L1 DL/MI - 2022/2023

Analyse Élémentaire

INTÉGRATION

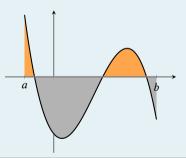
24 novembre 2022

Définition informelle

Intégrale d'une fonction continue sur un segment

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue.

On définit l'intégrale de f, notée $\int_a^b f(x)dx$, comme l'aire entre la courbe représentative de f et l'axe des abscisses (comptée positivement au-dessus de l'axe et négativement en-dessous).

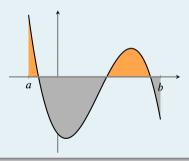


Définition informelle

Intégrale d'une fonction continue sur un segment

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue.

On définit l'intégrale de f, notée $\int_a^b f(x)dx$, comme l'aire entre la courbe représentative de f et l'axe des abscisses (comptée positivement au-dessus de l'axe et négativement en-dessous).



Cette définition est informelle/intuitive puisque la notion d'aire sous la courbe n'est pas rigoureusement définie, mais elle suffit amplement pour ce cours.

Premières propriétés

Soient $f, g : [a, b] \to \mathbb{R}$ deux fonctions continues et $\lambda \in \mathbb{R}$, alors

3 si $\forall x \in [a, b], f(x) \le g(x)$ alors $\int_a^b f(x)dx \le \int_a^b g(x)dx$.

Relation de Chasles

Relation de Chasles

Soit $f: I \to \mathbb{R}$ une fonction continue sur un intervalle I. Soient $a, b, c \in I$ tels que a < b < c. Alors

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx.$$

Relation de Chasles

Relation de Chasles

Soit $f: I \to \mathbb{R}$ une fonction continue sur un intervalle I. Soient $a, b, c \in I$ tels que a < b < c. Alors

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx.$$

Du fait de la relation de Chasles, il est naturel d'introduire la notation suivante :

Si $f:[a,b] \to \mathbb{R}$ est continue alors on pose

$$\int_{b}^{a} f(x)dx := -\int_{a}^{b} f(x)dx.$$

Théorème de la moyenne

Théorème de la moyenne

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue. Alors il existe $c\in[a,b]$ tel que

$$\int_{a}^{b} f(x)dx = (b-a)f(c).$$

Théorème de la moyenne

Théorème de la moyenne

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue. Alors il existe $c\in[a,b]$ tel que

$$\int_{a}^{b} f(x)dx = (b-a)f(c).$$

Démonstration. Puisque $f:[a,b]\to\mathbb{R}$ est continue sur un segment, d'après le théorème de Weierstrass, il existe $s,S\in[a,b]$ tels que $\forall x\in[a,b],\ f(s)\leq f(S).$ D'où

$$f(s)(b-a) \le \int_a^b f(x)dx \le f(S)(b-a)$$
 i.e. $f(s) \le \frac{\int_a^b f(x)dx}{b-a} \le f(S)$.

Puisque f est continue sur l'intervalle [a,b], on déduit du théorème des valeurs intermédiaires qu'il existe $c \in [a,b]$ tel que

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x)dx.$$

Théorème

Soit $f:I\to\mathbb{R}$ une fonction continue sur un intervalle I et $a\in I$.

Définissons
$$F: I \to \mathbb{R}$$
 par $F(x) = \int_a^x f(t)dt$. Alors F est dérivable et $F' = f$.

Théorème

Soit $f: I \to \mathbb{R}$ une fonction continue sur un intervalle I et $a \in I$.

Définissons $F: I \to \mathbb{R}$ par $F(x) = \int_a^x f(t)dt$. Alors F est dérivable et F' = f.

Démonstration. Soit $x_0 \in I$. Soit $x \in I$ tel que $x \neq x_0$, alors

$$F(x) - F(x_0) = \int_a^x f(t)dt - \int_a^{x_0} f(t)dt = \int_{x_0}^x f(t)dt.$$

D'après le théorème de la moyenne, il existe $\xi \in [x, x_0]$ si $x_0 > x$ ou $\xi \in [x_0, x]$ sinon, tel que

$$\frac{F(x) - F(x_0)}{x - x_0} = f(\xi).$$

Remarquons que ξ tend vers x_0 lorsque x tend vers x_0 , donc, par continuité de f, on a

$$\lim_{x \to x_0} \frac{F(x) - F(x_0)}{x - x_0} = \lim_{\xi \to x_0} f(\xi) = f(x_0).$$

Ainsi F est dérivable en x_0 et $F'(x_0) = f(x_0)$.

