Université d'Angers – 2024/2025

Théorie des anneaux

CC du 28/04/2025.

Aucun document ou appareil électronique n'est autorisé.

Vous devez **justifier toutes vos réponses**. La note tiendra compte de la qualité et de la concision de la rédaction. Vous pouvez utiliser tous les résultats du cours. Ces résultats doivent être cités correctement.

Exercice 1.

On considère l'unique morphisme d'anneaux $\Theta: \mathbb{Z} \to \mathbb{Z}[i]/(i-3)$, i.e. $\Theta(n) := \overline{n}$.

- (1) Montrer que Θ est surjectif.
- (2) Montrer que $ker(\Theta) = 10\mathbb{Z}$.
- (3) En déduire que Θ induit un isomorphisme $\theta: \mathbb{Z}/10\mathbb{Z} \to \mathbb{Z}[i]/(i-3)$.
- (4) L'idéal (i-3) de $\mathbb{Z}[i]$ est-il premier? maximal?
- (5) Déterminer θ^{-1} .

Exercice 2.

Soit $(A, +, \cdot, 0, 1)$ un anneau. On définit $\oplus : A \times A \to A$ et $\odot : A \times A \to A$ par

$$a \oplus b \coloneqq a + b + 1$$
 et $a \odot b \coloneqq ab + a + b$.

- (1) Montrer que \oplus admet un neutre que l'on note e et que \odot admet un neutre que l'on note u.
- (2) Montrer que (A, \oplus, \odot, e, u) est un anneau isomorphe à $(A, +, \cdot, 0, 1)$. *Indice : on pourra commencer par exhiber une bijection* $\varphi : A \to A$ *compatible avec les lois.*

Exercice 3.

On définit l'ensemble des nombres décimaux par $\mathbb{D} \coloneqq \left\{ \frac{a}{10^k} : a \in \mathbb{Z}, k \in \mathbb{N} \right\}$.

- (1) Montrer que D est un anneau intègre pour les lois usuelles.
- (2) Déterminer l'ensemble \mathbb{D}^* des inversibles de \mathbb{D} .
- (3) a. Montrer que si I est un idéal de \mathbb{D} alors $I \cap \mathbb{Z}$ est un idéal de \mathbb{Z} .
 - b. En déduire que D est principal.

Exercice 4.

On considère $A := \{ P \in \mathbb{Q}[X] : P(0) \in \mathbb{Z} \}.$

- (1) Montrer que *A* est un anneau intègre pour les lois usuelles.
- (2) Montrer que $A^* = \{\pm 1\}$, i.e. que les inversibles de A sont 1 et -1.
- (3) a. Soit $P \in A$ tel que P(0) = 0. Montrer que $\forall m \in \mathbb{Z} \setminus \{0\}, m | P$.
 - b. Montrer que les irréductibles de *A* sont :
 - $\pm p$, où p est un nombre premier;
 - $\pm P$, où P est un irréductible de $\mathbb{Q}[X]$ tel que P(0) = 1.
- (4) Montrer que *X* ne s'écrit pas comme produit d'un inversible et d'irréductibles.
- (5) Est-ce que *A* est factoriel?
- (6) Est-ce que *A* est noethérien?

Exercice 5.

L'objectif de cet exercice est de déterminer toutes les applications surjectives $f: \mathbb{Q} \setminus \{0\} \to \mathbb{Z}$ telles que

- (i) $\forall x, y \in \mathbb{Q} \setminus \{0\}, \ f(xy) = f(x) + f(y),$
- (ii) $\forall x, y \in \mathbb{Q} \setminus \{0\}, f(x+y) \ge \min(f(x), f(y)).$

Pour tout l'exercice, on fixe une application f comme ci-dessus.

