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Countable sets – 1

Notation
In what follows, we set ℵ0 ≔ |ℕ| (pronounced aleph nought).

Definition
A set 𝐸 is countable if either 𝐸 is finite or |𝐸| = ℵ0.
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Countable sets – 2
Proposition

1 |ℕ ⧵ {0}| = ℵ0
2 |{𝑛 ∈ ℕ ∶ 𝑛 ≡ 0 mod 2}| = ℵ0
3 |ℕ × ℕ| = ℵ0

Proof.
1 The function 𝑓 ∶ ℕ → ℕ ⧵ {0} defined by 𝑓(𝑛) = 𝑛 + 1 is bijective with inverse

𝑓 −1 ∶ ℕ ⧵ {0} → ℕ defined by 𝑓 −1(𝑛) = 𝑛 − 1.

2 The function 𝑓 ∶ ℕ → {𝑛 ∈ ℕ ∶ 𝑛 ≡ 0 mod 2} defined by 𝑓(𝑛) = 2𝑛 is bijective.

3 Define 𝑓 ∶ ℕ × ℕ → ℕ by 𝑓(𝑎, 𝑏) = 2𝑎3𝑏.
Then 𝑓 is injective by uniqueness of the prime decomposition. Thus |ℕ × ℕ| ≤ ℵ0.
Besides {0} × ℕ ⊂ ℕ × ℕ, thus ℵ0 = |{0} × ℕ| ≤ |ℕ × ℕ|.
Hence |ℕ × ℕ| = ℵ0 by Cantor–Schröder–Bernstein theorem. ■
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Countable sets – 3
Proposition
If 𝑆 ⊂ ℕ is infinite then |𝑆| = ℵ0.

Proof. Let’s define the function 𝑓 ∶ ℕ → 𝑆 by induction as follows.
Set 𝑓(0) = min 𝑆 (which is well-defined by the well-ordering principle since 𝑆 ≠ ∅ as it is infinite).
And then, assuming that 𝑓(𝑛) is already defined, we set 𝑓(𝑛 + 1) = min{𝑘 ∈ 𝑆 ∶ 𝑘 > 𝑓(𝑛)}
(which is well-defined by the well-ordering principle: the involved set is non-empty since
otherwise 𝑆 would be finite).
It is easy to check that 𝑓 is injective (note that ∀𝑛 ∈ ℕ, 𝑓(𝑛 + 1) > 𝑓(𝑛)), therefore ℵ0 ≤ |𝑆|.

But since 𝑆 ⊂ ℕ, we also have |𝑆| ≤ ℵ0.

Thus, by Cantor–Schröder–Bernstein theorem, |𝑆| = ℵ0. ■
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Countable sets – 4
Proposition
A set 𝐸 is countable if and only if |𝐸| ≤ ℵ0 (i.e. there exists an injection 𝑓 ∶ 𝐸 → ℕ),
otherwise stated 𝐸 is countable if and only if there exists a bijection between 𝐸 and a subset of ℕ.

Proof.
⇒ Assume that 𝐸 is countable.

• Either 𝐸 is finite and then there exists 𝑛 ∈ ℕ and a bijection 𝑔 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → 𝐸.
We define 𝑓 ∶ 𝐸 → ℕ by 𝑓(𝑥) = 𝑔−1(𝑥) (which is well-defined since {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} ⊂ ℕ).
And 𝑓 is an injection since 𝑔−1 is.

• Or |𝐸| = ℵ0, i.e. there exists a bijection 𝑓 ∶ 𝐸 → ℕ.

⇐ Assume there exists an injection 𝑓 ∶ 𝐸 → ℕ.
Assume that 𝐸 is infinite. Then |𝐸| = |𝑓(𝐸)| = ℵ0.
Thus either 𝐸 is finite or |𝐸| = ℵ0. In both cases 𝐸 is countable. ■
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Countable sets – 5
Theorem
A countable union of countable sets is countable,
i.e. if 𝐼 is countable and if for every 𝑖 ∈ 𝐼 , 𝐸𝑖 is countable then ⋃𝑖∈𝐼 𝐸𝑖 is countable.

