Q is the statement denoted by P v Q (or P or Q)
defined with the following truth table:

P|OQ|PVO
ViV |4
V| F V
FlV |4
F|F F

Beware: the disjunction is not exclusive.
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Definition 0.20. The conjunction of two statements P and Q is the statement denoted by P A Q (or P and Q)
defined with the following truth table:

O|PrQ
|4 |4
F F
|4 F
F F

table:

P=>0
n
F
v
v

P
|4
| 4
F
F
Definition 0.21. Given two statements P and Q, we define the statement P = Q with the following truth
P
14
|4
F

1R TR )

F

It is called the implication (or conditional statement) and it is read as follows ” P imples Q” or "if P (is true)
then Q (is true)”.

Definition 0.22. The converse of P = Q is defined as Q = P.

Definition 0.23. Given two statements P and Q, we define the statement P < Q with the following truth
table:

P|lO|PsO
ViV V
V| F F
F|V F
F | F | 4

It is called the equivalence and it is read ” P is equivalent to Q” or ” P (is true) if and only if Q (is true)”.

Definition 0.24. A tautology is a statement which is true whatever are the truth values of its components,
we usually use the notation = P.

Definition 0.25. We say that P and Q are logically equivalent when P < Q is a tautology.
It simply means that P and Q have the same truth table.

Remark 0.26. The above logical connectives could have been defined in terms of the disjunction and the
negation. Indeed:

e P AQisequivalent to = ((=P) V (=Q)).

PO =P |20 |=P)V(EQ) | ~(=P)V(EQ)) || PAO
V|V|F|F F 4 4
V|F| F |V 4 F F
F|V|V | F 4 F F
FIF|V |V 4 F F

e P = Qisequivalent to (=P)V Q.

P[Q[-P[=P)vO[P=0
VIV]F 4 4
VIF|F F F
Flv]Vv 4 4
F|F|V 4 4

e P & Qisequivalentto (P = Q) A(Q = P)orto (PAQ)V ((=P)A(—Q)).
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Example 0.27. Law of excluded middle: & PV (- P)

P |-P | PVv(mP)
V| F | 4
F|V | 4

The law of excluded middle simply means that either P is true, or its negation =P is true.

Example 0.28. The modus ponens: = (P A (P = Q)) = Q

PO | P=>Q | PAP=>0Q)|(PA(P=>0)=>0
VIV |4 |4 |4
V| F F F |4
FlV |4 F |4
F | F V F V

It is the main inference rule in mathematics: if both P and P = Q are true then so is Q.
Example 0.29. EF (PAQ)=> P

Example 0.30. F P = (P V Q)

Proposition 0.31. The disjunction is commutative: E (P Vv Q) & (Q V P)

Proposition 0.32. The disjunction is associative: £ (PV Q)V R) & (P V (QV R)).
Proposition 0.33. The conjunction is commutative: E (P A Q) < (Q A P)

Proposition 0.34. The conjunction is associative : £ (P A Q) A R) & (P A(Q A R)).

Proposition 0.35 (Double negation elimination). E (=(—=P)) & P

Proof.
P =P [=(=P)
V| F |4
F\|V F

Proposition 0.36 (Morgan’s laws).
o The negation of PV Q is (—P) A (mQ):

FEPVO) < (=P)ACQ)
o the negation of P A Q is (—P) V (=Q):
FEPAQ) < (=P)V(Q)
Mnemonic device: the negation changes conjunctions in disjunctions and vice-versa.

Proof. 1 only prove the first one.

PlO| =P | =0 |P)ANEQ) | PVO | =~(PVO)
VIV|F|F F 4 F
V|F| F |V F 4 F
F|V|V | F F 4 F
F|F|V |V |4 F |4
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Proposition 0.37 (Distributivity).
e E(PA(OVR)S (PAQ)V(PAR))
e E(PV(OAR)® (PVO)A(PVR))

Proposition 0.38 (Proof by contrapositive).
The statement P = Q is logically equivalent to its contrapositive (=Q) = (—P).

Proof.
PO |P=>0Q |-P |0 ]| (0Q)=(~P)
ViV | 4 F | F V
VI F F F |V F
F|V | 4 V | F |4
F | F V VIV |4

In some cases, it may be easier to prove (=Q) = (=P) rather than P = Q.
Example 0.39. Let n € Z. Prove that if n* is odd then n is odd.
Proposition 0.40 (Reductio ad absurdum). (((=P) = Q) A ((-P) = (=Q))) = P is a tautology.

In practice, in order to prove P by contradiction, we assume that =P is true and we look for a contradiction.

0.4 Quantifiers

Definition 0.41. A predicate P(x, y, ...)is a statement whose truth value depends on variables x, y, ... occuring
in it.
Definition 0.42 (Universal quantifier). The statement "Vx € E, P(x)” means that P(x) is true for any x in

E.
Itis read "for all x in E, P(x) is true”.

Definition 0.43 (Existential quantifier). The statement “3x € E, P(x)” means that there exists at least one
x in E such that P(x) is true.
It is read "there exists x in E such that P(x) is true”.

Here x is a bound variable:
e we may replace "Vx € E, P(x)” by "Vy € E, P(»)”
e we may replace “Ix € E, P(x)” by "Iy € E, P(y)".

Definition 0.44. The statement "3!x € E, P(x)” means that P(x) is true for exactly one element x in E.
It is read “there exists a unique x in E such that P(x) is true”.

As we see in the following example, we can’t permute the quantifiers V and 3.
e dJneN,VpeN,p<n
e VpeN,dneN,p<n
Nonetheless, we may permute two existential quantifiers or two universal quantifiers.

Remark 0.45. It is common to write "Vx,y € E” for "Vx € E, Yy € E” (that’s an ellipsis).
The same holds for the existential quantifier 3.

Definition 0.46. The negation of "Vx € E, P(x)” is "3Ix € E, =P(x)".

Definition 0.47. The negation of "3x € E, P(x)” is "Vx € E, =P(x)”.

Mnemonic device: the negation swaps ¥V and 3.

Axiom 0.48. The statement "3x € @, P(x)" is false for any predicate.

Proposition 0.49. The statement "Vx € @, P(x)” is true for any predicate.

Proof. Indeed, 3x € @, (-P(x)) is false, so its negation Vx € @, P(x) is true. [ |
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0.5 Functions

Definition 0.50 (informal). A function (or map) is the data of two sets A and B together with a “process”
which assigns to each x € A a unique f(x) € B:

. A - B
f‘{fo(m

Here, f is the name of the function, A is the domain of f, and B is the codomain of f.

Remark 0.51. The domain and codomain are part of the definition of a function. For instance

f:{[R—>[l,+oo) and g:{R_) R

x = x2+1 x = x*+1

are not the same function (the first one is surjective but not the second one).
A function is not simply a “formula”, you need to specify the domain and the codomain.

Definitions 0.52. Given a function f : A - B.
e Theimageof EC Aby fis f(E)={f(x) : x€ E} C B.
The image of f (or range of f) is Range(f) := f(A).
The preimage of F C Bby fis f~'(F):={x € A : f(x) € F}.
The graph of f is the setI'; == {(x,y) € AX B : y = f(x)}.
We say that f is injective (or one-to-one) if Vx;,x, € A, x| # x, = f(x;) # f(x,)
or equivalently by taking the contrapositive Vxi,x, € 4, f(x)) = f(x,) = x; =x,
We say that f is surjective (or onto) if Vy € B, 3x € A, y = f(x)

Figure 1: Injective

Figure 3: Surjective Figure 4: Not surjective

!

a

Figure 5: Bijective
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Vx €A, g(f(x) =x

Proposition 0.53. f : A — B is bijective if and only if there exists g : B — A such that .
P / 4 f vy 8 { Vy€ B, f(g) =y

Then g is unique, it is called the inverse of f and denoted by f -1 B> A

3/ 4/

> >

d d

Figure 6: Bijective function Figure 7: Its inverse

0.6 Sigma notation

Definition 0.54. For m,n € Z, we set

n

Zai=am+am+1+~-+an

i=m

n
Remark 0.55. If m > n then Z a; = 0 by convention.

i=m

7
Example 0.56. Z i2=324424+5246%2+72 =135
i=3

n
Remark 0.57. If m < n then there are n — m + 1 terms in the sum Z a;.

i=m



Chapter 1

Natural numbers

In this chapter we introduce the set N of natural numbers. We will start with a minimal axiomatic description
of it from which we will derive the main properties of N.

Intuitively, we describe N starting from 0 and repeatedly doing the operation +1 (we say that we take the
successor): 1 is the successor of 0, 2 is the successor of 1, 3 is the successor of 2 and so on...This operation is
governed by a few rules in order to make sure that the set we obtain coincides with our intuitive expectation
about what should be N.

The method of proof by induction is closely related to the nature of N. Hence we will study it at the end
of this chapter.

I use the convention that N is the set of non-negative integers, i.e. 0 € N.

1.1 Peano axioms

All the results concerning the natural numbers will derive from the next theorem, that we admit, and which
states the existence of N.

Theorem 1.1 (Peano axioms). There exists a set N together with an element 0 € N read as zero and a function

s : N — N read as successor such that:
(i) 0is not the successor of any element of N, i.e. 0 is not in the image of s:

0 ¢ s(N)
(i) If the successor of n equals the successor of m then n = m, i.e. s is injective:
Vu,m €N, s(n) =s(m) = n=m
(7ii) The induction principle. If a subset of N contains 0 and is closed under s then it is N:

0e A
VAcN,{ S(A) C A = A=N

The set N is the set of natural numbers. As we will see, all the results of N will derive from the above basic
properties. The last axiom basically means that all the elements of N can be obtained from 0 by taking the
successor iteratively. Intuitively, the successor of n is s(n) = n+ 1 (actually, it will become formal after we
define the addition, see Remark 1.6).



J.-B. Campesato Chapter 1. Natural numbers

(i) doesn’t hold
(ii) doesn’t hold
(ii) doesn’t hold

L;
X X X X S

0 . .
o—»i:—»o—-‘ s is not a function
e S X (iii) doesn’t hold

Below are some basic propositions relying only on Peano axioms.

Proposition 1.2. Any non-zero natural number is the successor of a natural number, i.e.
Vne N~{0}, Im e N, n = s(m)

Proof. Set A = s(N) U {0}. Then
e ACN
e €A
o s(A)cs(N)C A
Hence, by the induction principle, A = N.
Let n € N\ {0}, then n € A but n # 0, therefore n € s(N). So there exists m € N such that n = s(m).

Proposition 1.3. A natural number is never its own successot, i.e.
Vn €N, n# s(n)

Proof. Set A={neN : n# s(n)}. Then
e ACN
e 0 € Asince 0 ¢ s(N) (particularly 0 # s(0))
o s(A)C A
Indeed, let m € s(A). Then m = s(n) for some n € A. So s(n) # n.
Since s is injective, we get that s(s(n)) # s(n), i.e. s(m) # m.
Hence m € A.
So, by the induction principle, A = N. Thus, for every n € N we have that n # s(n).

Remark 1.4 (You can skip it). Up to a bijection, N is uniquely defined by the Peano axioms.
More precisely, if there exists a set .S, with an element e € .S and a function ¢ : S — § such that
(i) e & o(S)
(i) Vx,ye S, 0(x)=0(y) = x=y
(i) VACS,{eEA — A=
c(A) C A
then there exists a bijection @ : .S — N such that ®(e) = 0, s(P(x)) = P(c(x)).

c c c c () N N N s




10 Concepts in Abstract Mathematics J.-B. Campesato

1.2 Addition, multiplication and order

1.2.1 Addition
The following proposition defines inductively the function addition with a.

Proposition 1.5. Let a € N. Then there exists a unique function (a + e) : E : . T b such that

(i) a+0=a
(ii) Vb eN, a+ s(b) = s(a+ b)
Proof. This function is well defined by the induction principle (i.e. we didn’t miss any element of the domain
N using this iterative definition).
Let’s check that it is unique. Let ¢ : N — N be such that ¢(0) = a and Vb € N, @(s(b)) = s(@(b)).
Set A={beN : @) =a+b}. Then
e ACN
e 0 Asince p(0)=a=a+0.
e s(A) C A. Indeed, let ¢ € s(A). Then ¢ = s(b) for some b € A and

@(c) = @p(s(b)) since c = s(b)
= s(@(b)) by definition of ¢
=s(a+b) sincebe A
=a+ s(b) by definition of a +

=a+c since s(b) =c¢

Hence c € A.
Therefore, by the induction principle, A = N. Thus, for every b € N we have that ¢(b) = a + b. [ ]

Remark 1.6. We set 1 := 5(0). Then, forn € N, n+ 1 = n + s(0) = s(n + 0) = s(n). As expected...
Hence, from now on, I will use indistinctively n + 1 or s(n) (depending on which notation seems to be the
more convenient). Similarly, we set 2 := s(1), 3 := s(2), 4 := 5(3) and so on...

Proposition 1.7.
1. Va,b,c €N, a+ (b+ ¢) = (a + b) + ¢ (the addition is associative)
2. Ya,b €N, a+ b= b+ a (the addition is commutative)
3. Va,b,ceN,a+b=a+c = b= c (cancellation)
4. Va,beN,a+b=0 = a=b=0

Proof.

1. Leta,beN.SetA={ceN : a+(b+c)=(a+b)+c}. Then

e ACN
e 0 A. Indeed,a+ (b+0)=a+b=(a+b)+0.
o s(A) C A. Indeed, let n € s(A) then n = s(c) for some ¢ € A. Therefore

a+b+n)=a+ b+ s(c)) sincen = s(c)
a+sb+c)

s(a+(b+0))

s((a+b)+c) sincec € A
(a+b)+ s(c)

=(@a+b)+n

Hence n € A.
Thus, by the induction principle, A =Nand forany c € N,a+ (b+c¢) = (a+ b) +c.
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2. Sketch of proof:
(a) Prove thatVa € N, 0+ a = a + 0 using the induction principle.
Hint: 0+ s(a) = s(0+ a) = s(a+0) = s(a) = s(a) + 0
(b) Prove thatVa € N, s(a) = 1 + a using the induction principle.
Hint: s(s(a))=s(l+a)=(1+a)+1=1+(@+1) =1+ s(a).
(c) LetaeN. ProvethatVbe N, a+b=b+a.
Hint: a+ s(b)=s(a+b)=s(b+a)=b+s(a)=b+(1+a)=0b+1)+a=sb)+a

3.SetA={aeN : Vb,ceN,a+b=a+c¢c = b=c}. Then

e ACN

e 0cA

e s(A)C A
Indeed, let n € s(A). Let b, c € N such that n + b = n 4+ c. We want to prove that b = c.
There exists a € A such that n = s(a). Then

n+b=n+c
=>s(a)+b=s(a)+c
=>b+ s(a) = ¢ + s(a) by commutativity
=s(b+ a) = s(c + a) by construction of the addition
=>b+a=c+a since s is injective
=a+b=a+c bycommutativity
=>b=c sinceac A

Hence n € A.

Thus, by the induction principle, A = N.

4. Let a,b € N be such that a + b = 0. Assume by contradiction that a # 0 or b # 0.
Without lost of generality, we may assume that b # 0 (using commutativity).
Then, by Proposition 1.2, b = s(n) forsomen € N. So0 =a+ b = a + s(n) = s(a + n).
Which is a contradiction since 0 ¢ s(N). [ |

1.2.2 Multiplication

The following proposition defines inductively the function multiplication with a.

Proposition 1.8. Let a € N. Then there exists a unique function (a X e) : [:J : . L\i b such that
(i) ax0=0
(i) VbEN, axs(b)=(axb)+a

Proposition 1.9.
1. VYa,b,c €N, ax (bXc) = (ax b) X c (the multiplication is associative)
Va,b €N, ax b= bXa (the multiplication is commutative)
Va,b,c eN,ax(b+c)=axb+axcand(a+b)Xc=axXc+bxc (Xisdistributive over +)
VaeN,ax1l=a
Va,beN,axb=0 = (a=00rb=0)

aXb=aXc
Va,b,cEN,{ 440

S Gl

= b = ¢ (cancellation)

We prove these properties similarly to the ones of the addition.

Remark 1.10. It is common to omit the symbol x when there is no possible confusion (i.e. to simply write
ab for a x b).
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1.2.3 Order
The following definition is a little bit informal, but it is enough for our purpose.

Definition 1.11. A binary relation R on a set E consists in associating a truth value to every couple (x, y) €
E? (beware, order matters here).
We say that x is related to y by R, denoted xRy, if the value true is assigned to (x, y).

Examples 1.12.
1. Let E = {a, b, c}. Since E is finite, we can define a binary relation R using a truth table as below:
X al| b | c
y
a | X | X
b X| X |V
|V X

Here aRa, aRc, bRc and cRb.
2. For E = R, we can define a binary relation as follows:

ny@xz—yZ:x—y
The following definition highlights the important properties of the order < that you intuitively know.

Definition 1.13. We say that a binary relation R on a set E is an order if
(i) Vx € E, xRx (reflexivity)
(ii) Vx,y € E, (xRyand yRx) = x =y (antisymmetry)

(iii) Vx,y,z € E, (ny and sz) = xRz (transitivity)

Definition 1.14. We say that an order R on a set E is total if
Vx,ye E, xRyor yRx
Definition 1.15. We define the binary relation < on N by
Va,beN, (a<bs IkeN, b=a+k)
We read “a is less than or equal to b” or "b is greater than or equal to a” when a < b holds.
Proposition 1.16. The set of natural numbers N is totally ordered for <.

Proof.
(i) Reflexivity: leta € N, thena =a+0with0 e N, hencea < a.
(ii) Antisymmetry: let a,b € Nbe such thata < band b < a.
Then there exists k € N such that b = a + k and there exists /| € N such thata = b+ .
Thereforea=b+[/=a+k+1. Hence 0 = k + [/ and thus / = k = 0 so that a = b.
(iii) Transitivity: let a,b,c € Nbe such thata < band b < c.
Then there exists k € N such that b = a + k and there exists | € N such thatc = b+ 1.
Thereforec =b+1=a+ (k+ 1) withk+1€N,ie. a<ec.
(iv) <istotal: leta eN.Set A={beN : a<borb<a}. Then
e ACN
e 0 A, indeed a =0+ asothat0 <a.
e s(A) C A.
Indeed, let n € s(A). Then n = s(b) forsome b€ A,ie. a<borb<a.
Ifa<bthenb=a+kforsomekeN,n=s(b)=b+1=a+k+1withk+1e€N,sothata <n.
If » < athena = b+ for some! € N. The case / = 0 is covered by the above case, so we may
assume that/ # 0. Then ! =7 + 1 for some [ € N.
Hencea=b+Il=b+1+1=b+1+I=n+1lie. n<a.
In both cases n € A.
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Therefore, by the induction principle, A = N. So, for all b € N, either a < bor b < a. [ |
Definition 1.17. Given a,b € N, we write a < b for (a < band a # b).

Proposition 1.18.
1. Va,beN,a<bsoa+1<Lb
2. Given a,b € N, exactly one of the followings occurs: either a < b, or a = b, or b < a.
Particularly, the negation of a < bis b < a.

Proof.

1. =: Leta,b € N be such that a < b. Then a < b so there exists k € N such that b = a + k.
Assume by contradiction that k = 0 then a = b which is false. Hence k # 0 and there exists k € N such
thatk=k+ 1. Thenb = (a+ 1)+ k. We proved that a + 1 < b as expected.
<: Assume that a + 1 < b then there exists k € Nsuch thatb=a+ 1 + k.

e Thenb=a+ (1 +k)with1+ k € Nhence a < b.
e Assume by contradiction that @ = bthena = a + 1+ k hence 0 = 1 + k from which we get 0 =1,
s0 0 = 5(0). We get a contradiction with 0 & s(N).

2. This property derives from the fact that the order < is total. [

Proposition 1.19.
1. VaeN,a<0 = a=0
2. Va,b,ceN,a+b<a+c = b<c
3. Thereisnoa € Nsuchthat0 < a< 1.
4. Thereisno a € N such thatVb € N, b < a.
5 Va,b,ceN,a<b = ac < bc

Proof. 1. Leta € N be such that a < 0. Then there exists k € N such that 0 = a + k. Hence a = k = 0.

2. Leta,b,c € N. Assume that a + b < a + c. Then there exists k € Nsuch thata+c¢ = a+ b+ k. Then
c = b+ ksothat b < ¢ as expected.

3. Leta € N. Assume that a < 1, then there exists / € N\ {0} suchthat1 =a+ /. Since!/ #0,/ = k+ 1 for
somek e€N,and 1 =a+ k + 1 so that 0 = a + k. Therefore a = 0.

4. Assume by contradiction that there exists a € Nsuch thatVb € N, b < a. Thena+1 <ahencel <0, i.e.
0 =1 + k for some k € N. Therefore 1 = 0 which is a contradiction (otherwise 0 = s(0) but 0 ¢ s(N)).

5. Leta,b,c € N. Assume that a < b. Then b = a + k for some k € N. Thus bc = (a + k)c = ac + kc with
ke € N. Therefore ac < be. |

Theorem 1.20 (The well-ordering principle). The set N is well-ordered for <.
A nonempty subset A of N has a least element, i.e. there exists n € A such thatVa € A, n < a.

Proof. Let’s prove the contrapositive, i.e. if a subset A C N doesn’t have a least element then it is empty.
LetB={aeN : Vi<a, i¢gA}.
e BCN
e 0 € B (otherwise 0 would be the least element of A).
e s(B)C B
Indeed, if n € s(B), then n = s(a) fora € B,i.e. Vi < a,i &€ A. Note thatn = a + 1 € A otherwise it
would be the least element of A. ThereforeVi <n, i € A,i.e. n € B.
Thus, by the induction principle, B = N so A is empty. n
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We proved that the induction principle implies the well-ordering principle, but they are actually equiv-
alent. In the definition of N, we could have replaced the induction principle by the well-ordering principle.

Proof that the well-ordering principle implies the induction principle.

Let A c N. Assume that 0 € A and that s(A) € A. We want to prove that A = N.

Assume by contradiction that N« A # @. Then, by the well-ordering principle, N\ A admits a least element
a € A. Obviously, a # 0 since 0 € A.

Since a € N~ {0}, there exists @ € N such that a = s(a). Since s(4) C A, a ¢ A (otherwise a = s(a) € A).

But @ < a. This contradicts the fact that a is the least element of A.

Hence N\ A =@ and A = N. [ |

Proposition 1.21. Va,beN,ab=1 = a=b=1.

Proof. Let a,b € N be such that ab = 1. Since a = 0 or b = 0 implies that ab = 0, we know that a # 0 and
b # 0. We have 0 < a and a # 0 hence 0 < a from which we get 1 < a. Similarly 1 < b.
Thena=1+kforsomek €N. Thenl =ab=b+bk,ie. b<1. Henceb=1landa=ax1=ab=1. [ |

1.2.4 Summary

The main properties of (N, +, X, <,0, 1), where +, X are two binary laws and < is a binary relation, are:

e + is associative: Va,b,c €N, (a+b)+c=a+(b+c¢)

e + is commutative: Va,b e N, a+b=b+a

e Oistheunitof +: VaeN,0+a=a+0=a

e Cancellation rule: Va,b,c €N, a+b=a+c=>b=c

e Va,beN,a+b=0 — a=>b=0.

e X is associative: Va,b,c €N, (axb)Xc=aXx (bXc)

e X is commutative: Va,be N, axb=>bXa

e listheunitof x: VaeN, 1 Xxa=ax1=a

e Cancellation rule: for Va, b,c € N, Z);Iz)=a><c >b=c

X is distributive over +: Va,b,c €N, ax (b+c¢)=axXb+axcand (a+b)Xc=aXc+bXc
Va,beN,axb=0 = (a=0o0rb=0)
Va,beN,ab=1 = a=b=1
<is an order on N, i.e.
- Reflexivity: Vae N, a <a
- Antisymmetry: Va,b €N, (a<band b<a) =>a=b
— Transitivity: Va,b,c € N, (a <band b < c) >a<c
Besides, this order is total: Va,b e N, a <borb<a
Well-ordering principle: a nonempty subset A of N has a least element.
<is compatible with +: Va,b,c eN,a<b=>a+c<b+c
< is compatible with X : Va,b,c €N, a < b = ac < bc
Va,b,c,d €N, (a<bandc<d)=>a+c<b+d
Va,b,c,d €N, (a<bandc <d) = ac < bd
VaeN, a<0 = a=0
There isno a € Nsuch that0 <a < 1.
There isno a € Nsuch thatVb e N, b < a.
Va,beN,a<b<oa+1<Lb.
For a, b € N we have (exclusively) either a < b,ora = b, or b < a.
Particularly, the negation of a < bis b < a.

e 6 6 0 0 X X o o o

The properties with a star were not proved in this chapter but will be proved as practice questions.
Except otherwise stated, you can directly use any of the above properties without proving them.
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1.3 Proof by induction

In this section we are going to highlight the connection between the principle of induction as stated in Theorem
1.1 and the notion of proof by induction that you have already encountered.

1.3.1 Formal statement

Proof by induction is closely related to the fact that N is defined by its initial term 0 and then by taking
iteratively its successor. This fact is highlighted in the proof of the following theorem.

Theorem 1.22 (Proof by induction). Let P(n) be a statement depending on n € N.
If P(0) is true and if P(n) => P(n+ 1) is true for all n € N, then P(n) is true for all n € N. Formally,

P(0)
{ WneN, (P = Pa+1) - mENPW

The informal idea is that since 7(0) and P(0) = P(1) are true then P(1) is true. Then we can repeat the

same process: since P(1) and P(1) => P(2) are true then P(2) is true, and so on...

This way P(0), P(1), P(2), P(3), ... are all true.

Proof of Theorem 1.22.
We define the set A = {n € N : P(n) is true}. Then:
e A C N by definition of A.
e 0 € N since P(0) is true.
e s(A)C A
Indeed, let n € s(A). Then n = s(m) = m + 1 for some m € A. By definition of A, P(m) is true. But by
assumption P(m) => P(m+ 1) is also true. Hence P(m + 1) is true, meaning thatn =m + 1 € A.
Hence, by the induction principle of Theorem 1.1, A = N. Finally, for every n € N we have that P(n) is true. W

1.3.2 In practice

How to write a proof by induction? There are several steps that you should make sure they appear clearly!

e What statement are you proving? What is your P(n)? Particularly, on which parameter are you doing
the induction? You should make everything clear for the reader!

e Base case: prove that P(0) is true.

e Induction step: prove that if P(n) is true for some n € N then P(n + 1) is also true.
It is important to clearly write the induction hypothesis and what you want to prove in this step (the
reader shouldn’t have to guess). Make sure that you used the induction hypothesis somewhere, oth-
erwise there is something suspicious with your proof.

Below are two basic examples:

Proposition 1.23. Forany n € N, the sum 0+ 1 + 2 + -+ 4+ n is equal to ”("T”)

Proof. We are going to prove thatVn e N, 0+1+2+34+ .-+ n= ”("TH) by induction on .
e Base case: Let n = 0. Then the sum in the left hand side is equal to 0. And @ = % = 0. So the
equality holds.

e Induction step: Assume that 0 + 1 +2+3 + - +n = "("TH) for some n € N and let’s prove that

O+ 14243+ +n+(n+ 1) = L2,

1
O+1+2+3+---+n+(n+1)=n(n+ )

_nn+D+2(n+1)  (n+Dn+2)
- 2 - 2

+ (n+ 1) by the induction hypothesis

Which proves the induction step. [
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Proposition 1.24. For any n € N, the sum of the first n odd numbers is equal to n?.

Proof. We are going to prove that Vn € N, 1 +3 + - + (2n — 1) = n* by induction on n.
e Base case: Let n = 0. Then the sum in the left hand side is empty, so it is equal to 0. And n* = 0% = 0.
So the equality holds.

e Induction step: Assume that the sum of the first » odd numbers is equal to n* for some n € N, i.e.

1434 +@2n—1)=n’

Let's prove that 1 +3+ -+ (2n— 1)+ 2n+ 1) = (n + 1)>.

1434 4+Qn-D+Qn+1)=n*+2n+1 by the induction hypothesis

=(n+1)7 by the binomial formula

Which proves the induction step. n

1.3.3 Variants of the induction
Strong induction

The strong induction is equivalent to the usual induction (i.e. one may prove that Theorem 1.22 holds
assuming Theorem 1.25, and that Theorem 1.25 holds assuming Theorem 1.22). Nonetheless, in some cases,
it may be easier to write a strong induction rather than a usual one.

Theorem 1.25 (Strong induction). Let P(n) be a statement depending on n € N.
If P(0) is true and if (P(O),P(l), ,P(n)) = P(n+1)is true for all n € N, then P(n) is true for all n € N.
Formally,

P(0)
{ VneN, (POLP(D).....Pw) = Pa+1) - "ENPO

Proof. For n € N, we define R(n) by
R(n) is true < P(0), P(1),...,P(n) are true

Assume that P(0) is true and that (P(0), P(1),...,P(n)) = P(n+1)is true forall n € N.
Then R(0) is true since P(0) is. And, foralln € N, R(n) = R(n+ 1) is true.
By the usual induction R(n) is true for any n € N. Particularly, P(n) is true for any n € N as expected. [

Base case at n,

It may be easier to write a proof by induction starting at a base n, € N which is not necessarily 0. Below is the
corresponding statement for the usual induction, but it is possible to adapt the strong induction similarly.

Theorem 1.26. Let ny € N. Let P(n) be a statement depending on a natural number n > ny,.
If P(ny) is true and if P(n) = P(n+ 1) is true for every natural number n > ny, then P(n) is true for every natural
number n > ny. Formally,

P(ng)
{ Vi €Ny, (P) = P+ 1) o " E Namp POV

Proof. For n € N, we define R(n) by
R(n) is true & P(n + ny) is true

Then R(0) is true since P(ng) is. And, foralln € N, R(n) = R(n+ 1) is true.

By the usual induction R(n) is true for any n € N, i.e. P(n) is true foranyn € N, .
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Below is an example of induction starting at n, = 5.
Proposition 1.27. For any integer n > 5, 2" > n?.

Proof. We are going to prove that Vn > 5, 2" > n? by induction on n.
e Basecaseatn=>5:2"=32>25=>5%
e Induction step: Assume that 2" > n? for some n > 5 and let’s prove that 2L s (n+ 1%
Note that 2"*! = 2x2" > 2s? by the induction hypothesis. Hence it is enough to prove that 2n* > (n+1)*
which is equivalent to n? —2n— 1 > 0.
We study the sign of the polynomial x> — 2x — 1. It is a polynomial of degree 2 with positive leading
coefficient and its discriminant is (—2)> — 4 X (=1) = 8 > 0. Therefore

X - 1-42 1412 +oo

x2—2x—1 + 0 - 0 +

Since 5 > 1 + /2, we know that n> — 21— 1 > 0 for n > 5. Which proves the induction step. u

Remark 1.28. The above example is interesting because the induction step holds for n > 3, but P(3) and
P(4) are false: don’t forget the base case! It is crucial!
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Exercises

Exercise 1.

Using only the definition of the multiplication, the properties of the addition and Peano axioms, prove that:
1. VaeN,OXa=ax0=0
2.VaeN,ax1=a

Exercise 2.

N N
Given m € N, we define inductively the function m® : p : " by m®=1and Vn e N, m*® = m" x m.

Prove that:
1. VmeN, m' =m

2. Va,b,n €N, (ax b)" =a" x b"
3. Ya,m,n € N, ™" = a" x a"
4. VneN~{0},0"=0
5. VvheN, 1" =

Exercise 3.

For each of the followings, is the binary relation R an order on E? If so, is it total?
1. E=Zand Vx,y€ Z, xRy & x=—y
2. E=RandVx,y € R, xRy < cos’ x +sin’ y = 1
3. E = P(S) is the set of subsets of a fixed set .S and VA, B € P(S), ARB< AC B

Exercise 4.

We define a binary relation R on Nby Vx,y € N, xRy & 3p,q € N\ {0}, y = px9.
1. Prove that R is an order.
2. Isit a total order?

Exercise 5.

We define a binary relation < on N? by (x, ;) < (x5, y,) & (x; <xyand y; < y,).
1. Prove that < is an order.
2. Isit a total order?

Exercise 6.

Prove that
1. Va,b,c,d €N, (a<bandc<d)>a+c<b+d
2. Va,b,c,d €N, (a<bandc <d) = ac < bd

Exercise 7.
For which ¢ € N, dowe haveVa,b €N, ac < bc = a < b?

Exercise 8.
Using the well-ordering principle, find an alternative proof of: there is no natural number n between 0 and 1.

Exercise 9.
1. Prove thatVn € N, 3k € N, n + 2n = 3k.
n
2. Prove that Vn € N, Zﬁ =2 n+2.
= 2k on

Exercise 10.
n
We define a sequence (u,),> by u; =3 and Vn € N~ {0}, u,, | = 2 2 u.
- n
k=1
Prove that Vn € N\ {0}, u, = 3n.
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Exercise 11. Bernoulli’s inequality.
Prove that Vx € [-1,+), Vn €N, (1 + x)" > 1 + nx.
(here we consider the usual order > on R)

Exercise 12.

For n € N, we define the statement P(n) by 2" > n?.
1. Prove thatVn > 3, P(n) = Pn+1).
2. For which n € N, is P(n) true?

Exercise 13.
What do you think about the following proof by induction?

We want to prove that for any n > 2, n distinct points of the plane are always on the same line.
Proof:
e Base case: when n = 2 the property is known to be true.
e Induction step: we assume that the property is true for some n > 2 and we want to show that it also
holds for n + 1.
Let Ay, A,, ..., A, be n+ 1 distinct points of the plane. By the induction hypothesis, we have
- A, A,, ..., A, are on the same line L.

- Ay, As, ..., A, are on the same line L'.
Then A,, As, ..., A, are at the same time on L and L’ so that L = L'.
Thus A, ..., A, are on the same line. Which ends the induction step. |

Exercise 14.
Given n € N~ {0}, prove that there exists a unique couple (a, b) € N such that n = 29(2b + 1).

Exercise 15.

Find all the increasing functions f : N = N such that f(2) =2 and Vp,q €N, f(pg) = f(») f(9).
Recall that a function f : N — Nis increasing if Vx,y e N, x <y = f(x) < f(»).

Exercise 16.
1. Prove that if S C Z admits a greatest element then it is unique.
2. Prove that a non-empty finite subset of Z admits a greatest element.

Exercise 17.

Let n € N\ {0}. Prove that if one square of a 2" X 2" chessboard is removed, then the remaining squares can
be covered by L-shaped trominoes.

Figure 1.1: An 8 x 8 chessboard with a removed Figure 1.2: An L-shaped tromino on a chessboard.
square.



Chapter 2

Integers

In this chapter, we are going to construct the set Z of integers and then to study its properties. The informal
idea consists in extending N by adding its symmetry with respect to 0:

S 4 3 2 -1 0 1 2 3 4 s

For this purpose, we have to give a meaning to the notation —n where # is a natural number and then we
have to extend from N to Z the operations (+,%) and the order (<).

There are several ways to formally do that. The usual one consists in defining Z = (N X N)/~ for the
equivalence relation (a, b) ~ (¢,d) & a+d = b+c. Let me explain what does it mean: intuitively (a, b) stands
for a—b, but, since such an expression is not unique (e.g. 7—5 = 10—-8), we need to “identify” some couples
(e.g. (7,5) = (10, 8)). This construction has several advantages (it is easy to extend +, x and <) but it needs
an additional layer of abstraction (equivalence relations, equivalence classes...).

Instead, I will use a more naive approach. The counterpart is that extending the operations will be a
little bit tedious with several cases to handle (e.g. the definition of a + b will depend on the signs of a and
b, so we have 4 cases just to define the addition...).

Note that what we are going to describe in a few lines took centuries to be developped and accepted:
during the 18th century, most mathematicians were still reluctant about using negative numbers.

2.1 Construction of the integers

2.1.1 Definition

Definition 2.1. For any n € N~ {0}, we formally introduce the symbol —n read as minus n and we fix the
convention that —0 = 0.
We define the set =N := {—n : n € N}. Then the set of integers is Z := (-N) U N.

Remark 2.2. (-N)nN = {0}

Remark 2.3. Nc Z 0 1 2 3 4 5
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2.1.2 Operations

Definition 2.4. For m,n € N, we set:
(i) m+ n for the usual addition in N
(ii) (=m)+ (=) = =(m +n)

k where k is the unique natural integer such thatm =n+kifn <m
—k where k is the unique natural integer such thatn =m+ kit m <n
(iv) (—=m)+ n = n+ (—m) where n + (—m) is defined in (iii)

Zx7Z - Z

(a,b) » a+b’

(iii)) m+ (-n) =

We’ve just defined + :

Remark 2.5. We have to check that the overlapping cases m = 0 or n = 0 are not contradictory.

Definition 2.6. For m,n € N, we set:
(i) m x n for the usual product in N
(ii) (—=m)X(—n)=mXn
(iii) m X (—n) = —(m X n)
(iv) (=m)Xn=—(mXn)
X7 — Z

We’ve just defined x : @b = axb’

Remark 2.7. We may simply write ab for a X b when there is no possible confusion.
Remark 2.8. Note that the addition and product on Z are compatible with the addition and product on N.
Definition 2.9. For n € N, we set —(—n) = n. Then —a is well-defined for every a € Z.

Proposition 2.10.
e + is associative: Va,b,c € Z, (a+ b)+c=a+ (b+c)
Oistheunitof +:Va€e Z,a+0=0+a=a
—a is the additive inverse of a: Va € Z, a+ (—a) = (—a)+a =0
+ is commutative: Va,b € Z, a+b=b+a
X is associative: Ya,b,c € Z, (ab)c = a(bc)
X is distributive with respect to +: VYa,b,c € Z, aX (b+ ¢) = ab + ac et (a + b)c = ac + bc
listheunitof x: Va€ Z, 1 Xa=ax1=a
X is commutative: Ya,b € Z, ab = ba
Va,be Z,ab=0= (a=00rb=0)

The above properties are easy to prove but the proofs are tedious with several cases depending on the signs.
Remark. From now on, we may simply write a — b for a + (—b) and —a + b for (—a) + b.
Corollary 2.11. Va,b,c € Z, (ac =bcand c # 0) = a=2b
Proof. Let a,b,c € Z be such that ac = bc and ¢ # 0.
Then (a — b)c = 0. So eithera—b=0o0rc =0. Sincec #0, we geta—b=0,i.e. a=b.. [ |
2.1.3 Order
Definition 2.12. We define the binary relation < on Z by
VabeZ,a<bsb—-—aeN

Proposition 2.13. < defines a total order on Z.

Proof.
o Reflexivity. Leta € Z,thena—a=0&€Nsoa<a.
o Antisymmetry. Let a,b € Z. Assume that a < band that b < a. Thenb—-a € Nanda—-b € N. So
a—b=—(b-a) e (-N). Hence a — b € (-N)nN = {0} and thus a = b.
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o Transitivity. Let a,b,c € Z. Assume thata < band thatb <c. Thenb—-a e Nand c - b e N.
Thusc—a=(c—-b)+(b—a)eN,ie. a<ec.
o Leta,be Z. Thenb—ae Z=(-N)U(N).
First case: b— a € Nthen a < b.
Second case: b—a € (-N),thena—b=—-(b—a) eNand b < a.
Hence the order is total. [ |

Proposition 2.14. The order on Z is compatible with the order on N.

Proof. Leta,b e N.
e Assumethata <, b. Thenk=b-aeN.Sob=a+k,ie a<yb.
e Assume thata <y b. Thenb=a+k forsomek € N. Thenb—-a=k €N, ie. a <, b. |

Proposition 2.15.
1. N={aeZ,0<La}
2. Va,bceZ,a<bsa+c<b+c
3. Va,b,c,d € Z, (asbandcsd) >a+c<b+d
4. Ya,be Z,Vc e NN {0}, a< b o ac < bc
5. Va,be Z,Vc € (—N)~ {0}, a< b bc <Lac

Proof.

1. Letae Z. Then0<a<a=a-0€N.

2. Leta,b,ceZ. Thena<bsob—-aeNs (b+c)—(a+c)eNsa+c<b+ec.

3. Leta,b,c,d € Z. Assume thata < band thatc <d. Thenb—aeNandd —c eN.
Hence (b+d)—(a+c)=(b—-a)+(d—-c)eN,ie.a+c<b+d.

4. Leta,be Zand c € N.
=: Assume that a < b. Then b — a € N, thus bc — ac = (b — a)c € N. Therefore ac < bec.
«: Assume that ¢ # 0 and that ac < be. Then bc — ac = (b — a)c € N. Assume by contradiction
that (b — a) € (—N) \ {0} then, by definition of the multiplication, (b — a)c € (=N) ~ {0}, which is a
contradiction. Hence b —a € N, i.e. a < b.

5. Leta,b € Z and ¢ € (—N).
=: Assume that a < b. Then b — a € N, thus ac — bc = (b — a)(—c) € N. Therefore bc < ac.
<: Assume that ¢ # 0 and that bc < ac. Then ac — bc = (b — a)(—c) € N. And we concludeasin4. W

Remark 2.16. Given a, b, c € Z, it is common to lighten the notation by writing a < b < ¢ for (¢ < band b <
¢).
Theorem 2.17.

1. A non-empty subset A of Z which is bounded from below has a least element, i.e.

dme A, Vae A, m<a
2. A non-empty subset A of Z which is bounded from above has a greatest element, i.e.
dIM e A,Vae A,a< M
Proof.

1. Assume that A is a non-empty subset of Z which is bounded from below.
Then there exists k € Z such thatVa € A, k < a. Define S ={a—k : a€ A}.
Then S is a non-empty subset of N (indeed, Va € A, 0 < a — k).

By the well-ordering principle, there exists 7z € § such thatVa € A, m < a—k.
Then m = m + k is the least element of A (note thatm € Ssom=m+k € A)

2. Assume that A is a non-empty subset of Z which is bounded from above. Then (-A) = {—-a : a € A}
is a non-empty subset of Z which is bounded from below (prove it).
By the above, there exists m € (—A) such that Va € A, m < —a. HenceVa € A, a < —m.
Thus M := —m is the greatest element of A. [
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2.2 Absolute value

n ifneN

Definition 2.18. For n € Z, we define the absolute value of n by |n| := { “n ifne(=N)

Proposition 2.19.
(i) Vne Z, |n| N
(ii) Vne Z, n < |n|
(iii) Vne Z, In| =0 n=0
(iv) Va,b € Z, |ab| = |a||b|
(v) Va,be Z, la| <bs -b<a<b
(vi) Ya,be Z, la+b| < |a|+|b] (triangle inequality)

Proof.
(i) First case: if n € N then |n| =n e N.
Second case: if n € (—N) then n = —m for some m € Nand |n| = —n = —(—m) =m € N.
(ii) First case: n € N. Thenn < n = |n|.
Second case: n € (—N). Then n <0 < |n|.
(iii) Note that |0| = 0 and that if n # 0 then |n| # 0.
(iv) You have to study separately the four cases depending on the signs of a and b.
(v) If b < Othen |a| < band —b < a < b are both false. So we may assume that b € N. Then
First case: a € N. Then |a| Kb a<bs -b<a<h.
Second case: a € (—N). Then |a| <bo —a<bo -b<ase -b<La<h.
(vi) Sincea+b <|a|+|bland —(a+b)=—a—-b<|—a|+|—b| =|a| + |b|, we get |a+ b| < |a| + |b]. |

2.3 Euclidean division

Theorem 2.20 (Euclidean division).
Given a € Z and b € Z ~ {0}, there exists a unique couple (q,r) € Z? such that

a=bqg+r
0<r<|b|
The integers q and r are respectively called the quotient and the remainder of the division of a by b.

Proof.
Existence:
First case: assume that 0 < b.
Weset! E={peZ : bp<a).
o F + @,indeedif 0 < athen 0 € E, otherwisea € E.
e |a| is an upper bound of E.
Indeed, let p € E.
If p<0thenp<0<]al
Otherwise, if 0 < pthen1 <b = p<bp<a<]al.
Thus E is a non-empty subset of Z which is bounded from above.
Hence it admits a greatest element, i.e. there exists ¢ € E such thatVp € E, p <q.
Wesetr=a—bq. Sinceq€ E,r=a—bq > 0.
And g+ 1 ¢ E since g + 1 > g whereas g is the greatest element of E.
Therefore b(g+ 1) > a,sor =a—bg < b = |b|.
We wrote a = bg + r with 0 < r < |b| as expected.

