
MAT246H1-S – LEC0201/9201

Concepts in Abstract Mathematics

CARDINALITY: FINITE SETS

March 25th, 2021
Jean-Baptiste Campesato MAT246H1-S – LEC0201/9201 – Mar 25, 2021 1 / 11



Finite sets – 1

Definition: finite set
We say that a set 𝐸 is finite if there exists 𝑛 ∈ ℕ and a bijection 𝑓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → 𝐸.
Then we write |𝐸| = 𝑛.

Note that {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} = {0, 1, 2, … , 𝑛 − 1}.
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Finite sets – 2
Lemma
Let 𝑛, 𝑝 ∈ ℕ. If there exists an injective function 𝑓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → {𝑘 ∈ ℕ ∶ 𝑘 < 𝑝} then 𝑛 ≤ 𝑝.

Proof. We prove the statement by induction on 𝑛.
• Base case at 𝑛 = 0: for any 𝑝 ∈ ℕ we have 𝑛 ≤ 𝑝.
• Induction step. Assume that the statement holds for some 𝑛 ∈ ℕ.

Let 𝑝 ∈ ℕ. Assume that there exists an injective function 𝑓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛 + 1} → {𝑘 ∈ ℕ ∶ 𝑘 < 𝑝}.

Define 𝑔 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → {𝑘 ∈ ℕ ∶ 𝑘 < 𝑝 − 1} as follows: 𝑔(𝑥) = {
𝑓(𝑥) if 𝑓(𝑥) < 𝑓(𝑛)

𝑓(𝑥) − 1 if 𝑓(𝑥) > 𝑓(𝑛)
Note that 𝑓(𝑥) ≠ 𝑓(𝑛) since 𝑓 is injective.

⋆ Claim 1: 𝑔 is well-defined, i.e. ∀𝑥 ∈ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛}, 𝑔(𝑥) ∈ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑝 − 1}.
Let 𝑥 ∈ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛}.
So either, 𝑓(𝑥) < 𝑓(𝑛) and then 𝑔(𝑥) = 𝑓(𝑥) < 𝑓(𝑛) < 𝑝, therefore 0 ≤ 𝑔(𝑥) < 𝑝 − 1.
Or, 𝑓(𝑥) > 𝑓(𝑛) and then 𝑔(𝑥) = 𝑓(𝑥) − 1 < 𝑝 − 1, therefore 0 ≤ 𝑔(𝑥) < 𝑝 − 1.

⋆ Claim 2: 𝑔 is injective.
Let 𝑥, 𝑦 ∈ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} be such that 𝑔(𝑥) = 𝑔(𝑦).
First case: 𝑓(𝑥), 𝑓 (𝑦) < 𝑓(𝑛).
Then 𝑔(𝑥) = 𝑓(𝑥) and 𝑔(𝑦) = 𝑓(𝑦). So 𝑓(𝑥) = 𝑓(𝑦) and thus 𝑥 = 𝑦 since 𝑓 is injective.
Second case: 𝑓(𝑥), 𝑓 (𝑦) > 𝑓(𝑛).
Then 𝑔(𝑥) = 𝑓(𝑥) − 1 and 𝑔(𝑦) = 𝑓(𝑦) − 1. So 𝑓(𝑥) = 𝑓(𝑦) and thus 𝑥 = 𝑦 since 𝑓 is injective.
Third case: 𝑓(𝑥) < 𝑓(𝑛) and 𝑓(𝑦) > 𝑓(𝑛).
Then 𝑔(𝑥) = 𝑓(𝑥) < 𝑓(𝑛) and 𝑔(𝑦) = 𝑓(𝑦) − 1 > 𝑓(𝑛) − 1 ≥ 𝑓(𝑛). Therefore, this case is impossible.

Therefore, by the induction hypothesis, 𝑛 ≤ 𝑝 − 1, i.e. 𝑛 + 1 ≤ 𝑝. ■
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Finite sets – 3
Definition: finite set
We say that a set 𝐸 is finite if there exists 𝑛 ∈ ℕ and a bijection 𝑓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → 𝐸.
Then we write |𝐸| = 𝑛.

Corollary
Let 𝐸 be a finite set. If |𝐸| = 𝑛 and |𝐸| = 𝑚, then 𝑚 = 𝑛.
Then we say that |𝐸| is the cardinal of 𝐸, which is uniquely defined.

