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Concepts in Abstract Mathematics

4 - Modular arithmetic
Jean-Baptiste Campesato

Modular arithmetic was introduced by Gauss during the beginning of the 19th century. Working mod-
ulo a natural number 𝑛 > 0 means that, given an integer 𝑎, we identify it with its remainder 𝑟 for the
Euclidean division by 𝑛. Basically, it means that we force 𝑎 to be equal to 𝑟 (of course, not as integers, but
equal modulo n). Informally, we wind ℤ on itself as represented below.

−5 −4 −3 −2 −1 0 1 2 3 4 5 ℤ0 1 2 3 4 5

… , −12, −6, 0, 6, 12, …

… , −11, −5, 1, 7, 13, …… , −10, −4, 2, 8, 14, …

… , −9, −3, 3, 9, 15, …

… , −8, −2, 4, 10, 16, … … , −7, −1, 5, 11, 17, …

ℤ modulo 6

This extra layer of abstraction allowedGauss, and subsequently other mathematicians, to obtain simpler
proofs of already known results concerning integers but also to prove new theorems, simply by introducing
this new efficient notation which has many good properties.
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2 Modular arithmetic

1 Congruences
Definition 1. We say that a binary relation ℛ on a set 𝐸 is an equivalence relation if
(i) ∀𝑥 ∈ 𝐸, 𝑥ℛ𝑥 (reflexivity)
(ii) ∀𝑥, 𝑦 ∈ 𝐸, 𝑥ℛ𝑦 ⟹ 𝑦ℛ𝑥 (symmetry)
(iii) ∀𝑥, 𝑦, 𝑧 ∈ 𝐸, (𝑥ℛ𝑦 and 𝑦ℛ𝑧) ⟹ 𝑥ℛ𝑧 (transitivity)

Definition 2. Let 𝑛 ∈ ℕ ⧵ {0} and 𝑎, 𝑏 ∈ ℤ. We say that 𝑎 and 𝑏 are congruent modulo 𝑛 if 𝑛|𝑎 − 𝑏, which we
denote by 𝑎 ≡ 𝑏 (mod 𝑛).

Proposition 3. Congruence modulo 𝑛 is an equivalence relation on ℤ.

Proof.
• Reflexivity. Let 𝑎 ∈ ℤ then 𝑛|0 = 𝑎 − 𝑎. Hence 𝑎 ≡ 𝑎 (mod 𝑛).
• Symmetry. Let 𝑎, 𝑏 ∈ ℤ be such that 𝑎 ≡ 𝑏 (mod 𝑛). Then 𝑛|𝑏 − 𝑎 = −(𝑎 − 𝑏) hence 𝑏 ≡ 𝑎 (mod 𝑛).
• Transitivity. Let 𝑎, 𝑏, 𝑐 ∈ ℤ be such that 𝑎 ≡ 𝑏 (mod 𝑛) and 𝑏 ≡ 𝑐 (mod 𝑛). Then 𝑛|𝑎 − 𝑏 and 𝑛|𝑏 − 𝑐.

Hence 𝑛|𝑎 − 𝑐 = (𝑎 − 𝑏) + (𝑏 − 𝑐). Thus 𝑎 ≡ 𝑐 (mod 𝑛).
■

Proposition 4. Let 𝑛 ∈ ℕ ⧵ {0} and 𝑎, 𝑏 ∈ ℤ. Then 𝑎 ≡ 𝑏 (mod 𝑛) if and only if 𝑎 and 𝑏 have same remainder for
the Euclidean division by 𝑛.

Proof.
⇒. Assume that 𝑎 ≡ 𝑏 (mod 𝑛), then 𝑏 − 𝑎 = 𝑘𝑛 for some 𝑘 ∈ ℤ. By Euclidean division, 𝑎 = 𝑛𝑞 + 𝑟 for 𝑞, 𝑟 ∈ ℤ
satisfying 0 ≤ 𝑟 < 𝑛. Hence 𝑏 = 𝑎 + 𝑘𝑛 = 𝑛𝑞 + 𝑟 + 𝑘𝑛 = (𝑞 + 𝑘)𝑛 + 𝑟.
⇐. Assume that 𝑎 and 𝑏 have same remainder for the Euclidean division by 𝑛, then 𝑎 = 𝑛𝑞1 +𝑟 and 𝑏 = 𝑛𝑞2 +𝑟
where 𝑞1, 𝑞2, 𝑟 ∈ ℤ with 0 ≤ 𝑟 < 𝑛.
Hence 𝑎 − 𝑏 = 𝑛𝑞1 + 𝑟 − (𝑛𝑞2 + 𝑟) = 𝑛(𝑞1 − 𝑞2). Thus 𝑛|𝑎 − 𝑏, i.e. 𝑎 ≡ 𝑏 (mod 𝑛). ■

Proposition 5. Let 𝑛 ∈ ℕ ⧵ {0} and 𝑎 ∈ ℤ. Then 𝑎 is congruent modulo 𝑛 to exactly one element of {0, 1, … , 𝑛 − 1}.