- (1) a. Montrer que f(1) = f(-1) = 0.
 - b. Soit $x \in \mathbb{Q} \setminus \{0\}$. Montrer que f(-x) = f(x) et que $f(x^{-1}) = -f(x)$.
 - c. Montrer que si $n \in \mathbb{N} \setminus \{0\}$ alors $f(n) \ge 0$.
 - d. En déduire que si $n \in \mathbb{Z} \setminus \{0\}$ alors $f(n) \ge 0$.
- (2) On pose $A := \{x \in \mathbb{Q} \setminus \{0\} : f(x) \ge 0\} \cup \{0\}.$
 - a. Montrer que A est un sous-anneau de $\mathbb Q$ contenant $\mathbb Z$.
 - b. Montrer que $A^* = \{x \in \mathbb{Q} \setminus \{0\} : f(x) = 0\}$, i.e. que les inversibles de A sont les antécédents de 0 par f.
- (3) a. Montrer qu'il existe $\pi \in A$ tel que $f(\pi) = 1$.
 - b. Montrer qu'un tel π est irréductible dans A.
 - c. Montrer que si $\pi = \frac{a}{b}$ avec a et b premiers entre eux dans \mathbb{Z} alors f(a) = 1 et f(b) = 0. *Indice : on pourra utiliser une relation de Bézout dans* \mathbb{Z} .
 - d. En déduire qu'il existe un nombre premier p tel que f(p) = 1.

On fixe un tel *p* dans la suite.

- (4) Montrer que pour tout $n \in \mathbb{Z}$, si p ne divise pas n dans \mathbb{Z} alors f(n) = 0. *Indice* : on pourra utiliser une relation de Bézout dans \mathbb{Z} .
- (5) Soit $x \in \mathbb{Q} \setminus \{0\}$.
 - a. Montrer qu'il existe $a, b, n \in \mathbb{Z}$ tels que $x = \frac{a}{b}p^n$, $p \nmid a$ et $p \nmid b$.
 - b. Déterminer f(x) en fonction de n.
- (6) Conclure : quelles sont les applications surjectives $f: \mathbb{Q} \setminus \{0\} \to \mathbb{Z}$ vérifiant (i) et (ii)?

Les questions suivantes concernent l'étude de l'anneau A défini à la question (2).

- (7) a. Montrer que pour tout $x \in \mathbb{Q} \setminus \{0\}, x \in A$ ou $x^{-1} \in A$.
 - b. En déduire que pour tout $x, y \in A \setminus \{0\}$, x divise y ou y divise x dans A.
- (8) Soit *I* un idéal non-nul de *A*.
 - a. Justifier qu'il existe $x \in I \setminus \{0\}$ minimisant f(x).
 - b. Montrer que I = (x).
 - c. L'anneau A est-il noethérien? factoriel?
 - d. Montrer que $I = (p^n)$ où $n := f(x) \in \mathbb{N}$.
 - e. En déduire qu'il existe une bijection décroissante entre $\mathbb N$ et les idéaux non-nuls de A.
- (9) Soit B un sous-anneau de \mathbb{Q} contenant strictement A.
 - a. Montrer que $\frac{1}{p} \in B$.
 - b. En déduire que $B = \mathbb{Q}$.

Solution de l'exercice 1.

- (1) Soit $x \in \mathbb{Z}[i]/(i-3)$, alors il existe $a, b \in \mathbb{Z}$ tels que $x = \overline{a+ib}$. D'où $x = \overline{a+ib} = \overline{a+3b} = \Theta(a+3b)$ puisque $a+3b \in \mathbb{Z}$. Donc Θ est surjectif.
- (2) Soit $n \in \ker(\Theta)$ alors $\overline{n} = \overline{0}$, i.e. il existe $a, b \in \mathbb{Z}$ tels que n = (i-3)(a+ib) = -b-3a+i(a-3b). En identifiant les parties imaginaires, on a 0 = a-3b, i.e. a = 3b. Puis, en considérant les parties réelles, on obtient que $n = -b-3a = -10b \in (10)$. Donc $\ker(\Theta) \subset (10)$. Réciproquement, soit $n \in (10)$ alors il existe $k \in \mathbb{Z}$ tel que n = 10k.

Puis $\Theta(n) = \overline{n} = \overline{10k} = \overline{k + 3^2k} = \overline{k + i^2k} = \overline{0}$. Donc $\ker(\Theta) = (10)$.