'When b > 0, the informal idea of this proof consists in determining how many times we can add b before exceeding a, which
will give the quotient. Then the remainder will be obtained by filling the difference in order to reach a.
Intuitively, if the quotient exists, it has to be the greatest p such that bp < a. We have to prove the existence of such a number and
then to check formally that this idea is actually correct.
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Second case: assume that b < 0.
Then we apply the first case to a and —b > 0: there exists (¢,r) € 7? such that a = —bq + r = b(—q) + r with
0<r<—b=|b.

Uniqueness: assume that we have two suitable couples (¢, r) and (¢, r").
Thenr' —r = (a—bq’) — (a— bq) = b(q — q'). Besides
0<r<|b| —|bl < =r <0 ,

{05r’<|b| :{OSr’<|b| = —|b| <r' —r<|b|

Thus —|b| < b(q — ¢") < |b|, from which we get |b||qg — ¢'| = |b(qg — ¢")| < |b].

Since |b| > 0, we obtain 0 < |g — 4’| < 1.

But we proved in the first chapter that there is no natural number between 0 and 1.

Therefore |q — q'| = 0, which implies that g — ¢’ =0,i.e. g =¢’.

Finally, ' =b—aq' =b—aq =r. |

Examples 2.21.

e Divisionof 22by 5: 22=5x4+2.
The quotient is ¢ = 4 and the remainder is r = 2.

e Division of —22by 5: —-22 =5X(-5) +3.
The quotient is ¢ = —5 and the remainder is r = 3.

e Division of 22 by —5: 22 = (=5) X (—4) + 2.
The quotient is ¢ = —4 and the remainder is r = 2.

e Division of =22 by —5: —22 = (-5)x5+3.
The quotient is ¢ = 5 and the remainder is r = 3.

Proposition 2.22. Givenn € Z,
o cither n = 2k for some k € Z (then we say that n is even),
e orn =2k + 1 for some k € Z (then we say that n is odd),
and these cases are exclusive.

Proof. Let n € Z. By the Euclidean division by 2, there exist k,r € Z such thatn = 2k + rand 0 < r < 1. But
we know from the last chapter that there is no natural number between 0 and 1. Hence either r = O or r = 1.
These cases are exclusive by the uniqueness of the Euclidean division. [

2.4 Divisibility

Definition 2.23. Given a, b € Z, we say that a is divisible by b if there exists k € Z such that a = bk.
In this case we write b|a and we also say that b is divisor of a or that a is a multiple of b.

Examples 2.24. o (=5)|10 o5} (—11)
(we will study divisibility criteria later in the term)

Remarks 2.25.
e Any integer is a divisor of 0, i.e Vb € Z, b|0. Indeed, 0 = b x 0.
e Any integer is divisible by 1 and itself, i.e. Va € Z, 1|a and ala. Indeed, a =1xXa=aX I.
e The only integer divisible by 0 is 0 itself, i.e. Va € Z, 0la = a =0.
Indeed, then a = 0 X k for some k € Z and hence a = 0.
e When b # 0, b|a if and only if the remainder of the Euclidean division of a by b is r = 0.



J.-B. Campesato Chapter 2. Integers 25

Proposition 2.26.
1. Va,b € Z, (alband bla) => |a| = |b]|
2. Va,b,c € Z, (alband blc) = dlc
3. Va,b,c,d € Z, (alband c|d) => ac|bd
4. Va,b,c, A,y € Z, (alband alc) = al(Ab+ uc)
5.VaeZ,all = |a|=1

Proof.

1. Let a, b € Z satisfying a|b and b|a. If a = 0 then b = 0 (from 0|b). So we may assume that a # 0.
There exist k,l € Z such that b = ak and a = bl. Then a = bl = akl, thus 1 = kl since a # 0.
Therefore, 1 = |1| = |kI| = |k| X |I|. Since |k|, |I| € N, we get that |k| = |/| = 1.

Finally, |a| = |bl| = |b| X |I| = |b] X 1 = |b].
2. Leta,b,c € Z satistying alb and b|c. Then b = ak and ¢ = bl for some k, ! € Z.
Therefore ¢ = bl = akl, so ac.
3. Leta,b,c,d € Z satistying a|b and c|d. Then b = ak and d = ¢/ for some k,/ € Z.
Therefore bd = ackl, so ac|bd.
4. Leta, b, c € Z satistying a|b and a|c. Then b = ka and ¢ = la for some k, | € Z.
Hence Ab + uc = Aka + pula = (Ak + ul)a. Thus a|(Ab + puc).
5. Leta € Z. Assume that a|1. Then a|1 and 1]a. So by the first item, |a| = 1. |

2.5 Greatest common divisor

Theorem 2.27. Given a,b € Z not both zero, the set common divisors of a and b admits a greatest element denoted
gcd(a, b) and called the greatest common divisor of a and b.

Proof. Let a,b € Z not both zero. Weset S ={d € Z : d|laand d|b}.
e S is non-empty since it contains 1.
e Since a and b are not both zero, we know that a # 0 or b # 0.
Without loss of generality, let assume that a # 0.
Let d € S then a = dk for some k € Z. Note that k # 0 (otherwise a = dk = 0), hence 1 < |k|.
Thus d < |d| < |d| X |k| = |dk| = |a|. Hence S is bounded from above by |a|.
Therefore, .S admits a greatest element (as an non-empty subset of Z bounded from above). n

Remark 2.28. Note that gcd(a, b) > 1 since 1 is a common divisor of a and b (particularly ged(a, b) € N).

Proposition 2.29. Let a, b € Z not both zero and d € N~ {0}. Then

d|a
d|b = d = gcd(a, b)
Vs €N, (8laand 5|b) = 6|d

Remark 2.30. We will see later that the converse holds (Proposition 2.35.(3)).

Proof. Let a,b € Z not both zero and d € N~ {0}. Assume that d|a, d|b and that d is a multiple of every
non-negative common divisors, i.e.

V6 €N, (6laand 6|b) => §|d

Then d is a common divisor of a and b. We need to prove that it is the greatest one.
Let 6 € Z be a common divisor of a and b.
e I[f5 <0thené <d.
e If 6 > 0 then d = 6k for some k € Z.
Note that k > 1 since d,6 > 0. Thus 6 < 6k =d. [
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The following theorem is extremely useful! We will use it quite often to study gcd and also when studying
modular arithmetic!

Theorem 2.31 (Bézout’s identity). Given a, b € Z not both zero, there exist u,v € Z such that
au + bv = ged(a, b)

Example 2.32. gcd(15,25) =5=15X2+25X%(-1).
We will see below an algorithm in order to find a suitable couple (u, v).

Remarks 2.33.
e The couple (u,v) is not unique: 5 = 15 X 27 4+ 25 X (—16).
e The converse is false: 2 =3 x4 + 5 X (=2) but gcd(3,5) = 1 # 2.
Nonetheless, we will see later that there is a partial converse when ged(a, b) = 1.

Proof of Theorem 2.31. Let a,b € Z not both zero. Set S = {n € N~ {0} : Ju,v € Z, n = au + bv}.
Without loss of generality we may assume that a # 0.
Note that .S is not empty. Indeed,
e Ifa<Othenn=ax(-1)+bx0isin S, or,
e Ifa>0thenn=ax1+bx0isin S.
Thus, by the well-ordering principle, .S admits a least element d.
Since d € S, we know that d = au + bv for some u, v € Z.
Let’s prove that d = gcd(a, b).
e By Euclidean division, there exist g,r € Z suchthata=dg+rand0<r < |d| =d.
Assume by contradiction that r # 0.
Thenr =a—qd = a— qlau+ bv) = a X (1 — qu) + b X (—qv) is in S. Which contradicts the fact that d is
the least element of S. Hence r = 0 and a = dg, i.e. d|a.
e Similarly d|b.
e Let 6 € Z be another common divisor of a and b.
Since 6|a and §|b, a = 6k and b = 6l for some k,l € Z. Hence d = au + bv = 6(ku + lv), i.e. §|d.

Therefore, by Proposition 2.29, d = gecd(a, b).
Hence gcd(a, b) = au + bv as requested. [

Proposition 2.34. Va € Z ~ {0}, gcd(a,0) = |a]

Proof. By definition, gcd(a, 0) is the greatest divisor of a.

Since a = |a| X (1), we know that |a| is a divisor of a. We have to check that it is the greatest one.

Let d be a non-negative divisor of a, then a = dk for some k € Z.

Since a # 0, we know that k # 0.

Hence 1 < |k| from which we get that d < d|k| = |d| X |k| = |dk| = |a]. |

Proposition 2.35. Let a, b € Z not both zero, then
1. gcd(a, b) = ged(b, a)
2. ged(a, b) = gcd(a, —b) = ged(—a, b) = gcd(—a, —b)
3. V6 € Z, (6laand §|b) => 5| ged(a, b)
4. VA € Z~ {0}, ged(Aa, Ab) = || ged(a, b)
5. Yk € Z, gcd(a + kb, b) = ged(a, b)

Proof. 1 will just prove 3,4 and 5, the first two being easy to prove.

3. Leta,b € Z. Let 6 € Z. Assume that 6|a and §|b.
By Bézout’s theorem, gcd(a, b) = au + bv for some u, v € Z.
Since §|a and 6|b, we have that 5|au + bv = ged(a, b).

4. Leta,be Zlet A € Z~{0}. Since |A| divides Aa and 4b, then it divides gcd(Aa, Ab) by the third item.
Hence gcd(Aa, Ab) = |A| X d for some d € Z. Let’s prove that d = gcd(a, b).
Let n € Z, then n|a, b < |A|n|ia, Ab < |A|n| ged(4a, Ab) < n|d.
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5. Leta,b,k € Z. gcd(a, b)|a, b hence gcd(a, b)|a + kb. Thus gcd(a, b)| gcd(a + kb, b).
Similarly, gcd(a + kb, b)|a + kb, b hence gcd(a + kb, b)|a + kb — kb = a. Thus gcd(a + kb, b)| gcd(a, b).
Hence | gcd(a+ kb, b)| = | gcd(a, b)|. Since they are both non-negative, we get gcd(a+ kb, b) = ged(a, b).
[ |

2.6 Euclid’s algorithm

Euclid’s algorithm is an efficient way to compute the gcd of two numbers.

Let a, b € Z not both zero.
Initialization of the algorithm. We set a := |a| and b := |b|. Note that gcd(ay, by) = gcd(+a, +b) = gcd(a, b).
Iteration. Assume that a,, b, € Z are already constructed with a,, b, > 0 not both zero.
e If b, = 0 then gcd(a,, b,) = a, and the algorithm stops.
e Otherwise, by Euclidean division, there exist g, 7, € R such thata, = b,q,+r,and 0 <r, < b,.
Weseta,,;=b,and b, :=r, thena, ;=b,>0and 0<b,,; <b,.
Moreover, using Proposition 2.35.(5),

gcd(a,, b,) = gcd(b,q, + r,, b,) = gcd(r,, b,) = gcd(b,,r,) = gcd(a,,1,b,41)

We repeat the iterative process with a,,; and b, .
Conclusion. Since the b, are natural numbers and 0 < b, < b, there exists N € N such that by, = 0.
It proves that the algorithm ends after finitely many steps. Furthermore

gcd(a, b) = ged(ay, by) = ged(ay, b)) = -+ = ged(ay, by) = ay
So the algorithm computes ged(a, b) as expected.

Algorithm: Euclid’s algorithm in pseudocode

Result: gcd(a, b) where a, b € Z not both zero.

a < |a|

b < |b|

while b # 0 do
r «— a%b (the remainder of the Euclidean division a = bq + r with 0 < r < b)
a<b

b<r
end

return a

Example 2.36. We want to compute gcd(600, —136):
ay = 600, by =136 | gcd(600,—-136) = gcd(600,136)

600 = 136 x 4 + 56 |a; =136, b =56 gcd(600,136) = gcd(136,56)
136 = 56 x 2 4+ 24|a,=56, b,=24 gcd(136,56) = gcd(56,24)
56 = 24 X 2 4+ 8 |ay3=24, by;=8 gcd(56,24) = gcd(24,8)
24 = 8 X 3 4+ 0 |ay4=8, by=0 gcd(24,8) = gcd(8,0) =8

Hence gcd(600, —136) = 8.

It is possible to obtain a suitable Bézout’s identity from the above algorithm by going backward.

8§ =56+24%(-2) since 8 =56 —24 x 2
=56+ (136 + 56 X (=2)) X (=2) since 24 = 136 — 56 x 2
=136 X (-2)+56 x5
=136 X (=2) + (600 + 136 X (—4)) X 5 since 56 = 600 — 136 x 4

8 =600x54(—-136) x 22
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2.7 Coprime integers

Definition 2.37. Leta, b € Z notboth zero. We say that a and b are coprime (or relatively prime) if gcd(a, b) = 1.
The following result states that the converse of Bézout’s identity holds for coprime numbers.
Proposition 2.38. Let a,b € Z not both zero. Then

ged(a,b)=1e wuveZ, au+bv=1

Proof.

=: it is simply Bézout’s identity.

<: let a, b € Z not both zero. Assume that au + bv = 1 for some u, v € Z.

Set d = gcd(a, b). Then d|a and d|b, hence d|(au+ bv) = 1. So |d| = 1. Butsinced € N, we getthatd =1. R

ged(a, b) =1

= ajc
albc |

Theorem 2.39 (Gauss’ lemma). Va,b,c € Z, {
Proof. Leta,b,c € Z such that gcd(a, b) = 1 and a|bc. Then there exists k € Z such that bc = ka. By Bézout’s
identity, there exist u, v € Z such that 1 = au + bv.

Thus ¢ = (au + bv)c = auc + bcv = auc + kav = a(uc + kv). Hence alc. |

The following result is very useful.
Proposition 2.40. Let a,b,c € Z. If a|c, b|c and ged(a, b) = 1 then ab|c.

Proof. Since alc and b|c, there exist k, ! € Z such that ¢ = ak and ¢ = bl.
Since gcd(a, b) = 1, by Bézout’s identity, there exists u, v € Z such that au + bv = 1.
Then ¢ = auc + bvc = aubl + bvak = ab(ul + vk), so that ab|c. [ |

2.8 A diophantine equation

Theorem 2.41. Let a, b, c € Z with a and b not both zero.
Then the equation ax + by = ¢ has an integer solution if and only if gcd(a, b)|c.

Proof.

=: Assume that ax + by = ¢ for some (x, y) € Z>.

Since gcd(a, b)|a and gcd(a, b)|b, we get that gcd(a, b)|ax + by = c.

<: Assume that gcd(a, b)|c, then there exists k € Z such that ¢ = k ged(a, b).

By Bézout’s identity, there exists (u, v) € 72 such that au + bv = gcd(a, b) hence aku + bkv = k gcd(a, b) = c.
Therefore (ku, kv) is an integer solution of the equation. |

How to find all the integer solutions of an equation of the form ax + by = ¢ with a # 0, b # 0 and gcd(a, b)|c?

e Step 1: reduction to the case where gcd(a, b) = 1.
There exist d, b, ¢ € Z such that a = dgcd(a, b), b = bged(a, b) and ¢ = ¢ ged(a, b).
Hence ax + by = ¢ & ax + by = ¢.
Note that ged(a, b) = ged(d ged(a, b), b ged(a, b)) = ged(a, b) ged(d, b). Hence ged(a, b) = 1.

e Step 2: find a first solution.
By Bézout’s identity, there exist u, v € Z such that du + bv = 1 (we may find such a couple (u, v) using
Euclid’s algorithm).
Thence déu + bév = ¢é. Therefore we obtain a solution (x,, yo) = (¢u, év) of ax + by = ¢.

e Step 3: study the other solutions.
Let (x,y) € 7> satisfying ax + by = é. Then a(x — Xo) + b(y — Y) =0, ie. b(y — Vo) = a(xy — Xx).
Since d|b(y—y,) and ged(a, h=1, by Gauss’ lemma, d|y—y,, i.e. there exists k € Z such that ka = y—y,,
ie y=y,+ka
Then d(x, — x) = b(y — y,) = kab. Since a # 0, we get x, — x = kb, i.e. x = x, — kb.
We proved that there exists k € Z such that (x, y) = (xy — kb, y, + ka).
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e Step 4: check the converse!
We proved that if (x, y) € Z? is a solution, then there exists k € Z such that (x, y) = (xo — kb, yo + ka).
It means that the solutions are among (x, y) € {(xo — kb,yy +ka) : k€ Z}.
Otherwise stated, it means that {(x, y) € 7% . ax+by= ¢} c {(xg—kb,yo+ka) : ke z}.
It doesn’t mean that they are all solutions, we need to check that separately, i.e. we need to prove the
other inclusion.
Conversely, let’s prove that for every k € Z, (x,y) = (x, — kb, y, + kd) is a solution:

a(xg — kl~7) + B(Y() + ka) = axg + l~)y0 =7

e Step 5: Conclusion!
The solutions are exactly the (x, y) = (x¢ — kb, y, + ka) for k € Z.

Example 2.42. We want to solve 20x + 16y = 500 for (x, y) € Z.

1. Note that gcd(20, 16) = 4|500, hence this equation admits a solution.
Moreover, dividing by 4, we get that 20x + 16y = 500 & 5x + 4y = 125.

2. Let’s find a first solution starting from a Bézout relation 5u + 4v = 1.
In this example, there is an obvious Bézout relation: 5x 1 +4 x (-1) = 1.
(otherwise, we can use Euclid’s algorithm to find one)
Hence 5 x 125 + 4 x (—125) = 125. So (125, —125) is a solution

3. Let’s find all the solutions.
Let (x, y) be a solution then 5x + 4y = 125 and 5 X 125 + 4 x (—125) = 125.
Thus 5(x — 125) + 4(y + 125) = 0, so 4|5(x — 125).
Since gcd(4,5) = 1, by Gauss’ lemma, 4|x — 125. So x = 4k + 125 for some k € Z.
Then 5(4k) + 4(y + 125) = 0,i.e. 5k + y+ 125 =0, so that y = —5k — 125.
Therefore (x, y) = (4k + 125, -5k — 125).

4. Conversely, (4k + 125, -5k — 125) is a solution for every k € Z:
indeed, 20x + 16y = 20(4k + 125) + 16(—=5k — 125) = 500.

5. Conclusion: the solutions are (4k + 125, -5k — 125), k € Z.

For general diophantine equations, there are no recipes (Fermat’s Last Theorem is about some diophan-
tine equations and took 4 centuries to be solved).

Example 2.43. We want to find integer solutions of x* — y* = 401.
Note that x> — y? = 401 < (x — y)(x + y) = 401.
Since 401 is a prime number (I am sure you can look in the future for next Thursday lecture), then

. x—y=1 x—y=-1 x—y=401 x—y=-401
elther{x+y=4()1 Or{x+y=—401 Or{x+y=1 or x+y=-1

So either (x, y) = (201, 200), or (x, y) = (=201, —200) or (x, y) = (201, —=200) or (x, y) = (=201, 200).



30 Concepts in Abstract Mathematics J.-B. Campesato

Appendix 2.A Properties of the strict order

Recall that given a,b € Z, a < bmeans (a < band a # b).

The following properties of < are easy to derive from the ones of <.

VYa,b,c € Z, (a<bandb§c) = a<c

Va,b,c € Z, (asbandb<c) = a<c

Va,b,c,d €Z, (a<bandc<d) = a+c<b+d

Va,b,ce€Z,a<b = a+c<b+c

(that’s a special case of the previous one where d = c)

Va,b,c € Z, (a<bandc>0) = ac < bc

Va,b,c € Z, (a<bandc<0) = ac > bc

VabeZ,a<bsa+1<b

Given a, b € Z, exactly one of the following occurs:
(i) a<b

(i) a=»b

(iii) a> b

Particularly, the negation of a < bif a > b.

Appendix 2.B Implementation of Euclid’s algorithm in Julia

Euclid’s algorithm in Julia (iterative)

function euclid(a::Integer, b::Integer)
a!=0 || b!=0 || exrror("a and b must not be both zero")
a abs(a)
b abs(b)
while b != 0
I a%
a b
b T
end
return a
end

Actually, it is not important to replace a and b by their respective absolute values in the initialization. In
this case, the sequence (b,) is eventually non-negative so the algorithm stops as earlier and we just have to
make sure that we return the absolute value of a at the end.

That being said, you should be careful because most programming languages don’t use the above con-
vention for Euclidean division. Instead, they require the remainder r to have the same sign as b, i.e. r
satisfies 0 <r < bifb>0o0orb<r<0if b <0.

But it doesn’t matter for Euclid’s algorithm: indeed, with this convention, the sequence [b,,]| is still de-
creasing, so the algorithm stops.

Therefore, we can simply write the following program (here gcd(0,0) = 0 by convention).

Euclid’s algorithm in Julia (recursive)

function euclid(a::Integer, b::Integer)
b !=0 || return abs(a)
return euclid(b,a%b)

end
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Exercises

Exercise 1.
Let a, b € Z. Prove that if a®> = b” then |a| = |b|.

Exercise 2.

Let n € N~ {0}. Prove that given n consecutive integers, one is divisible by .
The above result is very useful and from now on you can use it without proving it again.

Exercise 3.

1. Compute gcd(816,2260).
2. Find (u, v) € Z? such that 816u + 22600 = gcd(816,2260).

Exercise 4.

1. Does the divisibility relation | define an order on Z? If so, is it total?
2. Does the divisibility relation | define an order on N? If so, is it total?

Exercise 5.
Prove that Vn € N, 7|32+1 4 24m+2

Exercise 6.
Leta,b,c,d € Z be such that ad + bc # 0. Prove that if ad + bc divides a, b, ¢, d then |ad + bc| = 1.

Exercise 7.
Prove that Vn € N, gcd(n2 +n2n+1)=1

Exercise 8.
Let a,b € Z. Prove that if gcd(a, b) = 1 then gcd(az, b?) = 1.

Exercise 9.

Prove that
1. Ya,b € Z~ {0}, d*|b* = alb
2. Prove that Va,b,c € Z~ {0}, gcd(a,b) =1 and c|b = gcd(a,c) =1

Exercise 10.

For each of the following statements: is it true? If so, prove it. Otherwise, give a counter-example.
1. If a, b € Z are coprime then a + b and ab are too.
2. If a,b € Z are coprime then a + b and a* + b? are too.

We say that a and b are coprime if gcd(a, b) = 1.

Exercise 11.

Seven friends have a dinner in a restaurant. When he brings the bill, the waiter makes the following offer:
“I'll put on each of your foreheads a sticky note with a day of the week® written on it, so that each of you will see the
other six notes but not yours. Then you will have to guess the day written on your note (by secretly writing your
guess on your napkin). If at least one of you has the correct answer, then the bill is on me. By the way, there is no rule
concerning my choices for the days, for instance I can assign several times the same day.”

While the waiter left to write the sticky notes, one of the friends, who happens to be a mathematician,
exclaims: “I found a way so that we are 100% sure that one of us is correct!”.

And then he explains his winning strategy to his friends.

Can you guess what it is?

2Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday.
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Exercise 12.

1. Prove that among 42 distinct integers, there are always two distinct integers a and b such that b — a is
a multiple of 41.
2. Prove that among five integers, there are always three with sum divisible by 3.

Exercise 13.
Compute gcd(3'% - 5,25).

Exercise 14.
Prove that Vn € Z, 6|n(n + 1)(n + 2)

Exercise 15.
1. Prove thatVn € Z, gcd(2n,2n +2) = 2.
2. ProvethatVn e Z, gcd(2n—1,2n+1) = 1.
3. Prove that for a, b € Z not both zero, gcd(5a + 3b, 13a + 8b) = gcd(a, b).

Exercise 16.

Find all the integer solutions of

(a) xy =2x+ 3y (b)l+l=
x y

(d) 9x + 15y =11 (e) 9x + 15

T ©xty=x
y=18 (f) 1665x + 1035y = 45
Exercise 17.

1. Prove that if a, b € Z are not both zero then there exist a’, b’ € Z such that gcd(a’,b’) = 1, and a = dd’
and b = db’ where d = gcd(a, b).
2. Prove thatVa,b,c € Z~ {0}, clab = cl(gcd(a,c) ged (b, c))

Exercise 18.
1. Prove Sophie Germain’s identity: a* + 4b* = ((a + b)* + b*) ((a — b)* + b*).
2. Prove that 3* + 4% is a composite number.
3. Prove that for every natural number n > 1, n* +4%is a composite number.
Hint: study the parity of n.

Exercise 19.

Prove that there are infinitely many integers that can’t be written as the sum of a square with a prime
number.
Hint: look at (3k + 2)* for k € N~ {0}.

Exercise 20.
Prove that Vn € N, n|(n — 1)! + 1 = nis prime.

Exercise 21.
Let n € N~ {0}. Find n consecutive natural numbers such that none of them is a prime number.

Exercise 22.

Prove that the following numbers are not rationals using the prime factorization theorem.
1. log,,2

2. V2

For this question you can use what you know about Q and R.

Exercise 23.
Prove thatVn € Z, 49 } n® —n> —=2n+1
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Exercise 24.
Prove that there are infinitely many prime numbers of the form p = 4k + 3 where k € N.

Exercise 25. Goldbach’s theorem about Fermat numbers
k—1
1. Prove thatVa € N, Yk € N~ {0}, 22" —1 = (22" - 1) <[] (22"*’ + 1).
i=0

2. Let m,n € N. Prove that if m # n then 2> + 1 and 2*" + 1 are coprime.

Exercise 26.
Let a, n > 2 be two natural numbers.
1. Prove that if a" — 1 is prime then a = 2 and » is prime.
A number of the form M, = 2" — 1 is called a Mersenne number.
2. Is the converse true?

Exercise 27.
Three brothers inherit n gold pieces weighing 1,2, ..., n.
For what n € N~ {0} can they be split into three equal heaps?

Exercise 28.

A sea pirate wants to share a treasure with its sailors.

The treasure is made of 69 diamonds, 1150 pearls and 4140 gold coins.

He is able to share fairly the treasure such that everyone (including himself) receive the same amount of
each object.

How many sailors are there?



Chapter 3

Prime numbers

Informally, prime numbers are the integers greater than 1 which can’t be factorized further. More precisely
they are the natural numbers admitting exactly two positive divisors. Otherwise stated, a natural number
n > 2 is a prime number if and only if its only positive divisors are 1 and » itself.
They play a crucial role in number theory since every natural number admit a unique expression as a
product of prime numbers. They will also appear quite often later when we will study modular arithmetic.
All the results presented below were already known in Euclid’s Elements (circa 300BC). Nonetheless,
there are still many conjectures involving prime numbers which are easy to state but still open (some of
them despite several centuries of attempts). For instance:
o Goldbach conjecture (1742): any even natural number greater than 2 may be written as a sum of two
prime numbers (e.g. 4=2+2,6=3+3,8=5+3,10=54+5=7+3...).
o The twin prime conjecture (1849): there are infinitely many prime numbers p such that p+2 is also prime
(e.g. (3.5),(5.7), (11,13)...).
e Legendre conjecture (1912): given n € N~ {0}, we may always find a prime between n* and (n + 1)°.

3.1 Prime numbers

Definition 3.1. We say that a natural number pis a prime number if it has exactly two distinct positive divisors.
A positive natural number with more than 2 positive divisors is said to be a composite number.

Remark 3.2.
e (0is not a prime number since any natural number is a divisor of 0.
e | is not a prime number because it has only one positive divisor.
Hence a natural number p is prime if and only if p > 2 and the only positive divisors of p are 1 and p.

Example 3.3. The first prime numbers are 2, 3, 5,7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73,79,83,89,97...

We face two natural questions:
1. How to check whether a natural number is a prime number?
2. How many prime numbers are there?

Proposition 3.4. Let n € N. Then n is composite if and only if there exist a,b € N~ {0, 1} such that n = ab.

Proof. Letn € N.

= assume that n is a composite number, then it admits a divisor k € N such that k # 1 and k # n.

So n = km for some m € N. Note that k, m # 0 since otherwise n = 0. Note that m # 1 since otherwise k = n.
< Assume that n = ab for some a,b € N~ {0, 1}.

Note that a # n, since otherwise b = 1 and that n # 1 since otherwise a|1,i.e. a = 1.

Therefore 1, a, n are three distinct positive divisors of n, so that n is a composite number. |
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Proposition 3.5. A composite number a admits a positive divisor b such that 1 < b* < a.

Proof. Write a = b, b, for some by, b, € N~ {0, 1}. Then 5?, b% > 1.
Assume by contradiction that both b% > a and b% > a. Then a* = (b b,)* = b%b% > a?. Hence a contradiction.
[ |

Example 3.6. We want to prove that 97 is a prime number.
Since 10% = 100 > 97, it is enough to check that none of 2, 3, 4, 5, 6, 7, 8 and 9 are divisors of 97.
We will see later criteria to check divisibility.

Lemma 3.7. A natural number n > 2 has at least one prime divisor.

Proof. We are going to prove with a strong induction that every natural number n > 2 has a prime divisor.
Base case at n = 2: 2 admits a prime divisor (itself).
Induction step: assume that all the natural numbers 2, ..., n admit a prime divisor for some n > 2.
o First case: n + 1 is a prime number, then it has a prime divisor (itself).
e Second case: n + 1 is a composite, then n + 1 = ab where a,b € N~ {0, 1}.
Note that a # n + 1 since otherwise b = 1.
Since 2 < a < n, a admits a prime divisor p by the induction hypothesis, i.e. a = pk for some k € N.
Then n+ 1 = ab = pkb. Thus the prime number p is a divisor of n + 1.
Which proves the induction step. [

Theorem 3.8. There are infinitely many prime numbers.

Proof. Assume by contradiction that there exist only finitely many prime numbers py, p., ..., p,,.

We set ¢ = p;p, -- p, + 1. By Lemma 3.7, g has a prime divisor. Thus there exists i € {1,2,...,n} such that
pilg.

Then, since p;|pp, ... p, and p;|q, we have that p;|(qg — p,p, ... p,), i-e. p;|1.

Therefore p; = 1, which is a contradiction because 1 is not a prime number. [ |

3.2 The fundamental theorem of arithmetic
Lemma 3.9 (Euclid’s lemma). Let a,b € Z and p be a prime number. If p|ab then p|a or p|b (or both).

Proof. Let a,b € Z and p be a prime number such that p|ab.
Assume that p } a then gcd(a, p) = 1 since the only positive divisors of p are 1 and itself.
Hence, by Gauss’ lemma, p|b. [ |

Theorem 3.10 (The fundamental theorem of arithmetic). Any integer greater than 1 can be written as a product
of primes, moreover this expression as a product of primes is unique up to the order of the prime factors.

Remark 3.11. The above theorem states two things: the existence of a prime factorization, and its unique-
ness.

Proof.
o Existence. We are going to prove with a strong induction that n > 2 admits a prime factorization.
Base case for n = 2: 2 is a prime number, so there is nothing to do.
Induction step: assume that all the integers 2, 3, ..., n have a prime factorization for some n > 2.
We want to prove that n + 1 admits a prime factorization.
By Lemma 3.7, n + 1 admits a prime factor, so n + 1 = pk where p is a prime number and k € N~ {0}.
If k = 1 then there is nothing to do. So we may assume that k > 2.
Since 1 < p, we have that k < pk =n+ 1.
Since 2 < k < n, by the induction hypothesis, k admits a prime factorization k = pp, ... p;.
Finally n + 1 = pp;p, ... p;, which proves the induction step.
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e Uniqueness (up to order).
Assume by contradiction that there exists an integer greater than 1 with (at least) two distinct prime
factorizations. Denote by n the least such integer (which exists by the well-ordering principle).
Letn=pp,...p.and n = q,q, ... g; be two distinct prime factorizations of n.
Then pyp; ... p, = 4145 --- 45-
By Euclid’s lemma p; divides one of the g;.
Up to reordering the indices, we may assume that p|q;.
Since g, is a prime number, either p; = 1 or p; = gq;.
And thus p; = ¢, since p, is also a prime number (and 1 is not).
Therefore, by cancellation, m = p, ... p, = g, ... g, is a number with two distinct prime factorizations.
Note that m > 1 since otherwise n = p; = ¢q, is not two distinct prime factorizations.
And, since 1 < p; wegetthatm=p,...p. <pp,...p, =n.
Which contradicts the fact that # is the least integer greater than 1 with two prime factorizations. W

Corollary 3.12. Any natural number n € N~ {0} admits a unique expression n = H p*r where a, € N
p prime

(i.e. the a, are uniquely determined).

Remarks 3.13.
e The above product is finite since all but finitely many exponents are equal to 0.
e 1 is the special case when «, = 0 for all prime numbers p.

Example 3.14. 60798375 =32 x 53 x 11 x 17°

Corollary 3.15. Write a = H p*rand b = H pPr with ay, B, € N all but finitely many equal to 0. Then
p prime p prime
e alb if and only if for every prime number p, a, < i,
° ng(a, b) — H pmm(ap,ﬁp)_

p prime
Example 3.16. gcd(3* x 53 x 11 x 17°,3x5° x 172 x23) =3 x 53 x 172

Corollary 3.17. Write n = H p* with a, € N all but finitely many equal to 0. Then the positive divisors of n are
p prime
exactly the numbers of the form n = H p’? with 0 < y, < a,, for all prime numbers p.
p prime

Particularly, n has H (a, + 1) positive divisors.

p prime
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Exercises

Exercise 1.

1.
2.

Prove that Vn € N, 5221 4 321+l
Prove that Vn € N, 17|27+ 4 32n+1 4 510041 4 76n+1

Exercise 2.
Find all the x € Z such that x> + 3 = 0 (mod 7).

Exercise 3.

1.
2.

Determine the remainder of the Euclidean division of 2" by 5 for n € N.
Determine the remainder of 13572%?! by 5.

Exercise 4.

1.
2.

Find a criterion for divisibility by 5.
Find a criterion for divisibility by 8.
Use it on 958547 and on 123456789336.

3. Find a criterion for divisibility by 11.
Use it on 123456789 and 715.
Exercise 5.
1. Find the integer solutions of x? = 5y* =3,

2.
3.

Find the integer solutions of 15x* — 7y* = 9.
Find the integer solutions of x> + y* = 4003  (Hint: work modulo 4).

Exercise 6.
Prove that 13|3'26 + 5126,

Exercise 7.
e For which n € N, is it true that 8|3" + 4n + 1?
e For which n € N, is it true that 21|22 + 2" + 1?

Exercise 8.

1.
2.
3.

Prove that Va, b € Z, (3|a and 3|b) < 3|(a® + b?).
Prove that Va, b € Z, (7|a and 7|b) < 7|(a*> + b%).
Prove that Va, b € Z, 21|(a® + b?) => 441|(d® + b?).

Exercise 9.
Compute ged (24 +7,15).

Exercise 10.

Find all the prime numbers p such that 2 + p? is also prime.

Exercise 11.

4
What is the last digit in the decimal expansion of 732

Exercise 12.

1.

AN N

Convert the following number from the Babylonian cuneiform numeral system to base 10:
&¥ LT M 4T
Convert the following number from decimal to the Babylonian cuneiform numeral system: 42137.

—16
Convert the following number from hexadecimal (with digits0,1,2,...,9, 4, B, ..., F) tobase 10: F420C .
Convert the following number from decimal to hexadecimal: 11211.

16 16
Compute in hexadecimal (without converting to decimal): 9AB7 +3C0D .
Perform the above computation using decimals. Is it easier?
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Exercise 13.

The scene takes place on an island inhabited by chameleons which are either blue, green, or red.

When two chameleons of different colors meet, they both change to the third color (for instance, if a green
chameleon and a red chameleon meet, then they both become blue).

Cherge, one of the chameleons, is a retired mathematician who likes funny mathematical riddles and tongue
twisters. While he stands at the highest place on the island, he is able to see all the chameleons: 17 of them
are blue, 15 are green and 13 are red (including himself).

Then he wonders about a new riddle "Could the island become monochromatic?”. What do you think?
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Modular arithmetic

Modular arithmetic was introduced by Gauss during the beginning of the 19th century. Working modulo
a natural number n > 0 means that, given an integer a, we identify it with its remainder r for the Euclidean
division by n. Basically, it means that we force a to be equal to r (of course, not as integers, but equal modulo
n). Informally, we wind Z on itself as represented below.

...,—10,-4,2,8,14, .., > —11,=-5,1,7,13, ...

., =9,-3,3,9,15, ...

Z modulo 6 ., —12,-6,0,6,12, ...

...,—8,-2,4,10, 16, ... o —1,-1,5,11,17, ...

This extra layer of abstraction allowed Gauss, and subsequently other mathematicians, to obtain simpler
proofs of already known results concerning integers but also to prove new theorems, simply by introducing
this new efficient notation which has many good properties.

4.1 Congruences

Definition 4.1. We say that a binary relation R on a set E is an equivalence relation if
(i) Vx € E, xRx (reflexivity)

(ii) Vx,y€ E, xRy = yRx (symmetry)

(iii) Vx,y,z € E, (ny and sz) = xRz (transitivity)

Definition 4.2. Let n € N~ {0} and a, b € Z. We say that a and b are congruent modulo n if n|a — b, which we
denote by a = b (mod n).

Proposition 4.3. Congruence modulo n is an equivalence relation on Z.

Proof.
o Reflexivity. Let a € Z then n|0 = a — a. Hence a = a (mod n).
o Symmetry. Let a,b € Z be such that a = b (mod n). Then n|b — a = —(a — b) hence b = a (mod n).
o Transitivity. Let a,b,c € Z be such that a = b (mod n) and b = ¢ (mod n). Then n|la — b and n|b — c.
Hence nla — ¢ = (a — b) + (b — ¢). Thus a = ¢ (mod n). [ |
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Proposition 4.4. Let n € N~ {0} and a,b € Z. Then a = b (mod n) if and only if a and b have same remainder for
the Euclidean division by n.

Proof.

=. Assume that a = b (mod n), then b — a = kn for some k € Z. By Euclidean division, a = ng+r forq,r € Z
satisfying 0 <r <n. Henceb=a+kn=nqg+r+kn=(q+kn+r.

<. Assume that g and b have same remainder for the Euclidean division by n, then a = nq, +rand b = ng, +r
where q;,¢9,,r € Zwith0 <r < n.

Hence a — b = nq; + r — (nq, + r) = n(q; — q,). Thus nla — b, i.e. a = b (mod n). |

Proposition 4.5. Let n € N~{0} and a € Z. Then a is congruent modulo n to exactly one element of {0,1, ... ,n—1}.

Proof. By Euclidean division a = nq + r where 0 < r < n so that a = r (mod n).
Conversely, if a = r’ (mod n) where r’ € {0,1,...,n— 1}, thena — ' = nq forsome g € Z. So a = nq +r'.
By uniqueness of the Euclidean division, r = r'. [ |

Proposition 4.6. Let a,b,c,d € Z and n € N~ {0}. Assume that a = b (mod n) and that ¢ = d (mod n) then
e a+c=b+d (modn)
e ac = bd (mod n)

Proof. Leta,b,c,d € Z and n € N\ {0}. Assume that a = b (mod n) and that ¢ = d (mod n). Hence a — b = nk
and ¢ — d = nl forsome k,l € Z. Then

e (atc)—(b+d)=(a—-b)+(c—d)=nk+nl =nlk+1),hence a+c=b+d (mod n).

® ac — bd = (b+ nk)(d + nl)— bd = bnl + dnk + n’kl = n(bl + dk + nkl), hence ac = bd (mod n). |

Example 4.7. 1729 x 16 = 12 X (—1) (mod 17) = —12 (mod 17) = 5 (mod 17)
Corollary 4.8. Let a,b € Z and n € N~ {0}. ThenVk € N, a = b (mod n) = a* = b* (mod n).

Proof. We prove the statement by induction on k.

Base case at k = 0: a° = b° = 1 hence a° = 5° (mod n).

Induction step: assume that a = b (mod n) = a* = b* (mod n) for some k € N.

If a = b (mod n) then by induction hypothesis we also have a* = b* (mod n). Hence, combining both previous
congruences, we get that a*a = b*b (mod n), i.e. ! = b1 (mod n). Which proves the induction step. W

Remark 4.9. Therefore addition, substraction (which is a special case of addition in Z), multiplication and
exponentiation are compatible with congruences.
Beware: division is not compatible with congruences: 10 = 4 (mod 6) but 5 # 2 (mod 6).

Proposition 4.10. Let a € Z and n € N\{0}. Then a has a multiplicative inverse modulo n if and only if gcd(a, n) =
L.
Otherwise stated,

dbe Z, ab=1 (mod n) & ged(a,n) =1

Proof. 3b€ Z, ab=1 (mod n) & 3b,c € Z, ab+nc =1 & ged(a,n) = 1 [ |

Remark 4.11. Then the multiplicative inverse is unique modulo n. Indeed if ab = 1 (mod n) = ab’ (mod n)
then n|(b — b")a. Since gcd(a, n) = 1, using Gauss’ lemma, we get that n|b — b’,i.e. b= b" (mod n).

Remark 4.12. There is no cancellation law for congruences. For instance, 50 = 20 (mod 15) but 5 #
2 (mod 15).
Nonetheless, we have the following proposition.

Proposition 4.13. Let n € N~ {0} and a,x,y € Z satisfying ax = ay (mod n) and ged(a,n) = 1. Then x
y (mod n).

Proof. Since gcd(a, n) = 1, a admits an inverse modulo #, i.e. there exists b € Z such that ab = 1 (mod n).
Then ax = ay (mod n) = bax = bay (mod n) = x = y (mod n). [ |
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4.2 Applications: divisibility criteria

In our everyday life, we usually use a base ten positional notation. It allows use to write all natural numbers
using only 10 digits although N is infinite. The idea is that the position of a digit changes its value.

Indeed, using the well-ordering principle and Euclidean division, it is possible to prove that any n € N

can be uniquely written as n = Z a,10F where a; € {0,1,...,9} and a, # 0 (see the appendix for a proof).
k=0

,

We usually write mlo for Z a, 10F but we may omit the line over the digits when there is no

k=0
possible confusion. For instance, 590743 = 5 x 10° + 9 x 10* + 0 x 10* + 7 x 10> + 4 x 10! + 3 x 10°.

Note that we also use other bases: base 2 and base 16 are quite common nowadays in computer sciences.
And other bases were also commonly used by human beings in various places in the past: we still have the
influence of a base 60 positional system when describing time (1 hour is 60 minutes), and the influence of
a base 20 positional system in several languages (in French 96 is litteraly pronounced 4 x 20 + 16).

In this section, we are going to use modular arithmetic in order to prove some divisibility criteria using
our base ten positional notation.

p
Proposition 4.14. 3|a,a,_; ... aom if and only if 3| Z ay.
k=0

Proof. Note that 10 = 1 (mod 3), hence

r r r
a4, a0 =) 10k =Y a1 mod3)= ) g (mod3)
k=0 k=0 k=0
Thus,
3la,a,_; ... aolo Sa.a, ... aom =0 (mod 3)
r
& Zak = 0 (mod 3)
k=0
p
< 3| Z ag
k=0
|

Examples 4.15.

e 91524 is divisible by 3since 9+ 1+5+2+4 =21 =7x3is.

o Let’s study whether 8546921469 is a multiple of 3 or not:

318546921469 < 3|18 +54+4+6+9+2+14+44+6+9=54
<3|5+4=9

But 9 = 3 x 3, hence 3|8546921469.
p
- - 10, ,
Proposition 4.16. 9|a,a,_| ... ay  if and only if 9| 2 a.
k=0

Proof. That'’s a similar proof since 10 = 1 (mod 9). [
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Proposition 4.17. 4|a,a,_; ... aolo if and only if4|a1a010.

Proof. Note that 10% = 4 x 25 hence 10* = 0 (mod 4) for k > 2. Hence

4la,a,_; - aolo Sa.a,_; ... aolo =0 (mod 4)

,
& ) 4,10 =0 (mod 4)
k=0

©01X10+0050(m0d4)

& aa;" =0 (mod 4)

(= 4|a1a010
[ |

Examples 4.18.

e 44 856987454251100125 since 4 ¢ 25.

o 4]|98854558715580 since 4|80 = 4 x 20.
4.3 Fermat’s little theorem
Lemma 4.19. Let p be a prime number. Then Vn € {1,...,p — 1}, (Z) = 0 (mod p).
Proof. Letn € {1,...,p— 1}. Remember that n<z> = p(i’j) Hence, pln(;’).
Since gcd(p, n) = 1, by Gauss’ lemma, we get that p| (;’ ) [ |

Theorem 4.20 (Fermat's little theorem, version 1).
Let p be a prime number and a € Z. Then a” = a (mod p).