Proof. By Euclidean division 𝑎 = 𝑛𝑞 + 𝑟 where 0 ≤ 𝑟 < 𝑛 so that 𝑎 ≡ 𝑟 (mod 𝑛).
Conversely, if 𝑎 ≡ 𝑟′ (mod 𝑛) where 𝑟′ ∈ {0, 1, … , 𝑛 − 1}, then 𝑎 − 𝑟′ = 𝑛𝑞 for some 𝑞 ∈ ℤ. So 𝑎 = 𝑛𝑞 + 𝑟′.
By uniqueness of the Euclidean division, 𝑟 = 𝑟′. ■

Proposition 6. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ and 𝑛 ∈ ℕ ⧵ {0}. Assume that 𝑎 ≡ 𝑏 (mod 𝑛) and that 𝑐 ≡ 𝑑 (mod 𝑛) then
• 𝑎 + 𝑐 ≡ 𝑏 + 𝑑 (mod 𝑛)
• 𝑎𝑐 ≡ 𝑏𝑑 (mod 𝑛)

Proof. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ and 𝑛 ∈ ℕ ⧵ {0}. Assume that 𝑎 ≡ 𝑏 (mod 𝑛) and that 𝑐 ≡ 𝑑 (mod 𝑛). Hence 𝑎 − 𝑏 = 𝑛𝑘
and 𝑐 − 𝑑 = 𝑛𝑙 for some 𝑘, 𝑙 ∈ ℤ. Then

• (𝑎 + 𝑐) − (𝑏 + 𝑑) = (𝑎 − 𝑏) + (𝑐 − 𝑑) = 𝑛𝑘 + 𝑛𝑙 = 𝑛(𝑘 + 𝑙), hence 𝑎 + 𝑐 ≡ 𝑏 + 𝑑 (mod 𝑛).
• 𝑎𝑐 − 𝑏𝑑 = (𝑏 + 𝑛𝑘)(𝑑 + 𝑛𝑙) − 𝑏𝑑 = 𝑏𝑛𝑙 + 𝑑𝑛𝑘 + 𝑛2𝑘𝑙 = 𝑛(𝑏𝑙 + 𝑑𝑘 + 𝑛𝑘𝑙), hence 𝑎𝑐 ≡ 𝑏𝑑 (mod 𝑛).

■

Example 7. 1729 × 16 ≡ 12 × (−1) (mod 17) ≡ −12 (mod 17) ≡ 5 (mod 17)

Corollary 8. Let 𝑎, 𝑏 ∈ ℤ and 𝑛 ∈ ℕ ⧵ {0}. Then ∀𝑘 ∈ ℕ, 𝑎 ≡ 𝑏 (mod 𝑛) ⟹ 𝑎𝑘 ≡ 𝑏𝑘 (mod 𝑛).

Proof. We prove the statement by induction on 𝑘.
Base case at 𝑘 = 0: 𝑎0 = 𝑏0 = 1 hence 𝑎0 ≡ 𝑏0 (mod 𝑛).
Induction step: assume that 𝑎 ≡ 𝑏 (mod 𝑛) ⟹ 𝑎𝑘 ≡ 𝑏𝑘 (mod 𝑛) for some 𝑘 ∈ ℕ.
If 𝑎 ≡ 𝑏 (mod 𝑛) then by induction hypothesiswe also have 𝑎𝑘 ≡ 𝑏𝑘 (mod 𝑛). Hence, combining both previous
congruences, we get that 𝑎𝑘𝑎 ≡ 𝑏𝑘𝑏 (mod 𝑛), i.e. 𝑎𝑘+1 ≡ 𝑏𝑘+1 (mod 𝑛). Which proves the induction step. ■

Remark 9. Therefore addition, substraction (which is a special case of addition in ℤ), multiplication and
exponentiation are compatible with congruences.
Beware: division is not compatible with congruences: 10 ≡ 4 (mod 6) but 5 ≢ 2 (mod 6).
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Proposition 10. Let 𝑎 ∈ ℤ and 𝑛 ∈ ℕ⧵{0}. Then 𝑎 has a multiplicative inverse modulo 𝑛 if and only if gcd(𝑎, 𝑛) = 1.
Otherwise stated,

∃𝑏 ∈ ℤ, 𝑎𝑏 ≡ 1 (mod 𝑛) ⇔ gcd(𝑎, 𝑛) = 1

Proof. ∃𝑏 ∈ ℤ, 𝑎𝑏 ≡ 1 (mod 𝑛) ⇔ ∃𝑏, 𝑐 ∈ ℤ, 𝑎𝑏 + 𝑛𝑐 = 1 ⇔ gcd(𝑎, 𝑛) = 1 ■

Remark 11. Then the multiplicative inverse is unique modulo 𝑛. Indeed if 𝑎𝑏 ≡ 1 (mod 𝑛) ≡ 𝑎𝑏′ (mod 𝑛)
then 𝑛|(𝑏 − 𝑏′)𝑎. Since gcd(𝑎, 𝑛) = 1, using Gauss’ lemma, we get that 𝑛|𝑏 − 𝑏′, i.e. 𝑏 ≡ 𝑏′ (mod 𝑛).

