Analyse approfondie

Période 6

1 L'ensemble des nombres réels

Exercice 1. Déterminer l'image des fonctions suivantes :

1.
$$f_1: \begin{bmatrix} [-2,3] \times [2,4] \rightarrow \mathbb{R} \\ (x,y) \mapsto x+y \end{bmatrix}$$

3.
$$f_3$$
:
$$[2,3] \times [-2,-1] \rightarrow \mathbb{R}$$
$$(x,y) \mapsto xy$$

2.
$$f_2: \begin{array}{ccc} [-1,1] \times [-2,3] & \rightarrow & \mathbb{R} \\ (x,y) & \mapsto & x-y \end{array}$$

4.
$$f_4$$
:
$$[-6,-3] \times [2,4] \rightarrow \mathbb{R}$$
$$(x,y) \mapsto \frac{x}{y}$$

Exercice 2. Montrer que les nombres suivants sont des entiers :

1.
$$\sqrt{7+4\sqrt{3}} + \sqrt{7-4\sqrt{3}}$$

$$2. \sqrt[3]{5\sqrt{2}+7} - \sqrt[3]{5\sqrt{2}-7}$$

Exercice 3.

1. Montrer que $\forall a, b \in \mathbb{R}$, $ab \leq \frac{a^2 + b^2}{2}$.

2. (a) Montrer que $\forall a, b, c \in \mathbb{R}$, $a\bar{b} + bc + ac \le a^2 + b^2 + c^2$.

(b) Montrer que $\forall a, b, c \in \mathbb{R}$, $3ab + 3bc + 3ac \le (a + b + c)^2$.

3. (a) Montrer que $\forall a, b \geq 0, \ \sqrt{ab} \leq \frac{a+b}{2}$ (inégalité arithmético-géométrique). (b) Montrer que $\forall a, b, c \geq 0, \ (a+b)(b+c)(c+a) \geq 8abc$.

Exercice 4. Montrer que $\forall x \in \mathbb{R}, \frac{x^2+2}{\sqrt{x^2+1}} \geq 2.$

Exercice 5. Montrer que $\sum_{k=1}^{n} \frac{1}{\sqrt{k}} < \sqrt{n} + \sqrt{n+1} - 1$.

Exercice 6. Soient $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n \in \mathbb{R}$.

1. Montrer que $\forall x \in \mathbb{R}, \ x^2 \sum_{i=1}^{n} a_i^2 + 2x \sum_{i=1}^{n} a_i b_i + \sum_{i=1}^{n} b_i^2 \ge 0.$

2. En déduire l'inégalité de Cauchy–Schwarz : $\left(\sum_{i=1}^{n}a_{i}b_{i}\right)^{2} \leq \left(\sum_{i=1}^{n}a_{i}^{2}\right)\left(\sum_{i=1}^{n}b_{i}^{2}\right)$.

3. Étudier le cas d'égalité.

4. Applications.

(a) Montrer que $\forall x_1, \dots, x_n \ge 0$, $\frac{\sum_{i=1}^n x_i}{n} \le \sqrt{\frac{\sum_{i=1}^n x_i^2}{n}}$.

(b) On considère deux triangles $A_1B_1C_1$ et $A_2B_2C_2$. On note $\alpha_i = \overline{A_iB_i}$, $\beta_i = \overline{B_iC_i}$ et $\gamma_i = \overline{A_iC_i}$. Montrer que $A_1B_1C_1$ et $A_2B_2C_2$ sont semblables si et seulement si

$$\sqrt{\alpha_1 \alpha_2} + \sqrt{\beta_1 \beta_2} + \sqrt{\gamma_1 \gamma_2} = \sqrt{\left(\alpha_1 + \beta_1 + \gamma_1\right) \left(\alpha_2 + \beta_2 + \gamma_2\right)}$$

Exercice 7.

1. Résoudre $|x^2 - 1| < x$ d'inconnue $x \in \mathbb{R}$.

2. Résoudre $|x^2 - 4x + 3| = 2x + 3$ d'inconnue $x \in \mathbb{R}$.

3. Résoudre $|2x| \ge x^2 - 1$ d'inconnue $x \in \mathbb{R}$

Exercice 8. Montrer que $\forall x \in \mathbb{R}, |x-1| \le x^2 - x + 1$.

Exercice 9.