Théorème

Soit $f:I\to\mathbb{R}$ une fonction continue sur un intervalle I et $a\in I$.

Définissons $F: I \to \mathbb{R}$ par $F(x) = \int_a^x f(t)dt$. Alors F est dérivable et F' = f.

Définition

Soit $f: D \to \mathbb{R}$ une fonction définie sur une partie $D \subset \mathbb{R}$.

On dit que $F: D \to \mathbb{R}$ est une *primitive* de f si F est dérivable et si F' = f.

Théorème

Soit $f:I\to\mathbb{R}$ une fonction continue sur un intervalle I et $a\in I$.

Définissons $F: I \to \mathbb{R}$ par $F(x) = \int_a^x f(t)dt$. Alors F est dérivable et F' = f.

Définition

Soit $f: D \to \mathbb{R}$ une fonction définie sur une partie $D \subset \mathbb{R}$.

On dit que $F: D \to \mathbb{R}$ est une *primitive* de f si F est dérivable et si F' = f.

On déduit du théorème précédent que toute fonction continue sur un intervalle admet une primitive.

Proposition

Soient $f: I \to \mathbb{R}$ une fonction continue sur un intervalle et $a \in I$.

Si $F:I\to\mathbb{R}$ est une primitive de f alors il existe $C\in\mathbb{R}$ tel que

$$\forall x \in I, F(x) = \int_{a}^{x} f(t)dt + C.$$

Proposition

Soient $f: I \to \mathbb{R}$ une fonction continue sur un intervalle et $a \in I$.

Si $F:I\to\mathbb{R}$ est une primitive de f alors il existe $C\in\mathbb{R}$ tel que

$$\forall x \in I, \ F(x) = \int_{a}^{x} f(t)dt + C.$$

Démonstration. Définissons $G: I \to \mathbb{R}$ par $G(x) = F(x) - \int_a^x f(t)dt$.

Alors, d'après le Théorème précédent, G est dérivable sur I et G' = f - f = 0.

Donc G est constante sur I, i.e. il existe $\exists C \in \mathbb{R}$ tel que $\forall x \in I$, G(x) = C. Ainsi

$$\forall x \in I, \ F(x) = \int_{a}^{x} f(t)dt + C.$$

Proposition

Soient $f: I \to \mathbb{R}$ une fonction continue sur un intervalle et $a \in I$.

Si $F:I\to\mathbb{R}$ est une primitive de f alors il existe $C\in\mathbb{R}$ tel que

$$\forall x \in I, F(x) = \int_{a}^{x} f(t)dt + C.$$

Corollaire

Deux primitives d'une fonction continue sur un intervalle diffèrent d'une constante.

Proposition

Soient $f: I \to \mathbb{R}$ une fonction continue sur un intervalle et $a \in I$.

Si $F:I\to\mathbb{R}$ est une primitive de f alors il existe $C\in\mathbb{R}$ tel que

$$\forall x \in I, F(x) = \int_{a}^{x} f(t)dt + C.$$

Corollaire

Deux primitives d'une fonction continue sur un intervalle diffèrent d'une constante.

L'hypothèse que le domaine est un intervalle est importante.

Définissons $F_1, F_2 : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ par $F_1(x) = \ln(|x|)$ et $F_2(x) = \begin{cases} \ln(|x|) + 42 & \text{si } x > 0 \\ \ln(|x|) - \pi & \text{si } x < 0 \end{cases}$

alors F_1 et F_2 sont deux primitives de $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ définie par $f(x) = \frac{1}{x}$ mais $F_1 - F_2$ n'est pas constante.

Théorème fondamental de l'analyse

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue et $F:[a,b]\to\mathbb{R}$ une primitive de f. Alors

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

Théorème fondamental de l'analyse

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue et $F:[a,b]\to\mathbb{R}$ une primitive de f. Alors

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

Démonstration. On déduit du corollaire qu'il existe $C \in \mathbb{R}$ tel que

$$\forall x \in [a, b], \ F(x) = \int_{a}^{x} f(t)dt + C.$$

Ainsi
$$F(b) - F(a) = \int_a^b f(t)dt + C - \int_a^a f(t)dt - C = \int_a^b f(t)dt$$
.