Remark 12. There is no cancellation law for congruences. For instance, 50 ≡ 20 (mod 15) but 5 ≢ 2 (mod 15).
Nonetheless, we have the following proposition.

Proposition 13. Let 𝑛 ∈ ℕ⧵{0} and 𝑎, 𝑥, 𝑦 ∈ ℤ satisfying 𝑎𝑥 ≡ 𝑎𝑦 (mod 𝑛) and gcd(𝑎, 𝑛) = 1. Then 𝑥 ≡ 𝑦 (mod 𝑛).

Proof. Since gcd(𝑎, 𝑛) = 1, 𝑎 admits an inverse modulo 𝑛, i.e. there exists 𝑏 ∈ ℤ such that 𝑎𝑏 ≡ 1 (mod 𝑛).
Then 𝑎𝑥 ≡ 𝑎𝑦 (mod 𝑛) ⟹ 𝑏𝑎𝑥 ≡ 𝑏𝑎𝑦 (mod 𝑛) ⟹ 𝑥 ≡ 𝑦 (mod 𝑛). ■

2 Applications: divisibility criteria
In our everyday life, we usually use a base ten positional notation. It allows use to write all natural numbers
using only 10 digits although ℕ is infinite. The idea is that the position of a digit changes its value.

Indeed, using the well-ordering principle and Euclidean division, it is possible to prove that any 𝑛 ∈ ℕ

can be uniquely written as 𝑛 =
𝑟

∑
𝑘=0

𝑎𝑘10𝑘 where 𝑎𝑘 ∈ {0, 1, … , 9} and 𝑎𝑟 ≠ 0 (see the appendix for a proof).

We usually write 𝑎𝑟𝑎𝑟−1 … 𝑎0
10 for

𝑟

∑
𝑘=0

𝑎𝑘10𝑘 but we may omit the line over the digits when there is no

possible confusion. For instance, 590743 = 5 × 105 + 9 × 104 + 0 × 103 + 7 × 102 + 4 × 101 + 3 × 100.
Note that we also use other bases: base 2 and base 16 are quite common nowadays in computer sciences.

And other bases were also commonly used by human beings in various places in the past: we still have the
influence of a base 60 positional system when describing time (1 hour is 60 minutes), and the influence of
a base 20 positional system in several languages (in French 96 is litteraly pronounced 4 × 20 + 16).

In this section, we are going to use modular arithmetic in order to prove some divisibility criteria using
our base ten positional notation.

Proposition 14. 3|𝑎𝑟𝑎𝑟−1 … 𝑎0
10 if and only if 3|

𝑟

∑
𝑘=0

𝑎𝑘.

Proof. Note that 10 ≡ 1 (mod 3), hence

𝑎𝑟𝑎𝑟−1 … 𝑎0
10 =

𝑟

∑
𝑘=0

𝑎𝑘10𝑘 ≡
𝑟

∑
𝑘=0

𝑎𝑘1𝑘 (mod 3) ≡
𝑟

∑
𝑘=0

𝑎𝑘 (mod 3)

Thus,

3|𝑎𝑟𝑎𝑟−1 … 𝑎0
10 ⇔ 𝑎𝑟𝑎𝑟−1 … 𝑎0

10 ≡ 0 (mod 3)

⇔
𝑟

∑
𝑘=0

𝑎𝑘 ≡ 0 (mod 3)

⇔ 3|
𝑟

∑
𝑘=0

𝑎𝑘

■



4 Modular arithmetic

Examples 15.

• 91524 is divisible by 3 since 9 + 1 + 5 + 2 + 4 = 21 = 7 × 3 is.

• Let’s study whether 8546921469 is a multiple of 3 or not:

3|8546921469 ⇔ 3|8 + 5 + 4 + 6 + 9 + 2 + 1 + 4 + 6 + 9 = 54
⇔ 3|5 + 4 = 9

But 9 = 3 × 3, hence 3|8546921469.

Proposition 16. 9|𝑎𝑟𝑎𝑟−1 … 𝑎0
10 if and only if 9|

𝑟

∑
𝑘=0

𝑎𝑘.

Proof. That’s a similar proof since 10 ≡ 1 (mod 9). ■

Proposition 17. 4|𝑎𝑟𝑎𝑟−1 … 𝑎0
10 if and only if 4|𝑎1𝑎0

10.

Proof. Note that 102 = 4 × 25 hence 10𝑘 ≡ 0 (mod 4) for 𝑘 ≥ 2. Hence

4|𝑎𝑟𝑎𝑟−1 … 𝑎0
10 ⇔ 𝑎𝑟𝑎𝑟−1 … 𝑎0

10 ≡ 0 (mod 4)

⇔
𝑟

∑
𝑘=0

𝑎𝑘10𝑘 ≡ 0 (mod 4)

⇔ 𝑎1 × 10 + 𝑎0 ≡ 0 (mod 4)
⇔ 𝑎1𝑎0

10 ≡ 0 (mod 4)
⇔ 4|𝑎1𝑎0

10

■

Examples 18.
• 4 ∤ 856987454251100125 since 4 ∤ 25.
• 4|98854558715580 since 4|80 = 4 × 20.