Proof. Assume there exists a bijection 𝑓1 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → 𝐸 and a bijection 𝑓2 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑚} → 𝐸.
Then 𝑓 −1

2 ∘ 𝑓1 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → {𝑘 ∈ ℕ ∶ 𝑘 < 𝑚} is a bijection, so by the above lemma, 𝑛 ≤ 𝑚.
Similarly, 𝑓 −1

1 ∘ 𝑓2 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑚} → {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} is a bijection and thus 𝑚 ≤ 𝑛.
Therefore 𝑛 = 𝑚. ■
Remark: the empty set
|𝐸| = 0 ⇔ 𝐸 = ∅
Indeed, if 𝐸 = ∅ then 𝑓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 0} → 𝐸 is always bijective: injectiveness and surjectiveness are
vacuously true. So |𝐸| = 0.
Otherwise, if 𝐸 ≠ ∅ then 𝑓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 0} → 𝐸 is never surjective (thus never bijective), so |𝐸| ≠ 0.
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Finite sets – 4
Proposition
If 𝐸 ⊂ 𝐹 and 𝐹 is finite then 𝐸 is finite too, besides, |𝐸| ≤ |𝐹 |.

Proof. Let’s prove by induction on 𝑛 = |𝐹 | that if 𝐸 ⊂ 𝐹 then 𝐸 is finite and |𝐸| ≤ 𝑛.

• Base case at 𝑛 = 0: then 𝐹 = ∅, so the only possible subset is 𝐸 = ∅ and then |𝐸| = 0.
• Induction step. Assume that the statement holds for some 𝑛 ∈ ℕ.

Let 𝐹 be a set such that |𝐹 | = 𝑛 + 1.

• First case: 𝐸 = 𝐹 . Then the statement is obvious.

• Second case: 𝐸 ≠ 𝐹 . Then there exists 𝑥 ∈ 𝐹 ⧵ 𝐸.
There exists a bijection 𝑓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛 + 1} → 𝐹 .
Since 𝑓 is bijective, there exists a unique 𝑚 < 𝑛 + 1 such that 𝑓(𝑚) = 𝑥.
Define 𝑔 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → 𝐹 ⧵ {𝑥} by 𝑔(𝑘) = 𝑓(𝑘) for 𝑘 ≠ 𝑚,
and, if 𝑚 ≠ 𝑛, 𝑔(𝑚) = 𝑓(𝑛).
Then 𝑔 is a bijection, so 𝐹 ⧵ {𝑥} is finite and |𝐹 ⧵ {𝑥}| = 𝑛.
Since 𝐸 ⊂ 𝐹 ⧵ {𝑥}, by the induction hypothesis, 𝐸 is finite and |𝐸| ≤ 𝑛 < 𝑛 + 1.
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Finite sets – 5
Proposition
Let 𝐸 ⊂ 𝐹 with 𝐹 finite. Then |𝐹 | = |𝐸| + |𝐹 ⧵ 𝐸|.

Proof. Since 𝐹 ⧵ 𝐸 ⊂ 𝐹 and 𝐸 ⊂ 𝐹 , we know that 𝐸 and 𝐹 ⧵ 𝐸 are finite.
Denote 𝑟 = |𝐸| and 𝑠 = |𝐹 ⧵ 𝐸|.
There exist bijections 𝑓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑟} → 𝐸 and 𝑔 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑠} → 𝐹 ⧵ 𝐸.

Define ℎ ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑟 + 𝑠} → 𝐹 by ℎ(𝑘) = {
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• ℎ is well-defined:
Indeed, if 0 ≤ 𝑘 < 𝑟 then 𝑓(𝑘) is well-defined and 𝑓(𝑘) ∈ 𝐸 ⊂ 𝐹 .
If 𝑟 ≤ 𝑘 < 𝑟 + 𝑠 then 0 ≤ 𝑘 − 𝑟 < 𝑠 so that 𝑔(𝑘 − 𝑟) is well-defined and 𝑔(𝑘 − 𝑟) ∈ 𝐹 ⧵ 𝐸 ⊂ 𝐹 .
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Either 𝑦 ∈ 𝐸, and then there exists 𝑥 ∈ {0, 1, … , 𝑟 − 1} such that 𝑓(𝑥) = 𝑦, since 𝑓 is surjective. Then ℎ(𝑥) = 𝑓(𝑥) = 𝑦.
Or 𝑦 ∈ 𝐹 ⧵ 𝐸, and then there exists 𝑥 ∈ {0, 1, … , 𝑠 − 1} such that 𝑔(𝑥) = 𝑦 since 𝑔 is surjective. Then ℎ(𝑥 + 𝑟) = 𝑔(𝑥) = 𝑦.
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Finite sets – 6
Proposition
Let 𝐸 and 𝐹 be two finite sets. Then