Théorème fondamental de l'analyse

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue et $F:[a,b]\to\mathbb{R}$ une primitive de f. Alors

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

On écrit généralement $[F(x)]_a^b := F(b) - F(a)$ de sorte que

$$\int_a^b f(x)dx = [F(x)]_a^b.$$

Théorème

Soient I un intervalle, $\varphi:[a,b]\to I$ une fonction dérivable de dérivée continue et $f:I\to\mathbb{R}$ une fonction continue. Alors

$$\int_{\varphi(a)}^{\varphi(b)} f(x) dx = \int_a^b f(\varphi(t)) \varphi'(t) dt.$$

Théorème

Soient I un intervalle, $\varphi:[a,b]\to I$ une fonction dérivable de dérivée continue et $f:I\to\mathbb{R}$ une fonction continue. Alors

$$\int_{\varphi(a)}^{\varphi(b)} f(x) dx = \int_a^b f(\varphi(t)) \varphi'(t) dt.$$

Démonstration. Soit $F: I \to \mathbb{R}$ une primitive de f, alors

$$\int_{a}^{b} f(\varphi(t))\varphi'(t)dt = \int_{a}^{b} (F \circ \varphi)'(t)dt = \left[F(\varphi(x))\right]_{a}^{b}$$

$$= F(\varphi(b)) - F(\varphi(a))$$

$$= \left[F(x)\right]_{\varphi(a)}^{\varphi(b)}$$

$$= \int_{\varphi(a)}^{\varphi(b)} f(x)dx$$

Théorème

Soient I un intervalle, $\varphi:[a,b]\to I$ une fonction dérivable de dérivée continue et $f:I\to\mathbb{R}$ une fonction continue. Alors

$$\int_{\varphi(a)}^{\varphi(b)} f(x) dx = \int_a^b f(\varphi(t)) \varphi'(t) dt.$$

Moyen mnémotechnique

Théorème

Soient I un intervalle, $\varphi:[a,b]\to I$ une fonction dérivable de dérivée continue et $f:I\to\mathbb{R}$ une fonction continue. Alors

$$\int_{\varphi(a)}^{\varphi(b)} f(x) dx = \int_a^b f(\varphi(t)) \varphi'(t) dt.$$

Moyen mnémotechnique

En pratique,

1 On pose $x = \varphi(t)$.

Théorème

Soient I un intervalle, $\varphi:[a,b]\to I$ une fonction dérivable de dérivée continue et $f:I\to\mathbb{R}$ une fonction continue. Alors

$$\int_{\varphi(a)}^{\varphi(b)} f(x) dx = \int_a^b f(\varphi(t)) \varphi'(t) dt.$$

Moyen mnémotechnique

- 1 On pose $x = \varphi(t)$.
- 2 D'où $\frac{dx}{dt} = \varphi'(t)$, i.e. $dx = \varphi'(t)dt$

Théorème

Soient I un intervalle, $\varphi:[a,b]\to I$ une fonction dérivable de dérivée continue et $f:I\to\mathbb{R}$ une fonction continue. Alors

$$\int_{\varphi(a)}^{\varphi(b)} f(x) dx = \int_a^b f(\varphi(t)) \varphi'(t) dt.$$

Moyen mnémotechnique

- 1 On pose $x = \varphi(t)$.
- 2 D'où $\frac{dx}{dt} = \varphi'(t)$, i.e. $dx = \varphi'(t)dt$ (c'est juste une notation, il ne faut pas essayer d'interpréter cette multiplication par dt, même si...).

Théorème

Soient I un intervalle, $\varphi:[a,b]\to I$ une fonction dérivable de dérivée continue et $f:I\to\mathbb{R}$ une fonction continue. Alors

$$\int_{\varphi(a)}^{\varphi(b)} f(x)dx = \int_{a}^{b} f(\varphi(t))\varphi'(t)dt.$$

Moyen mnémotechnique

- 1 On pose $x = \varphi(t)$.
- 2 D'où $\frac{dx}{dt} = \varphi'(t)$, i.e. $dx = \varphi'(t)dt$ (c'est juste une notation, il ne faut pas essayer d'interpréter cette multiplication par dt, même si...).
- 3 Ne pas oublier de changer les bornes!