3 Fermat’s little theorem
Lemma 19. Let 𝑝 be a prime number. Then ∀𝑛 ∈ {1, … , 𝑝 − 1}, (

𝑝
𝑛) ≡ 0 (mod 𝑝).

Proof. Let 𝑛 ∈ {1, … , 𝑝 − 1}. Remember that 𝑛(
𝑝
𝑛) = 𝑝(

𝑝−1
𝑛−1). Hence, 𝑝|𝑛(

𝑝
𝑛).

Since gcd(𝑝, 𝑛) = 1, by Gauss’ lemma, we get that 𝑝|(
𝑝
𝑛). ■

Theorem 20 (Fermat’s little theorem, version 1).
Let 𝑝 be a prime number and 𝑎 ∈ ℤ. Then 𝑎𝑝 ≡ 𝑎 (mod 𝑝).

Proof. We first prove the theorem for 𝑎 ∈ ℕ by induction.
Base case at 𝑎 = 0: 0𝑝 = 0 ≡ 0 (mod 𝑝).
Induction step: assume that 𝑎𝑝 ≡ 𝑎 (mod 𝑝) for some 𝑎 ∈ ℕ. Then

(𝑎 + 1)𝑝 =
𝑝

∑
𝑛=0

(
𝑝
𝑛)𝑎𝑛 by the binomial formula

≡ 𝑎𝑝 + 1 (mod 𝑝) since, by the above lemma, 𝑝|(
𝑝
𝑛) for 1 ≤ 𝑛 ≤ 𝑝 − 1

≡ 𝑎 + 1 (mod 𝑝) by the induction hypothesis
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Which ends the induction step.

We still need to prove the theorem for 𝑎 < 0. Then −𝑎 ∈ ℕ, hence, from the first part of the proof,
(−𝑎)𝑝 ≡ −𝑎 (mod 𝑝). Multiplying both sides by (−1)𝑝 we get that 𝑎𝑝 ≡ (−1)𝑝+1𝑎 (mod 𝑝).
If 𝑝 = 2 then either 𝑎 ≡ 0 (mod 2) or 𝑎 ≡ 1 (mod 2), and the statement holds for both cases.
Otherwise, 𝑝 is odd, and hence (−1)𝑝+1 = 1. Thus 𝑎𝑝 ≡ 𝑎 (mod 𝑝). ■

Theorem 21 (Fermat’s little theorem, version 2).
Let 𝑝 be a prime number and 𝑎 ∈ ℤ. If gcd(𝑎, 𝑝) = 1 then 𝑎𝑝−1 ≡ 1 (mod 𝑝).

Proof. By the first version of Fermat’s little theorem, 𝑎𝑝 ≡ 𝑎 (mod 𝑝). Hence 𝑝|𝑎𝑝 − 𝑎 = 𝑎(𝑎𝑝−1 − 1).
Since gcd(𝑎, 𝑝) = 1, by Gauss’ lemma, 𝑝|𝑎𝑝−1 − 1. Thus 𝑎𝑝−1 ≡ 1 (mod 𝑝). ■

Remark 22. Note that both versions of Fermat’s little theorem are equivalent.

4 Wilson’s theorem

Lemma 23. Let 𝑝 be a prime number. Then

∀𝑎 ∈ ℤ, 𝑎2 ≡ 1 (mod 𝑝) ⟹ (𝑎 ≡ −1 (mod 𝑝) or 𝑎 ≡ 1 (mod 𝑝))

Proof. Let 𝑝 be a prime number and 𝑎 ∈ ℤ satisfying 𝑎2 ≡ 1 (mod 𝑝). Then 𝑝|𝑎2 − 1 = (𝑎 − 1)(𝑎 + 1).
By Euclid’s lemma, either 𝑝|𝑎 − 1 or 𝑝|𝑎 + 1, i.e. 𝑎 ≡ 1 (mod 𝑝) or 𝑎 ≡ −1 (mod 𝑝). ■

Theorem 24 (Wilson’s theorem). Let 𝑛 ∈ ℕ ⧵ {0, 1}. Then 𝑛 is prime if and only if (𝑛 − 1)! ≡ −1 (mod 𝑛).

Proof. Let 𝑛 ∈ ℕ ⧵ {0, 1}.

• Assume that 𝑛 is a composite number. Then there exists 𝑘 ∈ ℕ such that 𝑘|𝑛 and 1 < 𝑘 < 𝑛.
Assume by contradiction that (𝑛 − 1)! ≡ −1 (mod 𝑛) then 𝑛|(𝑛 − 1)! + 1 and hence 𝑘|(𝑛 − 1)! + 1.
But 𝑘|(𝑛 − 1)!, thus 𝑘|((𝑛 − 1)! + 1 − (𝑛 − 1)!), i.e. 𝑘|1. So 𝑘 = 1 which leads to a contradiction.