Proof. We first prove the theorem for a € N by induction.
Base case at a = 0: 0 =0 = 0 (mod p).
Induction step: assume that a” = a (mod p) for some a € N. Then

p
1Y = ¥ (?)a" by the binomial formul
(a+ 1) %<n>a by the binomial formula

=a’ +1(mod p) since, by the above lemma, p| (p ) forl<n<p-1
n

=a+1(modp) by the induction hypothesis

Which ends the induction step.

We still need to prove the theorem for a < 0. Then —a € N, hence, from the first part of the proof,
(—a)? = —a (mod p). Multiplying both sides by (—1)” we get that a” = (=1)**a (mod p).

If p = 2 then either a = 0 (mod 2) or a = 1 (mod 2), and the statement holds for both cases.

Otherwise, p is odd, and hence (-=1)**! = 1. Thus ¢” = a (mod p). [ |

Theorem 4.21 (Fermat'’s little theorem, version 2).
Let p be a prime number and a € Z. If gcd(a, p) = 1 then @' =1 (mod p).

Proof. By the first version of Fermat’s little theorem, a” = a (mod p). Hence pla’ —a = a(@ ' - 1).
Since gcd(a, p) = 1, by Gauss’ lemma, pla®~' = 1. Thus ¢! = 1 (mod p). [ |

Remark 4.22. Note that both versions of Fermat'’s little theorem are equivalent.
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4.4 Wilson’s theorem
Lemma 4.23. Let p be a prime number. Then
Va€Z, a*=1(modp) = (a=-1(mod p)ora=1(mod p))

Proof. Let p be a prime number and a € Z satisfying a®> =1 (mod p). Then pla* — 1 = (a — D)(a + 1).
By Euclid’s lemma, either pla — 1 or pla+ 1,i.e. a=1 (mod p) or a = —1 (mod p). [ |

Theorem 4.24 (Wilson’s theorem). Let n € N~ {0, 1}. Then n is prime if and only if (n — 1)! = —1 (mod n).
Proof. Letn € N~ {0,1}.

o Assume that n is a composite number. Then there exists k € N such that k[nand 1 < k < n.
Assume by contradiction that (n — 1)! = —1 (mod n) then n|(n — 1)! + 1 and hence k|(n — 1)! + 1.
But k|(n — 1)!, thus k|((n — D!+ 1 — (n — 1)!), i.e. k|1. So k = 1 which leads to a contradiction.

o Assume that n is prime.
Leta e {1,2,...,n— 1} then gcd(a, n) = 1. Hence a admits a multiplicative inverse modulo #, so there
exists b € {1,2,...,n— 1} such that ab = 1 (mod n).
Note that this b is unique by Remark 4.11.
By the above lemma, a = 1 and @ = n— 1 are the only a as above being their self-multiplicative inverse
(i.e. such that a® = 1 (mod n)). Otherwise b # a.
Thus(n—1D!'=1%x2x--Xm—-1)=1x(n—1) (mod n) = —1 (mod n).
Indeed, in the previous product each term simplifies with its multiplicative inverse except 1 and n —
1. [ |

Examples 4.25.
e Take p =17 then (17 — 1)! + 1 =20922789888001 = 17 x 1230752346353.
e Take p=15then (15— 1)! + 1 =87178291201 = 15 x 5811886080 + 1.

Remark 4.26. Wilson's theorem is a very inefficient way to check whether a number is prime or not. Nonethe-
less, it has some interesting theoretical applications.

4,5 Chinese remainder theorem

Theorem 4.27 (Chinese remainder theorem).

Let ny,ny, € N~ {0, 1} be such that gcd(ny,ny) = 1 and let ay, a, € Z.

x =a; (mod n;)

X = a, (mod n,)

Besides, if x|, x, € Z are two solutions of the above system then x; = x, (mod n;n,).

Then there exists x € Z satisfying

Proof.

e Existence. By Bézout’s identity, there exist m|, m, € Z such that nym; + n,m, = 1.
Note that nym; = 0 (mod n,) and that n;m; = nym; + nym, (mod n,) = 1 (mod n,).
Similarly n,m, = 0 (mod n,) and n,m, = 1 (mod n).

Thus, if we set x = a,n;m| + a;n,m, then

- x=a;X0+a; X1 (mod n;) =a; (mod n)),
- anle+alXo(modnz)zaz(modnz).

e Uniqueness modulo nyn,. Let x|, x, € Z be two solutions.
Then x; — x, =0 (mod n;) so x; — x, = kn| for some k € Z. Similarly n,|x; — x, = kn,.
Since gcd(ny, ny) = 1, by Gauss’ lemma, n,|k. So there exists | € Z such that k = n,!.
Thus x; — x, = In n, and therefore x; = x, (mod n;n,). [ |
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4.6 Euler’s theorem

Definition 4.28. Euler’s totient function is the function ¢ : N~ {0} — N~ {0} defined by
@n)=#{keN : 1 <k<nand ged(k,n) =1}

Proposition 4.29. Vn;,n, € N\ {0}, gcd(ny,ny) =1 = @(nn,) = @(n))e(n,)

Proof. If n; = 1 or n, = 1 then there is nothing to prove. So let’s assume that n;, n, > 2.
Define
S;={reN :1<r<nand ged(r,n)=1},i=1,2

and
T={keN : 1<k<nmnyand ged(k,nny) =1}

For k € T, write the Euclidean divisions k = nyq; + ry with0 <r; < n; and k = n,q, + r, where 0 < r, < n,.
Let’s prove that r; € S;:

e Assume that r; = 0 then n;|k and n;|nn, so that n;| gcd(k, nyn,) = 1: contradiction. So 1 < r; < n;.
o gcd(r;, n;) = ged(k — n;q;, n;) = ged(k, n;)| ged(k, nyn,) = 1, hence ged(r;, n;) = 1.

Therefore we can define f : T — S| X S, by f(k) = (r;,r,). Let’s prove that f is a bijection.

Let (r,ry) € S| %x.S,. Then by the Chinese remainder theorem, there exists a unique k € {1,2, ..., nyn,} such
that k = r; (mod n;) and k = r, (mod n,).

Note that gcd(k, n) = ged(ry + Iny, ny) = ged(ry,n;) = 1 (for some [ € Z).

Similarly ged(k, ny) = ged(ry, ny) = 1.

Then gcd(k, nyn,) = 1 by Exercise 3 of Problem Set 2, so that k € T'.

We proved that V(r|,r) € S; X S,, Ak €T, (r|,ry) = f(k), i.e. that f is bijective.

Therefore, #T' = #(S; X S,) = #5,#S,, i.e. p(n;ny) = @(n))e(n,). ]

Proposition 4.30. Let p,, ..., p, be pairwise distinct prime numbers and a,, ..., a, € N~ {0}, then
r r 1
a \ a; a;—
o( 1) =TT (st
i=1 i=1
Proof.

o First case: let p be a prime number and a € N~ {0}. Then gcd(p®, m) > 1 if and only if p|m.
Hence g(p™) = # ({12, ....p" )~ {1 x p,2x p, ..., p" ' X p}) = p* = p*~".

o General case: using Proposition 4.29 and the first case, we get that

? <11p> = _ljfp (') = H (b =)

i=1

Remark 4.31. Assuming that we have already some knowledge about Q, we can also write for n = H P
i=1
: 1
@(n) = nH (1 — —>
i=1 pi
Theorem 4.32 (Euler’s theorem). Let n € N~ {0} and a € Z such that gcd(a,n) = 1. Then a®™ =1 (mod n).

Remark 4.33. Note that Fermat’s little theorem is a special case of Euler’s theorem: indeed, if p is a prime
number then ¢(p) = p — 1.
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Proof of Euler’s theorem.
Write S = {keN : 1 <k <nand ged(k,n) =1} = {ky, ky, ...k, |-
We will use the following two facts:
(i) Given k; € S, there exists k; € S such that ak; = k; (mod n).
Let k; € S then ged(ak;, n) = 1 by Exercise 3 of Problem Set 2.
Thus ak; = k; (mod n) for some k; € S.
(ii) Vk; k; € S, ak; = ak; (mod n) = k; = k;.
Indeed, then nla(k; — k;) and hence n|k; — k; by Gauss’ lemma.
Thus k; = k; (mod n).
Finally, k; = k; since 1<k, ki <n.
Fori e {1,2,...,9(n)}, there exists a unique /; € {0, 1, ... ,n — 1} such that /; = ak; (mod n).
Then, {11, 1y, ... Ly} = (ki Kas oo s K )-
Indeed, by (i), {11, 12, -+ s lpmy} C tkyskos ook} And by (i), #{1y, 1y, ... Ly} = #{ky, ko,
o) o) @) o)
Hence H k; = H I, = H ak, (mod n) = a*™ H k; (mod n).
i=1 i=1 i=1 i=1
@)
Therefore n|(a®™ — 1) H k;.
i=1
@)
Since ged | n, H k; | = 1 by Exercise 3 of Problem Set 2, we deduce from Gauss’ lemma that n|a®™ — 1,
i=1
ie. a®™ =1 (mod n). [ |



46 Concepts in Abstract Mathematics J.-B. Campesato

Appendix 4.A Positional numeral system with base b

Theorem 4.34. Let b > 2 be an natural number. Then any natural number n € N admits a unique expression

n= Zakbk

k>0

where a; € {0,1,...,b— 1} and a; = 0 for all but finitely many k > 0.

,
Notation 4.35. We write a,a,_; ... alaob for Z a,b*.

k=0
Proof of Theorem 4.34.
Existence.
We are going to prove by strong induction that for any n > 0, there exist a, € {0, 1,...,b— 1}, k € N, all but
finitely many equal to 0 such that n = Z a,br.

k>0
e Basecaseatn=0: 0= ZObk.
k>0
o Induction step. Assume that 0, 1, ..., n admit an expression in base b, for some n > 0.

By Euclidean division, n + 1 = bq + r where q,r € N satisfy 0 < r < b.
Note thatif g #0theng < bg<bg+r=n+1. Thus0 < q <n.
Therefore, by the induction hypothesis, g = Z a,b* where a; € {0,1,...,b— 1} and a; = 0 for all but

k>0
finitely many k > 0.
Hence,n+1=bg+r = Z a b 4.
k>0
Uniqueness.
Write Z akbk = Z al’cbk where a;,a, € {0,1,...,b— 1} are zero for all but finitely many k > 0.
k>0 k>0

Assume by contradiction there exists k > 0 such that a; # a,.
Since {k e N : a; # a,’(} is finite and non-empty, it admits a greatest element .
WLOG, we may assume that a, < a,.

4 -1
Then 0= ) ab* =Y a b = (ap — ap)b* = Y (ay — ab*. So that (@, — a )b’ = Y (a; — a})b".
k>0 k>0 k>0 k=0 k=0
-1 -1
Therefore (a), — a,)b” < Y lay —ay|b* < Y (b= Db* =b" =1 < b’ < (a, —ap)b’.
k=0 k=0
Hence a contradiction. [}

Remark 4.36. In order to pass from a base 10 expression to a base b expression, we can perform successive
Euclidean divisions as shown below (to pass from a base b expression to a base 10 we may simply compute
the sum).

Example 4.37.

42 =2x%2140
=2x(2x10+1)+0
=2X2x2x5+0+1)+0
=2X2X2X2X24+D+0)+1)+0
=2X2X2X2X2X1+0)+1D)+0)+1)+0
=Ix2+0x2*+1x22+0x22+1x2! +0x2°

—10 2
Hence 42 =101010 .
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The first known positional numeral system is the Babylonian one (circa 2000BC) whose base is 60 and whose

digits are:

0 10 <« 20 « 30 « 40 4 50 &
17T 11 «T 21 «T 31 «T 41 47 51 47
2T 12 T 22 «T 32 «Tr 42 4T 52 4T
3 13 «Ir 23 «Tr 33  «Ir 43 & 53 4T
4 ¥ 14 «¥ 24 «w 34 «w¥ 44  &¥ 54 &%
5 ¥ 15 «¥ 25 ¥ 35 «¥ 45 &% 55 &F
6 W 16 <% 26 “¥ 36 ¥ 46 4% 56 4&W
7 ¥ 17 «¥ 27 «¥ 37 «¥ 47 &% 57 &%
8 ¥ 18 «¥ 28 «¥ 38 «¥ 48 < 58 &%
9 ¥ 19 «¥ 29 «¥ 39  «¥ 49 «F 59 &%

Let’s say that we want to write 13655 using Babylonian cuneiform numerals. For that, we perform successive
Euclidean divisions by 60 as follows:

13655 = 60 X 227 + 35 = 60 X (60 X 3 + 47) + 35 = 3 X 60% + 47 x 60" + 35 x 60°

Hence it was written: T «&F «¥

Originally, there was no positional zero and an empty space was used instead (which can be confusing;:
«Ir ¥ and «Ir ¥ arenot equal). The more convenient symbol 4 was later used instead of the empty
space (but it is not the number 0, just a placeholder symbol for the positional numeral system).

See below a problem set submission by a MAT246 student circa 1700BC.

Figure 4.1: YBC 7289, clay tablet, between 1800BC and 1600BC.

It shows (extremely accurate) approximations of V2el+ 24 + SL + 10

60 602 603
25 35

and of 30V/2 ~ 42 + a0 + 02 (diagonal of the square of side length 30, see above de square)

Yale Babylonian Collection,
Original picture from https://commons.wikimedia.org/wiki/File:YBC-7289-0BV-REV. jpg


https://commons.wikimedia.org/wiki/File:YBC-7289-OBV-REV.jpg
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Appendix 4.B The Chinese Remainder Theorem for more than two equations

You won’t need the following result in MAT246, I've just added it because it was asked on Piazza (@82).

Theorem 4.38 (Chinese remainder theorem). Let k € N~ {0, 1}.
Let ny,ny, ..., n, € NxA{O, 1} be pairwise coprine, i.e. Vi, j € {1,....k}, i # j = ged(n;,n;) = 1.
Let ay,...,a, € Z. Then there exists x € Z satisfying

X
X

a; (mOd nl)
a (l’nOd nz)

X = a; (mod ny)
The proof follows closely the one of Theorem 4.27 but applied to n; and n; ... n,_jn;{ ... n.

Proof. Leti € {1,...,k}. Then gcd(n;, ny ... n;_ynjyy ... ) = 1.

So, by Bézout’s identity, there exists u;, v; € Z such that u;n; + v;n; ... n;_yn;;y ...n; = 1.

Sete; = v;ny ...ni_yn;y; ... ny thene; =1 (mod n;), and for j € {1,...,k} ~ {i}, e; = 0 (mod n)).
k

Therefore x = Z a;e; is a suitable solution. [ |
i=1
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Exercises

Exercise 1.
Find the remainder of the Euclidean division of 24'%3 by 103.

Exercise 2.

n n 23n

P thatVne Z, —+ — + =— € Z.
rove a n 7 3 35

You may already use Q for this question.
7 5
Hint: introduce A, = 35 ("7 +5+ 233—5">

Exercise 3.
Let p be an odd prime number. Prove that Vn € Z, (n + 1)’ — (n” + 1) = 0 (mod 2p).

Exercise 4.

k
Let p be a prime number. Prove that Vk € N, Vn € Z ~ {0}, ged(n,p) =1 = (n""l )p = 1 (mod p*1).

Exercise 5.
Let p and g be two distinct prime numbers. Prove that P 4¢P~ =1 (mod pg).

Exercise 6.
Prove that x* + 781 = 3y* has no integer solution.

Exercise 7.
Let n € N be such that n > 5. Prove that if n + 2 is prime then n! — 1 is composite.

Exercise 8.
Let p be an odd prime number. Prove that 2(p — 3)! = —1 (mod p).

Exercise 9. A characterization of twin prime numbers.
Let n € N~ {0, 1}. Prove that if n and n + 2 are both prime numbers then

4((n—D!'+1)+n=0 mod n(n + 2))

(Actually the converse holds too, but it’s a little bit more difficult to prove)

Exercise 10.
Let p be a prime number. Prove that Vn € Z, p|n” + (p — D)!n.

Exercise 11.
Either prove or find a counter-example to Va, b € N\ {0}, @(ab) = p(a)p(b).

Exercise 12.
What's the remainder of the Euclidean division of 1 + 2 + 2% + 23 + ... + 2190 by 125?

Exercise 13.
Find the last 3 digits of 32%?! (written in decimal).

Exercise 14.
Prove that Vn, k € N~ {0}, ¢ (n*) = n*'p(n).
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Exercise 15.
Prove that Va,b € N~ {0}, ged(a,b) = 1 = a®® + @ = 1 (mod ab).

Exercise 16.
()1
Leta € Z and n € N~ {0}. Prove that if gcd(a, n) = gcd(a — 1,n) = 1 then Z a* =0 (mod n).
k=0

Exercise 17.

Prove that Va € N~ {0, 1}, Yk € N~ {0}, k|g (a* - 1).

Exercise 18.
We define a sequence by u, € N~ {0} and u; | = ¢(u;) € N~ {0} for k € N.
Prove that the sequence (u;), is eventually constant equal to 1.



Chapter 5

The RSA algorithm

5.1 Introduction

How can someone send a secret message in a way that only the recipient could read the content even if the
message happens to have been intercepted by a third party? There are several ways to do so.

Early cipher algorithms relied on a unique key which had to be used both by the sender to encrypt the
message and by the recipient to decrypt it. A very simple example is Caesar’s cipher which consists in
shifting letters according to the key.

Figure 5.1: Caesar ciphering with key=6

A major weakeness of such a system is that the key has to be disclosed to all the participants, increasing the
risk for the key to be compromised by a third party.

Asymmetric algorithms allow to reduce this weakeness by using two keys: a public key which is used to
encrypt messages and which can be widely shared without compromising the exchanges, and a private key
which is kept only by the recipient to decrypt the data. The idea is that anyone can encrypt messages using
the public key but only the recipient can decrypt them with his private key. Particularly, the knowledge of
the public key should not be enough to decrypt messages.

Message in clear
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Asymmetric cryptographic systems were theoretically developed in the mid 70s and the first concrete
algorithm of this kind was the RSA algorithm which appeared in 1978 and is named from the initials of its
authors (Ron Rivest, Adi Shamir, and Leonard Adleman). Actually, the British secret service developed a
similar algorithm as early as 1973 but it was kept confidential until the 90s.

In this chapter, we are going to explain the RSA algorithm which relies on modular arithmetic. The
original proof of work used Fermat’s little theorem but the RSA algorithm is actually easier to explain using
Euler’s theorem (which is a generalization of Fermat'’s little theorem, as you already know).

The robustness of this cipher relies on the fact that we don’t know yet an efficient algorithm in order to
find the prime decomposition of a given positive integer. This last difficult problem will not be addressed
in this chapter.

5.2 Generation of the keys

The recipient, that we will call Alice, picks two distinct prime numbers p and ¢. She sets n := pg and then
she chooses e € N such that gcd(e, (n)) = 1. Then the public key is (n, e). Alice can publicly provide this
key to people willing to send her a crypted message.

Since ged(e, p(n)) = 1, e admits a multiplicative inverse modulo ¢(n), i.e. there exists d € N such that
ed = 1 (mod ¢(n)). Indeed, there exist u,v € Z such that eu + p(n)v = 1 (and we can easily find such a
Bézout’s relation using Euclid’s algorithm). Then we take d = u + kg(n) for a suitable k € Z for d to be
positive. Then the private key is (n, d). Alice should not share this key with anyone else.

Note that in order to find a suitable d, it is necessary to know ¢(n) and e. Alice knows the prime numbers
p and g that she used to define n so she can easily compute @(n) = (p — 1)(¢ — 1). But the shared information
is only the public key (n,e). Although it is theoretically possible to find ¢(n), there is no known efficient
algorithm to compute ¢(n) directly from n. Nonetheless, if a third party were able to quickly compute the
prime factorization of a positive integer, then it could computes ¢(n) allowing him to recover (n, d) from

(n,e).

The prime numbers p and g should be chosen wisely so that there is no known efficient algorithm to
recover p and g from n using our current computing power. For instance, not only p and g should be large

enough but é = |p — q| should be large too. Indeed, assume that p < g then ¢ = p+ 6. Thus \/Z =py/1+ % ~

p+ g. Hence, according to Proposition 3 of Chapter 3, it is enough to check whether numbers less than 1/n
divides n, and from the above estimation, p could be obtained after less than g attempts (starting from \/ﬁ ).

5.3 How to encrypt a message

The sender, that we are going to call Bob, wants to send a secret message to Alice. But he wants to make
sure that only her can read the content. First, Bob obtains her public key (n, e).

A message is going to be an element of m € {0, 1, ...,n — 1} (in practice, Alice and Bob need to agree on
how to reduce a human readable message into a sequence of natural numbers less than #, that’s the goal of
the various protocols used in computer sciences).

Then, there exists a unique ¢ € {0,1,...,n — 1} such that ¢ = m® (mod n). It is going to be the crypted
message. Bob sends c to Alice, and Alice will use her private key in order to recover m from c.

5.4 How to decrypt a message

Alice just received the secret message ¢ from Bob. He told her that it was encrypted using her public
key (n,e). Since she knows her private key (n, d), Alice can find the unique k € {0, 1,...,n — 1} such that
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k = ¢ (mod n).
We claim that m = k. Indeed, since ed = 1 + [¢(n) for some I € N, we obtain using Euler’s theorem that
k = c¢? (mod n) = m® (mod n) = m' %™ (mod n) = m x (m(”(”))l (mod n) = m x 1! (mod n) = m (mod n)

We conclude since k has a unique representative in {0,1,...,n — 1} and m,k € {0, 1,...,n —1}.

Note that the above proof doesn’t work when ged(m, n) # 1, i.e. when p|m or g|m (because we can’t apply
Euler’s theorem). Nonetheless, it is still true that m* = m (mod n) in this case (you will prove it during next
week tutorials).

5.5 An example

Alice wants to create a pair of keys for the RSA algorithm so that people could send her secret messages.
She picked the prime numbers p = 13 and g = 17 then n = 221 and ¢@(n) = 12 X 16 = 192. Then she picks
e = 11, which is a suitable choice since gcd(192,11) = 1.

Using Euclid’s algorithm, Alice obtains the Bézout relation 192 x (=2) + 11 x (35) = 1. Therefore, she
sets d = 35 so that ed = 1 (mod 192). Finally, she shares the public key (n, e) = (221, 11) on her website and
preciously keeps the private key (n, d) = (221, 35) for herself only.

Later, Bob wants to send the private message m = 149 € {0,1,2,...,220} to Alice. He finds on her
website her public key and computes m® = 149" = 89 (mod 221). So the encrypted message is ¢ = 89 €
{0,1,2,...,220}. He sends it to Alice by e-mail.

After receiving the e-mail, Alice computes ¢? = 89% = 149 (mod 221) and she recovers the original
message m = 149.

5.6 In practice

It is not difficult to find a Bézout relation using Euclid’s algorithm. But two other things seem not to be very
practical in the above example:
1. How to generate the prime numbers p and ¢?
2. The computations seem to involve very large numbers which are not suitable to computers (149! is
already a very large number).

The first problem is a little bit tricky. In practice we generate a random odd number k of the wanted
order of magnitude and we check whether it is prime or not. If not, we take the next odd number and we
1 In(k)

we could expect a prime number before ==

repeat the process. According to the prime number theorem >

attempts.

Nonetheless, we don’t know efficient algorithms to check whether a number is prime or not. Instead,
we usually use probabilistic primality tests (so they can fail, but with a very low probability).
Some algorithms rely on Fermat'’s little theorem: if p is prime then Va € Z, a” = a (mod p).
Therefore, since 24?%! = 176 (mod 221), we know that 221 is not prime.
Nonetheless, it is possible for such a congruence to hold even for a non-prime number g, for instance we
have 23! = 2 (mod 341) although 341 = 11 x 31.

The second problem has easy workarounds. First, note that we don’t need to actually compute m°.
Indeed, we only need a representative modulo n. More precisely, given m,e,n € N, we want to find (the
unique) ¢ € {0,1,...,n — 1} such that m* = ¢ (mod n). One naive way to avoid very large numbers consists
in iteratively multiplying by ¢ and to reduce to a representative in {0, ..., n} before the next step.

For instance, in order to compute 149'" (mod 221), we would do:

"For k large enough, there are about —— prime numbers less than or equal to k.
In(k)
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149! = 149 (mod 221) 7. 1497 = 220 x 149 = 32780 = 72 (mod 221)
1492 = 149 x 149 = 22201 = 101 (mod 221) 8. 149% = 72 x 149 = 10728 = 120 (mod 221)
1493 = 101 x 149 = 15049 = 21 (mod 221) 9. 149° = 120 x 149 = 17880 = 200 (mod 221)
149* = 21 x 149 = 3129 = 35 (mod 221) 10. 149'° = 200 x 149 = 29800 = 186 (mod 221)
1495 = 35 x 149 = 5215 = 132 (mod 221) 11. 149" = 186 x 149 = 27714 = 89 (mod 221)
6. 149° = 132 x 149 = 19668 = 220 (mod 221)

Note that no involved number exceeded 32780 whereas 149!! = 803616698647447868139149 (actually 149 x
220 = 32780 is the largest number we could have obtained).

G LN =

We even have even far more efficient algorithms.
P

First, write the exponent in binary e = a.a,_ ... alao2 = Z a;2" where a; € {0,1}. Then
i=0

r

i i\ %
me = maa? — H (mz )
i=0
. ) Qit] 2i\2 )
So we just need to compute successive squares: m~ = (m ) (actually we only need it modulo n).

Implementation in Julia:

function fastpowmod(m,e,n::Integer)

n>0 || exror("n must be positive")
e >= 0 || errox("e must be non-negative")
r=1

while e > 0
if (e &1) >0
r = (r*m)%n
end
e >=1
m = (m"2)%n
end
return r>0 ? r : I+n
end

Output:

julia> fastpowmod(149,11,221)
89
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Appendix 5.A A simple implementation in Julia

Source:

using Primes

struct PublicKey
n::Integer
e::Integer
end

struct PrivateKey
n::Integer
d::Integer

end

function gen_keys(p::Integer, q::Integer, e::Integer)

isprime(p) || exrrox("p must be a prime number")
isprime(q) || erxrrox("q must be a prime number")
e>0 || error("e must be positive")

phi = (p-1)*(q-1)
(g,u,v) = gcdx(e,phi)
g == 1 || erroxr("phi(n) and e must be coprime")
u<@ ? d=(u%phi)+phi : d=u%phi
n = p*q
return PublicKey(n,e),PrivateKey(n,d)
end

function encrypt(m::Integer, k::PublicKey)

O <=m || error("m must be non-negative")
m < k.n || exrroxr("m is too large")
return powermod(m,k.e,k.n)

end

function decrypt(c::Integer, k::PrivateKey)

0 <= ¢ || error("c must be non-negative")
c < k.n || erroxr("c is too large")
return powermod(c,k.d,k.n)

end

(pbk,pvk) = gen_keys(13,17,11)

println("The public key is (n,e)=($(pbk.n),$(pbk.e)), give it to people

willing to send you a secret message!")

println("The private key is (n,d)=($(pvk.n),$(pvk.d)), don't share it!")

m = 149

println("Original message: $m")

¢ = encrypt(m, pbk)

println("Encrypted message: $c")
println("Decrypted message: $(decrypt(c,pvk))")

Output:
[mat246@Pavilion mat246]$ julia rsa.j

The public key is (n,e)=(221,11), give it to people willing to send you a

secret message!
The private key is (n,d)=(221,35), don't share it!
Original message: 149
Encrypted message: 89
Decrypted message: 149
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Exercises

Exercise 1.
Assume that n = pg where p, g are distinct prime numbers.
Find a way to easily recover p and g from the knowledge of n and ¢(n).

Exercise 2.
In order to prove that RSA works, we check that if p and g are two distinct prime numbers then

Vi eN, Vm € Z, m'%?D = i (mod pq) (5.1)

I
The proof seen in class relies on Euler’s theorem: m!FePD = (m"’(”")) =mx 1! (mod pg) = m (mod pg).

Therefore it holds only when ged(m, pg) = 1, i.e. it doesn’t hold when p|m or qlm?2.
Prove that (5.1) holds with no restriction on m.

Exercise 3.
1. Check that (n,e) = (5917,17) and (n, d) = (5917,2033) are suitable respectively public and private keys.
Note that n = 61 x 97.

2. Bob wants to send the message m = 42 to Alice using the above keys. What should he send to Alice?
You don’t have to compute it by hand.
Check that Alice can decrypt this message.

3. Alice just received the ciphered message ¢ = 3141 from Bob. What is the original message?

Exercise 4.

Eve intercepted the message ¢ = 271 sent to Alice from Bob.
She finds Alice’s public key (n, e) = (1003, 11) on her website.
What is the original message sent by Bob?

Exercise 5. Digital signature

Another common problem related to communations is the following: how can the recipient be sure that the
sender is not an impostor?

Explain how RSA can be used to solve this issue.

2That's already qulte good itworks form € {0,1,...,pqg— 1} ~({p,2p, ..., (g — Dp} U {q,2q,...,(p— 1)q}) but

‘W =1+= i é - ; is small when p and g are large so this proof works for almost all p0551b1e messages.



Chapter 6

The rationals and the reals

Positive rational numbers § are systematically studied in Euclid’s elements (circa 300BC), but they already

appeared in ancient Egyptian mathematical writings.
In this chapter we are going to formally construct the set Q of rational numbers. The basic idea would be to
set

@={3 : pEZ,qEZ\{O}}
q

as it is often written in elementary introductions to mathematics. Nonetheless that’s not a fully satisfactory
definition since a same rational number may have different quotient expressions, for instance we want to
10 _5

have 77 = z. In order to formally solve this issue we are going to introduce the notion of equivalence classes

and quotient sets.

The oldest known texts referring to irrational numbers are the Sulbasitras. They contain the fact that
the diagonal of a square sacrificial altar' is uncommensurable with the side length (i.e. the side and the
diagonal can’t be integral multiples of another length).

The Pythagorean Hippasus of Metapontum (circa 500BC) is often credited to have discovered the first

proof of irrationality (it is known for sure that Pythagoreans were aware that V2 and ¢ are irrational, but
there is a lot of confusion about the first author divulging irrationality, probably because of the subsequent
damages to the dogma of the Pythagorean school). In ancient Greece, mathematics had a geometric flavour
with a focus on constructions: therefore that was a geometric proof of uncommensurability (I will give an
example later in this chapter).

There are several tales concerning the fate of the discoverer of uncommensurable lengths. In the most
favorable version, he was expelled for his impiety (it was Pythagorean dogma that lengths are commensu-
rable, and more generally that all the things in the world are commensurable, such as melodic intervals).
In other versions, the discoverer was sentenced to death by drowning?. That was for sure the beginning of
a deep philosophical crisis.

The second part of this chapter is devoted to the set R of real numbers. It allows us to take these irrational
numbers into account. I will give several proofs of irrationality (disclaimer: no ancient greek philosopher
has been harmed during the preparation of this text).

6.1 Equivalence classes

Recall that a binary relation ~ on a set E is an equivalence relation if
(i) Vx € E, x ~ x (reflexivity)
(ii) Vx,y€e E, x ~y => y~ x (symmetry)

(iii) Vx,y,z€ E, (x ~yand y ~ z) = x ~ z (transitivity)

Trrational numbers seem to always appear in a deadly context...
I warned you that irrational numbers seem to always appear under deadly circumstances.
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In what follows, we fix E a set together with an equivalence relation ~ on it. We define the equivalence class
of x € E by
[x]={y€E : x~yj}

and we say that x is a representative of [x].

We may easily prove that equivalence classes satisfy the following properties:
o Vx e E, x €[x]
e Vx,yeE, x~ys[x]=1[y]
o Vx,ye E,[x]=[ylor[x]n[y] =2

Proof.
e Let x € E. Since x ~ x, we have that x € [x].

o letx,ye E.
= Assume that x ~ y. Let z € [x], then x ~ z. By transitivity y ~ z so that z € [y].
We proved that [x] C [y]. We may similarly prove that [y] C [x]. Hence [x] = [y].
< Assume that [x] = [y]. Then x € [x] = [y], so y ~ x (and thus x ~ y).

e Letx,y € E. Assume that [x] N [y] # @, then there exists z € [x] N [y].
Therefore x ~ z and y ~ z. By transitivity, we get that x ~ y, thus [x] = [y]. [ |

The set
E/.:={[x] : x€E]}

of equivalence classes of ~ is called the quotient set of E for ~.
An element of E /. is a subset of E made of elements which are all equivalent for ~.
According to the above properties the elements of E /. form a partition of E:

E= || s

sekE/ .

The idea is that we want to identify all the elements which are equivalent: x ~ y becomes [x] = [y] in E / ~-
That’s a very convenient tool to construct new sets from already constructed ones.

Example 6.1. For instance Z / mod 6 contains 6 equivalence classes:
={neZ : n=0@mod6)}={...,-12,-6,0,6,12, ...}
1] ={neZ :n=1(mod6)}={...,—-11,-5,1,7, 13,...}
2l={neZ : n=2(mod6)} ={...,-10,—-4,2,8,14, ...}
l={neZ : n=3mod6)}={...,-9,-3,3,9,15, ...}

4]={neZ:n=4(mod6)}—{ —8 -2,4,10,16,...}

={ne”Z : n=5mod6)}={..., -1,5,11,17,...}
Note that -5, 1 and 7 are representatives of [ 5] =[1]=1[7].
Congruences become an actual equality in Z / mod 6: a = b (mod 6) < [a] = [b].
In this example, it is easy to see that the equivalence classes form a partition of Z = [0]u[1]u[2]u[3]u[4]u[5].
Indeed, an integer n € Z is an element of exactly one of the equivalence classes (depending on its remainder
for the Euclidean division by 6).

Remark 6.2. An equivalence relation is entirely characterized by its equivalence classes.

Indeed if we have a partition E = |_| S; then
i€l

x~y&e@@iel, x,yels)

defines an equivalence relation on E.
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6.2 Rational numbers
Proposition 6.3. The relation ~ on Z x Z ~ {0} defined by
(a,b) ~ (c,d) © ad = bc

is an equivalence relation.

Proof.
o Reflexivity. Let (a,b) € Z X Z ~ {0} then ab = ba so that (a, b) ~ (a, b).
o Symmetry. Let (a,b),(c,d) € Z X Z~ {0}. Assume that (a, b) ~ (c,d) then ad = bc.
Thus cb = da, i.e. (c,d) ~ (a,b).
o Transitivity. Let (a, b), (c,d), (e, f) € Z X Z ~ {0}. Assume that (a, b) ~ (c,d) and that (¢, d) ~ (e, f).
Then ad = bc and ¢ f = de. Therefore ad f = bc f = bde.
Since d # 0, by cancellation, af = be, i.e. (a,b) ~ (e, f). [ |

Definition 6.4. We define the set of rational numbers by @ = (Z X Z~ {0}) /.. and we denote the equivalence
class of (a,b) € Z x Z~ {0} by % = [(a, b)].

Remark 6.5. Note that % = 2 < ad = be.

Remark 6.6. With the above definition, we may formally write that % = g: indeed (12, 14) ~ (6,7) since
12x7=84=14x%6.

Remark 6.7. We defined a rational number as a set of couples, but what really matters is how the usual
operations and the order are defined on rational numbers % € Q.

Remark 6.8. Note that for (a,b) € Z x Z ~ {0}, we have %a = ib' Hence we set —% = _Ta = ib'
!’ /
Remark 6.9. Note that ¢ =0 © ¢ = 0 and that if £ = £ # 0 then b = b—
b b b a a

Hence, if x = % #0, weset x| = b which doesn’t depend on the representative of x.
a

Proposition 6.10. Given x € Q, there exists a unique couple (a, b) € Z XN~ {0} such that x = % and ged(a, b) = 1.

Then we say that x = % is written in lowest form.

Proof. Let x € Q.
Existence. There exist « € Z and f € Z ~ {0} such that x = %

Write d = gcd(a, f), then there exist a € Z and b € Z ~ {0} such that a« = da and f = db.

We have d = gcd(a, p) = ged(da, db) = d gcd(a, b), so ged(a, b) = 1.

Besides % = W since sign(b)ap = sign(b)adb = |b|da = |b|a.

Uniqueness. Assume that % = Z—,, where a,a’ € Z, b,b’ € N~ {0}, ged(a, b) =1, ged(a’,b") = 1.
Then ab’ = a’b. By Gauss’ lemma, since b|ab’ and ged(a, b) = 1, we get that b|b’. Similarly 5’|b.

Since b|b" and b’ |b, we get |b| = |b’|, and thus b = b'.

Then, using the cancellation rule, ab’ = a’b gives a = a’ since b = b" # 0. [
. zZ - Q . . . . n m
Remark 6.11. Note that the function ¢ : . . 1 Isinjective. Indeed, Vn,me Z, 1 =T ©n=m.

1
Therefore we may see Z as a subset of Q by setting n := % €QforneZ.
More formally, (Z) Cc Q and we may identify Z with ¢(Z) since ¢ : Z — @(Z) is bijective.
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Ox0Q - Q
Proposition 6.12. The addition + : [, . ad+be 15 well-defined.
(Z’ E) = T
Proof. We need to prove that the addition doesn’t depend on the choice of the representatives,
i ifa_d c ¢ ay e_a
Le. thatif 7 = Far}dﬁ =5 t}}en LT =5t o
Assume that % = Z—, and 5 = 2—,, ie. ab' = ba' and cd’ = dc’.
Therefore (ad + be)(b'd") = adb'd’ + beb'd’ = ba'dd’ + de'bb' = (a'd’ + b'¢')(bd), i.e. e = <4+ g

bd b'd’
Remark 6.13. Note that the addition defined on Q is compatible with the one on Z.

Indeed, if m,n € Z then ? + ? = m;’".
OxQ - Q
Proposition 6.14. The multiplication X : <£ C) L, ac is well-defined.
b d bd

Proof. We need to prove that the multiplication doesn’t depend on the choice of the representatives,

!’ !/ !/ !/

Le. thatif ; = 7 and = = — then £ x = = 55 X =
/

Assume that 2 = &7 and - = &, i.e. ab’ = ba’ and cd’ = dc’.

a/
_d//

b

Therefore (ac)(b'd") = ab'cd’ = ba'de’ = (a'¢')(bd), i.e. = 2 as desired. n

Remark 6.15. Note that the multiplication defined on Q is compatible with the one on Z.

Indeed, if m,n € Z then % X % = an.

Definition 6.16. We define the binary relation < on Q by

<= 0L (bc—ad)bd

S
QUlo

where the order on the RHS of the equivalence is the order of Z.

Remark 6.17. The idea behind the above definition is the following:
e We want that % < % if and only if 0 < % - % = bcb_d”d, and,

e we also want that 0 < ? if and only if 0 < ef (i.e. the sign rule).

Remark 6.18. We have to check that the order doesn’t depend on the choice of representatives.

Remark 6.19. Note that the relation < defined on Q is compatible with the usual order < on Z.
Indeed,letm,neZthen% < % o0<n-mem<n.

Theorem 6.20. (Q, +, X, <) is a (totally) ordered field, meaning that
e + isassociative: Vx,y,z € Q, (x+y)+z=x+Qy+2)
Oistheunitof +: Vx € Q, x+0=0+x=x
—x is the additive inverse of x: Vx € Q, x + (—x) = (—x) + x =0
+ is commutative: Vx,y € Q, x +y=y+x
X is associative: Vx,y,z € Q, (xy)z = x(yz)
X is distributive with respect to +: Vx,y,z € Q, x(y + z) = xy+ xzand (x + )z = xz+ yz
listheunitof X :Vx € Q, IXx=xX1=x
If x # 0 then x~Vis the multiplicative inverse of x: Vx € Q~ {0}, x t=xTx=1
X is commutative: Vx,y € Q, xy = yx
< is reflexive: Vx € Q, x < x
< is antisymmetric: Vx,y € Q, (x < yand y < x) = x=y
< is transitive: Vx, y, z € Q, (x <yandy< z) — x<z
<istotal: Vx,y € Q, x <yory<x
Vx,y,r,s €Q, (x<yandr<s)=>x+r<y+s
Vx,y,z € Q, (xﬁyandz>0) = xz<yz
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._<g)'12_ﬂ
“\d/) b be’

Proposition 6.22. Vx,y € Q, x <y = (3z€ Q,x<z<Y)

Remark 6.21. If % # 0, we set

BRSNS

Proof. Let x,y € Q be such that x < y. Then z = XT” is a suitable choice.
Indeed, x < y implies 2x < x + y and thus x < z. Similarly x + y < 2y, and thus z < y. |

Theorem 6.23 (Q is archimedean). Ve € Q, VA € Q,,, IN € N, Ne > A.

Proof. Since é > 0, we may find a representative % = é where a,b € N\ {0}.
Thena+ 1 - é =a+1- % = W > 0, thus (a + 1)e > A. So N = a + 1 is a suitable choice. [ |

Remark 6.24. The above theorem means that lir+n Ly 0, or equivalently that Q doesn’t contain infinitesi-
n—+o0o n

mal elements (i.e. there is not infinitely large or infinitely small elements).

This property may seem obvious at first glance, but, even if it is a little bit beyond the scope of this course,
it is not too difficult to construct a (totally) ordered field with infinitesimal elements (i.e. with a positive
element which is less than or equal to any other positive elements).

Remark 6.25. Note that Q is not well-ordered.
Indeed Q. = {x € Q : x > 0} is non-empty (and even bounded from below) but it has no least element.

Theorem 6.26 (The rational root theorem).
Let f(x) = a,x" + a,_ x""' + - + a,x + a, be a polynomial with integer coefficients a;, € Z.
If x = § is a rational root of f written in lowest terms (i.e. gcd(p, q) = 1), then play and q|a,,.

Proof. By assumption we have that

n n—1
p p p
a, <5> +a,_; <5> +---+a15+a0=0

a,p"+a, p" g+ +apg" +ayg" =0

Therefore

Thus playq". Since ged(p, q) = 1, by Gauss’ lemma we obtain that p|ay.
Similarly g|a,,. u

6.3 Infima and suprema

Recall that a binary relation < on a set E is an order if

(i) Vx € E, x < x (reflexivity)

(i) Vx,y€ E, (x<yand y <x) = x =y (antisymmetry)
(iii) Vx,y,z€ E, (x <yand y < z) = x < z (transitivity)

Definition 6.27. Let (E, <) be an ordered setand A C E.
e We say that m € A is the least element of Aif Va € A, m < a.
o We say that M € A is the greatest element of Aif Va€ A, a < M.

Remark 6.28. Note that, if it exists, the least element (resp. greatest element) of A is in A by definition.

Remark 6.29. The least (resp. greatest) element may not exist, but if it exists then it is unique.
Forinstance {n € Z : n<0} CcZand {x € Q : 0 < x < 1} have no least element.
For the uniqueness, it is easy to prove: assume that m, m" are two least elements of A, then
e m < m’ since m is a least element of A and m’ € A, and,
e m' < msince m’ is a least element of A and m € A.
Hence m = m’.
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Definition 6.30. Let (E, <) be an ordered setand A C E.
e We say that A is bounded from below if it admits a lower bound, i.e.

dce E,Vae A, c<La

e We say that A is bounded from above if it admits an upper bound, i.e.
dCe E,Vae A,a<C

o We say that A is bounded if it is bounded from below and from above.

Definition 6.31. Let (E, <) be an ordered setand A C E.
o If the greatest lower bound of A exists, we denote it inf(A) and call it the infimum of A.
o If the least upper bound of A exists, we denote it sup(A) and call it the supremum of A.

Remark 6.32. If it exists, the greatest element of the set of lower bounds of A is unique (as shown above),
therefore the infimum is unique (if it exists). And similarly for the supremum.
However, it may not exist:
e IfA={neZ : n <0} C Z then the set of lower bounds of A is empty, so A has no infimum.
eIfA={x€Q: x>0and x? > 2} c Q then the set of lower bounds of 4 is not empty but has no
greatest element, so A has no infimum.
Note that the infimum (resp. supremum) may not be an element of A, but if it is then it is the least (resp.
greatest) element of A. For instance, the infimumof A={xe€Q : 0<x <1} cQis0 ¢ A.

6.4 Real numbers

The following results concerning R that you learnt during your first year calculus course are equivalent:
e The Least Upper Bound principle
e The Monotone Convergence Theorem for sequences

The Extreme Value Theorem

The Intermediate Value Theorem

Rolle’s Theorem/The Mean Value Theorem

A continuous function on a segment line is Riemann-integrable

Bolzano-Weierstrass Property of R: a bounded sequence in R admits a convergent subsequence

Cut property:

A B#g
VA,BCR, R=AUB = dlceR,Vae A,Vbe B,a<c<hb
YVae A,Vbe B,a<b

We say that R is Dedekind-complete to state that the above statements hold.