Proof.
WLOG we may now assume that 𝐼 ⊂ ℕ.
Let 𝑖 ∈ 𝐼 . Since 𝐸𝑖 is countable, there exists an injection 𝑓𝑖 ∶ 𝐸𝑖 → ℕ.
We define 𝜑 ∶ ⋃𝑖∈𝐼 𝐸𝑖 → ℕ × ℕ by 𝜑(𝑥) = (𝑛, 𝑓𝑛(𝑥)) where 𝑛 = min{𝑖 ∈ 𝐼 ∶ 𝑥 ∈ 𝐸𝑖} (which exists
by the well-ordering principle).
It is not difficult to check that 𝜑 is injective.
Therefore ⋃𝑖∈𝐼 𝐸𝑖 is countable. ■

Jean-Baptiste Campesato MAT246H1-S – LEC0201/9201 – Apr 6, 2021 6 / 13



Countable sets – 5
Theorem
A countable union of countable sets is countable,
i.e. if 𝐼 is countable and if for every 𝑖 ∈ 𝐼 , 𝐸𝑖 is countable then ⋃𝑖∈𝐼 𝐸𝑖 is countable.

Proof.
WLOG we may now assume that 𝐼 ⊂ ℕ.
Let 𝑖 ∈ 𝐼 . Since 𝐸𝑖 is countable, there exists an injection 𝑓𝑖 ∶ 𝐸𝑖 → ℕ1.
We define 𝜑 ∶ ⋃𝑖∈𝐼 𝐸𝑖 → ℕ × ℕ by 𝜑(𝑥) = (𝑛, 𝑓𝑛(𝑥)) where 𝑛 = min{𝑖 ∈ 𝐼 ∶ 𝑥 ∈ 𝐸𝑖} (which exists
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It is not difficult to check that 𝜑 is injective.
Therefore ⋃𝑖∈𝐼 𝐸𝑖 is countable. ■

1We use the axiom of countable choice here.
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Countable sets – 6
Theorem
If 𝐸 is an infinite set then there exists 𝑇 ⊂ 𝐸 such that |𝑇 | = ℵ0, i.e. ℵ0 is the least infinite cardinal.

Proof.
For 𝑛 ∈ ℕ, set 𝐸𝑛 = {𝑆 ∈ 𝒫(𝐸) ∶ |𝑆| = 𝑛}.
Since 𝐸 is infinite, it contains a subset of cardinal 𝑛, therefore 𝐸𝑛 ≠ ∅.
So for every 𝑛 ∈ ℕ, we can pick 𝑆𝑛 ∈ 𝐸𝑛.
Then 𝑇 ≔ ⋃𝑛∈ℕ 𝑆𝑛 is countable as a countable union of countable sets.
Besides, ∀𝑛 ∈ ℕ, 𝑆𝑛 ⊂ 𝑇 and |𝑆𝑛| = 𝑛.
Therefore 𝑇 is infinite since for every 𝑛 ∈ ℕ it contains a subset of cardinal 𝑛.
Thus |𝑇 | = ℵ0 as an infinite countable set. ■
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Countable sets – 7
Theorem
|ℤ| = ℵ0

Proof 1. Since ℕ ⊂ ℤ, we have |ℕ| ≤ |ℤ|.
Define 𝑓 ∶ ℤ → ℕ by 𝑓(𝑛) = {

2𝑛 if 𝑛 ≥ 0
3−𝑛 if 𝑛 < 0 .

Then 𝑓 is injective by uniqueness of the prime factorization. Therefore |ℤ| ≤ |ℕ|.
Hence |ℤ| = |ℕ| by Cantor–Schröder–Bernstein theorem. ■

Proof 2.
Define 𝑓 ∶ ℤ → ℕ by 𝑓(𝑛) = {

2𝑛 if 𝑛 ≥ 0
−(2𝑛 + 1) if 𝑛 < 0 .