• Assume that 𝑛 is prime.
Let 𝑎 ∈ {1, 2, … , 𝑛 − 1} then gcd(𝑎, 𝑛) = 1. Hence 𝑎 admits a multiplicative inverse modulo 𝑛, so there
exists 𝑏 ∈ {1, 2, … , 𝑛 − 1} such that 𝑎𝑏 ≡ 1 (mod 𝑛).
Note that this 𝑏 is unique by Remark 11.
By the above lemma, 𝑎 = 1 and 𝑎 = 𝑛 − 1 are the only 𝑎 as above being their self-multiplicative inverse
(i.e. such that 𝑎2 ≡ 1 (mod 𝑛)). Otherwise 𝑏 ≠ 𝑎.
Thus (𝑛 − 1)! = 1 × 2 × ⋯ × (𝑛 − 1) ≡ 1 × (𝑛 − 1) (mod 𝑛) ≡ −1 (mod 𝑛).
Indeed, in the previous product each term simplifies with its multiplicative inverse except 1 and 𝑛 − 1.

■

Examples 25.
• Take 𝑝 = 17 then (17 − 1)! + 1 = 20922789888001 = 17 × 1230752346353.
• Take 𝑝 = 15 then (15 − 1)! + 1 = 87178291201 = 15 × 5811886080 + 1.

Remark 26. Wilson’s theorem is a very inefficient way to checkwhether a number is prime or not. Nonethe-
less, it has some interesting theoretical applications.



6 Modular arithmetic

5 Chinese remainder theorem

Theorem 27 (Chinese remainder theorem).
Let 𝑛1, 𝑛2 ∈ ℕ ⧵ {0, 1} be such that gcd(𝑛1, 𝑛2) = 1 and let 𝑎1, 𝑎2 ∈ ℤ.

Then there exists 𝑥 ∈ ℤ satisfying {
𝑥 ≡ 𝑎1 (mod 𝑛1)
𝑥 ≡ 𝑎2 (mod 𝑛2)

Besides, if 𝑥1, 𝑥2 ∈ ℤ are two solutions of the above system then 𝑥1 ≡ 𝑥2 (mod 𝑛1𝑛2).

Proof.

• Existence. By Bézout’s identity, there exist 𝑚1, 𝑚2 ∈ ℤ such that 𝑛1𝑚1 + 𝑛2𝑚2 = 1.
Note that 𝑛1𝑚1 ≡ 0 (mod 𝑛1) and that 𝑛1𝑚1 ≡ 𝑛1𝑚1 + 𝑛2𝑚2 (mod 𝑛2) ≡ 1 (mod 𝑛2).
Similarly 𝑛2𝑚2 ≡ 0 (mod 𝑛2) and 𝑛2𝑚2 ≡ 1 (mod 𝑛1).
Thus, if we set 𝑥 = 𝑎2𝑛1𝑚1 + 𝑎1𝑛2𝑚2 then

– 𝑥 ≡ 𝑎2 × 0 + 𝑎1 × 1 (mod 𝑛1) ≡ 𝑎1 (mod 𝑛1),
– 𝑥 ≡ 𝑎2 × 1 + 𝑎1 × 0 (mod 𝑛2) ≡ 𝑎2 (mod 𝑛2).

• Uniqueness modulo 𝑛1𝑛2. Let 𝑥1, 𝑥2 ∈ ℤ be two solutions.
Then 𝑥1 − 𝑥2 ≡ 0 (mod 𝑛1) so 𝑥1 − 𝑥2 = 𝑘𝑛1 for some 𝑘 ∈ ℤ. Similarly 𝑛2|𝑥1 − 𝑥2 = 𝑘𝑛1.
Since gcd(𝑛1, 𝑛2) = 1, by Gauss’ lemma, 𝑛2|𝑘. So there exists 𝑙 ∈ ℤ such that 𝑘 = 𝑛2𝑙.
Thus 𝑥1 − 𝑥2 = 𝑙𝑛1𝑛2 and therefore 𝑥1 ≡ 𝑥2 (mod 𝑛1𝑛2).

■

6 Euler’s theorem

Definition 28. Euler’s totient function is the function 𝜑 ∶ ℕ ⧵ {0} → ℕ ⧵ {0} defined by

𝜑(𝑛) ≔ # {𝑘 ∈ ℕ ∶ 1 ≤ 𝑘 ≤ 𝑛 and gcd(𝑘, 𝑛) = 1}

Proposition 29. ∀𝑛1, 𝑛2 ∈ ℕ ⧵ {0}, gcd(𝑛1, 𝑛2) = 1 ⟹ 𝜑(𝑛1𝑛2) = 𝜑(𝑛1)𝜑(𝑛2)

Proof. If 𝑛1 = 1 or 𝑛2 = 1 then there is nothing to prove. So let’s assume that 𝑛1, 𝑛2 ≥ 2.
Define

𝑆𝑖 = {𝑟 ∈ ℕ ∶ 1 ≤ 𝑟 ≤ 𝑛𝑖 and gcd(𝑟, 𝑛𝑖) = 1} , 𝑖 = 1, 2

and
𝑇 = {𝑘 ∈ ℕ ∶ 1 ≤ 𝑘 ≤ 𝑛1𝑛2 and gcd(𝑘, 𝑛1𝑛2) = 1}

For 𝑘 ∈ 𝑇 , write the Euclidean divisions 𝑘 = 𝑛1𝑞1 + 𝑟1 with 0 ≤ 𝑟1 < 𝑛1 and 𝑘 = 𝑛2𝑞2 + 𝑟2 where 0 ≤ 𝑟2 < 𝑛2.
Let’s prove that 𝑟𝑖 ∈ 𝑆𝑖:

• Assume that 𝑟𝑖 = 0 then 𝑛𝑖|𝑘 and 𝑛𝑖|𝑛1𝑛2 so that 𝑛𝑖|gcd(𝑘, 𝑛1𝑛2) = 1: contradiction. So 1 ≤ 𝑟𝑖 < 𝑛𝑖.