Intuitively, the Dedekind-completeness of the real line tells us two things:
1. There is no infinitely small positive real number (Archimedean property, which is already true for Q):

Ve>0,VA>0,dneN, ne > A

2. There is no gap in the real line (e.g. any sequence of digits is the decimal expansion of a real number).
That'’s the difference with Q. See for instance the following examples involving V2ga:
o LUB:V2=sup{xen : x*<2}.
e MCT: define a sequence by x, = 1 and x,,| = % + xi

n

Then (x,) converges to some limit / by the MCT. But this limit must satisfy / =2
e IVT: let f(x) = x> — 2. Then f(0) < 0 and f(2) > 0.
Hence we deduce from the IVT that f has a root, i.e. 3x € R, x> =2=0.
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The Dedekind-completeness of the real line has several consequences that you already know:

The various results connecting the sign of f’ to the monotonicity of f.

ACV = CV (for series and improper integrals).

The Fundamental Theorem of Calculus.

L'Hopital’s rule.

The BCT and the LCT (for series and improper integrals).

Cauchy-completeness of R: any Cauchy sequence converges.

Beware, despite very close names, without the Archimedean property Cauchy-completeness is strictly weaker
than Dedekind-completeness.

° -

Hence a first year calculus course is basically about the Dedekind-completeness of R and its consequences.

Theorem 6.33. Up to isomorphism3, there exists a unique (totally) ordered field (R, +, X, <) which is Dedekind-
complete, i.e. such that:
e + isassociative: Vx,y,z € R, (x+y)+z=x+(y+ 2)
Oistheunitof +: Vx € R, x+0=0+x=x
Existence of the additive inverse: Vx € R, I(—x) € R, x + (—x) = (—x) +x =0
+ is commutative: Vx,y E R, x +y=y+ x
X is associative: Vx,y,z € R, (xy)z = x(yz)
X is distributive with respect to +: Vx,y,z € R, x(y + z) = xy + xzand (x + y)z = xz + yz
listheunitof X :Vx € R, IXx=xX1=x
Existence of the multiplicative inverse: Vx € R~ {0}, Ix T eR, xx ' =xx=1
X is commutative: Vx,y € R, xy = yx
< is reflexive: Vx € R, x < x
<is antisymmetric: Vx,y €R, (x < yand y < x) = x=y
< is transitive: Vx,y,z € R, (x <yandy< z) = x<z
<istotal: Vx,ye R, x < yory<x
Vx,y,r,s ER, (x <yandr<s)=>x+r<y+s
Vx,y,z €R, (xﬁyandz>0) =>xz<yz
R is Dedekind-complete (for instance a non-empty subset which is bounded from above admits a supremum).

The theorem contains two parts: existence and uniqueness.

For the existence part, there are several ways to construct a field satisfying the above properties. Usually
each construction gives easily a version of the Dedekind-completeness from which we derive the other
equivalent statements.

One very common construction consists in defining R as equivalence classes of rational Cauchy se-
quences: this way we obtain easily the archimedean property and the Cauchy-completeness (which are
together equivalent to the Dedekind-completeness).

Another common construction relies on Dedekind cuts (that I present in the appendix). This one gives
the cut property for free, from which we easily derive the least upper bound principle (quite often the LUB
principle is the start point of first year calculus courses).

The uniqueness part is a little bit delicate and I won't prove it in this course. Nonetheless, let me try to
explain the rough idea.

Assume that we are given two fields R and R satisfying the above properties. Note that each of them
contains a copy of Q. Then we can construct a order-preserving bijection ¢ : R — R compatible with the
addition and the multiplication as follows: first we map the copy of Q in R to the one in R and then we use
the Dedekind-completeness to extend the bijection from Q to R (the idea is to fill the gaps similarly in R and
R).

3Tt means that if we have two such fields, then there is a bijection between them preserving the addition, the multiplication and
the order, i.e. they are basically the same.



64 Concepts in Abstract Mathematics J.-B. Campesato

Nonetheless, there is no need to give an explicit construction of R: we can use the above properties as
axioms and then study their consequences. That’s the usual strategy in a first year calculus course. In the
sequel, concerning the Dedekind-completeness of R, we assume that the least upper bound principle holds:

LUB Principle. A non-empty subset of R which is bounded from above admits a supremum.
Proposition 6.34. Q C R and +, X, < for R are compatible with the ones for Q.

Proof. That'’s a sketch of proof (for concision I use equality instead of identification/bijection).
1. NcR:ifneNthenn=1+1+--+1€R.SoNCR.
2. ZcR:ifneNthen-neR. SoZ c R.
3.@CIR:if(a,b)erZ\{O}then%:=ab‘1GIR.SOQCR. [ ]

Proposition 6.35.

e Vx,y,zeR, x<y=>x+z<y+z
Vx,y,z€ER, (x<yand0<z)=> xz<yz
Vx,v,u,0 ER, (x <yandu<v)=>x+u<y+v
‘v’xeR,0<x©0<%
Vx,yeER,VzER!, x<yoxz<yz
Vx,,u,0 ER, (0<x<yand0<u<v)=xu<yv
Vx,yER,0<x<y©§<%

R - R
Definition 6.36. We define the absolue value by | - | : X o x| = { x six>0
—x six<0

Proposition 6.37.

e Vx € R, |x| = max(x, —x)

e VxER, |x| >0

e VxeR, x=0&|x|=0

e Vx,yER, |x| =|y| & (x=yorx=-y)

o Vx,y €R, [xy| = |x||y|

Vx € R~ {0}, H =L

Vx,y € R, |x + y| < |x| + |y| (triangle inequality)
o Vx,y €R, ||x]| = |yl| < |x — y| (reverse triangle inequality)

Proposition 6.38. For x,a € R,
o [x|<ae -a<x<a
x| <ae —a<x<a
x| >a< (x> aorx < —a)
x| >a< (x>aorx < —a)
Ifa>O0then |x| =a© (x=aorx =—a)

Proposition 6.39. Let A C Rand M € R. Then

VxeA x<M

M=sup(A)®{ Ve>0,ax e A, M —e<x

The first condition ensures that M is an upper bound of A. The second one means it is the smallest one.

° ® R
M—£<M

Beware, for simplicity I represented A as an interval in the above figure, but it may not be an interval!
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Proof.

= Assume that M = sup(A). Then M is an upper bound of AsoVx € 4, x < S.

We know that if T is an other upper bound of A then M < T (since M is the least upper bound).

So, by taking the contrapositive, if T < M then T isn’t an upper bound of A.

Let € > 0. Since M — ¢ < M, we know that M — ¢ is not an upper bound of A, meaning that there exists
x € Asuch that M — e < x.

<« Assume that
{ Vxe A, x<M

Ve>0,dx € A, M —e<x

Then, by the first condition, M is an upper bound of A. Let’s prove it is the least one.

We will show the contrapositive: if T < M then T isn’t an upper bound of A.

LetT € R. AssumethatT < M. Sete = M —T > 0. Then there exists x € Asuchthat M —e < x,ie. T < x.
Hence T isn’t an upper bound of A [

We have a similar characterization for the infimum.

Proposition 6.40. Let A C R and m € R. Then

Vxe A, m<x

msz(A)@{ Ve>0,dx € A, x<m+e¢

Proposition 6.41. Given A, B C R two non-empty subsets of R, we set
e A+ B={x€R : Ja€e A, Ibe B, x=a+ b}
o _A={xeR : —x € A}
Then
o If Aand B are bounded from above then A + B is too and sup(A + B) = sup(A) + sup(B).
o If Ais bounded from above then —A is bounded from below and inf(—A) = — sup(A).
o If Aand B are bounded from above then A U B is too and sup(A U B) = max(sup(A), sup(B))

Theorem 6.42 (R is archimedean). Ve >0, VA >0,3n e N, ne > A

Proof. Lete > 0and A > 0.

Assume by contradiction that Vn € N, ne < A. Then E = {ne : n € N} is non-empty and bounded from
above so it admits a supremum M = sup E by the least upper bound principle.

Since M —e < M, M — ¢ is not an upper bound of E, so there exists n € N such that ne > M —e.

Therefore (n + 1)e > M, hence a contradiction. [ |

Proposition 6.43. For every x € R, there exists a unique n € Z such thatn < x < n+ 1.
We say that n is the integer part (or the floor function value) of x and we denote it by |x|.

Proof. Let x € R.
Existence.
e First case: if x > 0.
Weset E={keN : x<k}.
By the archimedean property (with € = 1), there exists m € N such that m > x. Hence E # @.
By the well-ordering principle, E admits a least element p.
We have that x < psince p € Eand thatp—1 < xsincep—1¢ E.
Therefore n = p — 1 satisfiesn < x <n+ 1.
e Second case: if x < 0. We show similarly that n = —min {k € N : —x < k} suits the definition of |x].
Uniqueness. Assume that n,n’ € Z are two suitable integers, then

n<x<n+1 (6.1)

and
n<x<n+1
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We deduce from the last inequality that
—n' —1<-x<-n (6.2)

Summing (6.1) and (6.2), we getthatn —n' —1<0<n—n"+1.
Hencen—n' <1,ie.n—n' <0,and -1 <n—n"ie. 0<n—n'.
Therefore n = n'. [ ]

Remark 6.44. We have | x| < x < | x| + 1, from which we derive x — 1 < [x] < x.
Theorem 6.45 (Q isdense inR). Vx,yER, x<y=> (g€ Q, x<qg<Y)

Proof. Let x,y € R be such thatx < y. Sete =y —x > 0.
By the archimedean property, there exists n € N~ {0} such that ne > 1, i.e. % <e.

Setm = LnxJ+1.Thennx<m5nx+l,sox<%§x+%<x+e=y. [ |

Remark 6.46. The above theorem is equivalent to the fact that any real number is the limit of a sequence of
rational numbers (that you will prove in Problem Set).

Definition 6.47. A subset I C Ris an interval if Vx,y € I,VzER, (x <z<y=>z € I).
Proposition 6.48. If I C R is a non-empty interval not reduced to a singleton then I N Q # @.

Proof. Since I is non-empty and not reduced to a singleton, there exist x, y € I with x < y.
Then, since Q is dense in R, there exists ¢ € Q such that x < g < y.
Since I is aninterval, g € I. Henceq e INQ # @. [ ]

Corollary 6.49. Vx,yeR, x <y = (Ise R Q, x<s5<y)

Proof. Let x,y € R be such that x < y.

By Theorem 6.45, there exists ¢ € Q such that x < g < y.
Still by Theorem 6.45, there exists p € Q such that x < p < g.
Hence we obtained p,q € Qsuch thatx < p< g < y.

Sets=p+ g(q — p). Then s € R\ Q (otherwise, by contradiction, \/5 would be in @, which is not the case

as you proved in the Week 4 of tutorials) and p < s < ¢ (notice that 0 < g < 1 s0 s is a number between p
and q).
We obtained s € R~ Q such that x < s < y. |

Proposition 6.50. If I C R is an interval which is non-empty and not reduced to a singleton then I N (R~ Q) # @.

6.5 Decimal representation of real numbers

It is possible to generalize the decimal numeral system used to describe integers in order to describe real
numbers. In what follows I only work with decimal expansions but all the statements/proofs work if we
replace 10 by b > 2.

We start with a lemma that we will use several times in this section.

Lemma 6.51. Let (a;);>; be a sequence such that Yk € N~ {0}, a; € {0,1,...,9}. Then the series
+o0 a
k
s=Y £
kz=:1 10k

is convergent and .S > 0.
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Proof.

+00

Note that 0 < — < 2 and that Z Tot is convergent (geometric series with ratio 1—10 <1).

Ok_Ok =

Therefore we may conclude using the BCT. u

Remark 6.52. Unfortunately the decimal representation may not be unique:

+o0
9 9 1
09999...= ) —=—x——-+=1.000...
,Z; 10~ 107 1 _ %

In order to achieve uniqueness we are going to restrict to expansions which don’t end with infinitely many
9, see the definition below.

Definition 6.53. Let x € R. We say that

L)+ 2 10k

is a proper decimal expansion of x if
(i) Yk € N~ {0}, ake {0,1,...,9}

(ii) Vn e N~ {0}, ZW<X_LXJ<ZlaOk+

10"

+0o0
Proposition 6.54. If | x| + Z % is a proper decimal expansion of x € R then
k=1

+00
ay
1. x=|x|+ —
|x] ; o
2. VN eN~ {0}, k> N, a; #9
Then we simply write x = |x|.a;a5a5 ....
Remark 6.55. The last item means that a proper decimal expansion can’t end with infinitely many 9.

Proof.
+o00 a
1. We already proved that .S = 2 ﬁ is convergent. Hence we get § <x — [x| < S. Sox = [x] + S.
k=1

2. Assume by contradiction that there exists N € N~ {0} such that Vk > N, a;, = 9.

+00 N +00 N
ay ay 9 ay 1 . . s
Then x — |x]| = — = — + — = — + ——. Which contradicts the definition of
= ,; 10% I; 10k kz%l 10k ; 10K 10N
proper decimal expansion (the strict inequality in 6.53.(ii) ). [

Theorem 6.56. A real number x admits a unique proper decimal expansion.

Proof. Let x € R. Up to replacing x with x — [ x|, we may assume that [x| = 0.
. : .

Assume that Z Tor is a proper decimal expansion of x.

k=1
Then, from 6.53.(ii), we get that

a
a, < 10" x—zl—k <a,+1

S|

So the only possible suitable sequence (a,,) is given by a; = [10x]| and a,,,; = {10”“'1 (x -

It proves the uniqueness, but we still need to check that it is valid.
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(i) Since |x] =0, we have 0 < x < 1. Thus 0 < 10x < 10. Therefore a; = [10x] € {0, 1,...,9}.
Let n € N\ {0}, then
n—1
n ai
0<10 x_kZ{W —a,<1

Thus

Therefore a,,; € {0,1,...,9}.

(ii) We have Vn € N~ {0}, Z of = x < Z Tok + 1_()" by construction. [ |
Remark 6.57. It is easy to compute the decimal expansion of a rational number.
Indeed, let x = 5 where a € Z and b € N« {0}.

By Euclidean d1V1s1on a = bqy + ry where 0 < r, < b. Hence ~=qp + . Note that g, = {—J

Now, again by Euclidean division, 10r, = bg; + r; where 0 < rl <b.

And we repeat: 10r, = bgy, | +ry,; Wwhere 0 <r, | <b.

According to the pigeonhole principle (or the Dirichlet’s drawer principle), since there are only b possible re-
mainders, the process will start looping after at most b steps.

But note that the (g,),>, defines exactly the decimal expansion of x.

Therefore the decimal expansion of a rational is eventually periodic.

Definition 6.58. We say that a proper decimal expansion is eventually periodic if
dreN,IseN~{0},VkeN, a,,,  =a,;
It means that
X = |x].byby...b.cicy ... cq
== |x|.byby...b.cicy...c501C5 ... CiCq .

1529327

Example 6.59. We want to find the decimal expansion of —7===.

1. 1529327 = 24975 x 61 + 5852
58520 = 24975 x 2 + 8570
85700 = 24975 x 3 + 10775
107750 = 24975 x 4 + 7850
78500 = 24975 x 3 + 3575

6. 35750 = 24975 x 1 + 10775

1529327
And we start to loop. Therefore s = =61.234314

Theorem 6.60. A real number x is rational if and only if its proper decimal expansion is eventually periodic.

Proof.
= That’s exactly Remark 6.57.

G LN

+00

a
< Assume that the proper decimal expansion x = [x]| + Z ﬁ is eventually periodic,
k=1
ie.IreN, Ise N[0}, VkeEN, a,, s = a, -
+00

a
Then x = [x] + ¥ —% 4107 rik
] Z 10K z_:l 10%
+m>a
H it is enough to prove that y = -tk e Q.
ence it is g p y Z 10k

k=1

Note that 10°y = N + ywhere N =4, ja,,, ... a,+510 e N. Hence y = W—N_I € Q. [ |
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Remark 6.61. According to the above proof,

d ——10
b c{Cy...C
aa;_q ... ao.b1b2 bru =a,a,_1 " Q + ; W +10 rlos—_iv
—10
——10+b1b2---br ciCy ... Cg
=a,4;_1...49g o T
10 10
_@a,_y...agbiby...b.cicy...cg —aa;_y...agbiby ... b,
B 105 — 107
Example 6.62.
o 61234314 = 61234314 — 61234 _ 61173080
T 106 - 103 999000
e 03=--0_3 w01y < 4201242 _ 41970
- 10-1 9 - 103 -1 999

6.6 \/5 is irrational

Using the IVT, we may prove that there exists a unique positive real number x > 0 such that x> = 2.
We denote it by V2.

Theorem 6.63. \/2 ¢ Q

Below are some of my favorite proofs for the irrationality of \/5

Proof 1 (Fundamental Theorem of Arithmetic).

Assume by contradiction that V2= % € Q. Then 2»* = &°.

The prime factorization of the LHS has an odd number of primes (counted with exponents) whereas the
RHS has an even number of primes (counted with exponents).

Which is impossible since the prime factorization is unique up to order. n

Proof 2 (Euclid’s lemma).
Assume by contradiction that V2= % € Q written in lowest form.

Then 2b% = a®. Therefore 2|a>. By Euclid’s lemma, 2|a, so a = 2k.
Thus 2b* = 4k?, from which we get b? = 2Kk>. By Euclid’s lemma, 2|b.
Hence 2| gcd(a, b) = 1, which is a contradiction. [ |

Proof 3 (Gauss’ lemma).

Assume by contradiction that V2= % € Q written in lowest form.

Then 2b% = a®. Therefore b|a*.

Since ged(a, b) = 1, by Gauss’ lemma (applied twice), b|1 and hence b = 1 (since b € N~ {0} in lowest form).
Hence o = 2. Which is impossible (2 is not a perfect square: Vx € Z, x> =0(mod3)or x> =1(mod3)). W
Proof 4 (proof by infinite descent).

Assume by contradiction that \/_ = % € Q wherea € Nand b € N\ {0}.

Then 2b% = a”. Then a(a — b) = a® — ab = 2> — ab = b(2b — a). Hence /2 = & = 2=¢,

Note that 1 < \/_= %,thu50< a — b. Therefore 0 < 2b—a,soa—b < b.

Therefore we obtained another expression of V2 with a smaller positive denominator.

By repeating this process, we may construct an infinite sequence V2 = % =2 =2 = ... such that q; > 0

by by
and 0 < by < by.
Which is a contradiction since there is no decreasing infinite sequence of natural numbers. [
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Proof 5 (by congruences).

Assume by contradiction that V2 = ¢ € Q written in lowest form. Then 25> = d.

Since gcd(a, b) = 1, we can’t have a = 0 (mod 3) and b = 0 (mod 3) simulatenously (otherwise 3| gcd(a, b)).

e Either a = +1 (mod 3) and b = 0 (mod 3), then a* — 26> = 1 (mod 3),

e ora=0(mod3)and b= +1 (mod 3), then a* — 26> = 1 (mod 3),

e ora=+1 (mod3)and b = +1 (mod 3), then a®> — 2b* = 2 (mod 3).
Therefore a> — 26> # 0 (mod 3) and so a* — 2b* # 0. Which is a contradiction.

Proof 6 (by the well-ordering principle).

Assume by contradiction that V2 = % € Q. Then a = V/2b.

Therefore E = {n eN : ny2eN~ {O}} is not empty since it contains |b| as \/Elbl = |a|.

By the well-ordering principle, E admits a least element p. Then p\/z e N\ {0}.
Setgq = p\/z—p. Then g € Z. Besides g = p(\/E— 1)sothat0 < g < p.

ButgV2=2p—pV2=p—qgeN~{0}.Soq € E.
Which is a contradiction since p is the least element of E and ¢ < p.

Proof 7 (by the rational root theorem).

Assume by contradiction that V2 = % € Q written in lowest form.

Since \/_ = % is a root of x> — 2 = 0, we deduce from the rational root theorem that a|2 and b|1.

So either \/E =+1ory2==2.

We obtain a contradiction in both cases since (+1)> = 1 # 2 and (+2)* = 4 # 2.

Proof 8 (by the archimedean property).

n
Forn e N, setu, = (\/5 — 1) . We may prove either by induction or using the binomial formula, that for

every n, there exist a,, b, € Z such thatu, = a, + b, \/5

n>=n

Since* 0 < \/5 -1< %, we may also prove that 0 < u

Assume by contradiction that V2= 5 € Q, then

un=an+bn\/5=an+bn

Since u,, > 0 we get that |ga, + pb,| > 1 and that u, >

Therefore Vn € N, 0 < % < u, < . Which contradicts the archimedean property.

n — on

Proof 9 (geometric version of proof 4).

<l

n—on-

q_

lgl”

p_ 94y + b,

q

Assume by contradiction that \/_ = % € Qwherea e Nand b € N\ {0}. Thena = \/Eb > b.

A

2
4Use the fact that (0, 4+00) 3 x —» x> € R is increasing and that 2 < <§> to conclude that \/5 < %

(a—b)

2b — a)?

(a—by
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By a direct computation of the side length, the square at the center has an area of A = (2b — a)*.
But, by inclusion-exclusion, A also satisfies 2(a —b)?> +20> — A =d
So A =2(a— by + 2b2 — a® =2(a - by’ since a® = 2)°.

Therefore 2(a — b)*> = A = (2b — a)*. Thus 2 = (21’ ;)2 i
Hence\/—— w1th50<2b—aand0<a—b<b
a a
By repeating th1s process, we may construct an infinite sequence \/_ = % = b_i = ﬁ = .- such thatag, >0
and 0 < by, < by.
Which is a contradiction since there is no decreasing infinite sequence of natural numbers. [

Proof 10 (Pythagoras flavored).
Let ABC be a isosceles right triangle in A. By the Pythagorean theorem % =2

Assuming that V/2 is rational means geometrically that BC and AB are commensurable, i.e. they are both
integral multiple of a another length 4. 6

Put D on [BC] such that BD = AB.

Define E as the intersection of (AC) with the line through D which is perpendicular to (BC).

Note that” AE = ED = DC.

Thus CD = BC — ABand EC = AC — AE = AB — (BC — AB) = 2AB - BC.

Therefore CD and EC are integral multiple of d.

Besides DEC is a isosceles right triangle in D, therefore we may repeat this construction on the triangle
DEC in order to construct an infinite sequence of segment lines (AC, EC, FC, ..., see below) which are all
integral multiple of d and with decreasing length.

Which is impossible.
C C C
F G
D D
E E
A B A B A B -

The above proof is actually another geometric version of Proof 4:

Algebraically: 2= _2=alb _ 2= Va_

a-b alb-1" \/5

Geometrically: V2= g = 22;—_5:
CD BC — AB

Proof 11 (my favorite one).
The proof is left as an exercise to the reader. [

°See Proof 4 for 0 < 2b — a.
SThat is the geometric version of irrationality used by ancient Greeks:

if V2= ¢ setd = 2 then AB = bd and BC = /2 x AB = bd = ad.
7C0mpare the triangles BAE and BDE which are respectively right in A and D with common hypotenuse and ‘AB = DB, so,

by the Pythagorean theorem, ‘AE = ED. Besides the triangle CDE is isosceles right in A by angle considerations, thus ‘ED = DC.
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Before leaving V2, T would like to show you a funny proof relying on the tertium non datur.
Proposition 6.64. There exist a, b > 0 irrational numbers such that a’ e Q.
Proof.
V2
e Assume that \/5 € Q. Then we can take a = b = \/5

Vi Vi a\ o
e Assume that \/5 ¢ Q. Then we can take a = \/5 and b = \/5 Indeed, \/5 = \/5 =2. N

V2
Remark 6.65. Note that in the above proof it is not necessary to know whether V2" is rational or not in
order to conclude! That'’s really cool! By the way, it is not rational using Gelfond-Schneider Theorem.

6.7 eisirrational

+00

You know from your first year calculus that e = l'
n:
n=0

Theorem 6.66. ¢ & Q

Proof 1. Assume by contradiction that e = % where a,b € N~ {0}. Note that b > 1 since e & N. Besides

n>b+1 "

b
b! e—Z% =b!< > %)

Note that the LHS is an integer. We are going to derive a contradiction by proving that the RHS is not an

integer. Indeed
1 1 1
0<b! — )< =-<1
< <Z n!>_z(b+1)" b=

n>b+1 n>1

It is also possible to use an approach similar to the eighth proof for the irrationality of V2

1
Proof 2. Forn € N, setu, = x"e*dx.

0
Using an induction and integration by part, we can prove that for n € N, there exist a,, b, € Z such that
u, =a,+eb,.

Assume by contradiction that e = § where p,q € N\ {0}. Then0 < u, = a, + bn§ = @‘
Since u,, > 0 we get that ga,, + pb, > 1 and that u, > é.

1
Therefore Vun € N, 0 < 1 <u, < / xMedx = —%—.
q 0 n+1

Which is impossible. [ |
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Exercises

Exercise 1.

Prove that \/7+4\/§+ \/7—4\/56[\1.

Exercise 2.

a’ + b?

1. Prove thatVa,b € R, ab <

2. Prove thatVa, b,c € R, ab+ bc + ac < a* + b*> + c>.

3. Prove that Va, b, c € R, 3ab + 3bc + 3ac < (a+ b+ ¢)>.

Exercise 3.
Prove thatVx € R, |x — 1| < x> — x + L.

Exercise 4.
1. Prove thatVx,y € R, |x| + |y| < |x + y| + [x — y|.

eyl xl Lyl

2. Prove thatVx,y € R, < .
Y T+ x40 - T+1x| T+

Exercise 5.
Let A C R be non-empty and bounded. We set B = {|x —y| : x,y € A}.

1. Prove that B admits a supremum.

2. Prove that sup B = sup A —inf A.

Exercise 6.
Prove that if f : [0, 1] — [0, 1] is non-decreasing then f admits a fixed point, i.e. 3a € [0, 1], f(a) = a.
Hint: study {x € [0,1] : f(x) > x}.

Exercise 7.

Let A C R be non-empty and bounded from above. Set M = sup(A).
Prove that if M ¢ A then for all € > 0 the set (M — &, M) N A contains infinitely many elements.

Exercise 8. Conway’s Soldiers, or why geometric series are useful

We consider an infinite checkerboard represented by Z x Z with pieces on it. The pieces are allowed to move
using the peg solitaire rules: a move consists of one piece jumping over another piece into an empty cell
(either horizontally or vertically), the piece which was jumped over is then removed.

@

The goal of this exercise is to show that there is no initial configuration with finitely many pieces located on
Z X Z oy allowing to reach cells with y-coordinate 5.

1. Prove that there exists initial configurations allowing to reach cells with y-coordinate 1, 2, 3 and 4.

2. We denote by o the positive root of x* + x — 1 = 0 and we fix a target cell on Z x Z.
We label each cell of Z x Z with ¢" where n is the Manhattan distance from the target to the cell.
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o*6’|o?|o?
o°|o?|o!|c?
o%|c!|sYc!
o°|6?|o!|c?
o*’|o?|o?

Given a finite configuration C (i.e. finitely pieces on the checkerboard), we define F(C) = ;.- o"

where n; is the Manhattan from the target cell to the cell i.

Prove that if C’ is a configuration obtained after one move then F(C') — F(C) < 0.

+o0
3. Compute Z c".
n=2

4. Assume that the target cell is (0,5). Compute F(C) where C contains all the cells with non-positive

y-coordinates (hence C contains infinitely many cells).

5. Conclude that there is no finite initial configuration in Z x Z_, allowing to reach (0, 5).

Exercise 9.
1. ProvethatVx,y € R, [x] + |y] < |[x+y] < |x] + |y] + 1.

2. Prove that Vn € N\ {0}, Vx € R, l%J = [x].

Exercise 10.
n n
1. Prove that Vn € N, <2+ \/3) + (2 - \/5) € 2N.

2. Prove that for every n € N, {(2 + \/§>nJ is odd.

Exercise 11.

Let I and J be two open intervals of R. Provethat I nQN (U NnQ) =@ = InJ =2.

Exercise 12.

1. Is the sum of two irrational numbers always an irrational number?

2. Is the product of two irrational numbers always an irrational number?
3. ProvethatVx e R\ Q,Vye Q, x+y ¢ Q.

4. Prove thatVx e R~ Q, Vy € Q~ {0}, xy & Q.

Exercise 13.
Prove that the following numbers are irrational

1. V3

NG

V11

\ 3+\/ﬁ§£Q
V2443
(V2+5)
V2+V3+4/6

. (3\/§+2\/§+\/€>2
VT +/3.

© ® N U N



J.-B. Campesato Chapter 6. The rationals and the reals

75

Exercise 14.
ProvethatVneN, yne Qe VneNsImeN, n=m”

Exercise 15.

+0o0
n(n+1)
Is Z 10-"5~ =0.101001000100001000001 ... a rational number?
n=1

Exercise 16.
1. We fixr > 0and n € N. We define f : R - Rby f(x) = %x"(l — x)" and we set

F(X) — Z(_l)kr2n—2kf(2k+l)(x)

k>0
(note that the sum is finite since f is a polynomial).

(a) Prove thatVk e N, f®(0) € Z.

(b) Prove thatVk e N, f®(1) e Z.

(c) Prove that F”(x) = —r?F(x) + r>"*2 f(x).
(d) Compute % (F'(x)sin(rx) — rF(x) cos(rx)).

(e) Compute /01 £ (x)sin(rx)dx.
2. Prove thatVr € (0,7z], r € Q = (sin(r) € Q or cos(r) ¢ Q).

3. Prove that = ¢ Q.



Chapter 7

Cardinality

Let’s start with a short story.

A conference about singularity theory is going to take place in the lovely village of Tarski, and partici-
pants start to arrive. Most of them decided to be hosted at the Aleph Nought Hotel. It is a huge hotel, built
especially for this occasion, with infinitely many rooms numbered using N: 0, 1, 2, 3... Despite this large
number of rooms, the sign FULL lights up over the front door indicating that there is no vacancy!

A group of 42 late mathematicians from Nice show up at the front desk and are received by the recep-
tionist David H. who exclaims “For Cantor’s sake! I thought that we were not expecting new guests! No worries, I
will find a solution”. Then he uses the intercom of the hotel to send the following message to all the current
guests: “Sorry for the inconvenience, but I would need your cooperation in order to accomodate new guests. Please,
if your current room is labeled n then could you move to the room n 4+ 42? Thank you so much and once again, sorry
of the inconvenience”. Therefore the rooms 0, 1, 2, ..., 41 are now available for the latecomers and the already
hosted guests still have individual rooms.

Later a bus containing the canadian delegation reaches the hotel. The driver meets David H. and says
“Sorry for the delay, I got lost on the way. I have a bus full with infinitely many canadian mathematicians! We booked
infinitely rooms at your hotel and for your conveniency we gave to each of our member a card with a natural number:
0, 1, 2...”. Then David H. desperates "Holy Dedekind! What a night! No worries, I will handle the situation!”.

And once again, he uses the intercom of the hotel to send the following message: “If you are currently in
the room n, please could you move to the room 2n+1? Sorry for the inconvenience.” This way the guests already in
the hotel still have individual rooms and now there are infinitely many empty rooms (the even numbered
ones) for the canadian participants. Next David H. asks the newcomers “If your card shows the number m,

please go to the room 2m”, and everyone gets an individual room'.

Our friendly receptionist is later awakened by a terrible loudly noise outside. He shouts “In Gddel’s name,
what's happening now?” and then he reaches the front door to see infinitely many flying saucers® (numbered
0,1,2,...). Anextraterrestrial mathematician goes to meet David H. and tells “Sorry for the delay, we come from
Proxima Centauri and we got stuck in traffic jams. Each of our ships contains infinitely countably many participants!”.

David H. doesn’t seem particularly concerned and send the following message to the current guests us-
ing his intercom: ”Dear guest, if you are currently in the room n, please could you move to the room 2n?”. Therefore
the odd-numbered rooms are now free. Then David H. asks the k" passenger of the th ship to go to the

room 3¥5', so that everyone gets an individual room®.

IThe function N 3 n —~ 2n + 1 € N is one-to-one so the current guests keep individual rooms. Then N = m — 2m € N is also
one-to-one, so two different newcomers are sent to two different rooms (and these rooms are empty since even numbered).

*Until now, the story was quite realistic...

3By uniqueness of the prime factorization, N 3 (k,[) — 3%5' e Nis injective, so the newcomers are sent to different rooms, and
these rooms are free since odd-numbered.
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This story highlights something interesting about the behaviour of infinite sets such as N. First we were
able to add 42 elements to N without changing its size. Even less intuitively, then we added a copy of N to N
without changing its size. And finally, we were even able to add N x N (i.e. infinitely many copies of N) to
N without changing its size.

The goal of this chapter is to formally define the notion of size of a set (it will be called cardinality) and
to study its properties (which may be counter-intuitive, as above, for infinite sets).

7.1 Reviews about functions

Definition 7.1 (Informal* definition of a function). A function (or map) is the data of two sets A and B
together with a “process” which assigns to each x € A a unique f(x) € B:

. A - B
f'{x > f(x)

Here, f is the name of the function, A is the domain of f, and B is the codomain of f.

Remark 7.2. This process can be:

e A formula: define f : R - Rby f(x) = T 44D,

e An exhaustive list: define f : {1,2,3} - Rby f(1)==x#, f(2) = \/5, fQB3) =e.

e A property characterizing f uniquely: log is the unique antiderivative of g : (0, +o0) — R defined by
g(x) = i such that log(1) = 0.

e By induction: we define the sequence u, : N = Rbyuy=1and Vn €N, u,,, = u + 1.

e The solution of a differential equation: the exponential function exp : R — R is the unique differen-
tiable function such that exp’ = exp and exp(0) = 1.

e The solution of a functional equation: the exponential function with base a € R denoted by exp, :

R — R is the unique monotonic function such that exp (x + y) = exp (x), exp(y) and exp (1) = a.
e ...

Remark 7.3. The domain and codomain are part of the definition of a function. For instance:

R 0,+ R R . . .
o [ : = ( xoo) and g : - « are not the same function (the first one is
X B e X = e
surjective but not the second one, see below).

.f:{[0,+oo)—> R R —

R
and g: 2 are not the same function (the first

x o ox2+ 1 x b x“+1
one is injective but not the second one, see below).

A function is not simply a “formula”, you need to specify the domain and the codomain.

Definitions 7.4. Given a function f : A — B.
e Theimageof EC Aby fis f(E)={f(x) : x€ E} CB.
The image of f (or range of f) is Range(f) := f(A).
The preimage of F C B by f is fUF):={xe A : f(x)€F)}.
The graph of f is the setT; == {(x,y) € AX B : y= f(x)}.
We say that f is injective (or one-to-one) if Vxi,x, € A, x; # x, = f(x1) # f(x3)
or equivalently by taking the contrapositive Vxi,x, € 4, f(x)) = f(x,) = x; =x;
We say that f is surjective (or onto) if Vy € B, 3x € A, y = f(x)
e We say that f is bijective if it is injective and surjective,ie. Vy € B, Alx € A4, y = f(x)

*Formally, a function f : A — B is characterized by its graph I['; C A X B which needs to satisfy Vx € A, 3!y € B, (x,y) €[}.
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Proposition 7.5. Let f : E — Fand g : F — G be two functions.
1. If f and g are injective then sois g o f.
2. If f and g are surjective then sois g  f.
3. If g o f is injective then f is injective too.
4. If g o f is surjective then g is surjective too.

Proof.

1. Let x, y € E be such that g(f(x)) = g(f(»)). Then f(x) = f(y) since g is injective. Thus x = y since f is
injective.

2. Let z € G. Since g is surjective, it exists y € F such that z = g(y). Since f is surjective, it exists x € E

such that y = f(x). Therefore z = g(f(x)).

Let x,y € E such that f(x) = f(y). Then g(f(x)) = g(f(y)) and thus x = y since g - f is injective.

4. Let z € G. Since g f is surjective, there exists x € E such that z = g(f(x)). Then y = f(x) € F satisfies

g(y) =z n

@

Vx e A, g(f(x)=x

Proposition 7.6. f : A — B is bijective if and only if there exists g : B — A such that .
P / / f vy 8 { Vy€ B, f(g) =y

Then g is unique, it is called the inverse of f and denoted by f -1 B> A
Proof. = Assume that f is bijective, then Vy € B, 3!x, € A, f(x,) = y. We defineg : B - A by g(y) = x,,.
Then g satisfies the required properties.

& Assume that there exists g as in the statement. Then g f = id 4 is injective, so f is too by Proposition 7.5.
And f - g = idy is surjective, thus f is too, still by Proposition 7.5. Therefore f is bijective.

For the uniqueness: assume there exist two such functions g;,g, : B - A. Let y € B. Then f(g,;(y)) =
y = f(g (). So g;(y) = g,(y) since f is injective. |

7.2 Finite sets

Definition 7.7. We say that a set E is finite if there exists » € N and a bijection f : {k €N : k <n} - E.
Then we write |E| = n.

Remark 7.8. Note that {k e N : k<n} ={0,1,2,...,n—1}.
We are first going to prove that if such a n exists, then it is unique.

Lemma 7.9. Let n,p € N. If there exists an injective function f : {k € N : k <n} - {k e N : k < p} then
n<p.

Proof. We prove the statement by induction on n.
e Base case at n = 0: for any p € N we have n < p.
o Induction step. Assume that the statement holds for some n € N.
Let p € N. Assume that there exists an injective function f : {keN : k<n+1} - {keN : k< p}.
Defineg : {keN : k<n} > {keN : k< p-1} asfollows:

[ fe S < fn)
g(")‘{ FGY =1 i £(x)> f(n)

Note that f(x) # f(n) since f is injective.
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FiGURE: an example.

— Claim 1: g is well-defined, i.e. Vx € {keN : k<n},gx)e{keN : k<p-1}.
Letxe {keN : k<nj}.
So either f(x) < f(n), and then g(x) = f(x) < f(n) < p, therefore 0 < g(x) < p— 1.
Or f(x) > f(n),and then g(x) = f(x) — 1 < p— 1, therefore 0 < g(x) < p— 1.
— Claim 2: g is injective.
Letx,y € {k € N . k < n} be such that g(x) = g().
% First case: f(x), f(y) < f(n).
Then g(x) = f(x) and g(y) = f(»). So f(x) = f(y) and thus x = y since f is injective.
* Second case: f(x), f(y) > f(n).
Then g(x) = f(x) —1land g(y) = f(») — 1. So f(x) = f(y) and thus x = y since f is injective.
% Third case: f(x) < f(n) and f(y) > f(n).
Then g(x) = f(x) < f(n)and g(y) = f(») =1 > f(n) — 1 > f(n). Therefore, this case is
impossible.
* Fourth case: f(y) < f(n)and f(x) > f(n). Similar to the previous one.

Therefore, by the induction hypothesis,n < p—1,ie. n+1 < p. [

Corollary 7.10. Let E be a finite set. If |E| = nand |E| = m, then m = n.
Then we say that | E| is the cardinal of E, which is uniquely defined.

Proof. Assume there exists a bijection f| : {k €N : k <n} - F and abijection f, : {keN : k<m} - E.
Then fz_l ofi i {keN : k<n} = {keN : k<m}isabijection, so by the above lemma, n < m.
Similarly, f7'o f, : {(k €N : k<m} > {k €N : k <n} is a bijection and thus m < n.

Therefore n = m. |

Remark 7.11. Informally, the cardinal of a finite set is its size, i.e. the number of elements it contains.

Remark 7.12. |[E|=09 E=0Q

Indeed, if E = @ then f : {k € N : k <0} — E is always bijective: injectiveness and surjectiveness are
vacuously true. So |E| = 0.

Otherwise, if E # @ then f : {k €N : k <0} — FE is never surjective, so |E| # 0.

Proposition 7.13. If E C F and F is finite then E is finite too, besides, |E| < | F|.
Proof. Let’s prove by induction on n = | F| that if E C F then E is finite and | E| < n.
e Base case at n = 0: then F = @, so the only possible subset is E = @ and then |E| = 0.

o Induction step. Assume that the statement holds for some n € N.
Let F be a set such that |F| =n+ 1.

— First case: E = F. Then the statement is obvious.
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— Second case: E # F. Then there exists x € F\ E.
There exists a bijection f : {keN : k<n+1} - F.
Since f is bijective, there exists a unique m € {0, 1, ..., n} such that f(m) = x.
Define g : {keN : k<n} - F~{x}bygk) = f(k) for k # mand, if m # n, g(m) = f(n).

Figure 7.1: If m # n,ie. f(n) # x Figure 7.2: If m = n,ie. f(n) =x

Then g is a bijection (check it), so F ~ {x} is finite and | F ~ {x}| = n.
Since E C F ~ {x}, by the induction hypothesis, E is finite and |E| <n <n+ 1. [ |

Proposition 7.14. Let E C F with F finite. Then |F| = |E| + |F ~ E|.

Proof. Since F~ E C F and E C F, we know that E and F \ E are finite. Denote r = |E| and s = |F \ E|.
There exist bijections f : {keN : k<r} > FEandg:{keN : k<s}—> F\E.
Defineh : {keN : k<r+s} — Fbyh(k) = { g(Jlfc(f)r) ﬁz;: .
e his well-defined:
Indeed, if 0 < k < r then f (k) is well-defined and f(k) € E C F.
Ifr<k<r+sthen0<k—r<ssothat gk —r)is well-defined and g(k—r) € FN\E C F.
e K is a bijection:
- hisinjective: let x,y € {0, 1, ...,r + s — 1} be such that h(x) = hA(y).
Either h(x) = h(y) € E and then f(x) = h(x) = h(y) = f(y) thus x = y since f is injective.
Or h(x) = h(y) € F~E and then g(x —r) = h(x) = h(y) = g(y —r) thus x —r = y — r since g is
injective, hence x = y.
— his surjective: let y € F.
Either y € E, and then there exists x € {0, 1,...,r — 1} such that f(x) = y, since f is surjective.
Then A(x) = f(x) = y.
Or y € F \ E, and then there exists x € {0,1,...,s — 1} such that g(x) = y since g is surjective.
Then A(x + r) = g(x) = y.
Therefore |F|=r+s=|E|+ |F~ E]|. |

Proposition 7.15. Let E and F be two finite sets. Then
1. [EUF|=|E|+|F|-|ENF]|
2. |[EXF|=|E|X|F|

Proof.

1. Using Proposition 7.14 twice, we get

|[EUF|=|EU(F~(EnF)|=|E|+|F~(EnF)|=|E|+|F|-|EnF]|

2. We prove this proposition by induction on n = |F| € N.

e Basecaseatn=0:then F = @so EXF=@gtooand |[EX F|=0=|E|x0=|E| X |F]|.
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e Case n = 1: we will use this special case later in the proof.
Assume that F = {*} and that | E| = p. Then there exists a bijection f : {keN : k< p} — E.
Note that g : {k €N : k < p} - E X F defined by g(k) = (f(k), %) is a bijection.
Therefore |[EX F|=p=px1=|E|X|F]|.
e Induction step. Assume that the statement holds for some n € N.
Let F be a set such that |F| =n+ 1.
Since |F| > 0, there exists x € F and |F ~ {x}| = |F| — [{x}| =n+1—1 = n. Then

|EXF|=[(EX(F~{x})U(EX{x})]
= |EX(F~{x}|+|E X {x}|
= |E| X |F ~ {x}| + | E| using the induction hypothesis and the case n = 1
=|E|xX(|F| -1+ |E|
= |E| X |F| u

Proposition 7.16. Assume that E C F with F finite. Then E = F & |E| = |F|.

Proof.
= It is obvious.
< Assume that |E| = |F|. Then |F~\E|=|F|-|E|=0. Thus FN E=@,ie. E=F. [ |

Proposition 7.17. Let E a finite set. Then F is finite and | E| = | F| if and only if there exists a bijection f : E — F.

Proof.

= Assume that F is finite and that |E| = |F| = n.

Then there exist bijections ¢ : {k€N : k<n} - Eandy : {keN : k<n} - F.

Therefore f =wop~! : E— Fis a bijection.

<« Assume that there exists a bijection f : E — F.

Since E is finite there exists a bijection ¢ : {k €N : k < |E|} - E.

Thus fe@ : {keN : k <|E|} - F is abijection. Therefore F is finite and |F| = | E|. |

Proposition 7.18. Let E, F be two finite sets such that |E| = |F|. Let f : E — F. Then TFAE:
1. f isinjective,
2. f is surjective,
3. f is bijective.

Proof.

Assume that f is injective.

