Université d'Angers – 2025/2026

Topologie et calcul différentiel

CC du 24/10/2025.

Aucun document ou appareil électronique n'est autorisé.

Vous devez **justifier toutes vos réponses**. La note tiendra compte de la qualité et de la concision de la rédaction. Vous pouvez utiliser tous les résultats du cours. Ces résultats doivent être cités correctement.

Exercice 1.

Soient *E* et *F* deux espaces vectoriels.

Soient $\|\cdot\|_F$ une norme sur F et $f \in \mathcal{L}(E,F)$ une application linéaire de E dans F.

On définit $N: E \to \mathbb{R}$ par $N(x) := ||f(x)||_F$.

Montrer que N est une norme sur E si et seulement si f est injective.

Exercice 2.

Soit $(E, \|\cdot\|)$ un espace vectoriel normé. On fixe $a, b \in E$ et r, s > 0.

Montrer que si $B_f(a,r) \subset B_f(b,s)$ alors $||a-b|| \le s-r$.

Exercice 3.

On considère $A := \{ f \in C^0([0,1], \mathbb{R}) : f(1) > 0 \}.$

- (1) Montrer que A est un ouvert de $C^0([0,1],\mathbb{R})$ pour la norme $\|\cdot\|_{\infty}$. Indication : pour $f \in A$, on pourra considérer B(f, f(1)).
- (2) Soit $f \in A$. Pour $n \in \mathbb{N}$, on définit $g_n : [0,1] \to \mathbb{R}$ par $g_n(x) = f(x) f(1)x^n$.
 - a. Pour tout $n \in \mathbb{N}$, calculer $||f g_n||_1$.
 - b. En déduire que A n'est pas un ouvert de $C^0([0,1],\mathbb{R})$ pour la norme $\|\cdot\|_1$.
- (3) Les normes $\|\cdot\|_{\infty}$ et $\|\cdot\|_{1}$ de $C^{0}([0,1],\mathbb{R})$ sont-elles équivalentes?

Exercice 4.

(1) Soient K une partie compacte d'un espace vectoriel normé $(E, \|\cdot\|)$ et $f: K \to K$ une fonction continue vérifiant

$$\forall x, y \in K, \ x \neq y \implies \|f(x) - f(y)\| < \|x - y\|.$$

- a. Montrer que la fonction $\varphi: K \to \mathbb{R}$ définie par $\varphi(x) = ||f(x) x||$ s'annule.
- b. En déduire que f admet un *unique* point fixe. (2) Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x + \frac{1}{1+x}$ si x > 0 et f(x) = 1 si $x \le 0$.
 - a. Montrer que f est continue et vérifie (H) pour la valeur absolue.
 - b. Montrer que f n'admet pas de point de fixe.
 - c. Y a-t-il une contradiction avec le résultat de la première question?

Exercice 5.

On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{si } (x, y) \neq (0, 0) \\ 0 & \text{sinon} \end{cases}$

- (1) Montrer que f admet des dérivées directionnelles en (0,0) le long de $e_1 := (1,0)$ et $e_2 := (0,1)$.
- (2) Est-ce que f admet une dérivée directionnelle en (0,0) le long de v pour tout $v \in \mathbb{R}^2$?

Solution de l'exercice 1.

- Supposons que N soit une norme sur E. Soit $x \in \ker(f)$ alors $N(x) = \|f(x)\|_F = \|0\|_F = 0$. Donc x = 0 puisque N est une norme. Ainsi $\ker(f) = \{0\}$, d'où on déduit que f est injective.
- Supposons que *f* soit injective.
 - Soient $x \in E$ et $\lambda \in \mathbb{R}$ alors $N(\lambda x) = \|f(\lambda x)\|_F = \|\lambda f(x)\|_F = |\lambda| \|f(x)\|_F = |\lambda| N(x)$.
 - Soient $x, y \in E$ alors $N(x+y) = \|f(x+y)\|_F = \|f(x) + f(y)\|_F \le \|f(x)\|_F + \|f(y)\|_F = N(x) + N(y)$.
 - Soit $x \in E$ tel que N(x) = 0. Alors $||f(x)||_F = 0$ d'où f(x) = 0. Puisque f est injective, on obtient que x = 0.

Ainsi N est une norme sur E.

Solution de l'exercice 2.

Explication : l'idée de la démonstration ci-dessous est de considérer le point de $B_f(a,r)$ le plus éloigné de b. Ce point est à distance r de a dans la direction a-b, i.e. $x:=a+\frac{r}{\|a-b\|}(a-b)$. Il peut être judicieux de faire un dessin. Solution.

Si a=b alors $r \leq s$ puisque $B_f(a,r) \subset B_f(b,s)$. On a donc bien $\|a-b\|=0 \leq s-r$. Supposons maintenant que $a \neq b$ alors $\|a-b\| \neq 0$. Considérons $x:=a+\frac{r}{\|a-b\|}(a-b)$.

Alors $||x - a|| = \left\| \frac{r}{||a - b||} (a - b) \right\| = \frac{r}{||a - b||} ||a - b|| = r.$ Donc $x \in B_f(a, r) \subset B_f(b, s)$. Ainsi

$$s \ge ||b - x|| = \left\| b - a - \frac{r}{||a - b||} (a - b) \right\|$$

$$= \left\| -\left(1 + \frac{r}{||a - b||}\right) (a - b) \right\|$$

$$= \left(1 + \frac{r}{||a - b||}\right) ||a - b||$$

$$= ||a - b|| + r$$

d'où $||a - b|| \le s - r$.

Solution de l'exercice 3.