- (3) Puisque Θ est surjectif de noyau (10), c'est une conséquence du premier théorème d'isomorphisme.
- (4) On a $\mathbb{Z}[i]/(i-3) \simeq \mathbb{Z}/10\mathbb{Z}$ qui n'est pas intègre (puisque $\bar{2} \cdot \bar{5} = \bar{0}$). Donc l'idéal (i-3) de $\mathbb{Z}[i]$ n'est ni premier ni maximal.
- (5) Tout élément de $\mathbb{Z}[i]/(i-3)$ est de la forme $\overline{a+ib}$ avec $a,b\in\mathbb{Z}$. Puisque $\overline{a+ib}=\overline{a+3b}=\theta\left(\overline{a+3b}\right)$, on obtient que $\theta^{-1}\left(\overline{a+ib}\right)=\overline{a+3b}$.

Solution de l'exercice 2.

- (1) Soit $a \in A$. Alors $(-1) \oplus a = -1 + a + 1 = a$ et $a \oplus (-1) = a 1 + 1 = a$. De même $0 \odot a = 0 + 0 + a = a$ et $a \odot 0 = 0 + a + 0 = a$. Donc e := -1 est un neutre de \oplus et u := 0 est un neutre de \odot .
- (2) Considérons $\varphi: A \to A$ défini par $\varphi(a) = a + 1$ alors φ est une bijection de réciproque $\varphi^{-1}(a) = a 1$. De plus,
 - $\varphi(0) = 1$.
 - Soient $a, b \in A$ alors $\varphi(a \oplus b) = \varphi(a + b + 1) = (a + b + 1) + 1 = (a + 1) + (b + 1) = \varphi(a) + \varphi(b)$ et
 - $\varphi(a \odot b) = \varphi(ab + a + b) = ab + a + b + 1 = (a + 1)(b + 1) = \varphi(a)\varphi(b)$.

On déduit de l'existence de cette bijection compatible avec les lois que $(A, \oplus, \odot, -1, 0)$ est un anneau et que $\varphi: (A, \oplus, \odot, -1, 0) \to (A, +, \cdot, 0, 1)$ est un isomorphisme d'anneaux.

Solution de l'exercice 3.

- (1) Montrons que \mathbb{D} est un sous-anneau de \mathbb{Q} :
 - $1 = \frac{1}{10^0} \in \mathbb{D}$,
 - soient $x, y \in \mathbb{D}$ alors il existe $a, b \in \mathbb{Z}$ et $k, l \in \mathbb{N}$ tels que $x = \frac{a}{10^k}$ et $y = \frac{b}{10^l}$, d'où

$$x - y = \frac{a}{10^k} - \frac{b}{10^l} = \frac{a10^l - b10^k}{10^{k+l}} \in \mathbb{D}$$
 et $xy = \frac{ab}{10^{k+l}} \in \mathbb{D}$.

(2) Soit $x \in \mathbb{D}^*$, alors il existe $a, b \in \mathbb{Z}$ et $k, l \in \mathbb{N}$ tels que $x = \frac{a}{10^k}$ et $1 = x \frac{b}{10^l} = \frac{ab}{10^{k+l}}$. Donc $ab = 10^{k+l}$. Donc les diviseurs premiers de a sont 2 et 5, i.e. il existe $n, m \in \mathbb{N}$ tels que $a = \pm 2^m 5^n$.

Donc
$$\mathbb{D}^* \subset \left\{ \frac{\pm 2^m 5^n}{10^k} : k, m, n \in \mathbb{N} \right\}.$$

Réciproquement, soit $x \in \mathbb{D}$ de la forme $x = \frac{\pm 2^m 5^n}{10^k}$ où $k, m, n \in \mathbb{N}$.

Posons $y := \frac{\pm 2^n 5^m 10^k}{10^{n+m}} \in \mathbb{D}$ alors xy = 1. Donc $x \in \mathbb{D}^*$.

Ainsi l'ensemble des inversibles de \mathbb{D} est $\mathbb{D}^* = \left\{ \frac{\pm 2^m 5^n}{10^k} : k, m, n \in \mathbb{N} \right\}$.