There exists a bijection ¢ : {k €N : k< |E|} - E.

Then fo@p : {keN : k< |E|} = f(E)is abijection. Thus |f(E)| = |E| = |F|.
Since f(E) C F and |f(E)| = |F|, we get f(E) = F,i.e. f is surjective.

Assume that f is surjective.
Then for every y € F, f~X(y) c E is finite and non-empty, i.e. |f‘1(y)| > 1.
Assume by contradiction that there exists y € F such that | f Ty > 1.

Thus |E| = || | f7' 0= D, |£7')] > [FI = |EL.
yEF YEF
Hence a contradiction. [}

Proposition 7.19. Let E and F be two finite sets. Then | E| < | F| if and only if there exists an injection f : E — F.

Proof.

= Assume that |E| < |F|.

There exist bijections ¢ : {keN : k< |E|} - Fandy : {keN : k<|F|} = F.
Since |[E| < |F|, f =wo¢~! : E - F is well-defined and injective.
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= Assume that there exists an injection f : E — F.
Then f induces a bijection f : E — f(E), so that |[E| = | f(E)|.
And since f(E) C F, we have |f(E)| < |F]|. [ |

Corollary 7.20 (The pigeonhole principle or Dirichlet’s drawer principle).
Let E and F be two finite sets. If | E| > | F| then there is no injective function E — F.

Example 7.21. There are two non-bald people in Toronto with the exact same number of hairs on their
heads.

Example 7.22. During a post-covid party with n > 1 participants, we may always find two people who
shook hands to the same number of people.

Remark 7.23. Since the cardinal of a finite set is a natural number, we deduce that given two finite sets E
and F, exactly one of the followings occurs:

e either |E| < |F| (i.e. there is an injection E — F but no bijection E — F),

e or |E| = |F| (i.e. there is a bijection E — F),

e or |E| > |F| (i.e. there is an injection F — E but no bijection E — F).

7.3 Generalization to infinite sets
Definition 7.24. We say that a set is infinite if it is not finite.

Theorem 7.25. N is infinite.

Proof. Assume by contradiction that N is finite. Then N~ {0} c N so N~ {0} is finite too.
We define f : N - N~ {0} by f(n) = n+ 1. Note that f is bijective with inverse f71 N~ {0} = N defined

by fTln)=n-1.
Thus [N| = [N~ {0} = IN| = [{0}| = IN| = 1,ie. 0= 1.
Hence a contradiction. [}

So, we need to find a way in order to generalize the notion of cardinal from finite sets to all sets.

Definition 7.26. We say that two sets E and F have same cardinality, denoted by | E| = | F|, if there exists a
bijection f : E — F.
We also say that E and F are equinumerous or equipotent.

Proposition 7.27.
1. If E is a set then |E| = | E|.
2. Given two sets E and F, if |E| = |F| then |F| = | E|.
3. Given three sets E, F and G, if |E| = |F| and |F| = |G| then |E| = |G|.

Proof.
1. id : E — E is a bijection.
2. Assume that |E| = | F|, i.e. that there exists a bijection f : E — F.
Then f~' : F > E is a bijection, so | F| = |E|.
3. Assume that |E| = |F| and |F| = |G|, i.e. that there exist bijections f : E - Fand g : F - G.
Then ge f : E — G is a bijection, thus |E| = |G]|. [ |

Remark 7.28. At first glance, it seems that equipotence is an equivalence relation since it satisfies reflexivity,
symmetry and transitivity. Nonetheless, recall that an equivalence relation is a binary relation on a set.

If equipotence were an equivalence relation, then it would be a binary relation on the set of all sets, which
doesn't exist (See Theorem 7.54).

Theorem 7.29. A set E is infinite if and only if for every n € N there exists S C E such that |.S| = n.
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Proof.
= Assume that E is infinite.
We are going to prove by induction that for every n € N there exists .S € P(E) such that | S| = n.
e Base case at n = 0: @ C E satisfies |@| = 0.
o Induction step. Assume that for some n € N there exists T C E such that |T'| = n.
Note that E\T # @ (otherwise E = T, which is impossible since E is infinite).
Therefore there exists x € E~T. Define S :=T U {x}, then S C E is finiteand |S| = |T|+ 1 =n+1.
Which ends the induction step.
<« Let E be a set such that for every n € N there exists S C E such that |.S| = n.
Assume by contradiction that E is finite. Then there exists k € N such that | E| = k.
Since k + 1 € N, there exists S C E such that |S| =k + 1.
Since § C E, we get k+ 1 =|S| < |E| = k. Hence a contradiction. |

Corollary 7.30. A set E is infinite if and only if for all n € N there exists an injective function {k € N : k < n} — E.
Definition 7.31. Given two sets E and F, we write | E| < | F| if there exists an injective function f : E — F.

Theorem 7.32 (Cantor-Schroder-Bernstein theorem).
Given two sets E and F, if |E| < |F| and |F| < |E| then |E| = |F|.

Remark 7.33. The above theorem states that if there exist injections E — F and F — E then there exists a
bijection E — F. It is less trivial than it seems at first glance when you look at the above statement.

It was first stated in 1887 by Cantor who didn’t provide a proof. The first known proof is due to Dedekind
on the same year, but he did not publish his proof (which was only found after he passed away). In 1895
Cantor published a proof relying on the trichotomoy principle (see Theorem 7.56), but Tarski later proved
that the latter is actually equivalent to the axiom of choice.

Around 1897, Bernstein, Schroder and Dedekind independently found proofs of the theorem (another
one for Dedekind). But Schroder’s proof later appeared to be incorrect. Several mathematicians subse-
quently gave alternative proofs, including Zermelo (1901, 1908) and Konig (1906).

Cantor-Schrober—Bernstein theorem is a little bit tricky to prove, so first I would like to informally ex-
plain the strategy of the proof before actually proving it.
We are given two injective functions f : E - Fand g : F — E.
Let’s fix x € E. We construct a chain xq, x|, x,, ... of elements which are alternatively in E and F as
follows. First we set x, = x € E and then we define the next terms inductively by
e if x, € E then we define x,,; € F as the unique antecedant of x, by g (if it exists, otherwise we stop
the construction at x,,),
e if x, € F then we define x,,,| € E as the unique antecedant of x, by f (if it exists, otherwise we stop
the construction at x,,).

< E
F
X5 X3 X1
Then we face three possible cases:
1. Either the chain ends with an element in E, and then we put x in Ef,
2. or the chain ends with an element in F, and then we put x in E,
3. or the inductive definition of the chain doesn’t stop, and then we put x in E .

We have a partition E = E U Ep U E,. We perform the same construction with x, = x € F in order to
obtain F = Fp U Fr U F,.

Now assume that x € Eg, for instance the chain stops at x, as below. Then f(x) € Fg, since its chain
continues at x, and stops at x, € E.
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Therefore the function f|p_: Eg — Fg is well-defined. Besides, it is injective since f is, and it is surjective
by definition of Fg. Therefore f_ @ Ep — Fg is a bijection.

Similarly gz, : Fp - Epand fip_ : E, — F are bijections. Finally, we glue them in order to obtain
a bijectionh : E - F.

Ep ! Fy
Ep 48 Fy
E., A
E F

Proof of Cantor—Schréder—Bernstein theorem.
Let f : E - Fand g : F — E be two injective functions. Set

e Eg={x€E :3neN, Ire ExIm@g), x=(g°f)"("}

e Ep={x€E :IneN Ise F Im(f), x=¢g((f=8"()}
e E,=E~(EgUEy)

e Fp={yeF :neN Ire E~xImg,y=f (g ,)"")}
o Fp={yeF :3neN Ise F-Im(f), y=(f8"(s)}

e F,,=F(FgUFy)

Note that if x € Eg then f(x) € Fg. So fig, : Eg — Fg is well-defined. It is injective since f is injective.
And it is surjective by definition of the sets. Thus it is bijective.
Similarly, g, : Fp — Ep is well-defined and bijective and f|g_ : E,, — F, is well-defined and bijective.
f(x) ifxeEg
We defineh : E— Fbyh(x) =4 g '(x) ifxeEp .
f(x) ifxeE,
Then h is clearly a bijection (I can use “clear”, but you can’t, and the same holds for “trivial” and "obvious” :-p). W

Proposition 7.34.
1. If E is a set then |E| < | E|.
2. Given two sets E and F,if |E| < |F|and |F| < |E| then |E| = |F|.
3. Given three sets E, F and G, if |E| < |F| and |F| < |G| then |E| < |G|.

Proof.
1. id : E — E is an injective function.
2. It is Cantor-Bernstein—-Schroéder theorem.
3. Assume that |E| < |F| and |F| < |G|, i.e. that there exist injections f : E - Fand g : F = G.
Then g f : E — G is injective, thus |E| < |G|. |
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Remark 7.35. Comparison of cardinals shares the characteristic properties of an order. Nonetheless, it is
not an order since it is not a binary relation on a set (as for equipotence).

Proposition 7.36. If E C F then |E| < |F|.
Proof. Indeed, f : E — F defined by f(x) = x is injective. [ |
Proposition 7.37. If |E|| = |E,| and |F,| = |F,| then |E| X F|| = |E; X F,|.

Proof. Assume that |E;| = |E,| and |F,| = | F,| then there exist bijections f : E; - E,and g : F| — F,.
We define h : E| X F| - E, X F, by h(x,y) = (f(x), g(»)). Let’s check that 4 is a bijection.
e h s injective.
Let (x,y),(x',y") € E; X F| be such that h(x, y) = h(x',y").
Then f(x) = f(x") and g(y) = g(y'), thus x = x’ and y = )’ since f and g are injectives.
We proved that (x, y) = (x', y").
e h is surjective.
Let (z, w) € E, X F,. Since f is surjective, there exists x € E; such that z = f(x).
Since g is surjective, there exists y € F; such that w = g(y).

Then h(x, y) = (f(x). g(») = (z, w). u
Theorem 7.38. Given two sets E and F, |E| < |F| if and only if there exists a surjective function g : F — E.

Proof.
= Assume that there exists an injective function f : E — F, then f : E — f(E) is bijective.
If E = @, then there is nothing to prove. So we may assume that there exists u € E.
L _[ 7w ifye f(E)
Define g = F'~ Eby g(») = { u otherwise
Let x € E, then g(f(x)) = f~'(f(x)) = x. Thus g is surjective.

& Assume that there exists a surjective function g : F — E, then® Vx € E, 3 Vs € g 1 (x).

Define f : E — F by f(x) = y,. Then f is injective, so |E| < | F|.

Indeed, assume that f(x) = f(x’) then g(f(x)) = g(f(x')).

But g(f(x)) = g(y,) = x and similarly g(f(x")) = x’. Thus x = x". [ |

Theorem 7.39. Given two sets E and F, if |E| = |F| then |P(E)| = |P(F)|.

Proof. Let E and F be such that |E| = | F|. Then there exists a bijection f : E — F.
Note that f : P(E) — P(F) defined by f(A) = f(A) is bijective too (prove it!).
Therefore |P(E)| = |P(F)|. [ |

7.4 Countable sets

In what follows, we set R, := [N| (pronounced aleph nought).
Definition 7.40. A set E is countable if either E is finite or |E| = N,.
Proposition 7.41. If S C N is infinite then |S| = N,

Proof. Let’s define the function f : N — .S by induction as follows.

Set f(0) = min.S (which is well-defined by the well-ordering principle since S # @ as it is infinite).

And then, assuming that f(n) is already defined, we set f(n + 1) = min{k € .S : k > f(n)} (which is well-
defined by the well-ordering principle: the involved set is non-empty since otherwise .§ would be finite).
It is easy to check that f is injective (note that Vn € N, f(n+ 1) > f(n)), therefore X, < |.S].

But since S C N, we also have |.S| < N,.

Thus, by Cantor-Schréder—Bernstein theorem, | S| = N,,. |

°(AC) See Remark 7.57.



86 Concepts in Abstract Mathematics J.-B. Campesato

Proposition 7.42. A set E is countable if and only if |E| < R, (i.e. there exists an injection f : E — N),
otherwise stated E is countable if and only if there exists a bijection between E and a subset of N.

Proof.
= Assume that E is countable.
e FEither E is finite and then there exists n € N together with a bijectiong : {keN : k <n} - E.
We define f : E - Nby f(x) = g~ (x) (which is well-defined since {k € N : k < n} C N).
And f is an injection since g lis.
e Or |E| =N, i.e. there exists a bijection f : E — N.
< Assume there exists an injection f : E — N.
Assume that E is infinite. Then |E| = | f(E)| = ¥, by Proposition 7.41.
Thus either E is finite or | E| = 8. In both cases E is countable. |

Proposition 7.43. The set of finite subsets of N is countably infinite, i.e. [{S € P(N) : d3n e N, |S| =n}| = N,.

Proof. Define f : {S € P(N) : 3neN, |S| =n} - Nby £(S) = ¥, 52"
Then f is bijective by existence and uniqueness of the binary positional numeral system. [

Proposition 7.44. [N XN| =X,

Proof. Define f : NxN — Nby f(a, b) = 293", Then f is injective by uniqueness of the prime decomposition.
Thus [N x N| < R

Besides {0} x N ¢ N x N, thus &, = [{0} x N| < [N X N]J.

Hence [N x N| = ¥, by Cantor-Schroder—Bernstein theorem. [ |

Theorem 7.45. A countable union of countable sets is countable,

i.e. if I is countable and if for every i € I, E; is countable then | J..; E; is countable.

iel
Proof. WLOG we may now assume that 7 C N.

Leti € I. Since E, is countable, there exists an injection f; : E; — N°.

We define ¢ : |J,; E; = NXNby ¢(x) = (n, f,,(x)) where n = min{i € I : x € E;} (well-ordering principle).
It is not difficult to check that ¢ is injective. Therefore | J,; E; is countable. [

Theorem 7.46. If E is an infinite set then there exists T C E such that |T| = R, i.e. N is the least infinite cardinal.

Proof. Forn e N, set E, = {S € P(E) : |S|=n}. By Theorem 7.29, E, # @.

So for every n € N, we can pick S, € E,’.

Then T := |,y S, is countable by Theorem 7.45.

Besides, Vn € N, S, C T and |S,,| = n. Therefore T is infinite by Theorem 7.29.

Thus |T| = 8, as an infinite countable set. [ |

Theorem 7.47. |Z| = X,

Proof 1. Since N € Z, we have |N| < |Z|.
. . _ 2" ifn>0
Define f : Z - Nby f(n) = { 3 ifn<0
Then f is injective by uniqueness of the prime factorization. Therefore |Z| < |N].
Hence |Z| = |N| by Cantor-Schroder—Bernstein theorem. |

Proof 2.
. ) _ 2n ifn>0
Define f : Z - Nby f(n) = { —@n+1) ifn<0
k ifdk eN, m=2k
—k—1 ifFkeN,m=2k+1"
Therefore |Z| = |N]. [ |
®(ACC) See Remark 7.58.
7(ACC) See Remark 7.59.

Then f is bijective with inverse f ~m) = {
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Theorem 7.48. |Q| = N,

Remark 7.49. This theorem asserts that there are as many rational numbers than natural numbers. Which
seems counter-intuitive. Since Q is dense in R, we could expect that R is also countable. That’s not the case
as we will see in the next section.

Proof 1. Note that N C Q, therefore X, < |Q|.
Define f : Q > ZXxZby f (%) = (a, b) where % is in lowest form.

By uniqueness of the lowest form expression of a rational number, f is well-defined and injective.
Thus |Q| < |Z X Z]. Since |Z| = N, we get |Z X Z| = INXN| = R,
We conclude using Cantor-Schroder—Bernstein theorem. n

Proof 2. Note that N C Q, therefore X < |Q].
The function f : Zx N~ {0} — Q defined by f(a, b) = % is surjective.

Thus, by Proposition 7.38%,1Q| < |Z x N~ {0}].
Since |Z| = [N] and [N~ {0}| = |N|, we get |Z XN~ {0}] = [N X N| =N,
We conclude using Cantor-Schroder—Bernstein theorem. n

Proof 3.

Note that N C Q, therefore X, < |Q].

Besides Q = U, pezxnn(0) { % }, so that Q is countable by Theorem 7.457, i.e. |Q] < R,.

We conclude using Cantor-Schroder—Bernstein theorem. n

7.5 Cantor’s diagonal argument

Theorem 7.50. R, < |R]|

The following proof relies on Cantor’s diagonal argument10

later to prove Cantor’s theorem!!.

. That’s a very general method that we will use

Proof. We are going to prove that there is no surjection N — R (and hence no such bijection).
Let f : N = R be a function. Given n € N, we know'? that f(n) has a unique proper decimal expansion

+00

fmy =Y a, 107

k=0

wherea,y € Zand a,, € {0,1,...,9} fork > 1, i.e.

J(0) = agg - agy apy ag3 a4 aos ---
f(h)=ayy.ay apaayas...
F@2)=ayy . ay; ay ay3 ay, as ...
f(3) = a3y . a31 a3y az3 a3y azs ...
JA) = a4y . ag) agy ag3 agq ays -

8 Actually we only need a weak version of Proposition 7.38 which doesn’t involve the axiom of choice: using the well-ordering
principle, we can prove that a surjective function whose domain is N admits a right inverse.

The axiom of countable choice is not necessary here: the sets are singletons, so there is no choice.

0This elegant argument was published by Cantor in 1891, but he gave a previous proof of the uncountability of R in 1874 (with
a modified version in 1879).

1Tt can also be used to prove that the box topology on RN is not first-countable, or to derive from Erdos-Kaplansky’s theorem
(if E is an infinite dimensional vector space then dim E* = |E*|) that if E is an infinite dimensional vector space then E is not
isomorphic to its dual E*.

12Chap’rer 6, Theorem 56.
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1 ifakk=0

Given k € N, we set b, = { 0 otherwise °

+00

Then b = Z b, 107¥ is a real number written with its unique proper decimal expansion.

k=0
Note that for every n € N, b # f(n) since b, # a,,, (we use the uniqueness of the proper decimal expansion).
Therefore b ¢ Im(f) and f is not surjective. [ |

Theorem 7.51 (Cantor’s theorem). Givenaset E, |E| < |P(E)|.
Remark 7.52. As a consequence, we get that there is no greatest cardinal.

Proof of Cantor’s theorem.

First, note that g : E — P(E) defined by g(x) = {x} is injective, therefore | E| < [P(E)]|.

We are going to prove that there is no surjection E — P(E) (and hence no such bijection).

Let f : E - P(E)be a function. Define S={x € E : x & f(x)}.

Letx € E. If x € f(x)then x ¢ S. Otherwise, if x ¢ f(x) then x € S. Therefore f(x) # S (since one contains
x but not the other one).

Thus § ¢ Im(f) and f is not surjective. |

We already know that |[N| < |R| and that |N| < [P(N)].
The following theorem asserts that actually |R| = [P(N)|.

Theorem 7.53. |R| = |[P(N)]

Proof.
Define f : P(N) - Rby £(S)= )’ 107"
nes
Then f is injective by uniqueness of the proper decimal expansion. Thus |[P(N)| < |R|.

Defineg : R - P(Q) by g(x) ={g€Q : g <x}.

Then g is injective. Indeed, let x, y € R be such that x < y. Since Q is dense in R, there exists g € Q such
that x < g < y. So g & g(x) but g € g(y). Therefore g(x) # g(»).

Hence |R| < |P(Q)| = |P(N)| using Theorem 7.39 since |Q| = |N|.

We conclude thanks to Cantor—Schroder—Bernstein theorem. [ |

Appendix 7.A What is a set?

The notion of set turned out to be necessary in order to handle rigorous definitions of R as the ones pro-
vided by Dedekind and later by Cantor. It is worth noting that set theory first observed a great resistance'®,
probably because of the influence of Gauss and Kronecker who shared the horror of the infinite from ancient

Greek philosophers.

Originally Cantor defined a set as “a gathering together into a whole of distinguishable objects (which are
called the elements of the set)”1*. According to current standards, it is a very informal definition. This naive set
theory was governed by two principles: the comprehension principle from which any predicate (i.e. statement)
defines a set (i.e. we can define the set of all elements satisfying a given property) and the extension principle
asserting that two sets are equal if and only if they contain the same elements.

Such an intuitive approach is enough to manipulate sets in everyday mathematics (that’s what you did
in your courses about calculus, multivariable calculus, linear algebra...). Nonetheless it is not satisfactory

3To which Hilbert later replied with the following wonderful and well-known sentence: Aus dem Paradies, das Cantor uns geschaf-
fen, soll uns niemand vertreiben kénnen [ No one should be able to expel us out of the paradise that Cantor has created for us.].

“Unter einer 'Menge’ verstehen wir jede Zusammenfassung M von bestimmten wohlunterscheidbaren Objekten M unserer Anschauung
oder unseres Denkens (welche die 'Elemente’ von M genannt werden) zu einem Ganzen”, in Beitrige zur Begriindung der transfiniten Men-
genlehre by Cantor (1895).
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since it leads to several paradoxes such as Russell’s paradox'® that we can state as follows using modern
notations (and particularly Peano’s notation for set membership €).

Since any statement defines a set (comprehension principle), S = {x : x & x} must be a set. Therefore
either S € S but then S ¢ S by definition of S, or S & .S but then S € .S by definition of .S. Which leads to
a contradiction.

Zermelo (1908) was the first to suggest a more careful axiomatic set theory. Particularly the compre-
hension principle is weakened to the separation principle: given a set, we can define its subset of elements
satisfying a given predicate (that’s the set-builder notation {x € E : P(x)}).

This theory has been subsequently refined by Fraenkel, Solem, von Neumann, and others, giving rise to
Zermelo-Fraenkel (ZF) set theory. It is a first order theory'® with equality and the set membership binary
predicate symbol €.

In such a theory, we don’t define what is a set: they are the atomic objects over which we use quantifiers'”.
Instead, we have a list of axioms ensuring the existence of some sets and how to define new sets from already
defined ones.

There are several equivalent formulations of ZF, for instance this one:

e Axiom of extensionality:
VxVy(Vz(zex o z€ey) & x=y)

Intuitively, this axiom states that two sets are equal if and only if they contain the same elements. Particularly,
order doesn’t matter and {a, a} = {a}.

e Axiom of pairing:
VxVydzVuw(w € z & (w = x V w = y))

This axiom asserts that given two sets x and y, the set z = {x, y} containing x and y is well-defined.

It is often given as an axiom although it is a consequence of the axiom schema of replacement.

Note that for a given set x the axiom of pairing and the axiom of extensionality allow us to define the singleton
{x} = {x,x}.

e Axiom of union:
VxAyWu(u € y & w € x(u € w))

This axiom ensures that given a set x (of sets, everything is a set here), the set | J
use the abbrevation U in what follows.
By the way, note that we have to be more careful about intersections: what would be (,,cp w?

w is well-defined. We will

Wwex

e Axiom of power set:
VxIWz[z C x & z € y]

Here z C x is an abbreviation for Vu(u € z => u € x). This axiom asserts that given a set x, the set y = P(x)
of its subsets is well-defined.

e Axiom of empty set:
IxVy-(y € x)

This axiom ensures that the empty set exists (and it is unique by extensionality), therefore, in what follows, we
introduce the term @ to denote the empty set.

151t was discovered by Zermelo in 1899, but he did not published it, and then rediscovered by Russell in 1901.

16A first order theory generalizes propositional calculus by introducing quantified variables.

17 Actually, it is possible to work with a theory about more general objects: that’s for example the case in von Neumann-Bernays—
Godel theory where atomic objects are classes and where a set is defined as a class which is contained in another class. It is known
that the statements about sets that can be proved within VNBG coincides with the statement that can be proved within ZFC.
Additionally, it doesn’t involve axiom schema, i.e. it is described using only finitely many axioms.
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e Axiom of infinity:
Ix(@ e xAVy e x(yU {y} € x))

This axiom states that there exists a set containing a copy of N.

We are going to use it to give a construction of N. Set 0 := @ and s(y) := yU {y} (that’s the successor function),
therefore 1 = {@},2 = {2,{@}}, 3 ={2.{2}.{2.{T}}}...

By the axiom of infinity, there exists a set E containing 0 which is closed by s. Then it is not too difficult to prove
that the intersection of all the subsets of E containing 0 and closed by s satisfies the induction principle. It is a
nice construction of N where the order is given by inclusion.

e Axiom schema of replacement:
(Vx € ad'yP(x,y)) = (AbVy(y € b < Ix € aP(x,y)))

This one is an axiom schema and not an axiom (i.e. we need it for all formulae P(x,y)).

It asserts that if a formula defines a "function” then its "range” is a set.

Together with the axiom of empty set, the axiom schema of replacement implies that given a set, we may define
a subset of elements satisfying a given property (set-builder notation): that’s a weak/restricted version of the
comprehension principle called the separation principle.

e Axiom of foundation:
Vx(x 2@ =>3Ayex(xny=0Q))

This axiom is a little bit special: it doesn’t define new sets but it is here to avoid paradoxes by removing circular
arguments. Particularly, as a consequence of it, a set can’t be an element of itself: if x satisfies x € x then the
singleton {x} doesn’t satisfy the axiom of foundation since x N {x} = {x}.

Note that during the interwar period, the French group Bourbaki started to formalize most of known
mathematics within set theory.

It is commonly believed that ZF is very likely to be consistent, i.e. there is no contradition (like Rus-
sell’s paradox). In what follows, I assume that ZF is consistent (otherwise every statement would be true).
Nonetheless, a consequence of Godel’s second incompleteness theorem is that if ZF is consistent then we
can’t prove within ZF that it is.

You should keep in mind that such a theory was given in response to the foundational crisis of mathe-
matics in the late 19 century in order to free mathematics from contradictions and to add more rigor in it.
But most mathematicians work at a higher level, not directly from these axioms, and don't care too much
about them (we did mathematics before set theory). So, should a contradiction be found, it probably won't
impact that much other fields of mathematics: maybe it would be possible to simply fix the axioms in a way
to remove the contradiction, or otherwise to work on new foundations for mathematics... Anyway, some
choices were made and they can be changed (and even without finding a contradiction, some mathemati-
cians have objections about using set theory as foundations for mathematics, especially since some fields
of mathematics involve proper classes which are too big to be sets, so they are de facto excluded from set
theory).

Theorem 7.54. There is no set containing all sets.

Proof. Assume that such a set V' exists, then the powerset P(V) exists too and P(V) C V' by definition of V.
Therefore [P(V)| < [V], but |V| < |P(V)| by Cantor’s theorem. Hence a contradiction. |

We may similarly prove that there is no set containing all finite sets, or even containing all singletons.
Theorem 7.55. There is no set containing all singletons.

Proof. Assume that the set S of all singletons exists.
Define f : P(S) — S by f(x) = {x} (which is well-defined). Since f is one-to-one, we get that |P(S)| < |.S|.
Which contradicts |.S| < |P(S)| (Cantor’s theorem). [ |
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Appendix 7.B  Un morceau de choix
The following statement is (a formulation of) the axiom of choice
Vx(@ € xAVu,v ex(u=vvunuv=g)) = FpVYu e xJwuny) = {w}) (AC)

It asserts that given a set x of non-empty pairwise disjoint sets, there exists a set y which contains exactly
one element for each set in x. Informally, it means that given infinitely many non-empty sets, we can simul-
tanuously pick an element in each set.
We can also state it in the following way. For I a set together with (X;);c; a family of sets indexed by I,
we have
(viel,X,#0) = [[X.#2
iel

i.e. there exists (x;);,c; where x; € X; (we can simultaneously pick x; € X; foreachi € I).

Godel and Cohen respectively showed that the axiom of choice is not disprovable in ZF and that it is not
provable in ZF (assuming that ZF is consistent)'®. Therefore the axiom of choice can be added to ZF as an
axiom without changing its consistency, in this case the theory is denoted ZFC.

Acceptance of the axiom of choice is a little bit controversial: on the one hand it seems very natural
and useful in some areas of mathematics'” but some consequences are counter intuitive (for instance the
well-known Banach-Tarski paradox). For this reason, some mathematicians try to avoid it or to use weaker
versions (such as the axiom of countable choice, i.e. only when I is countable).

Here is a (funny) quote summarizing the situation’:

"The axiom of choice is obviously true, the well-ordering principle obviously false, and who can tell about Zorn’s lemma?”
- Jerry L. Bona?!.

A statement equivalent to the axiom of choice and which is related to the content of this chapter is the
following one (which generalizes Remark 7.23 to infinite sets):

Theorem 7.56 (Trichotomy principle for cardinality).
Given two sets A and B, exactly one of the following occurs:
o |[A] <|B|
e [A]=|B|
o [A[>|B|

When Tarski submitted to the Comptes Rendus de I’Académie des Sciences his proof that the trichotomy principle
is equivalent to the axiom of choice, both Fréchet and Lebesgue refused it: Fréchet because “an implication
between two well known propositions is not a new result”, and Lebesgue because “an implication between two false
propositions is of no interest”?2,

Below I'highlight the places where I used either the axiom of choice or the axiom of countable choice in this
chapter.

Remark 7.57. In Proposition 7.38, the part that |E| < | F| implies the existence of a surjection g : F — E'is
true in ZF even without the axiom of choice.

Nonetheless, I used the axiom of choice to prove the converse when I pick (y,)cr € [ cr g ().

Actually the axiom of choice is equivalent to the fact a function is surjective if and only if it admits a right
inverse (i.e. g : F — E is surjective if and only if there exists f : E — F such that g f = idj).

18According to Godel’s first incompleteness theorem, ZF contains at least one statement which is undecidable, the axiom of
choice is such a statement.

“For instance, the axiom of choice is equivalent to the fact that every vector space has a basis.

DThese three statements are equivalent.

2StevEN G. Krantz. Handbook of Logic and Proof Techniques for Computer Science, p121. Birkhauser (2002).

27aN MycieLskr. A System of Axioms of Set Theory for the Rationalists. Notices of the AMS, Volume 53, Number 2.
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Remark 7.58. Within ZF, Theorem 7.45 is equivalent to the axiom of countable choice.

Nonetheless, using an induction, we can prove within ZF that a finite union of countable sets is countable
(see the first part of the proof of Theorem 7.45).

In the proof of Theorem 7.45,  used the axiom of countable choice to pick simultaneously injective functions
fi - E; > Nforeveryiel.

Remark 7.59. I used the axiom of countable choice in the proof Theorem 7.46 when applying Theorem 7.45.
A set is Dedekind—infinite if it contains an infinite countable subset®®. It is true within ZF that a Dedekind-
infinite set is infinite. The converse requires the axiom of choice: there exist models of ZF containing amor-
phous sets, i.e. which are infinite and Dedekind—finite.

Appendix 7.C Cheatsheet: recollection of some results about cardinality
Definition. We say that two sets E and F have same cardinality, denoted by |E| = |F]|, if there exists a
bijection f : E — F.

Proposition.
1. If E is a set then |E| = | E|.
2. Given two sets E and F, if |E| = |F| then |F| = | E|.
3. Given three sets E, F and G, if |E| = |F| and |F| = |G| then |E| = |G]|.

Theorem. A set E is infinite if and only if for every n € N there exists S C E such that |.S| = n.
Definition. Given two sets E and F, we write | E| < | F| if there exists an injective function f : E — F.

Proposition.
1. If E is a set then |E| < | E|.
2. Given two sets E and F, if |E| < |F| and |F| < |E| then |E| = | F| Cantor-Schroder-Bernstein theorem.
3. Given three sets E, F and G, if |E| < |F| and |F| < |G| then |E| < |G|.

Proposition. If E C F then |E| < |F|.

Proposition. If |E|| = |E,| and |F|| = |F,| then |E| X F|| = |E, X F,|.

Theorem. Given two sets E and F, |E| < |F| if and only if there exists a surjective function g : F — E.
Theorem. Given two sets E and F, if |E| = |F| then |P(E)| = |P(F)|.

Notation. We set X := |N| (pronounced aleph nought).

Definition. A set E is countable if either E is finite or |E| = N,,.

Proposition. If .S C N is infinite then |.S| = N,

Proposition. A set E is countable if and only if |E| < R, (i.e. there exists an injection f : E — N),
otherwise stated E is countable if and only if there exists a bijection between E and a subset of N.

Proposition. [N X N| =,

Theorem. A countable union of countable sets is countable,

i.e. if I is countable and if for every i € I, E; is countable then | J,.,; E; is countable.

iel
Theorem. If E is an infinite set then there exists T C E such that |T| = R, i.e. ¥ is the least infinite cardinal.
Theorem. |Z| =N,

Theorem. |Q| =N,

Theorem. R, < |R]

Theorem (Cantor’s theorem). Given a set E, |E| < |P(E)|.

Theorem. |[R| = |P(N)|

2 Another equivalent definition is: a set E is Dedekind—complete if there exists A G E such that |A| = | E|.
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THE AXIOM OF CHOICE ALLOWS
You To SELEET ONE ELEMENT
FROM EACH SET N A COLLECTION

\
AND HAVE IT" EXECUTED RS
AN EXAMPLE T0 THE CTHERS.

MY MATH TEACHER WAS A BIG
RELIEVER IN PROOF BY INTIMIDATION.

From: https://xkcd.com/982/

Below are a few other proof methods:

Proof by Example/Generalization. The statement holds for n = 42 so it holds for any n € N.
Proof by Intimidation. Don't be silly, it is trivial.

Proof by Terror. When proof by intimidation fails.

Proof by Insignificance. Who really cares anyway?

Proof by Homework. The proof is left as an exercise to the reader.

Proof by Exhaustion. The result is an easy consequence of the following 271 pages.

Proof by Obvious Induction. 3 is prime, 5 is prime, 7 is prime... hence any odd number greater than 2 is a
prime number.

Proof by Omission. The reader may easily supply the remaining 314 cases in a similar way.

Proof by the End of the Lecture. Since it is already the end of the lecture, I let you finish the proof at home.
(Sorry, I might have really used this one)

Proof by Lazyness.
Proof by Postponement. TODO :Finish the proof later.
Proof by General Agreement. All in Favor?

Proof by My Agreement. Do you believe me? I believe me...
(I have been told that I used this one often in MAT237... Can you believe that? I can’t believe that!)

Proof by Intuition. I just have this gut feeling. (Usually that’s how we do research)

Proof by Supplication. Oh please, let it be true. (Quite often, research looks like that)
Proof by Definition. We define it to be true.

Proof by Design. We add it as an axiom.

Proof by Authority. ['ve just met Gauss in the elevator, he told me that was true, so it must be!
Proof by Stubbornness. The favorite method of a former student of mine.

The Only Valid Proof. It is too beautiful to be false.


https://xkcd.com/982/
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Exercises

Exercise 1.
Let E be a set.

1. Prove thatVA,B,C € P(E), AUB=BnNnC — ACBCcCC.
2. ProvethatVA,Be€ P(E), AhNB=AUB — A= B.

Exercise 2.

Letf: A—> B,g: B— Candh : C - D be three functions.
Prove that g » f and & - g are bijective if and only if f, g and & are bijective.

Exercise 3.
letf: E—F.
1. Prove thatVA € P(E), A C f‘l(f(A)).

2. Prove that VB € P(F), f(f~'(B)) c B.
3. Can these inclusions be strict?

Exercise 4.
letf: E—F.
1. Prove thatVA,Be P(F), Ac B = f~(A) c f~1(B).
Does the converse hold?
2. Prove thatVA, B € P(F), f""(AnB) = f~Y(A)n f~'(B).
3. Prove that VA, B € P(F), f' (AU B) = f~1(A)u f~'(B).

Exercise 5.
Letf: E—F.
1. Prove that VA,B € P(E), AC B = f(A) C f(B).
Does the converse hold?
2. Prove that VA, B € P(E), f(An B) C f(A) N f(B).
Can the inclusion be strict?
3. Prove that VA, B € P(E), f(AuU B) = f(A)U f(B).

Exercise 6.
Let f : E — F. Prove that f is injective if and only if VA, B € P(E), f(ANn B) = f(A) N f(B).

Exercise 7.

Let E be a finite set. For A, B € P(E) we define the symmetric difference of A and Bby AAB = (AUB)\(ANB).
Prove that VA, B € P(E), |AAB| = |A| + |B| — 2|An B].

Exercise 8.

Let E and F be two finite sets.
1. Prove that F¥ (the set of functions E — F) is finite and express |F E | in terms of |E| and | F|.
2. Prove that theset {f € Ef : fis injective} is finite and express its cardinal in terms of |E| and | F|.
3. Prove that the set {f € Ef : fis bijective} is finite and express its cardinal in terms of | E|.

The case of surjective functions is more tricky.

Exercise 9.
Let E be a finite setand k € {0, 1, ..., |E|}. What is the cardinal of {A € P(E) : |A| = k}?

Exercise 10.

Prove that a set E is finite if and only if P(E) is finite.
In this case, give an expression of |[P(E)| in terms of | E|.
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Exercise 11. The pigeonhole principle or Dirichlet’s drawer principle
I had no enough time to cover this topic in lectures, so here it is :-).

1. Let E and F be two finite sets. Prove that | E| < | F| if and only if there exists an injection f : E — F.

2. Let E and F be two finite sets. Prove that if | E| > | F| then there is no injective function E — F.
This statement is pigeonhole principle or Dirichlet’s drawer principle: if you have n elements put in k < n boxes,
then at least one box contains two elements.

3. During a post-covid party with n > 1 participants, we may always find two people who shook hands
to the same number of people.

4. Letn € N\{0}. Letay, ay, ..., a, € Z. Prove that there exists distinct i, ..., i, € {1,...,n}, r > 1, so that
nl Yy aj,-

5. Prove that among 13 distinct real numbers, there always exist two x, y satisfying 0 < 1x+— Y <2-4/3
Xy

Hint: it looks like a trigonometric formula you know!

Exercise 12.
Given three sets E, F, G, prove thatif E C F C G and |E| = |G| then |E| = | F|.

Exercise 13.

Given a set .S, prove that |P(S)| = |{O, 1} | where {0, 1} denotes the set of functions .S — {0, 1}.
Remark: this formula generalizes the fact that if S is a finite set with n = |S| then |P(S)| = 2".
Therefore it is common to denote the powerset of a set S by 25 = P(S).

Exercise 14.
1. Whatis |{0, 1}N|? i.e. what is the cardinality of the set of functions N — {0,1}?
2. Whatis |N{0’1}|? i.e. what is the cardinality of the set of functions {0,1} — N?

Exercise 15.
1. What is the cardinality of S = {A € P(N) : A s finite}.
2. IsT ={A € P(N) : Aisinfinite} countable?

Exercise 16.
Prove that any set X of pairwise disjoint intervals which are non-empty and not reduced to a singleton is
countable,
i.e. if X ¢ P(R) satisfies
(i) VI € X, I is an interval which is non-empty and not reduced to a singleton
() VI.JeX, I#J = InJ =0
then X is countable.

Exercise 17.
Prove that a set is infinite if and only if it admits a proper subset of same cardinality.

Exercise 18.

1. Prove that R \ Q is not countable.
2. Prove that |[R\ Q| = |R|.

Exercise 19.
Prove that |(0, 1)| = |R].
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Exercise 20.
1. Prove that |R?| = |R|.
2. Prove that Vn € N\ {0}, |R"| = |R].
3. Prove that |[R{N| = |R| where RN is the set of sequences/functions N — R.

Exercise 21.
Set S? = {(x,y, 2eER? 1 X>+yP+2° = 1}. Prove that | S?| = |R].

Exercise 22.
What is the cardinality of the set .S of all circles in the plane?



Chapter 8

Sample solutions to the exercises

8.1 Chapter1

Sample solutions to Exercise 1.

1. Given a € N, we already know that a X 0 = 0 by definition of the multiplication. So we only need to
prove thatVa e N, 0 x a = 0.
Set A={a€eN : 0xa=0}, then

e ACN
e 0 € A since 0 X 0 = 0 by definition of the multiplication.
e s(A) C A. Indeed, let m € s(A), then m = s(a) for some a € A. Then

O0xm=0xs(a)
= 0 X a + 0 by definition of the multiplication
=0+0sinceae A
=0

Thus m € A.

Therefore, by the induction principle, A =N. SoVa € N, 0 x a = 0.
2. Leta € N. Then

aX1=axs()since 1 = s(0)
= a X 0 + a by definition of the multiplication
= 0 + a by definition of the multiplication

=a

Sample solutions to Exercise 2.

1. LetmeNthenm!' =m* QO =m®xm=1xm=m.

2. Leta,beN.Set A={neN : (ab)" =d"b"}.

e ACN
e 0€ A:indeed, (ab)’ =1 and a®’ = 1x 1 = 1.
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e s(A) C A: let m € 5(A) then m = s(n) for some n € A. Next

(ab)™ = (ab)*™ since m = s(n)
= (ab)"(ab) by definition of (ab)*
=a"b"absincen € A
= (a"a)(b"b) by properties of the product
= g*®Wps by definition of a* and b°

= a"b"™ since m = s(n)

Hence m € A.

Therefore, by the induction principle, A = N. So for all n € N, (ab)" = a"b".

3. Leta,me N. Set A = {n eN : g"" = ama"}. Then
e ACN
e 0 A:indeed, a0 =a"=a"x1=0a" xa’
o s(A) C A: let k € s(A) then k = s(n) for some n € A. Next

am+k — am+s(n)

= a*™*" by definition of the addition
am+n

since k = s(n)

= X a by definition of a®
=a"a"asincen € A

= a"a*™ by definition of a°

k

= a"a" since k = s(n)

Hence k € A.

m_n

Therefore, by the induction principle, A = N. So for all n € N, a"*" = a™d".
4. Let n € N~ {0}. Then there exists m € N such that n = s(m). Thus 0" = 0" = 0" x 0 = 0.

5. SetA={n€N : 1”=1}.Then

e ACN
e 0ecA:1°=1 by definition of 1°.
e s(A) C A: let m € s(A) then m = s(n) for some n € A. Next

1" = 1°™ gince m = s(n)
= 1" x 1 by definition of 1°
=1X1lsincene A
=1

Hence m € A.

Therefore, by the induction principle, A =N. So foralln e N, 1" = 1.

Sample solutions to Exercise 3.

1. This binary relation is not an order since it is not reflexive.
Indeed, 1R1 is false since 1 # —1.

2. This binary relation is not an order since it is not antisymmetric.
Indeed, OR(27) and (27)RO0 are true but 0 # 2x.

3. The inclusion is an order on P(.S). Indeed
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o VA € P(S), A C A (reflexivity).
e VA,BEP(S), (AC Band BC A) = A = B (antisymmetry).
e VA,B,C€P(S), (Ac Band BCC) = A C C (transitivity).

If S = @ then P(S) = {@}: the order is obviously total.

If S = {*} has only one element then P(S) = {@, {*}}: the order is obviously total.
If S contains at least two elements a, b then the order is not total.

Indeed, set A =S~ {a} and B = S~ {b}.

Then A ¢ Bsincebe Abutb & B,and, B ¢ Asincea € Bbuta & A.

Thus, if S contains at least two elements, then C is not a total order on P(S).

Sample solutions to Exercise 4.

1. e Reflexivity. Let x € N. Then x = 1 x x'. Hence xRx.
e Antisymmetry. Let x, y € N be such that xRy and yRx. Then x < yand y < x. Thus x = y.
e Transitivity. Let x,y,z € N be such that xRy and yRz. Then y = px? and z = ry’ for some
p.q,r,s € N\ {0}. Hence z = ry* = rp*x?® with rp®, gs € N\ {0}. Thus xRz.

2. This order is not total since OR1 and 1RO are both false.

Sample solutions to Exercise 5.
1. e Reflexivity. Let (x,y) € N?, then x < x and y < y hence (x, y) < (x, y).

o Antisymmetry. Assume that (x|, y;) < (x,, y,) and that (x,, y,) < (x1, y).
Then x| < xp, y; <y, Xy <xjpand y, < yy.
Since < is an order on N, we get that x; = x, and y; = y,. Thus (x, y1) = (x5, ¥,).

o Transitivity. Assume that (x;, y;) < (x5, »,) and that (x5, y,) < (x3, 3).
Then x; < x;, y; < ¥y, %3 < x3and y, < ys.
Since < is an order on N, we get that x; < x3 and y; < y3. Thus (xy, y;) < (x3, y3).