1 |𝐸 ∪ 𝐹 | = |𝐸| + |𝐹 | − |𝐸 ∩ 𝐹 |
2 |𝐸 × 𝐹 | = |𝐸| × |𝐹 |

Proof.
1 Using the previous proposition twice, we get

|𝐸 ∪ 𝐹 | = |𝐸 ⊔ (𝐹 ⧵ (𝐸 ∩ 𝐹 ))| = |𝐸| + |𝐹 ⧵ (𝐸 ∩ 𝐹 )| = |𝐸| + |𝐹 | − |𝐸 ∩ 𝐹 |

2 We prove this proposition by induction on 𝑛 = |𝐹 | ∈ ℕ.
• Base case at 𝑛 = 0: then 𝐹 = ∅ so 𝐸 × 𝐹 = ∅ too and |𝐸 × 𝐹 | = 0 = |𝐸| × 0 = |𝐸| × |𝐹 |.
• Case 𝑛 = 1: we will use this special case later in the proof.

Assume that 𝐹 = {∗} and that |𝐸| = 𝑛. Then there exists a bijection 𝑓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → 𝐸.
Note that 𝑔 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → 𝐸 × 𝐹 defined by 𝑔(𝑘) = (𝑓(𝑘), ∗) is a bijection.
Therefore |𝐸 × 𝐹 | = 𝑛 = 𝑛 × 1 = |𝐸| × |𝐹 |.

• Induction step. Assume that the statement holds for some 𝑛 ∈ ℕ.
Let 𝐹 be a set such that |𝐹 | = 𝑛 + 1.
Since |𝐹 | > 0, there exists 𝑥 ∈ 𝐹 and |𝐹 ⧵ {𝑥}| = |𝐹 | − |{𝑥}| = 𝑛 + 1 − 1 = 𝑛. Then

|𝐸 × 𝐹 | = |(𝐸 × (𝐹 ⧵ {𝑥})) ⊔ (𝐸 × {𝑥})| = |𝐸 × (𝐹 ⧵ {𝑥})| + |𝐸 × {𝑥}|
= |𝐸| × |𝐹 ⧵ {𝑥}| + |𝐸| using the induction hypothesis and the case 𝑛 = 1
= |𝐸| × (|𝐹 | − 1) + |𝐸| = |𝐸| × |𝐹 | ■
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Finite sets – 7
Proposition
Assume that 𝐸 ⊂ 𝐹 with 𝐹 finite. Then 𝐸 = 𝐹 ⇔ |𝐸| = |𝐹 |.

Proof.
⇒ It is obvious.
⇐ Assume that |𝐸| = |𝐹 |. Then |𝐹 ⧵ 𝐸| = |𝐹 | − |𝐸| = 0. Thus 𝐹 ⧵ 𝐸 = ∅, i.e. 𝐸 = 𝐹 . ■

Proposition
Let 𝐸 a finite set. Then 𝐹 is finite and |𝐸| = |𝐹 | if and only if there exists a bijection 𝑓 ∶ 𝐸 → 𝐹 .

Proof.
⇒ Assume that 𝐹 is finite and that |𝐸| = |𝐹 | = 𝑛.
Then there exist bijections 𝜑 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → 𝐸 and 𝜓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < 𝑛} → 𝐹 .
Therefore 𝑓 = 𝜓 ∘ 𝜑−1 ∶ 𝐸 → 𝐹 is a bijection.
⇐ Assume that there exists a bijection 𝑓 ∶ 𝐸 → 𝐹 .
Since 𝐸 is finite there exists a bijection 𝜑 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < |𝐸|} → 𝐸.
Thus 𝑓 ∘ 𝜑 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < |𝐸|} → 𝐹 is a bijection. Therefore 𝐹 is finite and |𝐹 | = |𝐸|. ■
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Finite sets – 8
Proposition
Let 𝐸, 𝐹 be two finite sets such that |𝐸| = |𝐹 |. Let 𝑓 ∶ 𝐸 → 𝐹 . Then TFAE:

1 𝑓 is injective,
2 𝑓 is surjective,
3 𝑓 is bijective.