(1) Soit $f \in A$ alors $\varepsilon \coloneqq f(1) > 0$. Soit $g \in B(f, \varepsilon)$ alors $f(1) - g(1) \le \|f - g\|_{\infty} < \varepsilon = f(1)$ d'où g(1) > 0. Donc $g \in A$. On a bien montré que $\forall f \in A$, $\exists \varepsilon > 0$, $B(f, \varepsilon) \subset A$, i.e. que A est un ouvert de $\left(\mathcal{C}^0([0, 1], \mathbb{R}), \|\cdot\|_{\infty}\right)$.

(2) a.
$$\|f - g_n\|_1 = \int_0^1 \left| f(x) - g_n(x) \right| dx = \int_0^1 f(1) x^n dx = \frac{f(1)}{n+1}$$
.
b. Soit $\varepsilon > 0$. Puisque $\|f - g_n\|_1 = \frac{f(1)}{n+1} \xrightarrow[n \to +\infty]{} 0$, il existe $N \in \mathbb{N}$ tel que $\|f - g_N\|_1 < \varepsilon$.
Alors $g_N \in B(f, \varepsilon)$ mais $g_N \notin A$ puisque $g_N(1) = 0$.
On a montré que $\forall \varepsilon > 0$, $B(f, \varepsilon) \notin A$, donc A n'est pas un ouvert de $\left(C^0([0, 1], \mathbb{R}), \|\cdot\|_1\right)$.

(3) Les normes $\|\cdot\|_{\infty}$ et $\|\cdot\|_{1}$ de $C^{0}([0,1],\mathbb{R})$ ne sont pas équivalentes puisque A est un ouvert pour la première mais pas pour la deuxième.

Solution de l'exercice 4.

(1)a. La fonction $\varphi: K \to \mathbb{R}$ étant continue sur un compact, elle admet un minimum, i.e. il existe $x_0 \in K$ tel que $\forall x \in K$, $\varphi(x_0) \leq \varphi(x)$.

Supposons que $\varphi(x_0) \neq 0$ alors $||f(x_0) - x_0|| \neq 0$, d'où $f(x_0) \neq x_0$.

Ainsi, d'après (H), $\varphi(f(x_0)) = ||f(f(x_0)) - f(x_0)|| < ||f(x_0) - x_0|| = \varphi(x_0)$. D'où une contradiction. Donc $\varphi(x_0) = 0$.

b. D'après la question précédente, il existe $x_0 \in K$ tel que $||f(x_0) - x_0|| = \varphi(x_0) = 0$, d'où $f(x_0) = x_0$. Ainsi x_0 est un point fixe de f.

Soit $x_1 \in K$ un point fixe de f. Alors $||f(x_1) - f(x_0)|| = ||x_1 - x_0||$ d'où $x_0 = x_1$ par (H). Par conséquent x_0 est l'unique point fixe de f.

- (2)a. Montrons que f est dérivable (en particulier que f est continue) et que $\forall x \in \mathbb{R}, |f'(x)| < 1$.
 - f est dérivable sur $]-\infty,0[$ et pour tout $x \in]-\infty,0[$, |f'(x)|=0<1.
 - f est dérivable sur $]0, +\infty[$ et pour tout $x \in]0, +\infty[$, $|f'(x)| = 1 \frac{1}{(1+x)^2} < 1$.
 - $\lim_{x \to 0^{-}} \frac{f(x) f(0)}{x 0} = 0$ et $\lim_{x \to 0^{+}} \frac{f(x) f(0)}{x 0} = \lim_{x \to 0^{+}} \frac{x}{x + 1} = 0$ donc f est dérivable en 0 et

Soient $x, y \in \mathbb{R}$ tels que $x \neq y$. Alors, d'après le théorème des accroissements finis, il existe $\xi \in \mathbb{R}$ tel que $f(x) - f(y) = f'(\xi)(x - y)$ d'où $|f(x) - f(y)| = |f'(\xi)||x - y| < |x - y|$. Donc f vérifie (H).

- b. Supposons par l'absurde qu'il existe $x \in \mathbb{R}$ tel que f(x) = x.
 - *Premier cas : si x* > 0. Alors $\frac{1}{1+x} = 0$ d'où une contradiction.
 - *Deuxième cas : si x* \leq 0. Alors $1 = x \leq$ 0 d'où une contradiction.

Donc f n'admet pas de point fixe.

c. Il n'y a pas de contradiction avec l'existence d'un point fixe obtenue dans la première question puisque le domaine de f est \mathbb{R} qui n'est pas compact.

Solution de l'exercice 5.

(1)
$$\lim_{t \to 0} \frac{f(0 + te_1) - f(0)}{t} = \lim_{t \to 0} \frac{f(t, 0)}{t} = \lim_{t \to 0} 0 = 0$$

Donc f admet une dérivée directionnelle en $(0, 0)$ le long de e_1 et $\theta_{e_1} f(0) = 0$.

$$\lim_{t \to 0} \frac{f(0+te_2) - f(0)}{t} = \lim_{t \to 0} \frac{f(0,t)}{t} = \lim_{t \to 0} 0 = 0$$

 $\lim_{t\to 0} \frac{f(0+te_2)-f(0)}{t} = \lim_{t\to 0} \frac{f(0,t)}{t} = \lim_{t\to 0} 0 = 0$ Donc f admet une dérivée directionnelle en (0,0) le long de e_2 et $\partial_{e_2} f(0) = 0$.

(2) Posons v := (1,1). Puisque $\frac{f(0+tv)-f(0)}{t} = \frac{f(t,t)}{t} = \frac{1}{2t}$ n'admet pas de limite lorsque t tend vers t n'admet pas de dérivée directionnelle en t (0,0) le long de t.