2. Note that (1,0) < (0, 1) and (0, 1) < (1, 0) are both false. Hence < is not a total order on NZ.

Sample solutions to Exercise 6.
Method 1: using the definition.
1. Leta,b,c,d € N. Assume thata < band ¢ <d.
Then there exist k,/ € Nsuchthatb=a+ kandd =c + 1.
Henceb+d=a+k+c+l=(a+c)+(k+)withk+1 € N.
Thusa+c<b+d.
2. Leta,b,c,d € N. Assume thata < band c < d.
Then there exist k,! € Nsuchthatb=a+kand d =c + 1.
Hence bd = (a + k)(c + 1) = ac + (al + kc + kl) with al + k¢ + kI € N.
Thus ac < bd.
Method 2: using the properties proved in class.
1. Leta,b,c,d € Nbesuchthata <bandc <d.

Thena<b = a+c<b+candc<d = b+c<b+d.

<
Finally{ ZIE;ZI; = a+c<b+d.

2. Leta,b,c,d e Nbesuchthata <band c <d.
Thena<b = ac<bcandc<d = bc < bd.
ac < be

Finally{ be < bd = ac < bd.
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Sample solutions to Exercise 7.

o The statement is false for c = 0, indeed, 2 x 0 < 1 x0but 2 < 1 is false.

e The statement is true for ¢ # 0. We are going to prove the contrapositive, Va,b €N, b <a = bc < ac.
Let a,b € Nbe such that b < a. Then b < a and hence bc < ac.
Assume by contradiction that bc = ac then b = a since ¢ # 0. Hence bc < ac as expected.

Sample solutions to Exercise 8.

Assume by contradiction that theset E = {n € N : 0 <n < 1} is not empty.

Then, by the well-ordering principle, E admits a least element, i.e. there exists/ € E suchthatVn €N, [ < n.
Since ! € E, we get that/ < 1. Note that0 ¢ E,so!/ # 0. Hence/ <1 = 1> <.

We know that if 0 = /> = I x I then [ = 0. Hence /? is positive.

Finally 0 < /> < I < 1. So I* € E which contradicts the fact that / is the least element of E.

Sample solutions to Exercise 9.
1. We are going to prove by induction that Vn € N, 3k € N, n’® +2n = 3k.
e Basecaseatn=0: 0’ +2x0=3x0.

e Induction step: assume that for some n € N there exists k € N such that n® + 2n = 3k. Then

m+1D>+2m+ D =n* +3n* +3n+1+2n+2
=3k +3n*> +3n+3 by the induction hypothesis
=3k+n*+n+1)

The induction step is proved since k + n* + n+ € N.

n+2
on -

n
2. We are going to prove by induction that Vn € N, ];) zﬁk =2-

0

° Basecaseatnzo:ZianndZ—%:Z—ZzO.
k=0

n+

2n2 for some n € N.

n
o Induction step: assume that Z ko 2 -
=2

n+1 k n k 41
n
Z§=Z§+—2nﬂ
k=0 k=0
n+2 n+1 . . .
=2- TR ey by the induction hypothesis
2n+4—n—1 (n+1)+2
—p AT RT L _, YT /T”
on+l on+1

which ends the induction step.

Sample solutions to Exercise 10.
We are going to prove by (strong) induction that Va > 1, u,, = 3n.
e Basecaseatn=1:u; =3x1.



J.-B. Campesato Chapter 8. Sample solutions to the exercises 101

o Induction step: assume that u, =3k fork =1,...,n where n > 1. Then
2 n
Unbl =T kzi U
2 n
== 2 3k by the induction hypothesis
n

k=1

6 - 6nn+1)
I; — (n+1)

n

which ends the induction step.

Sample solutions to Exercise 11.

Let x € [-1,4+0). We are going to prove by induction that Vn € N, (1 + x)" > 1 + nx.
e Basecaseatn=0: (1+x)’=1and 1 +0xx = 1.
e Induction step: assume that (1 + x)" > 1 + nx for some n € N. Then

1+ =1+ 2" +x)
> (14 nx)(1+ x) by the induction hypothesis since 1 + x > 0
=1+ x + nx + nx?
>l+x+nx=1+m+1)x

which ends the induction step.

Sample solutions to Exercise 12.
1. Let n > 3. Assume that P(n) is true, i.e. 2" > n?, and let’s prove P(n+1),i.e. 2 s (n+ )2
From the assumption, we get that 2! = 2 x 2" > 2%, Hence it is enough to prove that 21> > (n + 1)*
which is equivalent to n* — 2n — 1 > 0.
We study the sign of the polynomial x> — 2x — 1. It is a polynomial of degree 2 with positive leading
coefficient and its discriminant is (—2)> — 4 x (=1) = 8 > 0. Therefore

x —0o 1-2 142 +00

x2—2x—1 + 0 - 0 +

Sincen>3>1+ \/5, we know that n?> — 2n — 1 > 0. Hence P(n + 1) holds.

2. P(3) and P(4) are false, but P(5) is true. So by induction, Vn > 5, P(n) is true.
Beware: even if the induction step is true for n > 3, we can only start the induction proof at n = 5! The
base case is very important in a proof by induction.

Sample solutions to Exercise 13.
The induction step is false when n = 2 (it only holds for » > 3). Indeed, for n = 2, we only have that

A, Ay € Land that A,, A; € L'. Which is not enough to get that L = L’ since we only know that they have
one point in common (it works if they have at least two points in common).

Beware: if you start an induction proof with a base case at n,, you have to make sure that the induction
step P(n) => P(n+ 1) holds for every n > ny. Otherwise, you didn’t prove anything...

Sample solutions to Exercise 14.

Existence. We are going to prove the existence of such a couple (a, b) by a strong induction on ».
e Basecaseatn=1:1=2°2x0+ 1).
o Induction step. Assume that for 1,2, ..., n admit such an expression for some n > 1.
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— First case: n+ 1is even,ie. n+ 1 = 2k for some k € N.
Note that k # 0 since otherwise 1 <n+1=0.
Since 1 < 2 and k # 0, we get that k <2k =n+ 1, so that k < n.
Hence, by the induction hypothesis, k = 2¢(2b + 1) for some (a, b) € N2,
Then n+ 1 = 2k =21 2b + 1).
- Second case: n+ lisodd,ie. n+1 =2k + 1 for some k € N. Butthenn+ 1 =2°Q2 x k + 1).
Which ends the induction step.
Uniqueness. Assume that 2(2b+ 1) =22 + 1) for a, b, a, p € N.
If a < a then, by cancellation, we obtain 26 + 1 = 2°7%(2p + 1). Which is impossible since the LHS is odd
whereas the RHS is even.
If « < a then, by cancellation, we obtain 27%(2b 4+ 1) = 2 4+ 1. Which is impossible since the RHS is odd
whereas the LHS is even.
Therefore a = a, and by cancellation we obtain 2b + 1 = 2f + 1, hence 2b = 2 and finally b = §.
We proved that (a, b) = (a, p).

Sample solutions to Exercise 15.

The function f : N — N defined by f(n) = n satisfies the conditions of the question. Actually, as we are
going to prove, it is the only one.

From now on, we assume that f : N — N satisfigies f(2) =2 and Vp,q € N, f(pg) = f(p)f(g), and we want
to prove that Vn € N, f(n) = n.

e We know that 0 < 1 < 2 hence 0 < £(0) < f(1) < f(2) = 2.
Therefore, the only possibility is that £(0) = 0and f(1) = 1.

e Let’s prove by strong induction that Vn € N, f(n) = n.

— Base case at n = 0: f(0) =0.

— Induction step. Assume that f(0) =0, f(1)=1, f(2)=2,f(3) =3, ..., f(n) = nfor some n > 0.

% First case: n + 1 is even, i.e. there exists k € N such thatn + 1 = 2k.
Note that k # 0 since otherwise 1 <n+1=0.
Since 1 < 2 and k # 0, we get that k <2k =n+ 1, so that k < n.
Then, by the induction hypothesis, f(n + 1) = f(2k) = f(2)f(k) =2k =n+ 1.

* Second case: n + 1 is odd, i.e. there exists k € Nsuch thatn+ 1 =2k + 1.
Either k =0and then f(n+1)= f(1)=1=n+2.
Ork#0andthenk+1<2k+1=n+1,ie. k<n.

Then f(n+2) = f(2(k + 1)) = f(2) f(k + 1) = n+ 2 by the induction hypothesis.
Thusn=f(n) < flr+ 1)L f(n+2)=n+2.
The only possible value is that f(n+ 1) =n+ 1.

Sample solutions to Exercise 16.

1. Letm,m" € S be two greatest elements of .S.
Since m € S and m' is a greatest element, we have m < m'.
Similarly, since m" € S and m is a greatest element of .S, we have m" < m.
Hence m = m’.

That’s why we say the greatest element: if it exists, it is unique (whereas we say an upper bound).
2. Let’s prove that a non-empty finite subset S C Z has a greatest element, by induction on n = #S.

e Base case at n = 1: if S is a singleton, then its unique element is its greatest element.

o Induction step. Assume that the statement holds for sets of cardinal n, for some n > 1.
Let S ¢ Zbesuch that#S =n+ 1.
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Particulalry S # @, so there exists a € S.

Set T = S~ {a}. Then #T = n, so by the induction hypothesis T admits a greatest elementm € T..
I claim that M = max(m,a) € T U {a} = S is the greatest element of .S.

Indeed, letn € S, eithern =aandthena < M,orne T andthenn <m < M.

Which ends the inductive step.

Sample solutions to Exercise 17.
We are going to prove by induction on n > 1 that if one square of a 2" X 2" chessboard is removed, then the
remaining squares can be covered with L-shaped trominoes.

e Base case at n = 1. There are only four possible cases and for each of them the remaining is exactly one
L-shaped tromino:

e Assume that the statement holds for some n > 1 and consider a 2"+! x2"*! chessboard with a removed
square.
We may split this chessboard into four 2" x 2" chessboards as follows:

We may place an L-shaped tromino such that it covers the corner situated at the center for each 2" x 2"
chessboard without a removed square, see below.

Now, each of the 2" x 2" chessboards has a removed square: we may apply the induction hypothesis
in order to cover the remaining squares with L-shaped trominoes.
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8.2 Chapter2

Sample solutions to Exercise 1.

Let a, b € Z such that a®> = b*. Then 0 = a*> — b> = (a — b)(a + b). Hence either a = b or a = —b. In both cases
la| = |b].

Sample solutions to Exercise 2.

Consider n consecutive integers a,a+1,...,a+ (n—1).

By Euclidean division, there exists b,q € Z suchthata+(n—1)=bn+rand 0 <r <n.
Thena+(n—-1)—r=bnand0 < (n—1)—r <n-1. Thus a+ (n — 1) — r is an element of the above list which
is divisible by n.

Sample solutions to Exercise 3.
1. We use Euclid’s algorithm:

2260 = 816 x 2 + 628
816 = 628 x 1 + 188
628 = 188 x 3 + 64
188 = 64 x 2 + 60
64 = 60 x 1 + 4
60 = 4 x 15 + O

Thus ged(816,2260) = 4.

2. To find a Bézout’s relation for 816 and 2260, we follow Euclid’s algorithm backward: at each step we
plug the previous remainder starting from the last Euclidean division with non-zero remainder.

4=64-60
=64 — (188 — 64 X 2)
= —188+64%3

= —188 + (628 — 188 x 3) X 3
=628 X 3 + 188 X (—10)
=628 X 3 + (816 — 628) X (=10)
=816 X (—10) + 628 x 13
=816 % (=10) + (2260 — 816 X 2) x 13
4 =12260% 13 + 816 x (=36)

Sample solutions to Exercise 4.

1. Divisibility doesn’t define an order on Z since it is not antisymmetric.
Indeed 1| — 1 and —1|1 but —1 # 1.

2. Divisibility defines an order on N:

o Reflexivity. Let a € N then a = a X 1 so that ala.

o Transitivity. Let a,b,c € N be such that a|b and b|c. Then b = ka and ¢ = Ib for some k,/ € Z.
Thus ¢ = Ik = lka. Henre a|c.

o Antisymmetry. Let a,b € N such that a|b and b|a. Then |a| = |b|. But since a,b € N, |a| = a and
|b| = b. Therefore a = b.

It is not total since 2 4 3 and 3 } 2.
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Sample solutions to Exercise 5.

Let’s prove by induction that Vn € N, 7|32+ 4 2%+2,

Base case at n = 0: 32%0F1 4 24042 — 7 and 7|7.

Induction step: assume that 7|32"+! + 242 for some n € N.
Then 32"*1 4 24+2 = 7k for some k € Z and

32(n+1)+1 + 24(n+1)+2 =9 X 32n+1 + 16 X 24n+2

= (7+2)x 32! 4 (7 x2+2)x2%+?

—Tx (32n+1 +2x 24n+2) +2x% (32n+1 + 24n+2)
=7 x (32 4243 L 6x Tk

=7x (3 2% 1 6k)

Hence 7|32D+1 4 2401+D+2 yhich ends the induction step.

Sample solutions to Exercise 6.

Since ad + bc divides a, b, ¢, d, there exist a, 8, § such that a = a(ad + bc), b = p(ad + bc), ¢ = y(ad + bc) and
d = 6(ad + be).

Then ad + be = a(ad + be)s(ad + be) + Plad + be)y(ad + be) = (ad + Py)(ad + be)?.

Since ad + bc # 0, we get that 1 = (a6 + fy)(ad + bc).

Therefore (ad + bc)|1, and obviously 1|(ad + bc), hence |ad + be| = |1| = 1.

Sample solutions to Exercise 7.
Letn € N. Set d = ged(n® + n,2n+ 1). Then d| ((2n + 1)* = 4(n* + n)) = 1. Thusd = 1.

Sample solutions to Exercise 8.

Let a, b € Z be such that ged(a, b) = 1.

By Bézout’s identity, there exist u, v € Z such that au + bv = 1.
Hence 1 = (au + bv)’ = a*(au® + 3u*bv) + b*(bv” + 3auv?).

Thus if d|a* and d|b* then d|a*(au® + 3u®bv) + b*(bV° + 3auv?) = 1.
Therefore gcd(az, b = 1.

Sample solutions to Exercise 9.
1. Leta, b € Z ~ {0} such that a?|b°.

Set d = gcd(a, b), then a = ad and b = pd for some a, f € Z.

Then d = ged(a, b) = d gcd(a, ), thus ged(a, f) = 1.

And gcd(az, b?) = gcd(dzaz, d>p?) = d* gcd(az, p%) = d? from the previous exercise.

Since a?|b*, we know that gcd(a2, b?) = d°.
Hence a® = d” and thus d = +a.
Therefore a = +d|b.

2. Leta,b,c € Z~ {0} be such that gcd(a, b)) = 1 and c|b.
From Bézout’s identity, there exist u, v € Z such that au + bv = 1.
Let d € Z such that d|a and d|c. Then, d|b since c|b.
Hence d|au + bv = 1.
Therefore ged(a, b) = 1.

Sample solutions to Exercise 10.
1. Leta, b € Zbe such that gcd(a, b) = 1. From Bézout’s identity, there exist u, v € Z such that au+bv = 1.
Squaring both sides, we get a*u* + b*v* + 2abuv = 1.
Let d = gcd(a+ b, ab). Note that a® = a(a + b) — ab, b*> = b(a + b) — ab hence d|a”® and d|b*. Besides d|ab.
Therefore d| (a*u® + b*v* + 2abuv) = 1. Hence d = 1.

2. Take a = b = 1. Then gcd(a, b) = 1 but ged (a + b, a* + b%) = 2. So the statement is false.
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Sample solutions to Exercise 11.

First, he replaces days with numbers as follows:

Sunday < 0

Monday < 1

Tuesday « 2

Wednesday < 3

Thursday < 4

Friday < 5

Saturday < 6

So we can assume that the sticky notes contain a number between 0 and 6 (included).

Then he numbers the participants (including himself) from 0 to 6 (which is possible since there are seven
friends).

And then he explains: “each of us will add to the sum of the six days he can see, the unique number of {0,1,...,6}
such that the remainder of the Euclidean division by 7 of the obtained sum corresponds to its assigned number.”

Let me explain why it works.

First, by Euclidean division, the actual sum N of the seven numbers sticked on their forheads can be
uniquely written N =7 X g+ r with 0 < r < 7, i.e. the possible remainders are r € {0, 1, ...,6}.

I claim that the participant whose assigned number is r gets the correct answer.

Indeed, if the sum of the six numbers he sees is M, then there is a unique a € {0, 1, ...,6} such that the
Euclidean division of M + aby 7isr,ie. M +a=Txq" +r.

Since N - M € {0,1,...,6} and since N and M + a have same remainder by 7, then necessarily N = M +a.
So a is exactly the day on the sticky note of the participant whose assigned number is r. And he gets the
good answer.

Sample solutions to Exercise 12.
We are going to use the pigeonhole principle also called Dirichlet’s drawer principle.

1. The remainder of an Euclidean division by 41 satisfies 0 < r < 41. Hence, there are 41 possible
remainders. Therefore, among 42 distinct integers, at least two, say a and b, have the same remainder
(otherwise the number of remainders will be 42). Then a = 41g+ rand b = 41q' + r for q,q',r € Z
such that 0 < r < 41. And finally b — a = 41(¢" — g).

2. Either we can find 3 of these integers which have the same remainder by Euclidean division by 3, i.e.
x; =3q, +r,x, =3¢, +r,x3 =3¢g3 +r. And then x; + x, + x3 =3(q; + ¢ + g3 + 1).
Otherwise, we can find one integer for all the possible remainders: x; = 3¢; +0, x, = 3¢, + 1 and
x3 =3g3 +2. And then x| + x, + x3 =3(q; + ¢, + g3 + 1).

Sample solutions to Exercise 13.

The positive divisors of 25 are 1, 5 and 25. Hence, gcd(3123 —5,25) has to be equal to one of these numbers.
Assume by contradiction that gcd(S123 —5,25)=50r gcd(3123 —5,25) = 25. In both cases, 5|32 — 5 and so
53123 = (3123 — 5) + 5. Contradiction.

Therefore gcd(3123 -5,25)=1.

Sample solutions to Exercise 14.

Letn € Z.

Since n, n + 1 and n + 2 are three consecutive integers, one is divisible by 2 and one is divisible by 3.
Hence n(n+ 1)(n +2) = 2k and n(n + 1)(n + 2) = 3/ for some k,l € Z.

Then 2k = 31, so that 2|3/. Besides gcd(2,3) = 1 thus 2|/ by Gauss’ lemma, i.e. I = 2m for some m € Z.
Therefore n(n + 1)(n +2) = 3/ = 6m and 6|n(n + 1)(n + 2).
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Sample solutions to Exercise 15.
In my solutions I use that gcd(a, b) = gcd(a + kb, b) (see Proposition 35 of Chapter 2).

1. gcd(2n,2n+2) = ged(@n, 2n + 2) — 2n) = gcd(2n,2) = ged(2n — 2 X n,2) = gcd(0,2) = 2.
2. gcd(2n—1,2n+1) = gcd(2n—1, 2n+1)—(2n—-1)) = gcd(2n—1,2) = gcd((2n—1)-2%xn,2) = gcd(-1,2) = 1.

3. gcd(S5a + 3b,13a + 8b) = gcd(5a + 3b, (13a + 8b) — 2 X (5a + 3b))
= gcd(5a + 3b,3a + 2b) = gcd((5a + 3b) — (3a + 2b), 3a + 2b)
=gcd(2a + b,3a + 2b) = gcd(2a + b, 3a + 2b) — (2a + b))
= god(2a + b, a + b) = ged((2a + b) — b, b)
= gcd(a + b, b) = ged(a, b)

Sample solutions to Exercise 16.
(a) Letx,y € Z. Then

xy=2x+3yox-3)(y—-2)=6
< (X - 3’ y = 2) € {(la 6)’ (2’ 3)a (3’ 2)’ (67 1)a (_17 _6)’ (_2a _3)’ (_3’ _2)9 (_6’ _1)}
< (X, y) € {(4’ 8)’ (5’5)’ (6’ 4)a (9’ 3)’ (27 _4)7 (1’ _1)’ (O’ O)a (_37 1)}

(b) Letx,y € Z~{0}. Then

l+l=l<1>5y+5x=xy
x y 5
S x=50@-5=25
S (x—=5,y-5€{(1,25),(5,5),(25,1),(-1,-25),(=25,-1)} sincex,y# 0

< (x,y) € {(6,30),(10, 10), (30, 6), (4, —20), (=20,4)}

(c) Letx,y € Z. Then

x+y=xyeox+y—xy+1=1
Skx-Dy-DH=1
skx-lLy-1H=(-1,-Dor(x-1,y—-1)=(,1)
< (x,y) =(0,0) or (x,y) = (2,2)

(d) For the next questions, see Section 2.8.

Sample solutions to Exercise 17.

1. Let a, b € Z not both zero. Set d = gcd(a, b).
Since d|a and d|b, we know that a = da’ and that b = db’ for some a’,b’ € Z.
Then d = ged (a,b) = ged (da’,db’) = d ged (o', b'). Hence ged(a’, b') = 1.

2. Method 1: Let a, b,c € Z~ {0} be such that c|ab.
Set d = gcd(a,c) and 6 = ged(b,c). Thena = da’, c = dc’, b = 6b", ¢ = 6¢” where ged(a’,¢’) = 1 and
ged(d”,c") = 1.
Therefore c|ab becomes dc’|da’5b", hence ¢’|a’§b". Since ged(a’, ¢’) = 1, by Gauss’ lemma, ¢’ |5b".
Hence 6¢” = ¢ = dc’|déb”, so that ¢” |db". Since ged(c”, b") = 1, by Gauss’ lemma, ¢”|d.
Finally ¢ = 6¢"|6d|da’ 5b" = ab.

Method 2: Let a, b, ¢ € Z ~ {0} be such that c|ab.

Write a = p'f‘ pgz e p b = pfl pgz pf’ and ¢ = p}lll p? .- p" where the p; are prime numbers and



108 Concepts in Abstract Mathematics J.-B. Campesato

a;, B,y €N
Then ged(a, ¢) = Prlnm(al’yl)P?m(az’yz) Pimn(a"y’) and ged(b, ¢) = Pllmn(ﬂl’yl )Plznm(ﬂz’h) Prrmn(ﬂ”y’).
Hence ged(a, ¢) ged(b, ¢) = pj @7 M pinonytminGon)  pminersprminGr),

Thus c| ged(a, ¢) ged(b, ¢) if and only if y; < min(ey, y;) + min(p,,y;), ..., ¥, < min(a,., y,) + min(B,, y,).
First case: if min(e;, y;) = y; or min(f;, y;) = y; then y; < min(a;, y;) + min(f;, y;).

Otherwise: min(e;, y;) + min(f;, y;) = @; + p; but since c|ab, we know thaty; < a; +f, ..., 7, < a. + f,.

Sample solutions to Exercise 18.
L. ((a+b)* +b%) ((a—b)* + b*) = (a* +2b* + 2ab) (a* + 2b* — 2ab)

= (@ +20%)° = (2ab)
= a* + 4a°b? + 4b* — 4d°b* = a* + 4b*

2.3% 442 =3Iy yax @) = ((3“ + 47)2 + 414) ((3“ - 47)2 + 414) is non-trivial (i.e. none of the

factor is =1, check it).

3. If n = 2k with k € N« {0} then n* + 4" is even and greater than 2, so it is composite.
If n = 2k + 1 with k € N~ {0} then n* + 4" = 2k + 1)* + 4 x (2X)* which has a non-trivial factorization
using Germain’s identity (check it), so it is a composite.

Sample solutions to Exercise 19.
Let k € N\ {0}. Assume by contradiction that (3k + 2> =n*+ pwhereneNand pisa prime number.
Then p = Bk +2)> —n?> = Bk —n+2)3k + n+2).
o If3k—n+2=1thenn=3k+1s0op=3k+n+2=06k+3 =32k + 1) is not prime, which leads to a
contradiction.
o If 3k +n+2 =1then 3k = —n — 1 < 0, which is not possible since k > 0.
Therefore p admits a non-trivial factorization. Which is a contradiction.

Sample solutions to Exercise 20.

Compare with Wilson’s theorem from Chapter 4.

We are going to prove the contrapositive: Vi € N, nis not prime = nt (n—1)! + 1.

Let n € N. Assume that n is not prime. Then there exists k € N such that 1 < k < n and k|n.
Assume by contradiction that n|(n — 1)! + 1. Then k|(n — 1)! + 1. But k|(n — 1)! since 1 < k < n.
Thus k|(n — 1)! + 1 — (n — 1)! = 1. Which is a contradiction.

Thereforen } (n — 1)! + 1.

Sample solutions to Exercise 21.
Let n € N~ {0}. Consider the following n consecutive natural numbers

M+ DI +2,(n+ D' +3,(n+ D! +4, ..., (n+ DI+ (n+ 1)

Take (n + 1)! + k in the previous list (i.e. k =2,...,(n+1)). Then k|(n + D!+ kbutl <k <(n+ !+ k.
Therefore (n + 1)! + k has a non-trivial divisor.

Sample solutions to Exercise 22.
1. Assume by contradiction that log,,2 = % € Q. Then

log 2
lc?gglo =7 © blog2 = alog 10 & log(2%) = log(10") & 2* = 10" & 2¢ = 25

By uniqueness of the prime factorization, a = b = 0. Contradiction.
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2. Assume by contradiction that \/_ = % € Q. Then 2b* = d°.
The prime factorization of the LHS has an odd number of primes (counted with exponents) whereas
the RHS has an even number of primes (counted with exponents). Which is impossible since the
prime factorization is unique up to order.

Sample solutions to Exercise 23.

Assume by contradiction that 49|n* — n* — 2n + 1 for some n € Z.

Note that n® —n®> = 2n+1=(m+2)> = Tn*> — 14n - 17.

Since 7149|n> = n* —=2n+ 1and 7|7n* + 14n+ 7 then 7|(n® = n> = 2n+ D)+ 70> + 14n+7 = (n + 2)>.
By Euclid’s lemma, since 7 is prime, 7|(n + 2)* and similarly 7|n + 2.

Therefore, there exists k € Z such thatn =7k — 2.

Then n® — n? —2n+ 1 = 49(7k> — Tk* + 2k) — 7.

Therefore 49|49(7k> — 7k* + 2k) — (n®> — n* = 2n + 1) = 7. Which is a contradiction.

Sample solutions to Exercise 24.

It is a special case of Dirichlet’s theorem on arithmetic progressions.

Assume that there are only finitely many primes 3 = p; < p, < -+ < p, such that p,, = 4k, + 3 with k,, € R.
Setn=4p,p,---p,— 1. Thenn=4(p;p, ---p, — 1)+ 3

Write n = [];_, ¢; as a product of prime numbers.

Note that each g; is not one of the p,, nor 2 (otherwise ¢;|1 or 2|1).

Therefore g; = 4r; + 1 (the only possible remainder is 1).

Hence n = [];_,(4r; + 1) = 4a + 1 for some a € N.

We obtain a contradiction with the uniqueness of the Euclidean division (the remainder of the Euclidean
division of n by 4 can’t 3 and 1).

Sample solutions to Exercise 25.
1. Let n € N. We are going to prove by induction on k > 1 that

bl

-1
Vke N~ {0}, 22" —1 = (22” - 1) x (22"“ + 1)

i

Il
o

n n+i n n n 2 n
Base case at k = 1: (22 —1>>< (22+ +1>=(22 —1)><(22 +1):<22> _2=02"

0
i=0

Induction step. Assume that 227" 1= (22n - 1) X <22n+i + 1) holds for some k > 1. Then

(k+1)—-1

(22” _ 1) x ] (22"“ + 1) -

i=l

Which ends the induction step.
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2. We may assume without lost of generality that n < m, i.e. m = n + k for some k € N {0}.

Write F; = 22" + 1 then from the first question we get that

k—1
F,+2= (22" - 1) X [ Fosi
i=0

Let g = gcd(F,,, F,). Then d divides F,, and F, thus d divides 2 = (22" — 1) X (Hf:ol Fn+i> - F,.
So either d =2 or d = 1. Since F,, is even, we get thatd = 1.
Therefore gcd(F,,, F,) = 1.

Sample solutions to Exercise 26.
1. Assume that a" — 1 is prime.

Note thata" —1=(a—1) (a" ' +a" 2+ +--+a+1).
Since a" — 1 is prime, then it has no trivial divisor, therefore eithera—1=10ora—-1=4a" - 1.
The latter is not possible since a,n > 2, thusa—1=1,ie. a =2.

Assume that n = pg with p,g € N. Then 2" -1 =27 -1=(27-1) ((2”)‘1_1 + @272 4 2P 4 1).
Since 2" — 1 is a prime number, then either 2 — 1 =1o0r2? - 1 =277 — 1.

In the first case p = 1 and in the other case p = pq = n.

Hence the only positive divisors of n are 1 and itself, i.e. n is a prime number.

2. No, 2" —1 =2047 = 23 x 89.

Sample solutions to Exercise 27.

n(n+1)

Since 1 +2+4+3+--+n= —— must be divisible by 3, either 3|n or 3|n 4+ 1. It is easy to check that this
necessary condition is also sufficient when n > 3.

Sample solutions to Exercise 28.

Note that 69 = 3 x 23, 1150 = 2 x 5% x 23 and 4140 = 2% x 3> x 5 x 23. Note that only positive common
divisors are 1 and 23. Assuming the pirate is not alone, the treasure is shared between 23 people so there
are 22 sailors.



J.-B. Campesato Chapter 8. Sample solutions to the exercises 111

8.3 Chapter3

Sample solutions to Exercise 1.

1. Note that 2? = 4 = —1 (mod 5) and that 3% = 9 = —1 (mod 5). Therefore, for n € N, we have
22ntly 32n+l = (21 % 2 4+ (32)' x 3= (=1)" X2+ (=1)"x 3 (mod 5) = (=1)" X 5 (mod 5) = 0 (mod 5).

2. Letn € N, then
27+l g 320+l 4 510n+l 4 76m+] = gn ) 4 9" % 349" x5+ 9" x 7 (mod 17) = 9" x 17 (mod 17) = 0 (mod 17)

Sample solutions to Exercise 2.

We first compute x% + 3 (mod 7) in terms of x (mod 7):
x(mod7) |0]1[2]3[4[5]6
x*(mod7) [o]1][4]2]2]4]1
x>+3mod7)[3|4]|0[5][5]0]4
Letx € Z. Thenx2+3EO(mod7)ifandonlyifx52(m0d7)orx55(m0d7)
ifandonlyifx € {24+ 7k : ke ZYyu{5+7k : ke Z}.

Sample solutions to Exercise 3.
1. We first look for the least k € N~ {0} such that 2¥ = 1 (mod 5):

e 2! =2 (mod 5)
e 22 =4 (mod 5)
e 23 =3 (mod 5)
e 2* =1 (mod 5)

Hence it is 4.

We perform the Euclidean division of n € Nby 4: n = 4q + r where 0 < r < 4.
Then 2" = 2%*" = (24)92" = 192" (mod 5) = 2" (mod 5).

Thus

If n = 0 (mod 4) then 2" = 2° (mod 5) = 1 (mod 5), so the remainder is 1.
If n = 1 (mod 4) then 2" = 2! (mod 5) = 2 (mod 5), so the remainder is 2.
If n = 2 (mod 4) then 2" = 2% (mod 5) = 4 (mod 5), so the remainder is 4.
If n = 3 (mod 4) then 2" = 23 (mod 5) = 3 (mod 5), so the remainder is 3.

2. Note that 1357 = 1355 + 2 = 2 (mod 5). Therefore 1357°%! = 22021 (mod 5).
Since 2021 = 505 x4 + 1 = 1 (mod 4) we get that the remainder of 13572021 by 5 is 2.

Sample solutions to Exercise 4.
1. Note that 10 = 0 (mod 5), hence

Sla,a,_| .- aolo Saa,. ... aolo = 0 (mod 5)
r
S Z aklok =0 (mod 5)

k=0
< ay =0 (mod 5)

Therefore 5(a,a,_| .- aolo if and only if ¢y = 0 or ay = 5.
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2. Note that 10° = 175 x 8 = 0 (mod 8), hence

8la,a,_; ... aolo Sa.a, ... aolo = 0 (mod 8)
r
& ) 4,10 =0 (mod 8)
k=0
& 10%a, + 10a; + a5 = 0 (mod 8)
< 4ay +2a; + ay = 0 (mod 8)

Therefore 8|a,a,_| .- aolo if and only if 8|(4a, + 2a; + ag).

Note that 8958547 if and only if 8|4 X 5 +2 x4 + 7 = 35 = 8 X4 + 3. Therefore 8 } 958547.
Note that 8123456789336 if and only if 8|4 X 3 + 2 X 3 + 6 = 24 = 8 X 3. Therefore 8|123456789336.

3. Note that 10 = —1 (mod 11), hence

Naa . a eaa.a " =0@modll)

& ) 4,10 =0 (mod 11)
k=0

& Y (~1)a, =0 (mod 11)
k=0

Therefore 11|a,a,_; .- aOIO if and only if 11|(=1)"a, + (=1)""la,_; + - + a, — a; + a,.

Note that 11[123456789 if and only if 11|19 -8 +7—-6+5—-4+3 -2+ 1 = 5. Therefore 118 } 123456789.
Note that 11|715 if and only if 11|5 — 1 + 7 = 11. Therefore 11|715.

Sample solutions to Exercise 5.
1. If (x, y) € Z? is a solution then x> = 3 (mod 5). But

e if x =0 (mod 5) then x*> = 0 (mod 5),
e if x = +1 (mod 5) then x> = 1 (mod 5),
e if x = +2 (mod 5) then x* = 4 (mod 5).

Thus the equation has no integer solution.

2. Assume that (x, y) € Z? is a solution, then taking congruences modulo 3, the equation becomes
0x* — (=1)y* = 0 (mod 3)

i.e. y> =0 (mod 3).

y@od3) 0|12
Yy (mod3)|[0|1]1

Therefore y = 0 (mod 3), i.e. y = 3k for some k € Z, and the equation becomes 15x2 — 63k* = 9.
Dividing by 3, we get 5x* — 21k* = 3. Taking congruences modulo 3, we obtain —x* = 0 (mod 3).

As above, the only possibility is that x = 0 (mod 3), i.e. x = 3/ for some / € Z.

Then the equation becomes 451> —= 21k* = 3, and dividing by 3, we get 15/ 27K =1.

Modulo 3, we finally get —k*> =1 (mod 3), i.e. k> = —1 (mod 3) = 2 (mod 3).

Which is impossible (a square modulo 3 is either congruent to 0 or 1, according to the above array).
Thus the equation has no integer solution.
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3. Below are the possible values for x% (mod 4) depending on x (mod 4).

x(mod4) [0]1]2]3
x>(mod4) [0][1]0]1

Therefore either x> = 0 (mod 4) or x> = 1 (mod 4) and similarly either y? =0 (mod 4) or y* = 1 (mod 4).
Thus either x? + y?> = 0 (mod 4), or x*> + y*> = 1 (mod 4), or x> + y*> = 2 (mod 4).
Since 4003 = 4 x 1000 + 3 = 3 (mod 4), there is no integer solutions.

Sample solutions to Exercise 6.

Note that 3° = 1 (mod 13). Since 126 = 3 x 42, we get 3!26 = (3*)*? (mod 13) = 1** (mod 13) = 1 (mod 13).
Note that 5* = 1 (mod 13). Since 126 = 4 x 31 + 2, we get 5'%° = (5%)*! x 52 (mod 13) = 1*! x 25 (mod 13) =
—1 (mod 13).

Therefore 3'26 + 526 = 0 (mod 13).

Sample solutions to Exercise 7.
1. LetneN.

e Ifniseven,ie. n=2k, then3"+4n+1=9 +8k+1=1*+0+1 (mod 8) = 2 (mod 8).
e Ifnisodd,ie. n=2k+1,then3"+4n+1 = 9*x3+8k+4+1 = 1*x3+0+4+1 (mod 8) = 0 (mod 8).

Therefore 8|3" + 4n + 1 if and only if » is odd.

2. Letn € N. Note that 2° = 64 =21 x 3+ 1 = 1 (mod 21).
Therefore, if n = 6q + r with 0 < r < 6, we have that 2" = (26)4 x 2" = 2" (mod 21).
Thus 2" (mod 21) depends only on n (mod 6). Let’s study the cases separately.

n (mod 6) of1[ 2347 5
2" (mod 21) 124 816] 11
22" (mod 21) 2041 -5]4]16]-10
27 +2"+1(mod2) [4]7] 0 [13]12] 2

Therefore 21 |22n + 2" + 1if and only if n = 2 (mod 6).

Sample solutions to Exercise 8.
1. For a,b € Z, we compute a* + b* (mod 3) depending on a (mod 3) and b (mod 3):

b (mod 3)
a (mod 3) 0112
0 0j1|1
1 11212
2 11212

We see that a® + b* = 0 (mod 3) if and only if @ = 0 (mod 3) and b = 0 (mod 3).
2. Same as above.

3. Leta,b € Z. Assume that 21|a” + b*. Then 3|a* + b, thus 3|a and 3|b from the first question.
Similarly 7|a and 7|b from the second question.

Therefore the least common divisor of 3 and 7 divides a and b, i.e. 21|a and 21|b.
Hence a = 21k and b = 21/, 50 a® + b* = 441(k* + I%).
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Sample solutions to Exercise 9.
Note that 2* = 1 (mod 1)5. Since 445 =4 x 111 + 1 we get

24 7=2H"M"%x24+7=1""%x2+7 (mod 15) =9 (mod 15)

Therefore, there exists k € Z such that 2** +7 = 15k + 9.
Finally ged (2*% 47, 15) = ged(15k + 9, 15) = ged(9, 15) = 3.

Sample solutions to Exercise 10.

Note that 2 doesn’t work and that 3 works.
Assume that p is a prime number greater than 3, then

27 4+ p* = (=1)” + (=1)? (mod 3) = =1 + 1 (mod 3) = 0 (mod 3)

s0 3|2” + p* and thus 2” + p? is not prime.
The only prime number p such that 27 + p? is also prime is p = 3.

Sample solutions to Exercise 11.

Note that 72 = —1 (mod 10) so 7* = 1 (mod 10).

Therefore if n = 4q + r with 0 < r < 4, we get that 7" = (79 %x 7" =19% 7" (mod 10) = 7" (mod 10).
Hence it is enough to compute 384 (mod 4). Note that 32=9=1 (mod 4), therefore

3% = 3858 = (3284 = 1554 (mod 4) = 1 (mod 4)

4
and 3% = 4q + 1 for some g € N Therefore 73 = g4l = g (mod 10). So the last digit in the decimal
4
expansion of 7 is 7.

Sample solutions to Exercise 12.
1. 4F 4T W <7 =57%x60%+42x60>+3x60+11x1=12463391

2. We perform successive Euclidean division by 60:

42137 =702 X 60 + 17
= (11 X 60 +42) X 60 + 17
=11 x60% + 42 x 60 + 17
= «T &1 «¥

——16
3. FA2C =15x16Y+4x16°+2x 162+ 0X 16 + 12 = 999948

4. We perform successive Euclidean division by 16:

11211 =700 x 16 + 11
=A43x16+12)x 16+ 11
=((2x16+1H)x16+12)x 16+ 11

=2x16+11x16>+12x 16+ 11
16

=2BCB

1 1

9AB7
" +3C0D
=D6C4
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6. Wlli=9xl63+10>< 162 + 11 x 16 + 7 = 39607
3COD =3x16>+12%x16>+0x 16+ 13 = 15373
39607 + 15373 = 54980
58820 = 3436Xx16+4 = (214x16+12)x 1644 = (13x16+6)X16+12)x16+4 = 13X 16’ +6X16>+12x16+4

16 16 16
Therefore 9AB7 +3C0D = D6C4 I think it is easier to directly compute in base 16!

Sample solutions to Exercise 13.
Let’s denote the number of blue, green, and red chameleons respectively by b, g and r.
e Ifablue and a green chameleons meet, the new repartition bescomes b’ = b—1,g" = g—landr’ = r+2.
Therefore b’ — g’ =b—g,b' —r' =b—r—-3and g’ —r' =g—r-3.
e Similarly, if a blue and a red chameleons meet, we have b’ =b—1,g' =g+2andr' =r—1.
Therefore b’ — g’ =b—g—-3,b' —r' =b—rand g’ —r' =g—r+3.
e Finally, if a green and a red chameleons meet, we have b’ =b+2,g' =g—landr' =r— 1.
Therefore b’ — g’ =b—g+3,b' —r' =b—r+3and g’ —r' =g—r.

Note that in all the cases we have
b —g' =b—g (mod?3) b —r' =b—r(mod3) g —r =g—r(mod?3)

Therefore these three quantities modulo 3 don’t change when the chameleons meet, they always stay con-
stant, mathematically we say that they are invariant.
At the beginning, we have

b—g=2(mod3) b—r=1(mod3) g—r=2(mod?3)

Assume by contradiction that all the chameleons become blue after several meetings (i.e. b =45, g = 0 and
r=0), then
b—g=0(@mod3) b—r=0(mod3) g—r=0(mod3)

Since these quantities don’t change when chameleons meet, we obtain a contradiction. Therefore, it is not
possible to obtain an island with only blue chameleons from the initial situation.
We conclude similarly for the other colors. Thus, it is not possible to obtain a monochromatic island!
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8.4 Chapter4

Sample solutions to Exercise 1.
By Fermat’s little theorem, we know that 24193 =24 (mod 103).
Therefore the remainder of the Euclidean division of 24!% by 103 is 24.

Sample solutions to Exercise 2.

Letn € Z. Set A, = 5n' +7n° + 23n.

By Fermat’s little theorem, n’ = n (mod 5) so A, =30n (mod 5) = 0 (mod 5), i.e. 5|A4,,.
Similarly n’ = n (mod 7), so A, =28n (mod 7) =0 (mod 7), i.e. 7|A,,.

_ n’ w 23n _ A,
Therefore 35 =5Xx7|A,,s0 = + T + 5> = 3L € Z

Sample solutions to Exercise 3.

Let p be an odd prime number and n € Z.

(m+1Y=n+1 (mod p)

n? = n (mod p)

Therefore (n + 1) — (v’ + 1) = 0 (mod p), i.e. p|(n+ 1)? — (n” + 1).

e By Fermat’s little theorem,

e Note that Vx € Z, Vk € N~ {0}, x* = x (mod 2):

a(mod?2) [0]1
a>(mod?2) | 0]1

(n+ 1 =n+1 (mod 2)
n? = n (mod 2)
Thus (n+ 1)? — (W’ + 1) =0 (mod 2), i.e. 2|(n + 1) — (0? + 1).

Since 2 and p are two distinct prime numbers, 2p|(n + 1)? — (n” + 1), i.e. (n+ 1)’ — (n” + 1) = 0 (mod 2p).

Therefore

Sample solutions to Exercise 4.
We are going to prove the statement by induction on k € N.

e Base case at k = 0: it is exactly Fermat’s little theorem (v2).

o Induction step: assume that the statement hold for some k € N, i.e.

k
Vne Z~ {0}, ged(n,p) =1 = (n*~")" =1 (mod p**+')
Let n € Z be such that ged(n, p) = 1.
k
By induction hypothesis, there exists 4 € Z such that (n”~! )p =1+ Ap"*!. Then

k+1

k K\ P L4 . 2 o
(np—l)P _ (np—l)P xp _ ((np—l)P > _ (1 + ﬂpk-H)p _ Z (Ii))/llpl(k-H) =1+ Z (?)Alpl(k+1) =1 (mod pk+1)
i=0 i=1
Which ends the induction step.

Sample solutions to Exercise 5.

Let p and g be two distinct prime numbers.

Since gcd(p, ) = 1, by Fermat’s little theorem we get that p"_1 =1 (mod q).
Besides ¢”~! = 0 (mod gq) (since p > 2).

Therefore p?~' + ¢~ = 1 (mod p), ie. p| (p~' + ¢~ = 1).

Similarly, we may prove that g| (p?~" + ¢”~' — 1).

Thus pq| (p?' + ¢~ - 1).
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Sample solutions to Exercise 6.

Letx,y € Z.

By Fermat’s little theorem, x* = 1 (mod 5) (if 5 4 x) or x* = 0 (mod 5) (if 5|x).
Therefore x* + 781 = 1 (mod 5) or x* + 781 = 2 (mod 5).

But 3y* = 3 (mod 5) (if 5 } y) or 3y* = 0 (mod 5) (if 5|y).

Therefore Vx, y € Z, x* + 781 # 3y* (mod 5).

Sample solutions to Exercise 7.

Let n > 5 be such that n + 2 is prime.

By Wilson’s theorem (n + 1)! = —1 (mod n +2). Thus n +2|(n + 1)! + 1.

Besides (n+ 1)!+ 1 =(n+2)n! —n! + 1.

Thusn+2jn! —1=(m+2)n! —(n+ D!+ 1).