Then 𝑓 is bijective with inverse 𝑓 −1(𝑚) = {
𝑘 if ∃𝑘 ∈ ℕ, 𝑚 = 2𝑘

−𝑘 − 1 if ∃𝑘 ∈ ℕ, 𝑚 = 2𝑘 + 1 .

Therefore |ℤ| = |ℕ|. ■
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Countable sets – 8
Theorem
|ℚ| = ℵ0

Proof 1. Note that ℕ ⊂ ℚ, therefore ℵ0 ≤ |ℚ|.
Define 𝑓 ∶ ℚ → ℤ × ℤ by 𝑓 (

𝑎
𝑏 ) = (𝑎, 𝑏) where 𝑎

𝑏 is in lowest form.
Then 𝑓 is injective and thus |ℚ| ≤ |ℤ × ℤ|. Since |ℤ| = |ℕ|, we get |ℤ × ℤ| = |ℕ × ℕ| = ℵ0.
We conclude using Cantor–Schröder–Bernstein theorem. ■

Proof 2. Note that ℕ ⊂ ℚ, therefore ℵ0 ≤ |ℚ|.
Moreover 𝑓 ∶ ℤ × ℕ ⧵ {0} → ℚ defined by 𝑓(𝑎, 𝑏) = 𝑎

𝑏 is surjective. Thus |ℚ| ≤ |ℤ × ℕ ⧵ {0}|.
Since |ℤ| = |ℕ| and |ℕ ⧵ {0}| = |ℕ|, we get |ℤ × ℕ ⧵ {0}| = |ℕ × ℕ| = ℵ0.
We conclude using Cantor–Schröder–Bernstein theorem. ■

Proof 3. Note that ℕ ⊂ ℚ, therefore ℵ0 ≤ |ℚ|.
Since ℚ = ⋃

(𝑎,𝑏)∈ℤ×ℕ⧵{0}
{

𝑎
𝑏 }, ℚ is countable as a countable union of countable sets. So |ℚ| ≤ ℵ0.

We conclude using Cantor–Schröder–Bernstein theorem. ■
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Cantor’s diagonal argument – 1
Theorem: ℝ is not countable (Cantor 1874, the proof below dates back to 1891)
ℵ0 < |ℝ|

Proof. We are going to prove that there is no surjection ℕ → ℝ (and hence no such bijection).

Let 𝑓 ∶ ℕ → ℝ be a function. Given 𝑛 ∈ ℕ, we know that 𝑓(𝑛) has a unique proper decimal expansion 𝑓(𝑛) =
+∞

∑
𝑘=0

𝑎𝑛𝑘10−𝑘

where 𝑎𝑛0 ∈ ℤ and 𝑎𝑛𝑘 ∈ {0, 1, … , 9} for 𝑘 ≥ 1, i.e.
𝑓(0) = 𝑎00 . 𝑎01 𝑎02 𝑎03 𝑎04 𝑎05 …
𝑓(1) = 𝑎10 . 𝑎11 𝑎12 𝑎13 𝑎14 𝑎15 …
𝑓(2) = 𝑎20 . 𝑎21 𝑎22 𝑎23 𝑎24 𝑎25 …
𝑓(3) = 𝑎30 . 𝑎31 𝑎32 𝑎33 𝑎34 𝑎35 …
𝑓(4) = 𝑎40 . 𝑎41 𝑎42 𝑎43 𝑎44 𝑎45 …

⋮ ⋮

Given 𝑘 ∈ ℕ, we set 𝑏𝑘 = {
1 if 𝑎𝑘𝑘 = 0
0 otherwise .

Then 𝑏 =
+∞

∑
𝑘=0

𝑏𝑘10−𝑘 is a real number written with its unique proper decimal expansion.