Proof.
Assume that 𝑓 is injective.
There exists a bijection 𝜑 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < |𝐸|} → 𝐸.
Then 𝑓 ∘ 𝜑 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < |𝐸|} → 𝑓(𝐸) is a bijection. Thus |𝑓 (𝐸)| = |𝐸| = |𝐹 |.
Since 𝑓(𝐸) ⊂ 𝐹 and |𝑓 (𝐸)| = |𝐹 |, we get 𝑓(𝐸) = 𝐹 , i.e. 𝑓 is surjective.

Assume that 𝑓 is surjective.
Then for every 𝑦 ∈ 𝐹 , 𝑓 −1(𝑦) ⊂ 𝐸 is finite and non-empty, i.e. |𝑓 −1(𝑦)| ≥ 1.
Assume by contradiction that there exists 𝑦 ∈ 𝐹 such that |𝑓 −1(𝑦)| > 1.

Thus |𝐸| =
|⨆
𝑦∈𝐹

𝑓 −1(𝑦)
|

= ∑
𝑦∈𝐹

|𝑓 −1(𝑦)| > |𝐹 | = |𝐸|. Hence a contradiction.

■
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Finite sets – 9
Proposition
Let 𝐸 and 𝐹 be two finite sets. Then |𝐸| ≤ |𝐹 | if and only if there exists an injection 𝑓 ∶ 𝐸 → 𝐹 .

Proof.
⇒ Assume that |𝐸| ≤ |𝐹 |.
There exist bijections 𝜑 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < |𝐸|} → 𝐸 and 𝜓 ∶ {𝑘 ∈ ℕ ∶ 𝑘 < |𝐹 |} → 𝐹 .
Since |𝐸| ≤ |𝐹 |, 𝑓 = 𝜓 ∘ 𝜑−1 ∶ 𝐸 → 𝐹 is well-defined and injective.
⇒ Assume that there exists an injection 𝑓 ∶ 𝐸 → 𝐹 .
Then 𝑓 induces a bijection 𝑓 ∶ 𝐸 → 𝑓(𝐸), so that |𝐸| = |𝑓(𝐸)|.
And since 𝑓(𝐸) ⊂ 𝐹 , we have |𝑓 (𝐸)| ≤ |𝐹 |. ■

Corollary: the pigeonhole principle or Dirichlet’s drawer principle
Let 𝐸 and 𝐹 be two finite sets. If |𝐸| > |𝐹 | then there is no injective function 𝐸 → 𝐹 .

Examples
• There are two non-bald people in Toronto with the exact same number of hairs on their heads.
• During a post-covid party with 𝑛 > 1 participants, we may always find two people who shook hands to

the same number of people.
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Then 𝑓 induces a bijection 𝑓 ∶ 𝐸 → 𝑓(𝐸), so that |𝐸| = |𝑓(𝐸)|.
And since 𝑓(𝐸) ⊂ 𝐹 , we have |𝑓 (𝐸)| ≤ |𝐹 |. ■

Corollary: the pigeonhole principle or Dirichlet’s drawer principle
Let 𝐸 and 𝐹 be two finite sets. If |𝐸| > |𝐹 | then there is no injective function 𝐸 → 𝐹 .

Examples
• There are two non-bald people in Toronto with the exact same number of hairs on their heads.
• During a post-covid party with 𝑛 > 1 participants, we may always find two people who shook hands to

the same number of people.
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Remark: trichotomy principle for finite sets
Since the cardinal of a finite set is a natural number, we deduce from the fact that ℕ is totally
ordered, that given two finite sets 𝐸 and 𝐹 , exactly one of the followings occurs:

• either |𝐸| < |𝐹 |
i.e. there is an injection 𝐸 → 𝐹 but no bijection 𝐸 → 𝐹 ,

• or |𝐸| = |𝐹 |
i.e. there is a bijection 𝐸 → 𝐹 ,

• or |𝐸| > |𝐹 |
i.e. there is an injection 𝐹 → 𝐸 but no bijection 𝐸 → 𝐹 .
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