• gcd(𝑟𝑖, 𝑛𝑖) = gcd(𝑘 − 𝑛𝑖𝑞𝑖, 𝑛𝑖) = gcd(𝑘, 𝑛𝑖)|gcd(𝑘, 𝑛1𝑛2) = 1, hence gcd(𝑟𝑖, 𝑛𝑖) = 1.

Therefore we can define 𝑓 ∶ 𝑇 → 𝑆1 × 𝑆2 by 𝑓(𝑘) = (𝑟1, 𝑟2). Let’s prove that 𝑓 is a bijection.
Let (𝑟1, 𝑟2) ∈ 𝑆1 ×𝑆2. Then by the Chinese remainder theorem, there exists a unique 𝑘 ∈ {1, 2, … , 𝑛1𝑛2} such
that 𝑘 ≡ 𝑟1 (mod 𝑛1) and 𝑘 ≡ 𝑟2 (mod 𝑛2).
Note that gcd(𝑘, 𝑛1) = gcd(𝑟1 + 𝑙𝑛1, 𝑛1) = gcd(𝑟1, 𝑛1) = 1 (for some 𝑙 ∈ ℤ).
Similarly gcd(𝑘, 𝑛2) = gcd(𝑟2, 𝑛2) = 1.
Then gcd(𝑘, 𝑛1𝑛2) = 1 by Exercise 3 of Problem Set 2, so that 𝑘 ∈ 𝑇 .
We proved that ∀(𝑟1, 𝑟2) ∈ 𝑆1 × 𝑆2, ∃!𝑘 ∈ 𝑇 , (𝑟1, 𝑟2) = 𝑓(𝑘), i.e. that 𝑓 is bijective.
Therefore, #𝑇 = #(𝑆1 × 𝑆2) = #𝑆1#𝑆2, i.e. 𝜑(𝑛1𝑛2) = 𝜑(𝑛1)𝜑(𝑛2). ■



MAT246H1-S – LEC0201/9201 – J.-B. Campesato 7

Proposition 30. Let 𝑝1, … , 𝑝𝑟 be pairwise distinct prime numbers and 𝛼1, … , 𝛼𝑟 ∈ ℕ ⧵ {0}, then

𝜑
(

𝑟

∏
𝑖=1

𝑝𝛼𝑖
𝑖 )

=
𝑟

∏
𝑖=1

(𝑝𝛼𝑖
𝑖 − 𝑝𝛼𝑖−1

𝑖 )

Proof.

• First case: let 𝑝 be a prime number and 𝛼 ∈ ℕ ⧵ {0}. Then gcd(𝑝𝛼 , 𝑚) > 1 if and only if 𝑝|𝑚.
Hence 𝜑(𝑝𝛼) = # ({1, 2, … , 𝑝𝛼} ⧵ {1 × 𝑝, 2 × 𝑝, … , 𝑝𝛼−1 × 𝑝}) = 𝑝𝛼 − 𝑝𝛼−1.

• General case: using Proposition 29 and the first case, we get that

𝜑
(

𝑟

∏
𝑖=1

𝑝𝛼𝑖
𝑖 )

=
𝑟

∏
𝑖=1

𝜑 (𝑝𝛼𝑖
𝑖 ) =

𝑟

∏
𝑖=1

(𝑝𝛼𝑖
𝑖 − 𝑝𝛼𝑖−1

𝑖 )

■

Remark 31. Assuming that we have already some knowledge about ℚ, we can also write for 𝑛 =
𝑟

∏
𝑖=1

𝑝𝛼𝑖
𝑖 :

𝜑 (𝑛) = 𝑛
𝑟

∏
𝑖=1 (1 − 1

𝑝𝑖 )

Theorem 32 (Euler’s theorem). Let 𝑛 ∈ ℕ ⧵ {0} and 𝑎 ∈ ℤ such that gcd(𝑎, 𝑛) = 1. Then 𝑎𝜑(𝑛) ≡ 1 (mod 𝑛).

Remark 33. Note that Fermat’s little theorem is a special case of Euler’s theorem: indeed, if 𝑝 is a prime
number then 𝜑(𝑝) = 𝑝 − 1.