Since n > 4, we have n! > n+ 3 (prove it).

Therefore n! — 1 admits at least three positive divisors: 1,n + 2, n! — 1, so that n is composite.

Sample solutions to Exercise 8.

Let p be an odd prime number.

By Wilson’s theorem (p — 1)! = —1 (mod p), thus 2(p - 3)!(p — 2)(p — 1) = -2 (mod p).

But we also have that 2(p — 3)!(p — 2)(p — 1) = 4(p — 3)! (mod p).

Thus 4(p — 3)! = =2 (mod p), i.e. pl4(p — 3)! +2 = 22(p = 3)! + 1).

Since ged(2, p) = 1 (as p is an odd prime number), by Gauss” lemma we get p|2(p — 3)! + 1,
ie. 2(p—3)! = -1 (mod p).

Sample solutions to Exercise 9.
= Assume that n and n + 2 are both prime then,

e By Wilson’s theorem, (n — 1)! = —1 (mod n), so 4((n — 1)! + 1) + n = 0 (mod n),
ie.nld((n—-D!'+1)+n.

e By Wilson’s theorem, (n + 1)! = —1 (mod n + 2).
Besides 2 = —n (mod n + 2) = (n + 1)n (mod n + 2).
Thus
4(n—=D'+D+n=22H-DN+4+n=2((n+Dnn—DNH+2(mod n+2) =2((n+1)!+1) = 0 (mod n+2)
ie.n+2/4((n—-1!+1)+n.

Since ged(n, n +2) = 1, we get that n(n + 2)[4((n — 1)! + 1) + n.

Sample solutions to Exercise 10.

Let p be a prime number. Letn € Z.
By Fermat’s little theorem n” = n (mod p) and by Wilson’s theorem (p — 1)! = —1 (mod p).
Therefore n” + (p — 1)!n = n+ (—1)n (mod p) = 0 (mod p).

Sample solutions to Exercise 11.
This property is false: (2 x2) = 22 -2 =2but p(2)p2) =1 x 1.

Sample solutions to Exercise 12.
100 | _ ol
1+2+27+23 4. 42100 = Z ok = —=— =219 _ | (geometric sum, Cherge’s favorite formula).

= 1-2
Note that ¢(125) = ¢(5°) = 5° = 52 = 100.
Therefore, since gcd(2, 101) = 1, Euler’s theorem gives
2101 _1=2%2'0_1=2x%x1-1(mod 125) = 1 (mod 125)

Hence the remainder of the Euclidean division of 1 +2 + 2% + 23 + ... + 21% by 125 is 1.
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Sample solutions to Exercise 13.
Note that ¢(1000) = ¢(235%) = (2° — 2%)(5° — 5%) = 400.
Therefore, since gcd (1000, 3) = 1, Euler’s theorem gives

32021 — 35><400+21 — (3400)5321 = 15 % 321 (mod 1000)
= 3193193 (mod 1000)
= 59049 x 59049 x 3 (mod 1000)
= 49 x 49 x 3 (mod 1000)
= 7203 (mod 1000)
=203 (mod 1000)

Thus the last 3 digits of 3°°*! are 203.

Sample solutions to Exercise 14.
Let n,k € N~ {0}.

r

Write the prime factorization n = H p?" where the p; are pairwise distinct prime numbers and a; € N~ {0}.
i=1

r r r r
Then n* = Hpka,- and ¢ (nk) _ H (pffaf _pfai—1> _ prk—l)ai H <pj-xi —pf”'_1> _ nk—l(p(n)'
i=1

i=1 i=1 i=1

Sample solutions to Exercise 15.

Let a,b € N~ {0}. Assume that gcd(a, b) = 1.

Since ged(a, b) = 1, by Euler’s theorem a®® =1 (mod b).

Since @(a) > 1, b*Y = 0 (mod b).

Thus a®® + p*@ =1 (mod b), i.e. b|a®® + p?@ — 1.

Swapping a and b, we get similarly that a|a?® + p*@ — 1.

Since gcd(a, b) = 1, we derive from Exercise 1 that ab|a®® + p?@ — 1, ie. a®® + p*?D = 1 (mod ab).

Sample solutions to Exercise 16.
Leta € Zand n € N~ {0}. Assume that gcd(a,n) = gcd(a—1,n) = 1.
Since gcd(a, b) = 1, by Euler’s theorem we get

o(m—1
(@=1) Y " =a*"-1=0(modn)
k=0

p(m—-1

Son|(a—1) Z a.
k=0

p(n)—1 p(n)—1
By Gauss’ lemma, since ged(n,a — 1) = 1, we get that n| 2 dt ie. Z a =0 (mod n).
k=0 k=0

Sample solutions to Exercise 17.

Letae N~ {0,1} and k € N\ {0}.

By Euclidean division, there exist g, r € Z such that ¢ (ak - 1) =kg+rand0<r<k.

Since gcd(ak —1,a) = gcd(—1,a) = 1, we deduce from Euler’s theorem that a®@ =D = | (mod & - 1).
But a?@ ~1 = gka+r = (@)9d" = 19a" (mod ¢* — 1) = d" (mod d* — 1).

Therefore " = 1 (mod a* — 1), i.e. d* = 1]a" - 1.

Butsince 0 <r < k,wegetthat0 <a" - 1< a—1.

Thence,a" — 1 =0,i.e. r =0.

So ¢ (ak - 1) =kgq,ie. k|o (ak - 1).
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Sample solutions to Exercise 18.
pn)<n—-1 ifn>2
pn) =1 ifn=1"
Therefore u; | = @(uy) < u, so that the sequence is decreasing.
Since it is bounded from below then it is eventually constant.
Assume by contradiction that Vk > N, u; . = u, > 1, then u;; = o) < u, — 1 < u,. Which is a
contradiction.
Therefore the sequence (), is eventually constant equal to 1.

First note that if n € N\ {0} then {
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8.5 Chapter5

Sample solutions to Exercise 1.

pn)=(p-1@g-1)
S @pn)=pg—p—q+1
@(p(n)=n—p—ﬁ+1
p
& pp(n)=pn—p* —n+p
@pz—(n—(p(n)+1)p+n=0

Therefore p (and similarly for ¢) is a root of the equation X Z_(m—epm)+ DX +n=0.

Sample solutions to Exercise 2.
Let/eNandm € Z.

e Let’s prove that m'*¢P9 = m (mod p).

— If p|m then both sides are congruent to 0 (mod p), therefore m! e = (mod p).

— If p 4 mthen gcd(m"'l, p) = 1 (check it), therefore, using Fermat’s little theorem, we get that

(m™1)"™" =1 (mod p)
N
Thus m'HePD = p x p!P=DE=D = p; ((mq'1 )p 1) =mx 1! (mod p) = m (mod p).

e We prove similarly that m!*ePD =y (mod q).

Therefore p|m!™¢PD — p and g|m'+'*PD — 1.
Since gcd(p, ¢) = 1, we deduce from Exercise 1 that pg|m'*¢?9 — m, i.e. m'T1%?? = m (mod pq)

Sample solutions to Exercise 3.
1. Here @(n) = (61 — 1)(97 — 1) = 60 x 96 = 5760.
Note that 5760 = 338 x 17 + 14, so gcd(@(n), e) = gcd(5760, 17) = ged(14,17) = 1.
Therefore e = 17 is a suitable choice for n = 5917.
Furthermore ed = 17 X 2033 = 34561 = 6 X 5760 + 1 = 1 (mod ¢(n)).
Therefore d is a suitable choice for e = 17 and n = 5917.

2. m® = 42'7 = 3838 (mod 5917), so Bob should send ¢ = 3838 to Alice.
Then Alice will perform the computation ¢? = 38382%** = 42 (mod 5917).

3. ¢ = 3141293 = 4630 (mod 5917), therefore the original message is 4630.

Sample solutions to Exercise 4.

Using a computer, it is easy to see that 1003 = 17 x 59.
Therefore p(n) = 16 X 58 = 928. Let’s look for a multiplicative inverse of e = 11 modulo @(n) = 928.
We apply Euclid’s algorithm:

928 =11x84+4
11=4%x2+3
4=3x1+1
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Therefore
1=4-3
=4-(11-4x2)
=4x3-11

=(928-11x84)x3-11
=928Xx3—-11%x(@4x3+1)
1 =928 x3+ 11 %X (-253)

Note that we want d > 0, so we take d = —253 + ¢(n) = 928 — 253 = 675.
Therefore we may decipher the message with the private key (n, d) = (1003, 675).
Finally ¢? = 271575 = 951 (mod 1003). So the original message sent by Bob to Alice is 951.

Sample solutions to Exercise 5.

Alice keys are (n,e) and (n, d).

She wants to send the message m € {0,1,...,n — 1} to Bob in a way that Bob can authenticate her as the
sender.

For this purpose she finds the unique s € {0, ...,n— 1} such that s = m? (mod n) (using her private key), i.e.
s is the remainder of m? by n.

She sends to Bob both the message m and the signature s.

Then Bob checks that m = s° (mod n). If so, then Alice was the sender (or at least someone knowing Alice’s
private key).
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8.6 Chapter 6

Sample solutions to Exercise 1.

Seta=\/7+4\/§+ \/7—4\/§then
a2=14+2\/<7+4\/§) (7—4\/§> =14+2V72—2x3=14+2V1=16

So a = +4, but since a > 0, we get a = 4.

Sample solutions to Exercise 2.

2 2
1. Leta,b € R, then 0 < (a — b)? = a* + b*> — 2ab, so that ab < “;" .

2 2 2 2 2 2
aH pe < EC andacs%.

2. Leta,b,c € R. We know from the previous question that ab < ~—be <

2,902,322, 2, 2
By summing these three inequalities, we get ab + bc + ac < <+ erc TEEC — @+ b+

3. Leta,b,c € R. Then

(a+b+c)2 = a® + b*> + ¢ + 2ab + 2bc + 2ac
> ab+ bc + ac 4+ 2ab + 2bc + 2ac  from the previous question.
= 3ac + 3bc + 3ac

Sample solutions to Exercise 3.
Let x € R.

e Firstcase: x <lthenx?—x+1—|x—1]=x>—x+1+(x—1)=x>>0, therefore |x — 1| < x> —x + 1.

e Second case: x > lthenx* —x+1—-|x—1|=x>-x+1-(x-1D=x>=2x+2=(x-12+1>0,
therefore [x — 1] < x> — x + 1.

Sample solutions to Exercise 4.
1. Letx,y € R. Then 2|x| = |2x| = [(x+ )+ (x = )| < [x+ y|+ |x — y| and similarly 2|y| < [x+ y|+ [x —y]|.
Summing these two inequalities, we obtain 2(|x| + [y]) < 2(]x + y| + |x — y]).
2. Define f : [0,400) = Rby f(u) = I"E then f is differentiable and f'(u) = ﬁ > 0.
Therefore f is increasing.
Let x,y € R. Since |x + y| < |x| + |y|, we obtain

Ix+yl  _Ixl+Ivl || |l < _Ix |yl
L+lx+yl = T+xl+ [yl T+Ix[+|yl T+]xl+]y] = T+]x]  1+[yl

Sample solutions to Exercise 5.
1. Since A is non-empty, there exists x € A and then 0 = |x — x| € B. Therefore B is non-empty.
Since A is bounded, there exists M € R such thatVx € A, |x| < M.
Therefore, if x,y € A, then |x — y| < |[x| + |y| < 2M. Thus 2M is an upper bound of B.
Since B is a non-empty subset of R which is bounded from above, it admits a supremum.

2. Since A is non-empty and bounded from below, there exists m = inf(A).
Similarly, since A is non-empty and bounded from above, there exists M = sup(A).
Letx,ye A, thenm < x < Mand -M < -y < -m,thus—(M —m) < x—y<M-—m,ie. |x—y| < M-m.
Thus M — m is an upper bound of B. Let’s check it is the least one.
Let € > 0. Since m = inf(A), there exists y € A such that y < m + % Since M = sup(A), there exists
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x € Asuch that M — £ < x. Therefore |[x —y|>x—y> M —m+e¢.
We proved that for every € > 0, there exists [x — y| € Bsuch that [x —y| > M —m +¢.
Therefore sup(B) = M — m.

Sample solutions to Exercise 6.

Set E={xe€[0,1] : f(x)> x}. Since f(0) € [0, 1], we have that f(0) >0,s00 € E.
Besides E is bounded from above by 1.

Thence, by the least upper bound principle, E admits a supremum a = sup(E).
Assume by contradiction that f(a) # a, then

e Either f(a) < a. Since a is the least upper bound of E, f(a) is not an upper bound, so there exists b € E
such that f(a) < b < a.
But then b < aand f(a) < b < f(b) (since b € E), which is impossible since f is non-decreasing.

e Or f(a) > a. Then, since f is non-decreasing, we get f(f(a)) > f(a). So f(a) € E. Which is impossible
since for every x € [0, 1], x < a < f(a) (since a is an upper bound).

Sample solutions to Exercise 7.
Let € > 0. Assume by contradiction that (M — &, M) N A contains finitely many elements, i.e.

M- M)NA= {al,az,...,ap}.

Note that a := max(ay, ... a,) <M.

Set6 =M —a. Since § > 0, there exists b€ Asuchthat M — 6§ <b < M.
Since M & A,wehaveb < M. Besidesb> M —6=a> M —¢.
Therefore b€ (M — e, M) N A.

But,Vi=1,...,p,b>a> a,.

Hence a contradiction

Sample solutions to Exercise 8.
1. To reach the first row:

To reach the second row:

o - e -

5%45

I let you continue for the third and fourth rows!
2. There are three cases to handle:

e The piece moves towards the target cell: then if the piece is initially located at a cell labeled ¢”,
then it jumps over piece in a cell labeled 6"~ to reach a cell labeled "2,
Therefore F(C') — F(C) = —6" = 6" + 6" > = 6" *(=6* =6 + 1) = 0.
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e The piece remains at the same distance to the target cell: then if the piece is initially located at a
cell labeled 6", then it jumps over piece in a cell labeled 6"~ to reach a cell labeled ¢”.
Therefore F(C') — F(C) = —¢" — 6" + 6" = —6""\.

e The piece moves away from the target cell: then if the piece is initially located at a cell labeled ",
then it jumps over piece in a cell labeled 6™*! to reach a cell labeled ¢"*2.
Therefore F(C') — F(C) = —¢" — ¢"! + 6% = ¢"(=1 — 6 + 6°) = =26"*\.

3. For those who like geometric series, like Cherge: since 0 < ¢ < 1, we have

+oo 2
(o}

3=

n=2 B

=1

Otherwise, if you don’t like geometric series: since Vn € N, 6"*? = 6" — 6"*!, we have a telescoping
series:
K K-2 K-2
Zan=ZGVH_Z:Z(Gn_6n+1)=GO_GK_Im1_O=1
n=2 n=0 n=0

091 8| 7|.6|.5|-6|,.7|.-8|.9|-10]--.

11 O_lO 9 8 7 6 7 8 9|10 0_11

(o2 o o2 (o2 o (o2 o o |0
2161610 60 [ 68 | 67 | 68 | 69 |610| o1t o 12] -
The cells on y = 0 give
+o0 ) 6
65+26626k =0'5+1L =0 +20=¢" (0'2+20-) =c’(1+0)=0’(c +0%)=0"
k=0 -0
Therefore, the cells on y = n give 6>™ and

+o0
F(C) = 2 o =1
n=2

5. Assume that we have a finite initial configuration C,, then F(C,) < F(C) = 1 from the previous
question.
If C, is a configuration obtained after » moves then (F(C,)), is decreasing by Question 2.
Assume that we reach 5 after n moves then F(C,) > 6° = 1 (since it contains at least a piece located at
(5,0)). But F(C,) < F(Cy) < 1. Hence a contradiction.
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Sample solutions to Exercise 9.
1. Let x, y € R. By definition of the floor function, we know that |[x] <x < [x|+1and |y] <y < |y] +1.
Therefore |x| + |y| < x+y.
Since |x + y] is the greater integer less than or equal to x + y, we get that [x| + |y] < [x+ y].
Finally x| + [y] < [x+y| <x+y < [x] + [y] +2.
So, either |x +y| = |x] + |y] or [x+y] = |x] + |y] + 1.
In both cases we have x| + |y| < |x+y]| < [x] + |y] + L.

2. Letn e N~ {0} and x € R. Since |x] < x < [x]| + 1, we get n|x| < nx < n|x] +n.
Since |nx| is the greatest integer less than or equal to nx, we obtain n| x| < |nx] < nx < n|x]| +n.

Thus |x] < 2 < x| + 1 and hence [x] = [MJ

Sample solutions to Exercise 10.
1. Let n € N. Then

n

(2o V5)'s (- )

k

(n)zn—k\/gk " i (Z)zn—k(_l)k\/gk
- zn: (’Z) (14 (=1F) 27%/3°

Note that if k is odd then (1 + (=1)¥) = 0 and that if k = 2/ is even then

(Z) (14 (=1)) 2k f3 = (Z> x 2% 2" x 3 € 2N

Therefore <2 + \/§>n + (2 - \/§>n € 2N.

2. Letn € N. Since 2 — \/g € (0, 1), we have that 0 < (2— \/§>n <1
Therefore, if we set .S = <2+ \/§>n + (2 - \/§>n, then S < (2 + \/§>n < S -1, thus

n
S—1g<2+\/§> <S

ie. l<2 +1/3 )nJ = .5 — 1 which is odd according to the previous question.

Sample solutions to Exercise 11.

Let’s prove the contrapositive,ie. INJ #@ = (INnQNJI NQ) # 2.

Assume that I N J # @, then there existsae I n J.

Since I is an open interval, there exists € > 0 such that (a —¢,a+¢) C I.

Similarly, there exists # > 0 such that (a —#,a+#n) C J.

Set 6 = min(e, ), then (a —6,a+8) CcInJ.

Since between two reals there exists a rational, we know that there exists ¢ € Q such thata -6 < g <a+ 6.
Thereforeqge INQandge JNnQ,sothat I NnQ)N(J NQ) # @.

Sample solutions to Exercise 12.
1. No: \/5 and —\/5 are both irrational but (\/5) + (—\/5) =0eQ.

2. No: (1/2)(v/2) =2 € Q.

3. Letx € R~ Qand y € Q. Assume by contradiction that x + y € Qthenx = (x+y) -y € Q.
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4.

Letx e RxQand y € @~ {0}. Assume by contradiction that xy € Q then x = x—yy € Q.

Sample solutions to Exercise 13.

1.

Assume by contradiction that \/g € Q then \/— = % where a € Nand b € N {0}. Hence a® = 35°.

The prime factorization of a* contains an even number of primes whereas the prime factorization of
3b* contains an odd number of primes.
Therefore it contradicts the uniqueness of the prime factorization.

Assume by contradiction that \/g € Q then \/— = % wherea € N, b € N\ {0} and ged(a, b) = 1.

Therefore 6b> = a®. So 2|d°. By Euclid’s lemma, 2|a, so there exists k € N such that a = 2k.
Hence we may rewrite 66> = 4k, which implies 3b* = 2k%. So 2|35%.

Since gcd(2, 3) = 1, by Gauss’ lemma we get 2|b% and then by Euclid’s lemma, we get 2|b.
Therefore 2| gcd(a, b) = 1. Hence a contradiction.

Same as for \/§ .

Assume by contradiction that x = \3/ 3+4/11€Q. Thenx®> =3+ V11.So V11 =x* -3 € Q.
Assume by contradiction that \/5 + \/5 e Q.
Then (\/§+ \/5)2 =243+ 2\/6 € Q. Therefore \/g = % € Q.
2
Assume by contradiction that <\/§ +/3 > € Q.

Since(\/§+ \/§>2=2+3+2\/g,weget\/_=%€@

Assume by contradiction that x = \/5 + \/5 + \/6 e Q.
Then \/5 + \/g =x- \/6 Squaring both sides, we get 5 + 2\/6 =x>+6— 2x\/€.

2
Therefore /6 = ;_;i € Q.

2
Assume by contradiction that (3 2+ 2\/5 + \/6) e Q.

Since (3 2423+ \/8)2 =36+12 (\/§+ V3+ \/g>,we get Va4 V3416 = (3\/§+z\/l§2+\/6) 0

There is an elegant method using the complex conjugate.
Assume by contradiction that \/7 + \/g € Q. Then <\/7+ \/§> <\/7— \/5) = 7-3 = 4. Thus

4
\/7 - \/_ = m e Q.
Hence \/_= <\ﬁ+\/§)_<\ﬁ_\/§>

2

e

Sample solutions to Exercise 14.
Letn e N.

neQ=nenN:
Assume that \/Z € Q, then there exists (a, b)) € N~ {0} such that \/_ = % and ged(a, b) = 1.

Then a* = nb?, thus b|a*. By Gauss’ lemma applied twice b|a and then b|1. Thusb =l and \/n = a € N.

2
e V/neN=ImeN, n=m* assumethat\/ﬁeN. Then n = (ﬁ) . So we can take m = \/ﬁ
e dme N, n = m? = /n € Q: assume that there exists m € N such that n = m?. Then \/— =meNcQ.
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Sample solutions to Exercise 15.

+o0
n(n+1)
No, Z 1072~ = 0.101001000100001000001 ... is not rational since its decimal expansion is not eventually
n=1

periodic.

We denote the decimals by (a;);»1: a, = 1if In €N, k = @ and a;, = 0 otherwise.
Letr e Nand s € N\ {0}.

Then there exists k € N such that r + k > @ anda,.;, =1,sothat0=a,,, #a,., =1

Sample solutions to Exercise 16.

n 2n
1. (a) Note that f(x) = % Z (Z)(_1)kx”+k = % z <k i n)(_l)k—nxk.
" k=0 " k=n

Letk € N. If k < nor k > 2n then f®(0) = 0.

Otherwise, if n < k < 2n then f®(0) = (—1)"-”"—!( n ) cZ.
n!\k—n
(b) Let k € N. Since f(x) = f(1 — x), we get fO(1) = (=1)*f®(0) € Z.
(C) F”(x) — Z(_l)kr2n—2kf(2(k+1)+1)(x)
k>0
— _rZ 2(—1)k+1r2n_2(k+l)f(2(k+l)+l)()€)
k>0
— _r2 Z(_l)ern—zkf(2k+l)(x)
k>1

= —r? (F(x) = r*"f(x))
= —rPF(x)+ """ f(x)
(G}i; (F "(x) sin(rx) — rF(x) cos(rx)) = F"(x)sin(rx) + rF'(x) cos(rx) — rF'(x) cos(rx) + rF(x) sin(rx)
= F"(x)sin(rx) + rF(x) sin(rx)
= (F"(x) + rF(x)) sin(rx)

= "2 £(x) sin(rx)

! 1
(©) /0 G0 sin(rx)dx = r2j+2 /0 r?*2 £ (x) sin(rx)dx
= 21+2 [F’(x) sin(rx) — rF(x) cos(rx)| (1)
r n
= 21+2 (F'(1)sin(r) — rF(1)cos(r) + rF(0))
r n

2. Letr € (0, 7]nQ. Assume by contradiction that sin(r), cos(r) € Q. Then, we may write % =2 sin(r) =

4
and cos(r) = 2 where a,b,c € Z and d € N~ {0}.
Let n € N, then using 1.(e), 1.(a) and 1.(b) we get that I, =

Since I, > 0, we get that A, > 1, and thus that I, > dzn%.
But we also have that

5
d

An

—55 forsome A, € Z.

1
I, = / f(x)sin(rx)dx
0
1
< / f(x)dx since sin > 0 on (0, )
0
< l since f(x) < l on [0, 1]
n! n!

Therefore dTIH <I, < % and thus n! < d*"*3. Which leads to a contradiction for n large enough.
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3. We use the contrapositive of the previous question: since z# € (0, z] and since sin(z) = 0 € Q and
cos(r) = —1 € Q, we get that 7 ¢ Q.
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8.7 Chapter7

Sample solutions to Exercise 1.
1. Let A,B,C € P(E). Assume that AUB =BnC.
Letx € Athenx € AU B = BnC. Therefore x € B. So A C B.
Letx € Bthenx € AU B = BN C. Therefore x € C. So B c C.

2. Using the previous question.
Let A, B € P(E). Assume that AN B = AU B.
From the previous question we get that A ¢ B Cc A. Hence A = B.

Direct proof.

Let A, B € P(E). Assumethat AN B= AU B.

Letx € Athenx € AU B = An B. Thus x € B. Therefore A C B.
Letx € Bthenx € AU B = An B. Thus x € A. Therefore B C A.
Hence A = B.

Proof by contrapositive.
Let A, B € P(E). Assume that A # B. Then

e cither A\ B # @ and then there exists x € E such that x € A and x € B. Thus x € A U B but
x & AN B. Therefore ANB # AU B.

e or BN A # @ and then there exists x € E suchthatx € Band x € A. Thusx € AUBbutx &€ AnB.
Therefore AN B # AU B.

Sample solutions to Exercise 2.

& Assume that f, g and A are bijective then g - f and & - g are too.

= Assume that g - f and 5 - g are bijective.

Since g o f is surjective, g is too. Since 4 - g is injective, g is too.

Hence g is bijective, so it admits an inverse g™ : C — B.

Then f =g le(go f)and h = (hog)og™ ' are bijective as composition of bijective functions.

Sample solutions to Exercise 3.
1. Let A € P(E). Let x € A. Then f(x) € f(A). Therefore x € f~1(f(A)).
We proved that A € f~1(f(A)).

2. Let B ¢ P(F). Lety € f(f~'(B)). Then there exists x € f~'(B) such that y = f(x). But since
xe f7'(B),y=f(x)€B.
We proved that f(f~'(B)) c B.

3. Define
{1,2} - {1,2}
f: 1 — 1
2 — 1

Then f(f~'({1,2)) = f({1,2}) = {1} ¢ {1,2}.
And ') = ) = {1,2) 2 {1).

Sample solutions to Exercise 4.
1. Let A, B € P(F) be such that A ¢ B. Take x € f~'(A). Then f(x) € A c B. Thus x € f~(B).
The converse doesn’t hold. Indeed, define

)y = {12}
f’{ 1 1

—

then f~'((2hH =@ c f~'({1}). But {2} ¢ {1}.
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2. Let A, B € P(F).
Since AN B C Aand An B C B, we get that f™'(An B) ¢ f~}(A)and f~'(An B) c f~'(B). Thus
ffAnB) c ' An (B
For the other inclusion, let x € f~1(4) n f~'(B). Then f(x) € A and f(x) € B. Thus f(x) € An B so
that x € f~'(An B). Thus f~'(A) n f~'(B) c f~'(An B).

3. Let A, B € P(F).
Since A, B C AU B, we get f~'(A), f~1(B) c f~'(AU B). Thus f~'(A)u f~'(B) c f~'(AU B).
For the other inclusion, let x € f~'(AU B). Then f(x) € AU B. Either f(x) € Aand then x € f~'(4) C
f YA u B or f(x) € Band thenx € f~1(B) c f~'(4)u f~1(B). Thus x € f~'(A) U f~1(B). We
proved that f~1(Au B) c f~l(A)u r~1(B).

Sample solutions to Exercise 5.
1. Let A,B € P(E) be such that A ¢ B. Let y € f(A). Then y = f(x) for some x € A. Butx € A C B.
Thus y = f(x) € f(B). We proved that f(A) C f(B).
The converse doesn’t hold. Indeed define

{{1,2} - {1}
[ 1 1
2 -1

then f({1}) = f({2}) = {1} but {1} ¢ {2}.

2. Let A,B € P(E). Since AN B C A, Bweget f(ANn B) C f(A), f(B). Thus f(An B) C f(A) N f(B).
The inclusion can be strict using the same example as above.

3. Let A, B € P(E). Since A, B C AU B, we get f(A), f(A) C f(AU B). Thus f(A)U f(B) C f(AU B).
For the other inclusion, let y € f(A U B). Then y = f(x) for some x € A U B. So either x € A and then
y=f(x) € f(A) C f(A)U f(B),or x € Band then y = f(x) € f(B) C f(A) U f(B). In both cases
y € f(A)U f(B). So we proved that f(AU B) C f(A)U f(B).

Sample solutions to Exercise 6.

= Assume that f is injective. Let A, B € P(E).

We already know that f(An B) C f(A) N f(B) holds (see the previous exercise).

Let’s prove that f(A)n f(B) C f(AN B).

Lety € f(A)n f(B). Then y = f(x,) for some x; € A and y = f(x,) for some x, € B.

Since f(x;) = f(x,) and f is injective, we obtain that x; = x, € An B. Therefore y = f(x;) € f(AN B).
We proved that f(A)n f(B) € f(An B). Thus f(A)n f(B) = f(AN B).

& Assume that VA, B € P(E), f(An B) = f(A)n f(B).

Let x{,x, € E be such that f(x;) = f(x,). Sety = f(x;) = f(x,).
Then f({x;} n{x2}) = fU{x;HnF{x2 ) = {y}n{y} = {»}
Particularly {x;} n {x,} # @, thus x; = x,.

Sample solutions to Exercise 7.

|AAB| = |(AU B)~ (AN B)|
=|AUB|—-|An B|
=|A|+|B|—-|AnB|-|AN Bj
= |A| + |B| —2|A N Bj
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Sample solutions to Exercise 8.
1. Letgp : {keN : k< |E|} - E.
Theny : FE - FIEl defined by w(f) = (f(@(0)), ..., f(¢(|E| — 1))) is a bijection (prove it).
Therefore |FE| = |F|E|| = |F|'El

2. According to the last exercise, there exists an injective function E — F if and only if |E| < | F|.
Next, since E is finite, there exists a bijection ¢ : {k €N : k< |E|} = E.
For f(¢(0)) we have |F| possible choices. For f(¢(1)) we have |F ~ { f(¢(0))}| = |F| — 1 choices. For
f(@R)) we have |F ~ { f(¢(0)), f(p(1))}] = |F| — 2 choices. And so on.

Therefore, |{f € EF : fisinjective}| = |F|(|F| — 1)~ (|F| — |E| + 1) = (|F||I—:||;:"|)"
Thus |(f € EF : f is injective], { 0 if|E|>|F|
us € . f is injective}| = |F|! . < .
qren fIEI<IF]
3. It a special case of the above question when |E| = |F|: |{f € EE : fis bijective}| = (IEllfI“EI)' = |E|!

Sample solutions to Exercise 9.

The number of subsets with cardinality k included in a set of cardinality » is denoted <Z> read “n choose

7

. . !
We are going to prove that (:) = m

Let E a finite set. Set n = |E|. Fixk € {0,1,...,n}.

An ordered list of k distinct elements is the same as fixing an injection {0, 1,...,k — 1} - E. So, using the

. . ! .
previous question there are —— such ordered lists.

(n—k)!
Two ordered lists of k elements give the same subset if and only if one is obtained from the other one
permuting its elements, which is the same as constructing a bijection {0,1,...,k — 1} - {0,1,...,k — 1}.
From the previous question there are k! such bijections.
n\ _ (r:.k)! _ n!
Therefore <k> = = o

Sample solutions to Exercise 10.

=

Method 1 (by induction):

Let’s prove by induction on n = | E| that P(E) is finite and that |[P(E)| = 211

e Base case at n = 0: if E = @ then P(E) = {@} is finite.

o Induction step: assume that the statement holds for some n € N, i.e. if E is a set with | E| = n then P(E)
is finite and |P(E)| = 2".
Let E be a set such that |E| = n+ 1. Since |E| > 0, there exists x € E.
By the induction hypothesis, since |E \ {x}| = n, we get that P(E ~ {x}) is finite and |P(E ~ {x})| = 2".
Note that P(E~ {x})={A € P(E) : x & A} and that

(A€PE) : xg Al - [{A€eP(E) : xe A}
A - AU {x}

is a bijection.
Therefore P(E)={A€ P(E) : x& A}U{A € P(E) : x € A} is finite and
|P(E)|=|{A€PE) : x¢g A}|+|{A€P(E) : x€ A}| =2"+2" =21,

Method 2 (using the previous exercise):
Let E be a finite set. We know that for k =0, ..., | E|, the number of subsets with k elements is (Z)
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Therefore the number of subsets included in E is

|E| |E|

|P(E)| = Z <Z> - 2 (Z)lkllEl—k = (1+ DEl = lEl
k=0

k=0

Method 3 (which generalizes to infinite sets):
.. . . E _ 1 ifxeA
Let E be a finite set. We define y : P(E) — {0, 1}" by w(A)(x) = { 0 otherwise °

Then  is a bijection thus P(E) is finite since {0, 1}* is and moreover [P(E)| = |{0,1}F| = 21E1

< Let E be a set. Assume that P(E) is finite.
Note that @ : E — P(E) defined by ®(x) = {x} is injective. Therefore E is finite too.

Sample solutions to Exercise 11.
1. = Assume that |E| < |F]|.
There exist bijections ¢ : {keN : k< |E|} > Eandy : {keN : k<|F|} - F.
Since |E| < |F|, f =wo ¢! : E > F is well-defined and injective.
= Assume that there exists an injection f : E — F.
Then f induces a bijection f : E — f(E), so that |E| = |f(E)|.
And since f(E) C F, we have |f(E)| < |F|.

2. Itis a consequence of the previous question.

3. A participant shook either 0, 1,... or n — 1 hands. So we have n “boxes”. Not that it is not possible
to have at the same time the boxes 0 and n — 1 non-empty. Therefore we have only n — 1 boxes for n
participants, so two participants must have shaken the same number of boxes.

Formally:

e First case: there is at least one participant who didn’t shake any hand. Then f : {participants} —
{0,1,...,n—2} mapping each participant to the number of hands he shook is well-defined. Since
[{participants}| = n > n—1 = |[{0,1,...,n — 2}|, f can’t be injective. Therefore at least two
participants shooke the same number of hands.

e Second case: all participants shooke at least one hand. Then f : {participants} — {1,...,n — 1}
mapping each participant to the number of hands he shook is well-defined. Since |{ participants}| =
n>n—1=1{1,2,...,n—1}|, f can’t be injective. Therefore at least two participants shooke the
same number of hands.

4. Forr=1,2,...,n,sets, = Y ;_, a.

e First case: there exists r such that n|s,. Then we are done.

e Second case: otherwise, we have n numbers sy, ..., s, whose remainders for the Euclidean divi-
sionby nare among 1, ...,n—1 (i.e. n—1 possible remainders). Hence at least two have the same
. , . _ vy
remainders, let’s say s, and s, with ¢ > p. Then n|s, — s, = Zksz ay.

5. First, note that 204=@00 _ 471 (g — b) and that
l+tanatan b

7[>_ tan%—tan% \/5_1_(\/5—02:2_\/5

taniztan<£——

12 3 4 1+tan§tanz 1+\/§ 2
Let xq, ..., x3 be 13 distinct real numbers. We set ) = arctanx, € (—%, %) Note that the a; are

distinct since arctan is injective.
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Note that (—% %) =1, ul,UI;U- Ul where
1 =(—f,—5+1], I =(—f+i,—§+21], o 1 =(——+10— T inZ ] I =<——+111 f)
! 27 2 12 2 2712 2 12 t 2712’2 12 12 27 1272

We define f : {ay,...,a;3} = {1,...,12} by f(a;) = r where a; € I,.

Since |{ay,...,a;3}] = 13 > 12 = |[{1,...,12}|, f is not injective. So there exists alpha; < @; and

r=1,...,12such that a;,a; € I,. Then0 < a; — o < =

Since tan is increasing on( 5 2) we get that tan0<tan(a,—ak)<tan =2- \/—

_ _ tana, tanak _ x, Xy
Note that tan(a; — o) = Ttane ane, = 1+x’xk . Thus 0 < . <= 2 - \/5 as requested.

Sample solutions to Exercise 12.

Since E C F, we know that |E| < |F]|.

Besides, since F C G, we have |F| < |G| = | E|.

By Cantor-Schroder-Bernstein theorem, we have |E| = | F]|.

Sample solutions to Exercise 13.
1 ifxeA

We define y : P(S) — {0,1}" by w(A)(x) = { 0 otherwise °

Let’s prove that y is a bijection:

e y is injective.
Let A, B C S be such that A # B.
WLOG we may assume that there exists x € .S such that x € A and x ¢ B.
Therefore w(A)(x) = 1 and w(B)(x) = 0. Thus w(A) # w(B).

e y is surjective.
Let f : S — {0,1} be a function. Define A = {x € .S : f(x)=1}. Then f = w(A).

Therefore |[P(S)| = [{0,1}%].

Sample solutions to Exercise 14.
L [{o.1)¥] = [P(N)| = IR

2. The idea here is that a function {0, 1} — N is characterized by the values of 0 and 1.
Define y : NI%U — Nx Nby w(f) = (f(0), £(1)).

e y is injective: let f,g : N — {0,1} be such that y(f) = w(g). Then (f(0), (1)) = (g(0), g(1)) so
that £(0) = g(0) and f(1) = g(1). Therefore f = g.

e y is surjective: let (a,b) € N X N. Define f : {0,1} - Nby f(0) = 1 and f(1) = b. Then
w(f) = (a,b).

Therefore |N{O’”| = |NXN| =8

Sample solutions to Exercise 15.

1. Define f : § — Nby f(4)= ) 2.
keA
Then f is bijective by existence and uniqueness of the binary positional representation of a natural

number. Therefore |S| = [N| = X

2. Assume that T is countable then P(N) = S U T is countable as the union of countable sets.
Which is a contradiction since |P(N)| = |R| > N,
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Sample solutions to Exercise 16.

Let X be as in the statement.

For I € X, we can find g; € I N Q since I is an interval which is non-empty and not reduced to a singleton.
Define f : X - Qby f(I) = q;. Let’s prove that f is injective.

Let I,J € X such that g := f(I) = f(J). Theng =¢q; € I and q = q; € J. Thereforeq € I nJ # @. Thus
I = J (use the contrapositive of (ii)).

Hence | X| < |Q| = X;. So X is countable.

Sample solutions to Exercise 17.
= Let’s prove that any infinite set admits a proper subset of same cardinality.
Let X be an infinite set. We want to construct .S ¢ X satisfying [.S| = | X]|.
Since X is infinite, ¥, < | X|, i.e. there exists an injective function f : N - X.
X - X
We define g : { x P f(n+1l) ifadneN, x=f(n) .
X - x if x & Im(f)

o gis well-defined: given x € X, if 3n,m € N, x = f(n) = f(m) then n = m since f is injective.

e gisinjective: let x, y € X be such that g(x) = g(y).

— First case: g(x) = g(y) € Im(f) then there exists n,m € N such that x = f(n) and y = f(m).
Since f(n + 1) = g(x) = g(y) = f(m+ 1), we get that n = m by injectiveness of f. Therefore
x=fn)=f(m)=y.

— Second case: g(x) = g(y) € Im(f) then x = g(x) = g(y) = y.

Note that f(0) ¢ Im(g), thus f(0) € X ~Im(g). Besides g : X — Im(g) is a bijection. Hence .S = Im(g)
satisfies S C X and | X| = |S].

< We are going to prove the contrapositive: if a set is finite then it doesn’t admit a proper subset of same
cardinality.

Let X be a finite set. Let S € X be a proper subset.

Then there exists x, € X \ § so that S U {x,} C X and hence |S U {xy}| = |S|+ 1< |E|, ie. |S| <|E].

Sample solutions to Exercise 18.

1. Assume by contradiction that R ~ Q is countable. Then R = (R ~ Q) U Q is countable as the union of
two countable sets. Hence a contradiction.

2. One way to solve this question is to take an injective function R — R whose range is a proper interval
of R and then to move the rational values in the complement of the range after making them irrational.
For instance:

Define f : R - R~ Qby
_ e~ ife*¢Q
Jx)= { —e* —e otherwise
o [ is well-defined: if e* € Q then —e® —e € R\ Q (since —e* € Qand —e € R\ Q).
e f isinjective: let x, y € R be such that f(x) = f(»).
— First case: f(x) = f(y) > 0 then f(x) = ¢* and f(y) = ¢’ thus ¢* = f(x) = f(y) = ¢¥ and then
x = y since exp is injective.
— Second case: f(x) = f(y) < Othen f(x) = —e* —eand f(y) = —e¥ —ethus —¢* —e = f(x) =
f(y) = —e” — e, so that e* = ¢’ and hence x = y since exp is injective.
Note that f(x) = f(y) # 0since 0 € Q.

Thus |[R| < |R~ Q]|. Besides |[R\ Q| < |R| since R~ Q C R.
Hence |R| = |R ~ Q| by Cantor-Schréder—Bernstein theorem.
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Comment: (using the axiom of choice) it is true that if A and B are infinite sets then |A U B| = max(|A|, | B])
(but this statement was not proved in class, so you can’t use it).
Therefore, since |Q| < [R\Q|, |R| = |(R~ Q) U Q| = max(|R~ Q|,|Q|) = |[R~ Q.

Sample solutions to Exercise 19.

Define f : R — (0,1) by f(x) = —oat*3
e [ is well-defined:

forx e R, —% < arctan(x) < % thus 0 < arctan(x)+% < wrand hence 0 <

. Then

arctan(x)+ %

<1,ie. f(x)e€(O,1).

e f is bijective: prove it using that arctan : R — (—5 f) is bijective.

2’2
Therefore |(0, 1)| = |R].

There are lots of such bijections, for instance:

0,1) - R 0,1 - R R - (0,01
1 2x—1 —eX
x — X P > X = e
1+e X—X

Sample solutions to Exercise 20.
1. First method:
We define f : (0,1) x (0,1) = (0, 1) as follows. Let (x,y) € (0,1) x (0, 1).

+00

Denote the proper decimal expansions of x and y by x = Z aklo_k =0.a;a, ... whereq, € {0,1,...,9}
k=1

+0o0
are not all equaltoO and y = Z b 1075 = 0.b, b, ... similarly.

k=1
+o0 +o0 o
Then we set f(x,y) = Z a, 107K+ 4 Z b 1072 = 0.a,b,ayb, ... = Z ¢, 107F where
k=0 k=1 k=1

o= if 3n e N~ {0}, k =2n
K=Y b, ifdneN,k=2n+1

n

Then f a bijection by existence and uniqueness of the proper decimal expansion.
Since [0, D[ = |R, we get [R X R| = [(0, 1) x (0, D[ = [(0, D| = |R].

Second method:

Define f : P(N) X P(N) - P(N) by f(A,B)={2k : ke A}u{2l+1 : |l € B}.
Then f is bijective (prove it).

Thus |P(N) X P(N)| = |P(N)]|.

Since |R| = |P(N)|, we get IR X R| = |[P(N) X P(N)| = |P(N)| = |R].

2. Let’s prove by induction on n € N\ {0} that |[R"| = |R].

e Base case at n = 1: then R! = R thus |R!| = |R].
o Inductive step: assume that |R"| = |R| for some n € N {0}. Then
|Rn+1| — |Rn % Rl
=|R xR| since |R"| = |R|and |R| = |R|

=|R| Dby the previous question

3. One idea here is to notice that |R"| = ‘({O,I}N)N‘ = {0, VN = |{0, }N| = IR
Since we have not covered arithmetic of cardinals, we need to prove each equality.
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e Since [R| = |[P(N)| = |{O, 1}V, there exists a bijection y : R — {0, 13N,
We define ¢ : RN = ({0, 1})" by o(f) = w e £ : N> {0, 1}V,
Then g is a bijection (check it), and thus |RN| = ‘({0, I}N)N‘.

- {o, )N
B (me f(n,m)

e We define & : {0, 1}™N 5 ({0, 1}N) " by &(/) : { )

Check that ¢ is a bijection. Therefore ’({O, 1}N)N’ = |{0, 1N |

e Since [N X N| = |N], there exists a bijection { : NxX N — N.
We define y : {0, 1}N — {0, 1}VNby y(f) = fo¢.
Check that y is a bijection. Therefore |{0, 1} =|{0, 1}"].

Sample solutions to Exercise 21.

Define f : (0,1) —» S? by f(t) = (cost,sint,0). Then f is well-defined and injective.
Thus |R| = |(0, 1)] < |5?].

Besides, since S? c R?, we have that |S?| < |R?| = |R|.

By Cantor-Schroder-Bernstein theorem, we get that |S?] = |R|.

Sample solutions to Exercise 22.

A circle is characterized by its center and its radius. Therefore there is a bijection R? % (0, 4+0) = S mapping
(x, y,r) to the circle centered at (x, y) of radius r.

Thus |.S| = |R? X (0, +o0)].

Since exp : R — (0, +) is a bijection, we have |(0, +o0)| = |R|. Hence IR? X (0, +00)| = |R?| = |R].
Therefore |S| = |R].
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Except otherwise stated, you can only use the material covered from Jan 12 to Jan 26 (i.e. Chapter 1 & Chapter 2 up
to §3).