1. Montrer que pour tout $x, y \in \mathbb{R}$, on a

$$\max(x, y) = \frac{x + y + |x - y|}{2}$$
 et $\min(x, y) = \frac{x + y - |x - y|}{2}$.

2. Montrer que pour tout $x \in \mathbb{R}$, on a

$$x = \max(x, 0) + \min(x, 0)$$
 et $|x| = \max(x, 0) - \min(x, 0)$.

Exercice 10.

- 1. Montrer que $\forall x, y \in \mathbb{R}$, $|x| + |y| \le |x + y| + |x y|$.
- 2. Montrer que $\forall x, y \in \mathbb{R}$, $\frac{|x+y|}{1+|x+y|} \le \frac{|x|}{1+|x|} + \frac{|y|}{1+|y|}$.

Exercice 11. Étant donné une partie $E \subset \mathbb{R}$, on rappelle que l'on dénote par $\max(E)$ le plus grand élément de E (s'il existe) et par $\sup(E)$ la borne supérieure de E (si elle existe).

Pour chacune des assertions suivantes, dire si elle est vraie ou fausse, en justifiant :

- 1. Si $E \subset \mathbb{R}$ admet un plus grand élément alors E admet une borne supérieure.
- 2. Si $E \subset \mathbb{R}$ admet un plus grand élément alors $\max(E) = \sup(E)$.
- 3. Si $E \subset \mathbb{R}$ admet une borne supérieure alors E admet un plus grand élément.
- 4. Si $E \subset \mathbb{R}$ est majorée alors E admet une borne supérieure.
- 5. Si $E \subset \mathbb{R}$ est majorée et non-vide alors E admet un plus grand élément.
- 6. Si $E \subset \mathbb{R}$ admet une borne supérieure alors E est majorée.
- 7. Si $E \subset \mathbb{R}$ admet un plus grand élément alors E est non-vide.

Exercice 12. Pour chacune des parties suivantes de \mathbb{R} , déterminer, lorsqu'ils existent, les majorants, les minorants, la borne supérieure, la borne inférieure, le plus grand élément et le plus petit élément :

(1)
$$[-\pi, 42[$$
 (4) \mathbb{N} (6) $\left\{\frac{n}{mn+1} : n, m \in \mathbb{N} \setminus \{0\}\right\}$

- (2) $\{x \in \mathbb{R} : x^2 < 2\}$
- (3) $[0,1] \cap \mathbb{Q}$ (5) $\left\{\frac{1}{n}: n \in \mathbb{N} \setminus \{0\}\right\}$ (7) $\left\{\frac{n}{mn+1}: n, m \in \mathbb{N}\right\}$

Exercice 13. Soient $A, B \subset \mathbb{R}$ telles que $A \subset B$.

Pour chacune des assertions suivantes, dire si elle est vraie ou fausse (en justifiant).

Lorsque l'assertion est vraie, on précisera la relation entre les bornes inférieures/supérieures considérées.

- 1. Si *A* admet une borne supérieure alors *B* admet une borne supérieure.
- 2. Si *A* admet une borne inférieure alors *B* admet une borne inférieure.
- 3. Si *A* admet une borne supérieure alors *B* admet une borne inférieure.
- 4. Si *B* admet une borne supérieure alors *A* admet une borne supérieure.
- 5. Si *B* admet une borne inférieure alors *A* admet une borne inférieure.

Exercice 14. Soient A et B deux parties non-vides et majorées de \mathbb{R} .

- 1. On pose $A + B := \{a + b : a \in A \text{ et } b \in B\}$ (somme de Minkowski).
 - (a) Montrer que A + B est non-vide et majorée.
 - (b) Montrer que $\sup(A + B) = \sup(A) + \sup(B)$.
- 2. (a) Montrer que $A \cup B$ est non-vide et majorée.
 - (b) Montrer que $\sup(A \cup B) = \max(\sup(A), \sup(B))$.

Exercice 15. Soient $A, B \subset \mathbb{R}$ deux parties non-vides de \mathbb{R} telles que

$$\forall a \in A, \forall b \in B, a \leq b.$$

- 1. Montrer que *A* admet une borne supérieure et que *B* admet une borne inférieure.
- 2. Montrer que sup $A \leq \inf B$.

Exercice 16. Soient $A, B \subset \mathbb{R}$ de sorte que $\inf(A)$ et $\sup(B)$ existent.

- 1. Montrer que si $\inf(A) = \sup(B)$ alors $A \cap B$ contient au plus un élément.
- 2. Sous l'hypothèse que $\inf(A) = \sup(B)$, l'intersection $A \cap B$ peut-elle être vide?