Proof of Euler’s theorem.
Write 𝑆 = {𝑘 ∈ ℕ ∶ 1 ≤ 𝑘 ≤ 𝑛 and gcd(𝑘, 𝑛) = 1} = {𝑘1, 𝑘2, … , 𝑘𝜑(𝑛)}.
We will use the following two facts:
(i) Given 𝑘𝑖 ∈ 𝑆, there exists 𝑘𝑗 ∈ 𝑆 such that 𝑎𝑘𝑖 ≡ 𝑘𝑗 (mod 𝑛).

Let 𝑘𝑖 ∈ 𝑆 then gcd(𝑎𝑘𝑖, 𝑛) = 1 by Exercise 3 of Problem Set 2.
Thus 𝑎𝑘𝑖 ≡ 𝑘𝑗 (mod 𝑛) for some 𝑘𝑗 ∈ 𝑆.

(ii) ∀𝑘𝑖, 𝑘𝑗 ∈ 𝑆, 𝑎𝑘𝑖 ≡ 𝑎𝑘𝑗 (mod 𝑛) ⟹ 𝑘𝑖 = 𝑘𝑗 .
Indeed, then 𝑛|𝑎(𝑘𝑖 − 𝑘𝑗) and hence 𝑛|𝑘𝑖 − 𝑘𝑗 by Gauss’ lemma.
Thus 𝑘𝑖 ≡ 𝑘𝑗 (mod 𝑛).
Finally, 𝑘𝑖 = 𝑘𝑗 since 1 ≤ 𝑘𝑖, 𝑘𝑗 ≤ 𝑛.

For 𝑖 ∈ {1, 2, … , 𝜑(𝑛)}, there exists a unique 𝑙𝑖 ∈ {0, 1, … , 𝑛 − 1} such that 𝑙𝑖 ≡ 𝑎𝑘𝑖 (mod 𝑛).
Then, {𝑙1, 𝑙2, … , 𝑙𝜑(𝑛)} = {𝑘1, 𝑘2, … , 𝑘𝜑(𝑛)}.
Indeed, by (i), {𝑙1, 𝑙2, … , 𝑙𝜑(𝑛)} ⊂ {𝑘1, 𝑘2, … , 𝑘𝜑(𝑛)}. And by (ii), #{𝑙1, 𝑙2, … , 𝑙𝜑(𝑛)} = #{𝑘1, 𝑘2, … , 𝑘𝜑(𝑛)}.

Hence
𝜑(𝑛)

∏
𝑖=1

𝑘𝑖 =
𝜑(𝑛)

∏
𝑖=1

𝑙𝑖 ≡
𝜑(𝑛)

∏
𝑖=1

𝑎𝑘𝑖 (mod 𝑛) ≡ 𝑎𝜑(𝑛)
𝜑(𝑛)

∏
𝑖=1

𝑘𝑖 (mod 𝑛).

Therefore 𝑛|(𝑎𝜑(𝑛) − 1)
𝜑(𝑛)

∏
𝑖=1

𝑘𝑖.

Since gcd
⎛
⎜
⎜
⎝
𝑛,

𝜑(𝑛)

∏
𝑖=1

𝑘𝑖
⎞
⎟
⎟
⎠

= 1 by Exercise 3 of Problem Set 2, we deduce from Gauss’ lemma that 𝑛|𝑎𝜑(𝑛) − 1,

i.e. 𝑎𝜑(𝑛) ≡ 1 (mod 𝑛). ■



8 Modular arithmetic

A Positional numeral system with base 𝑏
Theorem 34. Let 𝑏 ≥ 2 be an natural number. Then any natural number 𝑛 ∈ ℕ admits a unique expression

𝑛 = ∑
𝑘≥0

𝑎𝑘𝑏𝑘

where 𝑎𝑘 ∈ {0, 1, … , 𝑏 − 1} and 𝑎𝑘 = 0 for all but finitely many 𝑘 ≥ 0.

Notation 35. We write 𝑎𝑟𝑎𝑟−1 … 𝑎1𝑎0
𝑏 for

𝑟

∑
𝑘=0

𝑎𝑘𝑏𝑘.

Proof of Theorem 34.
Existence.
We are going to prove by strong induction that for any 𝑛 ≥ 0, there exist 𝑎𝑘 ∈ {0, 1, … , 𝑏 − 1}, 𝑘 ∈ ℕ, all but
finitely many equal to 0 such that 𝑛 = ∑

𝑘≥0
𝑎𝑘𝑏𝑘.

• Base case at 𝑛 = 0: 0 = ∑
𝑘≥0

0𝑏𝑘.

• Induction step. Assume that 0, 1, … , 𝑛 admit an expression in base 𝑏, for some 𝑛 ≥ 0.
By Euclidean division, 𝑛 + 1 = 𝑏𝑞 + 𝑟 where 𝑞, 𝑟 ∈ ℕ satisfy 0 ≤ 𝑟 < 𝑏.
Note that if 𝑞 ≠ 0 then 𝑞 < 𝑏𝑞 ≤ 𝑏𝑞 + 𝑟 = 𝑛 + 1. Thus 0 ≤ 𝑞 ≤ 𝑛.
Therefore, by the induction hypothesis, 𝑞 = ∑

𝑘≥0
𝑎𝑘𝑏𝑘 where 𝑎𝑘 ∈ {0, 1, … , 𝑏 − 1} and 𝑎𝑘 = 0 for all but

finitely many 𝑘 ≥ 0.
Hence, 𝑛 + 1 = 𝑏𝑞 + 𝑟 = ∑

𝑘≥0
𝑎𝑘𝑏𝑘+1 + 𝑟𝑏0.