Théorème

Soient I un intervalle, $\varphi:[a,b]\to I$ une fonction dérivable de dérivée continue et $f:I\to\mathbb{R}$ une fonction continue. Alors

$$\int_{\varphi(a)}^{\varphi(b)} f(x)dx = \int_{a}^{b} f(\varphi(t))\varphi'(t)dt.$$

Moyen mnémotechnique

- 1 On pose $x = \varphi(t)$.
- 2 D'où $\frac{dx}{dt} = \varphi'(t)$, i.e. $dx = \varphi'(t)dt$ (c'est juste une notation, il ne faut pas essayer d'interpréter cette multiplication par dt, même si...).
- 3 Ne pas oublier de changer les bornes!

 (quand t varie entre a et b, $x = \varphi(t)$ varie entre $\varphi(a)$ et $\varphi(b)$,

Théorème

Soient I un intervalle, $\varphi:[a,b]\to I$ une fonction dérivable de dérivée continue et $f:I\to\mathbb{R}$ une fonction continue. Alors

$$\int_{\varphi(a)}^{\varphi(b)} f(x)dx = \int_{a}^{b} f(\varphi(t))\varphi'(t)dt.$$

Moyen mnémotechnique

- 1 On pose $x = \varphi(t)$.
- 2 D'où $\frac{dx}{dt} = \varphi'(t)$, i.e. $dx = \varphi'(t)dt$ (c'est juste une notation, il ne faut pas essayer d'interpréter cette multiplication par dt, même si...).
- 3 Ne pas oublier de changer les bornes!

 (quand t varie entre a et b, $x = \varphi(t)$ varie entre $\varphi(a)$ et $\varphi(b)$, même si le théorème est valide aussi lorsque φ n'est pas bijective)

Exemple 1

En posant $u = x^2$, il vient

$$\int_0^2 x e^{x^2} dx = \frac{1}{2} \int_0^4 e^u du = \frac{e^4 - 1}{2}.$$

Exemple 1

En posant $u = x^2$, il vient

$$\int_0^2 x e^{x^2} dx = \frac{1}{2} \int_0^4 e^u du = \frac{e^4 - 1}{2}.$$

Exemple 2

En posant $x = \sin \theta$, il vient

$$\int_0^1 \sqrt{1 - x^2} dx = \int_0^{\frac{\pi}{2}} \cos^2(\theta) d\theta = \int_0^{\frac{\pi}{2}} \frac{1}{2} (1 + \cos(2\theta)) d\theta = \left[\frac{x}{2} + \frac{\sin(2\theta)}{4} \right]_0^{\frac{\pi}{2}} = \frac{\pi}{4}.$$

Intégration par parties – 1

Théorème

Soient $u, v : [a, b] \to \mathbb{R}$ deux fonctions dérivables de dérivées continues. Alors

$$\int_{a}^{b} u(x)v'(x)dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u'(x)v(x)dx.$$

Intégration par parties – 1

Théorème

Soient $u, v : [a, b] \to \mathbb{R}$ deux fonctions dérivables de dérivées continues. Alors

$$\int_{a}^{b} u(x)v'(x)dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u'(x)v(x)dx.$$

Démonstration. On sait que (uv)' = u'v + uv', d'où uv' = (uv)' - u'v.

Ainsi

$$\int_{a}^{b} uv' = \int_{a}^{b} ((uv)' - u'v) = \int_{a}^{b} (uv)' - \int_{a}^{b} u'v = [uv]_{a}^{b} - \int_{a}^{b} u'v.$$

Intégration par parties – 2

Exemple

On souhaite calculer $\int_{1}^{2} x \ln(x) dx$ à l'aide d'une IPP.

Posons $u(x) = \ln(x)$ et v'(x) = x. Alors $u'(x) = \frac{1}{x}$ et $v(x) = \frac{x^2}{2}$ convient. Ainsi

$$\int_{1}^{2} x \ln(x) dx = \left[\frac{x^{2}}{2} \ln(x) \right]_{1}^{2} - \int_{1}^{2} \frac{x}{2} dx = 2 \ln(2) - 0 - \left[\frac{x^{2}}{4} \right]_{1}^{2} = 2 \ln(2) - 1 + \frac{1}{4} = 2 \ln(2) - \frac{3}{4}.$$