Exercice 17. Montrer que si $f:[0,1] \rightarrow [0,1]$ est croissante alors f admet un point fixe, i.e. $\exists a \in [0, 1], f(a) = a$.

Indice : *considérer* $\{x \in [0,1] : f(x) \ge x\}$.

Exercice 18.

- 1. Montrer que la fonction partie entière est croissante.
- 2. (a) Montrer que $\forall x, y \in \mathbb{R}, |x| + |y| \le |x + y| \le |x| + |y| + 1$.
- (b) En déduire que $\forall x, y \in \mathbb{R}$, $\lfloor x + y \rfloor \lfloor x \rfloor \lfloor y \rfloor \in \{0, 1\}$. 3. Montrer que $\forall n \in \mathbb{N} \setminus \{0\}$, $\forall x \in \mathbb{R}$, $\left\lfloor \frac{\lfloor nx \rfloor}{n} \right\rfloor = \lfloor x \rfloor$.

Exercice 19. Donner une expression fermée du nombre de chiffres d'un entier strictement positif à l'aide du logarithme décimal et de la partie entière.

Rappel: le logarithme décimal est la fonction $\log :]0, +\infty[\to \mathbb{R}$ définie par $\log(x) = \frac{\ln(x)}{\ln(10)}$

Exercice 20.

- 1. Soit $x \in \mathbb{R}$. Calculer $\lim_{n \to +\infty} \frac{\sum_{k=1}^{n} \lfloor kx \rfloor}{n^2}$.
- 2. En déduire que tout nombre réel est limite d'une suite de rationnels.
- 3. Donner une démonstration alternative utilisant la densité de Q dans R.

Exercice 21. Soient *I* et *J* deux intervalles.

- 1. Montrer que $I \cap J$ est un intervalle.
- 2. Montrer que la somme de Minkowski I + J est un intervalle.
- 3. (a) Montrer que si $I \cap J \neq \emptyset$ alors $I \cup J$ est un intervalle.
 - (b) Montrer que l'hypothèse de la question précédente n'est pas superflue.

Exercice 22. Soient I et J deux intervalles ouverts de \mathbb{R} .

Montrer que $(I \cap \mathbb{Q}) \cap (J \cap \mathbb{Q}) = \emptyset \implies I \cap J = \emptyset$.

Exercice 23. On définit l'ensemble des nombres dyadiques par $D \coloneqq \left\{ \frac{m}{2^n} : m \in \mathbb{Z}, n \in \mathbb{N} \right\}$. Montrer que D est dense dans \mathbb{R} , i.e. $\forall x, y \in \mathbb{R}, x < y \implies \exists d \in D, x < d < y$.

Exercice 24.

- 1. La somme de deux nombres irrationnels est-elle nécessairement irrationnelle?
- 2. Le produit de deux nombres irrationnels est-il nécessairement irrationnel?
- 3. Montrer que $\forall x \in \mathbb{R} \setminus \mathbb{Q}, \ \forall y \in \mathbb{Q}, \ x + y \notin \mathbb{Q}$.
- 4. Montrer que $\forall x \in \mathbb{R} \setminus \mathbb{Q}, \forall y \in \mathbb{Q} \setminus \{0\}, xy \notin \mathbb{Q}$.

Exercice 25. On rappelle que $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$.

- 1. Montrer que $\forall a, b \in \mathbb{Z}, a + b\sqrt{2} = 0 \Leftrightarrow a = b = 0$.
- 2. Montrer que $\forall a, b, c, d \in \mathbb{Z}$, $a + b\sqrt{2} = c + d\sqrt{2} \Leftrightarrow a = c$ et b = d.

Exercice 26. Montrer que les nombres suivants sont irrationnels :

(a)
$$\sqrt{p}$$
 où p est un nombre premier (b) $\sqrt{6}$

(b)
$$\sqrt{6}$$

(c) $\sqrt[3]{3} + \sqrt{11}$
(d) $(\sqrt{2} + \sqrt{3})^2$

(d)
$$\left(\sqrt{2} + \sqrt{3}\right)^2$$

(e)
$$\sqrt{2} + \sqrt{3}$$

(f)
$$\sqrt{2} + \sqrt{3} + \sqrt{6}$$

(e)
$$\sqrt{2} + \sqrt{3}$$

(f) $\sqrt{2} + \sqrt{3} + \sqrt{6}$
(g) $(3\sqrt{2} + 2\sqrt{3} + \sqrt{6})^2$

(h)
$$\sqrt{7} + \sqrt{3}$$
.
(i) $\frac{\ln 3}{\ln 2}$

(i)
$$\frac{\ln 3}{\ln 2}$$

Continuité uniforme

Exercice 27. Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I. On dit que f est *lipschitzienne* s'il existe k > 0 tel que

$$\forall x_1, x_2 \in I, |f(x_1) - f(x_2)| \le k|x_1 - x_2|.$$

Montrer que si f est lipschitzienne alors f est uniformément continue.