Note that for every 𝑛 ∈ ℕ, 𝑏 ≠ 𝑓(𝑛) since 𝑏𝑛 ≠ 𝑎𝑛𝑛 (we use the uniqueness of the proper decimal expansion).
Therefore 𝑏 ∉ Im(𝑓 ) and 𝑓 is not surjective. ■
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Cantor’s diagonal argument – 2
Cantor’s theorem
Given a set 𝐸, |𝐸| < |𝒫(𝐸)|.

Proof. We are going to use Cantor’s diagonal argument again.
First, note that 𝑔 ∶ 𝐸 → 𝒫(𝐸) defined by 𝑔(𝑥) = {𝑥} is injective, therefore |𝐸| ≤ |𝒫(𝐸)|.

We are going to prove that there is no surjection 𝐸 → 𝒫(𝐸) (and hence no such bijection).
Let 𝑓 ∶ 𝐸 → 𝒫(𝐸) be a function. Define 𝑆 = {𝑥 ∈ 𝐸 ∶ 𝑥 ∉ 𝑓(𝑥)}.
Let 𝑥 ∈ 𝐸.

• If 𝑥 ∈ 𝑓(𝑥) then 𝑥 ∉ 𝑆.
• Otherwise, if 𝑥 ∉ 𝑓(𝑥) then 𝑥 ∈ 𝑆.

Therefore 𝑓(𝑥) ≠ 𝑆 since one contains 𝑥 but not the other one.
Thus 𝑆 ∉ Im(𝑓 ) and 𝑓 is not surjective. ■

Remark
There is no greatest cardinal.
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|ℝ| = |𝒫(ℕ)|
We already know that |ℕ| < |ℝ| and that |ℕ| < |𝒫(ℕ)|. Actually |ℝ| = |𝒫(ℕ)|.

Theorem
|ℝ| = |𝒫(ℕ)|

Proof.
Define 𝑓 ∶ 𝒫(ℕ) → ℝ by 𝑓(𝑆) = ∑

𝑛∈𝑆
10−𝑛.

Then 𝑓 is injective by uniqueness of the proper decimal expansion. Thus |𝒫(ℕ)| ≤ |ℝ|.

Define 𝑔 ∶ ℝ → 𝒫(ℚ) by 𝑔(𝑥) = {𝑞 ∈ ℚ ∶ 𝑞 < 𝑥}.
Then 𝑔 is injective. Indeed, let 𝑥, 𝑦 ∈ ℝ be such that 𝑥 < 𝑦. Since ℚ is dense in ℝ, there exists
𝑞 ∈ ℚ such that 𝑥 < 𝑞 < 𝑦. So 𝑞 ∉ 𝑔(𝑥) but 𝑞 ∈ 𝑔(𝑦). Therefore 𝑔(𝑥) ≠ 𝑔(𝑦).
Hence |ℝ| ≤ |𝒫(ℚ)| = |𝒫(ℕ)| (prove the last equality using that |ℚ| = |ℕ|).

We conclude thanks to Cantor–Schröder–Bernstein theorem. ■
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There is no set of all sets
Theorem
There is no set containing all sets.

Proof. Assume that such a set 𝑉 exists.
Then the powerset 𝒫(𝑉 ) exists too and 𝒫(𝑉 ) ⊂ 𝑉 by definition of 𝑉 .
Therefore |𝒫(𝑉 )| ≤ |𝑉 |, but |𝑉 | < |𝒫(𝑉 )| by Cantor’s theorem. Hence a contradiction. ■

We may similarly prove that there is no set containing all finite sets, or even all singletons.

Theorem
There is no set containing all singletons.

Proof. Assume that the set 𝑆 of all singletons exists.
Define 𝑓 ∶ 𝒫(𝑆) → 𝑆 by 𝑓(𝑥) = {𝑥} (which is well-defined).
Since 𝑓 is one-to-one, we get that |𝒫(𝑆)| ≤ |𝑆|.
Which contradicts |𝑆| < |𝒫(𝑆)| (Cantor’s theorem). ■
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