- (3) a. Soit I un idéal de \mathbb{D} .
 - $0 \in I \cap \mathbb{Z}$;
 - Soient $x, y \in I \cap \mathbb{Z}$ et $a \in \mathbb{Z}$ alors $x + ay \in I$ puisque I est un idéal de \mathbb{D} et $a \in \mathbb{Z} \subset \mathbb{D}$. Donc $x + ay \in I \cap \mathbb{Z}$.

Donc $I \cap \mathbb{Z}$ est un idéal de \mathbb{Z} .

b. Soit I un idéal de \mathbb{D} .

Puisque $I \cap \mathbb{Z}$ est un idéal de \mathbb{Z} qui est principal, il existe $n \in \mathbb{Z}$ tel que $I \cap \mathbb{Z} = (n)$ dans \mathbb{Z} . Soit $x \in I$, alors il existe $a \in \mathbb{Z}$ et $k \in \mathbb{N}$ tel que $x = \frac{a}{10^k}$. D'où $x \cdot 10^k \in I \cap \mathbb{Z}$. Donc il existe $m \in \mathbb{Z}$ tel que $x \cdot 10^k = nm$. Ainsi $x = n \cdot \frac{m}{10^k} \subset (n)$ dans \mathbb{D} .

Réciproquement $(n) \subset I$ puisque $n \in I$. Donc I = (n) dans \mathbb{D} .

Donc D est un anneau intègre dont tous les idéaux sont principaux, i.e. c'est un anneau principal.

Solution de l'exercice 4.

- (1) Montrons que A est un sous-anneau de $\mathbb{Q}[X]$.
 - $1 \in A$;
 - soient $P,Q \in A$ alors $(P-Q)(0) = P(0) Q(0) \in \mathbb{Z}$ et $(PQ)(0) = P(0)Q(0) \in \mathbb{Z}$ donc $P-Q, PQ \in A$.

Donc A est un anneau intègre comme sous-anneau de $\mathbb{Q}[X]$ qui est intègre (car \mathbb{Q} est un corps).

(2) Puisque $1 \cdot 1 = 1$ et $(-1) \cdot (-1) = 1$, on a que $\{\pm 1\} \subset A^*$.

Réciproquement, soit $P \in A^*$ alors il existe $Q \in A$ tel que PQ = 1.

Donc $0 = \deg 1 = \deg(PQ) = \deg(P) + \deg(Q)$. Ainsi $\deg(P) = \deg(Q) = 0$.

Puisque P(0), $Q(0) \in \mathbb{Z}$, il existe $r, s \in \mathbb{Z} \setminus \{0\}$ tels que P = r et Q = s. D'où 1 = rs dans \mathbb{Z} .

Et donc $P = r \in \{\pm 1\}$. On a bien montré que $A^* = \{\pm 1\}$.

a. Soient $P \in A$ tel que P(0) = 0 et $m \in \mathbb{Z} \setminus \{0\}$. Alors il existe $a_1, \dots, a_d \in \mathbb{Q}$ tels que $P = \sum_{i=1}^d a_i X^i$. (3)

D'où
$$P = m \sum_{k=1}^{d} \frac{a_k}{m} X^k$$
 où $\sum_{k=1}^{d} \frac{a_k}{m} X^k \in A$. Donc $m | P$ dans A .

