Université d'Angers - 2022/2023

Analyse Approfondie

Contrôle Continu du 06/12/2022.

Aucun document ou appareil électronique (calculatrice, téléphone,...) n'est autorisé.

Exercice 1.

On considère l'implication

$$|x+1| \le 2 \implies |x-2| \le 5$$
.

- 1. Quelle est sa réciproque?
- 2. Quelle est sa contraposée?
- 3. Quelle est sa négation?
- 4. (a) Montrer que $\forall x \in \mathbb{R}, |x+1| \le 2 \implies |x-2| \le 5$.
 - (b) La réciproque est-elle vraie?

Exercice 2.

Que signifie que \mathbb{R} est archimédien? Écrire cette propriété sous forme d'un énoncé avec des quantificateurs.

Exercice 3.

Les nombres suivants sont-ils rationnels? Justifier les réponses.

1.
$$\sqrt{5}$$
 2. $\sqrt{9}$

Exercice 4.

Démontrer que $\forall x \in \mathbb{R}, [x+1] = [x] + 1.$

Exercice 5.

On considère une fonction $f: D \to \mathbb{R}$ où $D \subset \mathbb{R}$.

- 1. (a) Soient $a, \ell \in \mathbb{R}$. Écrire sous forme d'un énoncé avec quantificateurs que $\lim_{x \to a} f(x) = \ell$.
 - (b) Sous quelle(s) condition(s) cette limite est-elle bien définie?
- 2. (a) Soit $\ell \in \mathbb{R}$. Écrire sous forme d'un énoncé avec quantificateurs que $\lim_{x \to +\infty} f(x) = \ell$.
 - (b) Sous quelle(s) condition(s) cette limite est-elle bien définie?

Exercice 6.

On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2 - 1$.

Démontrer que $\lim_{x\to 2} f(x) = 3$ seulement à l'aide de la définition.

Exercice 7.

Soient $f, g : \mathbb{R} \to \mathbb{R}$ deux fonctions telles que $\lim_{x \to +\infty} f(x) = 42$ et $\lim_{x \to +\infty} g(x) = +\infty$.

Montrer que $\lim_{x\to +\infty} (f(x)-g(x)) = -\infty$ seulement à partir des définitions.

Exercice 8.

Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction croissante.

- 1. Montrer que si f n'est pas majorée alors $\lim_{x \to +\infty} f(x) = +\infty$.
- 2. Existe-t-il une fonction $f : \mathbb{R} \to \mathbb{R}$ strictement croissante admettant une limite finie en $+\infty$? *Justifier*.

Exercice 9.

Étudier les limites suivantes :

1.
$$\lim_{x \to 0} \sin\left(\left\lfloor \frac{1}{x} \right\rfloor\right) \ln(1+x)$$
 2. $\lim_{x \to +\infty} \frac{x \ln(x)}{x^2 + 1}$ 3. $\lim_{x \to +\infty} x \left(\sqrt{x^2 + 42} - \sqrt{x^2 + 17}\right)$

Exercice 10.

Pour chacune des lettres grecques suivantes, donner son nom en français et préciser s'il s'agit d'une minuscule ou d'une majuscule : $1. \Xi$ $2. \zeta$ 3. v $4. \Lambda$