Exercise 1.
We define the binary relation < on N? by (x;, ;) < (x5,¥,) © (x; < x5 or (x; =x, and y; < y,)).
Is it an order? If so, is it total?

Exercise 2.

Prove that given n € N\ {0} there exist finitely many «/, ..., a,, € N pairwise distinct such that
n=2%42% 4 ... 4 2%

Exercise 3.

Solve 4x(x + 1) = y(y + 1) for (x, y) € N2.

Your answer can only rely on the properties of N proved in Chapter 1.
Particularly, your proof should not involve negative integers, rationals, calculus...
Hint: compare 2x and y.

Exercise 4.
Prove that for every n > 3, there exist x,, ..., x, € N\ {0} pairwise distinct such that
1 1 1
l=—+—++—
Xy X2 Xn

In this exercise, you may assume that you already know Q or R so that xi is well-defined.

iape 1 = L 1
Hmt.l—2+2.
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Sample solution to Exercise 1.

We are going to prove that < is a total order on N2. Tt is actually called the lexicographic order.
It is the one used in dictionaries: you compare the first letter, if it is the same, then you look at the next one...

o Reflexivity. Let (x,y) € N2. Then x = x and y < y. Thus (x, y) < (x, y).

o Antisymmetry. Let (x1, y1), (x5, ¥5) € N2 satisfying (x;, y) < (x5, ¥,) and (x5, yp) < (x1, ¥)-
Assume by contradiction that x; < x,, then (x,, y,) £ (x;, ). Which is a contradiction.
Assume by contradiction that x, < x;, then (x, y;) £ (x5, »;). Which is a contradiction.
Thus x| = x,.

Since (x;, y;) < (x,, ¥,), we know that y; < y,. Since (x5, y,) < (x;,¥,), we know that y, < y,.
Thus y; = y,.
We proved that (x;, y;) = (x5, »5).

o Transitivity. Let (xy, y1), (X2, ¥2), (x3,¥3) € N2 satisfying (x, 1) < (x5, ¥,) and (x5, y,) < (X3, ¥3).
— Case 1: x; = x; and x, = x3.
Then x; = x3. Furthemore y; <y, and y, < y3,50 y; < y3.
Hence (x{,y;) < (x3,¥3).
- Case 2: x; = x, and x; < x3.
Then x| < x3. Hence (x, y;) < (x3,¥3).
— Case 3: x; < xp and x, = x3.
Then x; < x3. Hence (x, y;) < (x3,¥3).
— Case 4: x; < x, and x; < x3.
Then x| < x3. Hence (xy, y;) < (x3,¥3).

e <isa total order. Let (x|, y;), (X, y,) € N?. According to the lectures, exactly one of the follows occurs.

— Case 1: x| < x5. Then (xq,y1) < (x5, ¥2).

— Case 2: x5 < xq. Then (x5, y,) < (x1, ¥).

— Case 3: x| = x,. Since < is a total order on N then
* either y; < y, and then (x, y;) < (x5, ¥,)
* or y, < y; and then (x,, y,) < (x1, ;).

Sample solution to Exercise 2.
That’s the existence of the positional numeral system with base 2 (binary numeral system).

Method 1:
We are going to prove by strong induction that for every n > 1, there exist finitely many «a/, ...,

e e N
pairwise distinct such that n = 2%1 +2% 4 ... 2%,

m

e Basecaseatn=1.1=2°.

o Induction step. Assume that the statement holds for 1,2, ..., n where n > 1.
By Euclidean division, n + 1 = 2g + r where g € Nand r € {0, 1}.
Note that g # 0 since otherwise l <n+1=r < 1.
Hencel <g<2g+r=n+1.
Thus, by the induction hypothesis, ¢ = 2*1 + 2 + ... + 2% where a; > a, > -+ > a,, are natural
numbers.
Therefore n + 1 = 2g + r = 20+ 4 2%+l 4 oy 2@+l 4 100,
Note that a; + 1> a, + 1 > -+ > a,, + 1 > 0. Hence the exponents are pairwise distinct (it is possible
for 2° to not appear if r = 0).
Which ends the induction step.
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Method 2:

We are going to prove by strong induction that for every n > 1, there exist finitely many «;, ...

pairwise distinct such that n = 2%1 +2% 4 ... 2%,
e Basecaseatn=1.1=2°.
o Induction step. Assume that the statement holds for 1,2, ..., n where n > 1.

(i) Firstcase: n+ 1iseven. Then n+ 1 = 2k for some k € N.
Note that k£ # 0 since otherwise 1 <n+1=2k=0.
Since k # 0, we getthat k <2k =n+1,i.e. k <n.

Thus, by the induction hypothesis, k = 2% 429 4 ... 4 2% where the «;, ..., a,, € N are pairwise

distinct.
Son+1=2xQ% +2% 4 ... 42%) =20+l g omFl 4y gantl

Assume by contradiction that there exist i # j such that «; + 1 = a; + 1. Then, by the cancellation

rule, a; = a;. Which is a contradiction since the a; are pairwise distinct.
Therefore the a; + 1,a, + 1, ..., a,, + 1 are pairwise distinct as requested.

(ii) Second case: n+ 1isodd. Thenn+ 1 =2k + 1 for some k € N.

Note that k # 0 since otherwisen+ 1 =2x0+1=1 = n =0. Hence, as above, k < 2k = n.
Thus, by the induction hypothesis, k = 2% 429 4 ... 4 2% where the «/, ..., a,, € N are pairwise

distinct.
Hence n+1 =142k =2 +2x (2% +2% + - +2%) =20 4 20+l oo+l L4 pawtl

As above, the a; + 1 are pairwise distinct. Moreover «; + 1 > 0. Therefore the 0,a; + 1,a, +

1,...,a, + 1 are pairwise distinct, as requested.

Which ends the induction step.

Sample solution to Exercise 3.
Let (x, y) € N? be such that 4x(x + 1) = y(y + 1).

1. First case: assume that y < 2x. Then
yy+1)<2xQ2x+1)<2x2x+2)=4x(x+ 1) =y(y+1)
Hence 2x(2x + 1) < 2x(2x +2) and 2x(2x +2) = y(y + 1) < 2x(2x + 1).

Thus 2x(2x + 1) = 2x(2x + 2), from which we get that x(2x + 1) = x(2x + 2).

e Either x =0and theny <0soy=0.
e Or x # 0 and then, by cancellation, we get 2x + 1 = 2x + 2.
We derive from the previous equality that 1 = 2, which is impossible.

Thus the only possible solution in this case is (x, y) = (0, 0).
2. Second case: assume that 2x < y,i.e. 2x + 1 < y. Then
yy+1D>QCx+DR2x+2)>2x2x+2)=y(y+1)

Hence, as above, (2x + 1)(2x +2) = 2x(2x + 2).

Note that 2x +2 # 0 since 2x +2 >2 > 0.

So, by cancellation, 2x = 2x 4+ 1 and hence 0 = 1, which is impossible.
Therefore there is no solution (x, y) € N? satisfying 2x < y.

We proved that the only possible solution is (x, y) = (0, 0).

We have to check that conversely it is a solution, which is the case since then 4x(x+ 1) =0 = y(y + 1).

So the only solution is (x, y) = (0, 0).
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Sample solution to Exercise 4.
Method 1 (using my hint):
We are going to prove the statement by induction on n.

e Base case at n = 3. Note that 1 = 1 + l+ 1
2 36
o Induction step. Assume that the statement holds for some n > 3.
By the induction hypothesis, there exist x; < ... < x,in N\ {0} such that 1 = 1 + 1 + e+ 1
X X2 Xn
Note that x; # 1 since otherwise L + L + -+ 1. 1+ 1 + -+ 1 > 1. Thus x; > 1.
X1 X2 Xy X2 Xp
Hencel—l+l—l+l i+i+...+L —1+L+L+...+ 1
202 2 2\x x x,) 2 2x; 2x, 2x,

Besides, since 1 < x; < x, < -+ < x,, we get that 2 < 2x; < 2x, < -+ < 2x,,.
So the n + 1 denominators are pairwise distinct.

Method 2:
We are going to prove the following stronger statement by induction on n: for n > 3, there exist 1 < x; <
Xy < -+ < x,suchthat1= xi + xi + -+ xi and x,, is even.

1 2

n

e Buase case at n = 3. Note that 1 =%+%+é

o Induction step. Assume that the statement holds for some n > 3.
By the induction hypothesis, there exist 1 < x; < ... < x,in Nsuch that 1 = 1 + 1 + ot 1 and x

x| Xy x "

n
is even.

Hence x,, = 2k for some k € N\ {0}.
1 1 1 1
Note that — = — = — + —.
o T2k T3k 6k
Hence
1—i+i+...+L+L+L
xl x2 xn_l 3k 6k

Besides 6k isevenand 1 < x| < x, < -+ < x,, = 2k < 3k < 6k.
So the n + 1 denominators are pairwise distinct.

Method 3:
We are going to prove the statement by induction on .

1,1 1
B tn=3. Notethatl = - + - + —
e Base case at n ote tha 2+3+6

o Induction step. Assume that the statement holds for some n > 3.
By the induction hypothesis, there exist x; < ... < x,in N\ {0} such that 1 = 1 + 1 + -+ 1
X1 Xy X
1 1 1

Note that x; # 1 since otherwise L + L ++—=1+—+--+—>1 Thusx; > 1.
xl X2 xn x2 X
Note that for x # 0, ! + ! - _*t ! = l
x(x+1) x+1 x(x+1) x

n

n

Therefore

1 1 1 1 1 1 1 1 1
l==—+— 4+ = —F— 4t +
X1 X X X

n—1 no X1 X2 Xp-1
Sincel < x,and 0 < x,+ 1, wegetx, +1 < x,(x,+ 1).
Therefore 1 < x; <xy <+ <x, 1 <x,<x,+1<x,(x,+1).

So the n + 1 denominators are pairwise distinct.
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Due on February 26, 2021

Except otherwise stated, you can only use the material covered in Chapters 1, 2 & 3.
You can also use the results proved in the exercise sheets 1, 2, 3 & 4.

Write your solutions concisely but without skipping important steps.
Make sure that your submission is readable on Crowdmark.

Exercise 1.
Find all n € Z such that n — 4|3n — 17.

Exercise 2.
Find the integer solutions of x> + 6x = y* + 12.

Exercise 3.
1. Prove that
Va,x|,x, € Z\ {0}, (gecd(a, x;) = ged(a, x,) = 1) = ged(a, x;x,) = 1

2. Let n > 2 be an integer. Prove that

Va,xy,...,x, € Z\ {0}, (ged(a, x)) = ged(a, x,) = -+ = ged(a,x,) = 1) = ged (a,x,xy ++ x,) =1

Exercise 4.

3

Prove that the equation x*> — x* + x + 1 = 0 has no rational solution.

For this question, you can assume that Q = {§ :p€Z, qeN\{0}, gcd(p,q) =1 } with the usual operations.
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Sample solution to Exercise 1.

Letn € Z such that n — 4|3n - 17.

Sincen —4|n—4and n —4|3n — 17 then n — 4|(3n — 17) — 3(n — 4) = -5.
Hence the only possible solutions are n —4 = -5,-1,1,5,i.e. n = -1,3,5,9.
Conversely, we need to check which are solutions:

e n=—1:thenn—4=-5and 3n — 17 = -20. So it is a solution since —5| — 20
n=3: thenn —4 = —1. So it is a solution since —1 divides any integer.
n=5: thenn—4 = 1. So it is a solution since 1 divides any integer.
n=9:thenn—-4=>5and 3n - 17 = 10. So it is a solution since 5|10.

Sample solution to Exercise 2.
Let x,y € Z, then

Xtbox=y+12ex+3’ =y +2lex+3)’ -y =21 x+y+3)(x—y+3)=21
Since the divisors of 21 are +1, +3, +7 and +21, we get the following cases:

1 { x+y+3=21

i3l SEN=610

2. { ;‘fiii:_fl & (x,y) = (=14, —10)
3, { ] ewn=0

4, { ifii;z ; & (x,)) = (-8,-2)

5. { ifii; 3 & (xy) =(2.-2)

6. { ifiig D e () =(-8.2)

7. { ifﬁi;zl & (x,3) = (8,-10)

8. { ifii;i:;l & (x,y) = (~14,10)

Hence the integer solutions are (8, +10), (—14, +10), (2, +2), (=8, +2).
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Sample solution to Exercise 3.
1. Method 1 (with Bézout’s theorem):
Let a,x,,x, € Z\ {0} be such that gcd(a, x) = gcd(a, x,) = 1.
By Bézout’s identity, there exist u, v,u’, v" € Z such that au + x;v = 1 and au’ + x,0" = 1.
Then 1 = (au + xv)(au’ + x,0") = a(auu’ + ux,v" + x;vu") + x;x,(VV").
Therefore ged(a, xx,) = 1.

Method 2 (with Euclid’s lemma):

Leta,x;,x, € Z \ {0} be such that gcd(a, x;) = gcd(a, x,) = 1.

Assume by contradiction that d = ged(a, x;x,) > 1, then there exists a prime number p such that p|d.
Since p|d and d|a, we have that p|a.

Since p|d and d|x;x,, we have that p|x;x,.

By Euclid’s lemma, either p|x; or p|x,. WLOG, we may assume that p|x;.

Then p|x,; and p|a, therefore p| gcd(a, x;) = 1. Which is a contradiction.

Method 3 (with prime factorization):

Leta,x;,x, € Z \ {0} be such that ged(a, x,) = ged(a, x,) = 1.

Write the prime decompositions a = [], p*, x; =[], pPv and x, = 1, PP,

Since ged(a, x;) = 1, we know that, for p prime, we have min(«,, §;,) = 0.
Therefore, for p prime, we have min(a,, f;, + f,,) < min(a,, f;,) + min(a,, f,,) = 0.
Note that XXy = Hp pﬁlp+ﬁ?p‘

Thus ged(a, x;x,) =[], PN Bythay) —

2. Let’s prove by induction on n > 2 that
Va,xy,...,x, € Z\ {0}, (gcd(a,xl) = gcd(a, xp) = -+ = ged(a, x,) = 1) = gcd (a,x1x2 ---xn) =1

e Base case at n = 2: it is exactly the previous question.

e Induction step. Assume that the statement holds for some n > 2.

Leta,xq,...,x,,x,.1 € Z\ {0} such that gcd(a, x;) = ged(a, x,) = --- = gcd(a, x,, ) = 1.
By the induction hypothesis, ged (a, x,x; -+ x,,) = 1.
Since

ged (a,x)x) + x,) = ged(a, x,,.1) = 1

by the previous question, we get that
ged(a, x1xy ... x,01) =1

Which proves the induction step.

Sample solution to Exercise 4.

Assume by contradiction that there exists x € Q such that x> — x* + x + 1 = 0.
Then x = § where p € Z, ¢ € N\ {0} and ged(p,q) = 1.

Therefore x* —x?+x+1 = 0 implies (p/q)* — (p/q)* +plg+1 = 0 from which we derive that p> —p*q+pg*+¢° = 0.
Hence plq® = —p* + p*q — pg*.

Since ged(p, ) = 1, by Gauss’ lemma, plg? and similarly plq.

Hence gcd(p, g) = |p|. So either p=—1orp=1.

Similarly qlp’ =p*q-ps* —¢*soqg=1.

Thence the only possible rational solutions are —1 and 1.

But they don’t satisfy the equation.
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Due on March 12, 2021

You can only use the material covered in class up to lecture 12 (i.e. Chapters 1, 2, 3 and 4 up to section 5 included).
Write your solutions concisely but without skipping important steps.
Make sure that your submission is readable on Crowdmark.

Exercise 1.
Let p be a prime number. Prove that

S

P n
xk> = Z xZS (mod p)
1 k=1

n

Vs e N\ {0}, Vn e N\ {0}, Vxy,...,x, EZ, <
k=

Exercise 2.
The following questions are independent.

1. For which n € N, is 5" — 3" a prime number?

2. For whichn € N, is 22" +5a prime number?

Exercise 3.

Solve for x,y € N\ {0}, D\ (k!) = y*.
k=1

Exercise 4.
Let p be a prime number and n € N satisfying 1 <n <p—1.
Prove that (p — n)!(n — 1)! = (=1)" (mod p).
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Sample solution to Exercise 1.

Method 1:
Let’s prove the statement by induction on s > 1.

e Basecaseat s = 1:
Letn e N\ {0} and x,...,x, € Z.
By Fermat’s theorem we have:

n P n
° <Z xk> = 2 x; (mod p), and,

k=1 k=1

e Fork=1,...,n, x} = x; (mod p).
n p n n

Thus (Z xk> = Z X (mod p) = Z xZ (mod p)
k=1 k=1 k=1

o Induction step: assume that the statement of the question holds for some s > 1.
Letn e N\ {0} and x4, ...,x, € Z.

Then
n p n p
k=1 k=1

S\ D

h
s
I
—

b
xis> (mod p) by induction hypothesis

Il
X

k=1

P \P
<xk ) (mod p) bythecases=1

Il
M=

~
Il

1

S

" (mod p)

I
M=

P
Xk

~
Il

Method 2:
Lemma. Let’s first prove by induction on s that Vs € N\ {0}, Vx € Z, x¥ = x (mod p).

e Base case at s = 1: Let x € Z then x? = x (mod p) by Fermat’s theorem.

o Induction step: assume that the statement of the question holds for some s > 1.
Let x € Z then

: N\ P
xp3+1 _ <xps )

= x? (mod p) by the inductive hypothesis

= x (mod p) by Fermat’s theorem
Which proves the lemma.

Let’s prove the statement of the question:
Let s e N\ {0}, x,...,x, € Z then

n p’ n
(Zxk> =Zxk by the lemma

k=1 k=1

= 2 xis by the lemma
k=1
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Sample solution to Exercise 2.
1. If n = 0 then 5° — 3° = 0 is not prime.
If n = 1 then 5! — 3! =2 is prime.
If n>1then5" —3"=1" — 1" (mod 2) = 0 (mod 2). Thus 5" — 3" is even but 5" — 3" > 2, therefore it is
not prime.
Conclusion: 5" — 3" is prime for n = 1 only.

2. Ifn=0then220+5 =2'4+5 =7 is prime.
Ifn>1then2? +5= (-1 +2(mod 3)=1+2 (mod 3) = 0 (mod 3) (since 2" is evenas n > 1).
Therefore 3|22 + 5 but 2% + 5 > 3. Thus 22" + 5 is not prime.
Conclusion: 22" + 5 is prime for n = 0 only.

Sample solution to Exercise 3.
We first compute y? (mod 5) in terms of y (mod 5):

y(mod35) [0[1[2]3]4
y(mod35) [0][1]4]4]1

We treat several cases.

X

1. Letx=1then ) (k!)=1.
k=1

The unique y € N\ {0} such that Y =1lisy=1.

2. Letx =2then Y (k!) = 1!+2! =3 (mod 5).

x
k=1

2

So there exists no y € Z such that Z(k!) =? by the above table.
k=1

3. Letx=3then ) (k!)=1!+2!+3!=09.

k=1
The unique y € N\ {0} such that ¥ =9isy=3.

4. Letx > 4.
Note that for k > 5, we have 5|k!.
Thus ) (k!)=1!+2!+ 3! +4! (mod 5) = 33 (mod 5) = 3 (mod 5).
k=1

So there exists no y € Z such that Z(k!) =1” when x > 4, by the above table.
k=1

So the solutions are (x,y) = (1, 1) and (x, y) = (3, 3).

Sample solution to Exercise 4.

Let p be a prime number and n € N satisfying 1 <n < p—1.
Note that

P-D'=@-n!p-n-D)(p-n-2)@-1)
= (p— W!(=(n — D)(—(n — 2)) -+ (=1) (mod p)
=(p-— n)!(—l)"_l(n — D —=2)--1(mod p)
= (p—n)!(-1)""'(n—1)! (mod p)

Since, by Wilson’s theorem, (p — 1)! = —1 (mod p), we get that (p — m!(=1)""1(n - 1)! = =1 (mod p) and thus,
multiplying both side by (=) that (p — n)!(n = D! = (=1)" (mod p).
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Exercise 1.
Prove that Va,b € N\ {0}, p(ab)p(gcd(a, b)) = p(a)p(b) gcd(a, b).

Make sure to explain each step.

Exercise 2.
Alice posted her RSA public key on her website: (n, e) = (4559, 17).

1. Eve wants to spy on Alice: help her to find a suitable private key (n, d).
2. Eve intercepts the ciphered message ¢ = 2741 that Bob sent to Alice. What is the original message?

You may use a computer to compute modular exponentiations, nonetheless, you need to explain your steps.
You can use the list of prime numbers less than 100 given in the lecture notes.

Exercise 3.

e Lkx
1. Let x € R. Compute lirp LZLJ
n—+o00 n

2. Use the above question to prove that any real number is the limit of a sequence of rational numbers.

For this question, you can use results about sequences from your first year calculus course.

Exercise 4.
Let A, B C R be such that inf(A) and sup(B) exist.

1. Prove that if inf(4) = sup(B) then A N B contains at most one element.

2. Under the assumption that inf(A) = sup(B), is it possible for A N B to be empty?
You need to justify your answer.
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Sample solution to Exercise 1.

Method 1:
Leta,b € N\ {0}. Write the prime factorization of gcd(a, b) as

ged(a.b) = [ "
i=1

where r € N, the p; are pairwise distinct prime numbers and §; € N\ {0}. We set r = 0 when gcd(a, b) = 1.

Since gcd(a, b)|a, we may write
N

.

0;+7; ®j

a= HP,-' ' H 9
i=1

j=1
where s € N, the g; are prime numbers such that the p;, q; are pairwise distinct, y; € Nand «; € N\ {0}.
We allow s = 0, with the convention that the product is then equal to 1.

Since gecd(a, b)|b, we may write
r t
_ 6;+7i Bk
b=T1n"" ]
i=1 k=1

where 1 € N, the m, are prime numbers such that the p;, m; are pairwise distinct, 7, € Nand g, € N\ {0}.
We allow ¢ = 0, with the convention that the product is then equal to 1.

Note that {q;,...,q,} N {my,...,m;} = @ since otherwise a common prime number would divide gcd(a, b).
Then the prime factorization of ab is

r N t
Si4vi+7: a;
ab = I Ipi’ Vi y’IIqjj I Imik
k=1

i=1 j=1

where the p;, g ;» My are pairwise distinct prime numbers.
As seen in class, we have

p(ged(a, b)) = ged(a, b) <1 _ l)
1

g 1\ 1 1
p(a) =a <1——> <1——
1'11 bi/ 4 g

Therefore

N t r
1 1 1
1—-— 1 — — ) gcd(a, b) (1 - —)
=1< ‘1j>£[1< mk)g ,11 Di
] bﬁ(l—l)ﬁ<l—i> gcd(a, b)
D m

p(ab)p(ged(a,b) = ab [ | (1 _ 5)
i=1 i

-[11(-7)

i=1 k

p(a)p(b) gcd(a, b)
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Method 2:

Leta,b € N\ {0}. Given a prime divisor p of ab, by Euclid’s lemma, exactly one of the following occurs:
e FEither p divides a but not b,
e Or p divides b but not a,
e Or p divides both a and b, i.e. p| gcd(a, b).

According to the lecture notes,

pab)=ab [] <1 - i)

p prime,
plab
1
@(a) =a H <1——>
p prime, p
pla
1
oby=b [] (1——)
p prime, p
plb
1
o(ged(a, b)) = ged(a,b) ] (1--)
p prime, p
pla and p|b
Therefore
pab)=ab [] (1—1>
p prime, p
plab
- I (=3) L (=3) IL (=5)
p prime, p p prime, p p prime, p
pla and p}b ptaand p|b plaand p|b
1 1 1 1
a IT (v-=) IT (t==){le IT (t-=) I (1--
p prime, p p prime, p p prime, p p prime, p
pla and p}b plaand p|b ptaand p|b plaand p|b
I (5)
p prime, p
pla and p|b
1 1
a [T (t==){fe TT (1-=
p prime, p p prime, p
_ pla plb
I (-3)
p prime, p
pla and p|b
b
— ged(a, py_2@P®)

@(gcd(a, b))
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Sample solution to Exercise 2.

1. Note that n = 4559 = 47 x 97 where 47 and 97 are prime numbers (see Example 3 of Chapter 3).
Therefore p(n) = (47 — 1)(97 — 1) = 46 X 96 = 4416.
Let’s find a Bézout's identity for ¢(n) = 4416 and e = 17:

4416 = 17 x 259+ 13

17=13x1+4
13=4x3+1
Therefore

1 =13-4%3 =13-(17-13)x3 = 17X(=3)+13%x4 = 17Xx(=3)4+(4416—17x259)x4 = 17x(—1039)+4416x4
Thus, if we set d = —1039 + 4416 = 3377 then d > 0 and ed = 1 (mod ¢(n)):
ed =17 X (—1039 +4416) = 17 x (—1039) + 4416 x 4 (mod 4416) = 1 (mod 4416)
Thus (n, d) = (4459,3377) is a suitable private key.
2. ¢®=2741°¥"7 = 2718 (mod 4559), then m = 2718 is the original message since m € {0, 1, ...,4558}.
Sample solution to Exercise 3.

1. Since Vk € N, |kx] < kx < kx| + 1, we get

Dot Lhx] ko kx nn+1) n+1
< =X =X

n? - 2n? 2n
and ) .
Zk:l Lkx] Zk:l(kx -1 n+1 1
> =x - -
n2 n2 2n n
Therefore "
Al o1 L= Lkx] <t
2n n n? - 2n
Since lirp xn;— 11 = liIP xn; ! = %, we get from the Squeeze Theorem that
n—+co n n n—+oo n
lim —ZLIUCXJ =X
n—+0o0 n2 2

2. Letx € R. Forn € N\ {0}, setu, = 2#.
Then Vn € N\ {0}, u, € Qand x = lim u, from the previous question.

n——+o0o

Sample solution to Exercise 4.
1. Let A, B C R be such that inf(A) and sup(B) exist.
We are going to prove the contrapositive: if AN B contains at least two elements then inf(A) # sup(B).
Assume that there exist x,y € A N B such that x < y.
Then, since sup(B) is an upper bound of B and y € B, we have y < sup(B).
Since inf(A) is a lower bound of A and x € A, we have inf(A) < x.
Therefore inf(A) < x < y < sup(B), so inf(A) # sup(B).

2. Let A =(0,42) and B = (—x,0). Then inf(A) = sup(B) =0and An B = @.
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Exercise 1.
Prove that Vx € R\ Q, Va,b,c,d € Q, ad —bc #0 = 2 ¢ Q.

cx+d

Remark: note that cx + d # 0 under the given assumptions.
Either ¢ = 0 but then cx+d = d # Osince ad —bc # 0. Or ¢ # 0 but then cx € R\ Qand —d € Q thus cx+d # 0.

Exercise 2.

Let E be a finite set. Express
[{(A,B) e P(E)XP(E) : AUB = E}|

in terms of |E|.

Hint: you may start studying the case where the cardinality of A is fixed.

Exercise 3.
The following questions are independent.

1. Does it exist a set E such that |P(E)| = R,?

2. Prove that [0, 1]] = |(0, 1)].

Exercise 4.
We set

S={xeR : 3IneN, Jay,ay,....a,€Z, a, #0and a,x"+a,_ x" '+ tax+ay= 0}

What is |S|?

Remark: you can use basic facts concerning polynomials and their roots.
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Sample solution to Exercise 1.

Letx € R\ Q. Leta, b,c,d € Q be such that ad — bc # 0.

Assume by contradiction that g := fj:s € Q, then

ax+b
cx+d

=qg& x(a—qc)=qd —b

e First case: if a # gc then x = Zi—;é’ € Q, so there is a contradiction.

e Second case: if a =gcthen gd — b= x(a—qc) =0,i.e. b=qd.
Therefore ad — bc = gecd — qdc = 0, so there is a contradiction.

Sample solution to Exercise 2.

Setn:=|E|.

Leti=0,...,n SetQ, := {(A,B) € P(E)x P(E) : AUB=E and |A| = i}.

There are (7) subsets A € P(E) such that |A| =i (See Q10EQ9).

For a given A as above, in order to have A U B = E, B must be of the form B = A° U C where C C A.
There are 2' = |P(A)| choices for such a subset C, and hence for B (See Q10E10).

Therefore |Q;| = (':)2’

Finally

n
L]

i=0

[{(A,B) € P(E)XP(E) : AUB=E}|=

n
=Y 1
i=0

I
—~
- 3
N—

N2

I

(M2 =@+ 1y =3 =317
l

Sample solution to Exercise 3.
1. Let E be a set, then:

e Either E is finite and then P(E) is finite too by Q10E10, so that |P(E)| < R,.
e Or E is infinite and then X, < |E| < | P(E)| by Cantor’s theorem.

In both cases |P(E)| # ¥, so there is no set E such that |P(E)| = N,.

2. Method 1.
Note that (0, 1) c [0, 1], therefore |(0, 1)| < |[0, 1]].
Define f : [0,1] — (0,1) by f(x) = x_gl
Note that f is well-defined since if 0 < x < 1 then 0 < % <l < % < 1.

3
Besides f is injective since if x, y € [0, 1] satisfy f(x) = f(»), then x%l = %1 which implies x = y.

Therefore |[0, 1]] < |(0, 1)].
By Cantor-Schrdder—Bernstein theorem, we conclude that [[0, 1]| = [(0, 1)].

Method 2.
We know that (0, 1) C [0, 1] € R and that |(0, 1)| = |R| (see Q11E08).
Therefore |[0, 1]] = |(0, 1)| (see Q11E01).
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Sample solution to Exercise 4.

Comment: a complex number that is the root of a non-zero polynomial with integers (or rational, it is equivalent)
coefficients is said to be an algebraic number. Complex numbers which are not roots of such polynomials are called
transcendental numbers.

The field of algebraic real numbers is quite often denoted by

Rag = {xeR : IneN, Jay,a,,...,a, € Z, a, # 0 and a,x" +a,_ X" Tt ax+ay= 0}

The goal of this exercise was to prove that |Re| = Ry, i.e. there are infinitely countably many algebraic real numbers,
so that almost all real numbers are transcendental (but it is usually quite difficult to prove that a number is tran-
scendental: we still don’t know whether r + e or we are transcendental or not). This was first proved by Cantor in is
famous article Ueber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen published 1874.

Claim. Vn e N\ {0}, |Z"| = N,.

Proof by induction on n > 1.

Base caseatn = 1: |Z'| = |Z| = N, (from the lecture notes).
Induction step. Assume that |Z"| = X for some n > 1.

Since |Z"| = |N| and |Z| = |N|, we have |Z"*!| = |Z" x Z| = [N x N| = §,. O
Method 1.
Forn e Nand gy, ay, ..., a, € Z with a, # 0, the set

(xR : ax"+a,_ X" '+ +a;x+ay, =0}

is finite since a polynomial of degree n has at most # roots.
For n € N, we set

A, = U (xER : ax"+a, | x"'+ +ax+ay=0)
(ag.ay.....a,)EZ"X(Z\{0})

Since |Z"| = IN] and |Z \ {0}| = [N|, we have that |Z" X (Z \ {0})] = INX N| = N,
Therefore A, is countable as a countable union of finite sets.

Hence S = |, A, is countable as a countable union of countable sets.

Note that Z Cc S, sincem € Z isaroot of x —m = 0.

Therefore S is countably infinite, i.e. |.S]| = N,.

Method 2.

For n € N, we denote by P, the set of polynomials of degree n with integer coefficients.

Note that |P,| = |Z" x Z\ {0}] since a polynomial a,x" +a,_, Xt a;x + ag of degree n is characterized

by its coefficients (ay, ay, ..., a,) € Z" X (Z \ {0}).

Since |Z"| = IN| and |Z \ {0}| = [N|, we have that |P,| = |Z" X (Z \ {0})| = INXN| = R,

Hence the set P = U P, of non-zero polynomials with integer coefficients is countable as a countable union
neN

of countable sets.

Given f € P, f1({0}) = {x e R : f(x) = 0} is finite since a polynomial of degree n has at most n roots.
Therefore S = U £71(0) is countable as a countable union of finite sets.
fepP
Note that Z c S, since m € Z is aroot of x — m = 0.
Therefore S is countably infinite, i.e. |.S]| = N,.
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Exercise 1.
Prove that Vn e N\ {0,1},2" =1 > n.

Exercise 2.
m—1

1. Prove thatVm e N\ {0}, Vx e R, x" — 1 = (x — 1) Zxk .
k=0

2. Letn € N\ {0}. Prove that if n is a composite number then 2" — 1 is composite too.
Recall that a natural number n is composite if and only if there exist a,b € N\ {0, 1} such that n = ab.

3. We say that n € N'\ {0, 1} is 2-prime if 2" = 2 (mod n).
Prove that if n is 2-prime then 2" — 1 is 2-prime too.

4. Deduce that there are infinitely many composite 2-prime numbers.
We admit that 341 is 2-prime.

Exercise 3.

Let p be a prime number. Prove that Va,b € Z, a” = b’ (mod p) = a” = b* (mod o).
Exercise 4.

We set D := {Zﬂn : meZ,neN}.

Prove that D is dense in R, i.e. prove thatVx,y€R, x <y = Ide€ D, x<d <.
Exercise 5.

Define § : Zx Z — R by 6(a,b) = a + b\/2.

1. Is 0 surjective?

2. Prove that 6 is injective.
3. Weset Z [\/3] = {a + b\/E tabe Z}. Prove that ‘Z [\/5” =N,

Exercise 6.
1. Prove that [R?| = |R| where R? is the set of functions @ — R.

2. We denote by C°(R) the set of continuous functions R — R.
COR) —» RO®
f = f )

Remark: recall from your calculus course that if f € CO(R) and lirf x, = ¢ then lir_P f(x,) = f(©).

Prove that @ : { is injective, where f|q denotes the restriction of f to Q.

Hint: don't forget you can use results from problem sets.

3. Prove that |C0([R)| = |R].

15P.

20P.

157

15P.

20P.

15P.
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Sample solutions to Exercise 1.
Let’s prove the statement by induction on n > 2.

e Basecaseatn=2:2"-1=2>-1=3>2=n.
o Induction step. Assume that 2" — 1 > n holds for some n > 2. Then

2l _1=2%x2"-1=22"-1)+1
>2n+1 by the induction hypothesis
>n+1 sincen>0

Which ends the induction step.

Comment: I asked this question to evaluate your writings for proof by inductions (since I insisted a lot on it this term) and 1
picked this statement to prove by induction because it is useful for Exercises 2 and 4.

Sample solutions to Exercise 2.
1. Comment: Several students complained by e-mail that there is an issue when x = 0 because 0° is undefined, but you use
the convention 0° = 1 all the time for such formulae, e.g.:

e Binomial formula: Vx,y € R, Vn €N, (x+ y)" = Y, (Z)xky”'k

1

o Geometric sum: Vx € R\ {1}, Vn eN, ¥/, ko 1

1—x
When defining a polynomial function f : R - R by f(x) = Y,_, a;x"
When we proved that for finite sets |[E* | = | E|'"! (including the case E = F = @)
e ...

Method 1:

Let x € R.
m—1

We are going to prove that Vm € N\ {0}, x" -1 =(x—-1) Z x* | by induction on m > 1.
k=0

1-1
e Basecaseatm=1: (x — 1) Zxk =(x-Dx=x-1=x'-1.

k=0
m—1
o Induction step. Assume that x™ — 1 = (x — 1) 2 xk | for some m > 1. Then
k=0

m m—1 m—1
(x—l)(Zxk)=(x—1) Zxk+xm =(x—1)2xk+(x—l)xm
k=0 k=0

k=0
=" -1+ (x—-1Dx" by induction hypothesis

=xm_1+xm+l_xm=xm+1_1
which ends the induction step.

Method 2:
Let m € N\ {0} and x € R. Then we have the following telescoping sum:

m—1 m—1 m—1 m—1 m—1 m m—1
T DR B R0 B SRS S JURD YRR )RR
k=0 k=0 k=0 k=0 k=0 k=1 k=0
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2. Let nbe a composite number. Then n = ab for some a,b € N\ {0, 1}.
Therefore
b-1
2—1=2%_1=02%-1=02%-1) 2 2% by Question 1 since b € N\ {0}
k=0

Since a > 1, by Exercise 1,2 =1 >a > 1.
b1

Besides E 29k > 20 4 22 5 1 since b > 1.
k=0

Therefore 2" — 1 is composite.

3. Method 1:
Letn € N\ {0, 1} be a 2-prime number. Then 2" = 2 (mod n), so that 2" = 2 + An for some 4 € Z.
Note that, by Exercise 1lasn € N\ {0,1},2" =1 >n>2. Thus2"—-1eN\ {0,1} and 4 > 0.

Therefore
-1

P¥olp = prtintl g oltig o (20— 1) =2((2) - D) =2(2"-1)[ ¥ 2| by Qlsince 4 > 0.
k=0

S02"— 11221 -2,ie. 221 =2 (mod 2" - 1).

Hence 2" — 1 is 2-prime.

Method 2:

Letn € N\ {0, 1} be a 2-prime number. Then 2" = 2 (mod n), so that 2" = 2 + An for some 4 € Z.
Note that, by Exercise1asn € N\ {0,1},2" =1 >n>2. Thus2"-1& N\ {0,1} and 4 > 0.
Therefore 22" ~1 = 22+in=1 — pl+in — 3 5 (OM)4 = 2 % 14 (mod 2" — 1) = 2 (mod 2" — 1).

Hence 2" — 1 is 2-prime.

4. Assume by contradiction that the set of composite 2-prime numbers is finite, then it is bounded.
Besides it is non-empty since 341 = 11 x 31 is a composite 2-prime number.
Therefore there exists a greatest composite 2-prime number N (Chapter 2, Theorem 17).
By Questions 2 and 3, 2N _lisa composite 2-prime number too since N > 341 > 1.
Besides 2V — 1 > N by Exercise 1 since N > 341 > 1.
Hence a contradiction since N is the greatest composite 2-prime number.

Sample solutions to Exercise 3.

Let a, b € Z be such that o = b” (mod p).
By Fermat’s little theorem, since p is prime, we know that a” = a (mod p) and that 4’ = b (mod p).
Therefore a = b (mod p). Thus there exists A € Z such that a = b + Ap.

V4 V4 V4
Then a” = (b+Ap)’ = (p>b”‘k/1 k= by pb? ap+ (p)bp-kz" k=p+0+ Y 0(mod p?) = ¥ (mod p?
(p)k}:‘H (Ap) p pg‘%k P ;:jz( p%) = b? (mod p?)
(note that p?|pb”~' Ap = p?b"~' 1 and that p?|p* for k > 2).

Sample solutions to Exercise 4.

We adapt the proof of Theorem 45 from Chapter 6, using 2" as denominator instead of n.
Let x, y € R be such that x < y.

Sete=y—x>0.

By the archimedean property of R, there exists n € N such that ne > 1.

Note that n > 0, since otherwise 0 > 1. Therefore % < e&.

Note that 2" > n. Indeed if n > 1 then 2" > n + 1 > n by Exercise 1, otherwise if n = 1 then 2! =2 > 1.
Thuso<%<%<s.

Setm=|2"x]+1,then2"x <m<2"x+1,s0x < % §x+2in <x+e=y.

Hence d = zﬁn € D satisfies x < d < y.
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Sample solutions to Exercise 5.
1. Method 1:
We are going to prove that \/5 & Im(0).
Assume by contradiction that there exists (a, b) € Z* such that 6(a, b) = \/5 . Then \/g =a+ b\/E.

e Ifa =0, then \/_ = b\/z, so that 3 = 2b? with b*> € Z. Then 2|3 which is impossible.
(alternatively: if a = O then % = b* € Z, which is impossible).

Hence a # 0.
o If b= 0, then v/3 = a € Q. Which is impossible.
Hence b # 0.
Squaring V/3 = a + bV/2, we get 3 = a® + 25 + 2ab\/2, so that V2 = -3_022(1;21)_2 eq.

Which is a contradiction. Hence \/5 ¢ Im(0) and 0 is not surjective.

Method 2:

We are going to prove that \/5 & Im(6).

Assume by contradiction that there exists (a, b) € 72 such that 0(a, b) = \/5 .
Then\/§=a+b\/§,sothat \/g—b\/a=a.

Squaring the previous equality, we get 3 + 2b% — 261/6 = .

Note that b # 0 since otherwise \/5 = a € Q which is impossible.

2 2
Therefore \/_ = % € Q which is a contradiction. Hence \/§ ¢ Im(6) and 0 is not surjective.

Method 3:

We are going to prove that — 314

¢ Im(0) (or anything in Q \ Z).
Assume by contradiction that there exists (a, b) € Z? such that 6(a, b) = 314 . Then = 314 =a+ b\/z.

314
42

e Second case: if b # 0 then b\/E ¢ Q by Week 9, Ex 4.4, since \/5 ¢Qand be Q) {0}.
But b\/_ = ﬂ —a € Q. Hence a contradiction.

e First case: if b = 0 then = = a € Z. Hence a contradiction.

314

Therefore = ¢ Im(6) and 6 is not surjective.

Method 4: We are going to prove that % & Im(6).
Assume by contradiction that there exists (a, b) € Z? such that 0(a, b) = =

Then%=a+b\/§ = b\/_=%—a = 2b2=i+a2—a = i=2b2—a2+a€Z.
Hence a contradiction.
Therefore % ¢ Im(0) and 0 is not surjective.

Method 5: We are going to prove that % ¢ Im(0).
Assume by contradiction that there exists (a, b) € 72 such that 6(a, b) = %

Then ﬁ =a+ b\/E, so that (1 - b) \/5 = a. Note that l & 7 so that b # %, hence \/_ = € Q.

172—b

Hence a contradiction. Therefore \/_ ¢ Im(0) and 0 is not surjective.

Method 6: Since |[N| = |Z|, we have |Z x Z| = INXN| = [N| =R, < |R].
Therefore, there is no surjection Z X Z — R, so that € can’t be surjective.
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2. Let (a, b),(c,d) € Z? be such that O(a,b) = 0(c,d).
Then a+ bV2 = ¢ +dV/2, ie. (a—c)+ (b —d)\/2 =0.
e If b #d, then \/_ = ﬁ € Q, which is impossible.
e If b=d,thena—c =0,so that (a, b) = (¢, d).

Therefore 6 is injective.

3. Method 1:
Note that Im(0) = Z [\/E] by definition of Z [\/5]
Therefore § : Zx 7 — Z [\/5] defined by 6(a, b) = 0(a, b) is well-defined and surjective.
Besides, it is injective (and hence bijective) by the previous question.
Hence ‘z [\/5] ’ =1ZxZ| = INxN| = ¥, since |Z| = |N|.

Method 2:

Since |Z| = IN|, we get |Z%| = |Z x Z| = IN X N| = R,

Soz [\/5] = U {a +bV2 } is countable as a countable union of countable sets (singletons).
(a,h)eZ?

Thus |Z [\/5” <N

Besides Z c 7 [ﬁ],henee Ny =|Z| < ‘Z [\/5] ’

Finally, by Cantor-Schroder—Bernstein theorem, we get that ‘Z [\/5] ‘ = N, as required.

Sample solutions to Exercise 6.
1. Since |Q| = |N], there exists a bijective functiony : @ — N.
We define ¥ : RN - R® by W(f) = f o w. Note that ¥ is bijective with inverse vlg)=goyl
Indeed, for f € RN, ¥\ (W(f) = fowoy ! = f,and forg e R, YW (g) =goy oy =g
Therefore |IRQ| = |RN| = |R| by Week 11 Exercise 9.

2. Let f,g € C°(R) be such that ®(f) = ®(g), i.e. fia = 8jq (otherwise stated, Vx € Q, f(x) = g(x)).
Let x € R. By PS4, Exercise 3, there exists a sequence (g,,), of rational numbers such that lim ¢, = x.

n—->+oo
Then
fx) = lirP f(g,) since f is continuous
n—>1+00

= lim g(g,) sinceVn, g, € Qand fig = gq

n—->+oo

= g(x) since g is continuous

Therefore, Vx € R, f(x) = g(x), so that f = g.

3. Since & is injective, we know that |CO([R{)| < |RQ| = |R].
Note that ' : R — C%R) mapping x, to the constant function
R - R
F(Xo) .

X = Xy

is well-defined (since a constant function is continuous) and injective.
Therefore |R| < |C0(IR)|.
From Cantor-Schroder—Bernstein theorem, we get that |CO([R)| = |R|.
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