- b. Soit *P* un irréductible de *A*, en particulier $P \neq 0$ et $P \notin A^* = \{\pm 1\}$. On va distinguer deux cas :
 - Premier cas: deg(P) = 0 alors $P = n \in \mathbb{Z} \setminus \{0, -1, 1\}$. Alors forcément *n* est un nombre premier puisque sinon n = kl avec $k, l \notin A^*$. Réciproquement, si n est premier et que n = kl alors $k \in \{\pm 1\} = A^*$ ou $l \in \{\pm 1\} = A^*$.
 - Deuxième cas : $\deg(P) > 0$ alors $P(0) \neq 0$ d'après la question précédente. Puis forcément $P(0) = \pm 1$ puisque sinon $P = P(0) \cdot \frac{P}{P(0)}$ avec $P(0), \frac{P}{P(0)} \in A \setminus A^*$. Supposons que P ne soit pas irréductible dans $\mathbb{Q}[X]$ alors il existe $R, S \in \mathbb{Q}[X]$ tels que P = RS et deg R, deg S > 0. Alors $P = \frac{R(0)S(0)}{R(0)S(0)}RS = \pm \frac{R}{R(0)}\frac{S}{S(0)}$ avec $\frac{R}{R(0)}, \frac{S}{S(0)} \in A \setminus A^*$. D'où une contradiction avec l'irréductibilité de P dans A. Donc P est irréductible dans $\mathbb{Q}[X]$. Réciproquement, si P est irréductible dans $\mathbb{Q}[X]$ et vérifie $P(0) = \pm 1$ alors P est irréductible dans A: si P = RS avec $R, S \in A$ alors R ou S est dans $(\mathbb{Q}[X])^* \cap A = \mathbb{Q}^* \cap A = \{\pm 1\} = A^*$.
- (4) Supposons par l'absurde que *X* s'écrive comme le produit d'un inversible et d'irréductibles. Alors il existe p_1,\ldots,p_r des nombres premiers et P_1,\ldots,P_s irréductibles dans $\mathbb{Q}[X]$ vérifiant $P_k(0)=1$ tels que $X=\pm p_1\cdots p_rP_1\cdots P_s$. En évaluant en 0, on obtient $0=\pm p_1\cdots p_r$. D'où une contradiction.
- (5) L'anneau A n'est pas factoriel puisque tout élément d'un anneau factoriel s'écrit comme le produit d'un inversible et d'irréductibles.
- (6) L'anneau A n'est pas noethérien puisque tout élément d'un anneau intègre et noethérien s'écrit comme le produit d'un inversible et d'irréductibles (sans forcément avoir l'unicité).

Solution de l'exercice 5.

- a. On a $f(1) = f(1 \cdot 1) = f(1) + f(1) = 2f(1)$ d'où f(1) = 0. Puis $0 = f(1) = f((-1) \cdot (-1)) = 2f(-1)$ d'où f(-1) = 0.
 - b. Soit $x \in \mathbb{Q} \setminus \{0\}$. Alors f(-x) = f((-1)x) = f(-1) + f(x) = f(x). Puis $f(x^{-1}) = f(x^{-1}) + f(x) - f(x) = f(x^{-1}x) - f(x) = f(1) - f(x) = -f(x)$.
 - c. Montrons le résultat par récurrence.

Initialisation au rang n = 1 : $f(1) = 0 \ge 0$.

Hérédité : supposons que $f(n) \ge 0$ pour un certain $n \in \mathbb{N} \setminus \{0\}$.

Alors $f(n + 1) \ge \min(f(n), f(1)) = \min(f(n), 0) = 0$.

- d. Soit $n \in \mathbb{Z} \setminus \{0\}$. Si n > 0 alors $f(n) \ge 0$ d'après la question précédente. Si n < 0 alors $f(n) = f(-n) \ge 0$ d'après les questions précédentes.
- (2) a. Montrons que A est un sous-anneau de \mathbb{Q} .
 - $f(1) = 0 \ge 0$ donc $1 \in A$.
 - Soient $x, y \in A$.

Si x = y alors $x - y = 0 \in A$.

Si x = 0 et $y \ne 0$ alors $f(x - y) = f(-y) = f(y) \ge 0$.

Si $x \neq 0$ et y = 0 alors $f(x - y) = f(x) \ge 0$.

Si $x \neq y$, $x \neq 0$ et $y \neq 0$ alors $f(x - y) \ge \min(f(x), f(-y)) = \min(f(x), f(y)) \ge 0$.

Dans tous les cas $x - y \in A$.

• Soient $x, y \in A$.

Si x = 0 ou y = 0 alors $xy = 0 \in A$.

Sinon $xy \neq 0$ et $f(xy) = f(x) + f(y) \geq 0$, donc $xy \in A$.

Donc *A* est un anneau intègre comme sous-anneau d'un anneau intègre.

Soit $n \in \mathbb{Z}$ alors $f(n) \ge 0$ d'après la question (1).d., donc $n \in A$. Ainsi A contient \mathbb{Z} .

b. Soit $x \in A^*$ alors il existe $y \in A$ tel que xy = 1.