Exercice 28. Soit $f: I \to \mathbb{R}$ une fonction dérivable sur un intervalle I. Montrer que si f' est bornée alors f est uniformément continue.

Exercice 29. Soit $f:]a, b[\to \mathbb{R}$ une fonction définie sur un intervalle ouvert où $a \in \mathbb{R}$ et $b \in \mathbb{R} \cup \{+\infty\}$.

- 1. Montrer que si f est uniformément continue alors $\lim_{x \to a} f(x)$ existe (et est finie).
- 2. Montrer que si la limite $\lim_{x\to a^+} f(x)$ n'existe pas ou n'est pas finie alors f n'est pas uniformément continue.

Exercice 30. Soit $f:[0,+\infty[\to \mathbb{R}]$ une fonction.

- 1. (a) Montrer que si f est uniformément continue alors $\exists a, b \in \mathbb{R}, \forall x \in [0, +\infty[, f(x) \le ax + b]$.
 - (b) Montrer que si $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$ alors f n'est pas uniformément continue.
- 2. Montrer que si f est continue et si $\lim_{x \to +\infty} f(x) = \ell \in \mathbb{R}$ alors f est uniformément continue.
- 3. Supposons que f soit continue et que $\lim_{x \to +\infty} f(x) = +\infty$.

Montrer que l'on ne peut rien conclure sur la continuité uniforme de f.

Exercice 31. Soit $f: I \to \mathbb{R}$ une fonction continue, monotone et bornée où I est un intervalle. Montrer que f est uniformément continue.

Exercice 32.

- 1. Montrer que $x^2 : \mathbb{R} \to \mathbb{R}$ n'est pas uniformément continue.
- 2. Montrer que tan : $\left|-\frac{\pi}{2}, \frac{\pi}{2}\right| \to \mathbb{R}$ n'est pas uniformément continue.
- 3. Montrer que $\frac{1}{x}$: $]0, +\infty[\to \mathbb{R}$ n'est pas uniformément continue.
- 4. Montrer que exp : $\mathbb{R} \to \mathbb{R}$ n'est pas uniformément continue.
- 5. Montrer que exp : $\left|-\pi, \sqrt{42}\right| \to \mathbb{R}$ est uniformément continue.
- 6. Montrer que $\sqrt{\cdot}: [0, +\infty[\to \mathbb{R} \text{ est uniformément continue.}]$
- 7. Montrer que $\sqrt[3]{\cdot} : \mathbb{R} \to \mathbb{R}$ est uniformément continue.
- 8. Montrer que sin : $\mathbb{R} \to \mathbb{R}$ est uniformément continue.
- 9. Montrer que $\sin(1/x)$: $]0,1[\rightarrow \mathbb{R}$ n'est pas uniformément continue.
- 10. La fonction $f: [0,1] \to \mathbb{R}$ définie par $f(x) = x \sin(1/x)$ si $x \ne 0$ et f(0) = 0 est-elle uniformément continue?

Exercice 33. Soient $f,g:I\to\mathbb{R}$ deux fonctions bornées et uniformément continues sur un intervalle.

- 1. Montrer que fg est uniformément continue.
- 2. La conclusion reste-t-elle valide si *f* et *g* ne sont pas bornées?

Exercice 34. Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction périodique continue.

- 1. Montrer que *f* est bornée.
- 2. Montrer que f est uniformément continue.

Exercice 35. Soit $f:[0,+\infty[\to\mathbb{R}]$ une fonction uniformément continue.

- 1. Montrer que si $\lim_{\mathbb{N}\ni n\to +\infty} f(n) = +\infty$ alors $\lim_{x\to +\infty} f(x) = +\infty$.
- 2. L'énoncé précédent reste-t-il vrai si l'on suppose la fonction seulement continue?