Alors $x, y \neq 0$ et 0 = f(1) = f(xy) = f(x) + f(y). Puisque $f(x), f(y) \geq 0$, on a forcement f(x) = 0.

Réciproquement, soit $x \in \mathbb{Q} \setminus \{0\}$ tel que f(x) = 0, alors $f(x^{-1}) = -f(x) = 0$.

Donc $x^{-1} \in A$ et $xx^{-1} = 1$. Ainsi $x \in A^*$.

On a bien montré que $A^* = f^{-1}(0)$.

- a. Puisque f est surjective, il existe $\pi \in \mathbb{Q} \setminus \{0\}$ tel que $f(\pi) = 1$. Puisque $f(\pi) = 1 \ge 0$, on a $\pi \in A$. (3)
 - b. On a $\pi \neq 0$ et $\pi \notin A^*$ puisque $f(\pi) = 1 \neq 0$.

Soient $a, b \in A$ tels que $\pi = ab$. Alors $a, b \neq 0$ et $1 = f(\pi) = f(a) + f(b)$.

Donc f(a) = 0 ou f(b) = 0 (sinon $f(a) + f(b) \ge 1 + 1 > 1$), i.e. $a \in A^*$ ou $b \in A^*$.

Donc π est irréductible.

c. **Méthode 1.** Écrivons $\pi = \frac{a}{b}$ où pgcd(a, b) = 1. Alors il existe $u, v \in \mathbb{Z}$ tels que 1 = au + bv.

Ainsi $0 = f(1) = f(au + bv) \ge \min(f(au), f(bv))$. Or $f(au), f(bv) \ge 0$ puisque $au, bv \in \mathbb{Z}$.

Donc f(au) = 0 ou f(bv) = 0.

Si 0 = f(au) = f(a) + f(u) alors f(a) = 0 (car $f(a), f(u) \ge 0$ puisque $a, u \in \mathbb{Z}$) donc $1 = f(\pi) = 0$ $f(a) - f(b) = -f(b) \le 0$ (car $b \in \mathbb{Z}$). D'où une contradiction.

Donc 0 = f(bv) = f(b) + f(v) et f(b) = 0. Puis $1 = f(\pi) = f(a) - f(b) = f(a)$.

Méthode 2. Écrivons $\pi = \frac{a}{b}$ où pgcd(a, b) = 1. Alors il existe $u, v \in \mathbb{Z}$ tels que 1 = au + bv.

Alors $b^{-1} = \pi u + v \text{ d'où } f(b^{-1}) \ge \min(f(\pi u), f(v)) = \min(f(\pi) + f(u), f(v)) = \min(1, 0) = 0.$

Donc $b^{-1} \in A$, d'où $b \in A^*$, i.e. f(b) = 0. Puis $f(a) = f(\pi) - f(b) = 1 - 0 = 1$.

d. On a $f(|a|) = f(a) = f(a) - f(b) = f(\pi) = 1$, donc on peut prendre $p := |a| \in \mathbb{N}$. Ensuite, comme p est irréductible dans A (d'après la question (3).b.), il l'est aussi dans \mathbb{Z} . (4) Soit $n \in \mathbb{Z}$ qui n'est pas un multiple de p dans \mathbb{Z} .

Puisque p est un nombre premier on a donc $\operatorname{pgcd}(p,n)=1$. Donc il existe $u,v\in\mathbb{Z}$ tels que 1=pu+nv. D'où $0=f(1)=f(pu+nv)\geq \min(f(pu),f(nv))$. Or $f(pu)=f(p)+f(u)=1+f(u)\geq 1$ puisque $u\in\mathbb{Z}$. Donc 0=f(nv)=f(n)+f(v). Puisque $n,v\in\mathbb{Z}$, on a $f(n),f(v)\geq 0$ et donc f(n)=f(v)=0. Donc $n\in A^*$.

- (5) a. Soit $x \in \mathbb{Q} \setminus \{0\}$. Alors il existe $u, v \in \mathbb{Z} \setminus \{0\}$ tels que $x = \frac{u}{v}$. Puis il existe $k, l \in \mathbb{N}$ et $a, b \in \mathbb{Z} \setminus \{0\}$ tels que $u = p^k a$, $v = p^l b$, $p \nmid a$ et $p \nmid b$. D'où $x = \frac{a}{b} p^{k-l}$. b. Alors f(x) = f(a) - f(b) + nf(p) = n car f(a) = f(b) = 0 d'après la question (4) et f(p) = 1.
- (6) D'après la question précédente, si *f* vérifie les conditions de l'énoncé alors *f* est une valuation *p*-adique pour un certain nombre premier *p*.

 Réciproquement, les valuations *p*-adiques vérifient les conditions de l'énoncé.

On dit que l'anneau A est un anneau de valuation discrète pour la valuation f.

- (7) a. Soit $x \in \mathbb{Q} \setminus \{0\}$. Si $x \notin A$ alors f(x) < 0 d'où $f(x^{-1}) = -f(x) > 0$ et ainsi $x^{-1} \in A$. Donc $x \in A$ ou $x^{-1} \in A$.
 - b. Soient $x, y \in A \setminus \{0\}$. D'après la question précédente $xy^{-1} \in A$ ou $yx^{-1} \in A$. Si $xy^{-1} \in A$ alors $x = xy^{-1}y$ et donc y|x. Si $yx^{-1} \in A$ alors $y = yx^{-1}x$ et donc x|y.
- (8) a. L'ensemble $\{f(x): x \in I \setminus \{0\}\}$ est une partie non-vide de \mathbb{N} donc il admet un minimum (puisque \mathbb{N} est bien ordonné).
 - b. Soit $y \in I \setminus \{0\}$ alors $f(y) \ge f(x)$ d'où $f(yx^{-1}) \ge 0$ et donc $yx^{-1} \in A$. Ainsi $y = yx^{-1}x \in (x)$. Réciproquement, puisque $x \in I$, on a (x) = I.
 - c. A est un anneau principal puisqu'il est intègre comme sous-anneau de $\mathbb Q$ qui est intègre et que tout ses idéaux sont principaux. Par conséquent A est noethérien et factoriel.
 - d. On a $f(p^n x^{-1}) = f(p^n) f(x) = n n = 0$ donc $p^n x^{-1} \in A^*$. Ainsi $p^n = p^n x^{-1} x$ avec $p^n x^{-1} \in A^*$, d'où $(p^n) = (x) = I$.
 - e. Considérons $\varphi: \mathbb{N} \to \{I \neq \{0\} \text{ idéal de } A\}$ défini par $\varphi(n) = \binom{p^n}{n}$. Si I est un idéal non-nul de A alors il existe $n \in \mathbb{N}$ tel que $I = \binom{p^n}{n} = \varphi(n)$. Donc φ est surjective. Si $n, m \in \mathbb{N}$ vérifient n < m alors $p^n | p^m$ dans A donc $\varphi(n) = \binom{p^n}{n} \supset \binom{p^m}{n} = \varphi(m)$. De plus $f(p^n) = n < m = \min \left\{ f(x) : x \in \binom{p^m}{n} \right\}$. Donc $\varphi(n) \supsetneq \varphi(m)$. Ainsi φ est strictement décroissante et est donc injective.
- (9) a. Soit $x \in B \setminus A$. Alors n := f(x) < 0. Donc $f\left(p^{-1}x^{-1}\right) = -1 f(x) \ge 0$. Ainsi $p^{-1}x^{-1} \in A \subset B$. Donc $p^{-1} = p^{-1}x^{-1}x \in B$.
 - b. Soit $x \in \mathbb{Q}$. Alors d'après la question (5).a., il existe $a,b,n \in \mathbb{Z}$ tels que $x = \frac{a}{b}p^n, p \nmid a$ et $p \nmid b$. Puisque $f\left(\frac{a}{b}\right) = f(a) f(b) = 0$, on a $\frac{a}{b} \in A \subset B$. De plus $p \in A \subset B$ et $p^{-1} \in B$. Donc $x = \frac{a}{b}p^n \in B$. Ainsi $\mathbb{Q} = B$.