Uniqueness.
Write ∑

𝑘≥0
𝑎𝑘𝑏𝑘 = ∑

𝑘≥0
𝑎′

𝑘𝑏𝑘 where 𝑎𝑘, 𝑎′
𝑘 ∈ {0, 1, … , 𝑏 − 1} are zero for all but finitely many 𝑘 ≥ 0.

Assume by contradiction there exists 𝑘 ≥ 0 such that 𝑎𝑘 ≠ 𝑎′
𝑘.

Since {𝑘 ∈ ℕ ∶ 𝑎𝑘 ≠ 𝑎′
𝑘} is finite and non-empty, it admits a greatest element ℓ.

WLOG, we may assume that 𝑎ℓ < 𝑎′
ℓ.

Then 0 = ∑
𝑘≥0

𝑎𝑘𝑏𝑘 − ∑
𝑘≥0

𝑎′
𝑘𝑏𝑘 = ∑

𝑘≥0
(𝑎𝑘 − 𝑎′

𝑘)𝑏𝑘 =
ℓ

∑
𝑘=0

(𝑎𝑘 − 𝑎′
𝑘)𝑏𝑘. So that (𝑎′

ℓ − 𝑎ℓ)𝑏ℓ =
ℓ−1

∑
𝑘=0

(𝑎𝑘 − 𝑎′
𝑘)𝑏𝑘.

Therefore (𝑎′
ℓ − 𝑎ℓ)𝑏ℓ ≤

ℓ−1

∑
𝑘=0

|𝑎𝑘 − 𝑎′
𝑘|𝑏𝑘 ≤

ℓ−1

∑
𝑘=0

(𝑏 − 1)𝑏𝑘 = 𝑏ℓ − 1 < 𝑏ℓ ≤ (𝑎′
ℓ − 𝑎ℓ)𝑏ℓ.

Hence a contradiction. ■

Remark 36. In order to pass from a base 10 expression to a base 𝑏 expression, we can perform successive
Euclidean divisions as shown below (to pass from a base 𝑏 expression to a base 10 wemay simply compute
the sum).

Example 37.

42 = 2 × 21 + 0
= 2 × (2 × 10 + 1) + 0
= 2 × (2 × (2 × 5 + 0) + 1) + 0
= 2 × (2 × (2 × (2 × 2 + 1) + 0) + 1) + 0
= 2 × (2 × (2 × (2 × (2 × 1 + 0) + 1) + 0) + 1) + 0
= 1 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20

Hence 4210 = 1010102.
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The first knownpositional numeral system is the Babylonian one (circa 2000BC)whose base is 60 andwhose
digits are:
0
1 𒁹
2 𒈫
3 𒐈
4 𒃻
5 𒐊
6 𒐋
7 𒐌
8 𒐍
9 𒐎

10 𒌋
11 𒌋 𒁹
12 𒌋 𒈫
13 𒌋𒐈
14 𒌋𒃻
15 𒌋𒐊
16 𒌋𒐋
17 𒌋𒐌
18 𒌋𒐍
19 𒌋𒐎

20 𒌋𒌋
21 𒌋𒌋 𒁹
22 𒌋𒌋 𒈫
23 𒌋𒌋𒐈
24 𒌋𒌋𒃻
25 𒌋𒌋𒐊
26 𒌋𒌋𒐋
27 𒌋𒌋𒐌
28 𒌋𒌋𒐍
29 𒌋𒌋𒐎

30 𒌍
31 𒌍𒁹
32 𒌍𒈫
33 𒌍𒐈
34 𒌍𒃻
35 𒌍𒐊
36 𒌍𒐋
37 𒌍𒐌
38 𒌍𒐍
39 𒌍𒐎

40 𒄭
41 𒄭𒁹
42 𒄭𒈫
43 𒄭𒐈
44 𒄭𒃻
45 𒄭𒐊
46 𒄭𒐋
47 𒄭𒐌
48 𒄭𒐍
49 𒄭𒐎

50 𒄴
51 𒄴𒁹
52 𒄴𒈫
53 𒄴𒐈
54 𒄴𒃻
55 𒄴𒐊
56 𒄴𒐋
57 𒄴𒐌
58 𒄴𒐍
59 𒄴𒐎

Let’s say thatwewant towrite 13655 using Babylonian cuneiformnumerals. For that, we perform successive
Euclidean divisions by 60 as follows:

13655 = 60 × 227 + 35 = 60 × (60 × 3 + 47) + 35 = 3 × 602 + 47 × 601 + 35 × 600

Hence it was written: 𒐈 𒄭𒐌 𒌍𒐊

Originally, there was no positional zero and an empty space was used instead (which can be confusing:
𒌋𒌋 𒐈 𒐊 and 𒌋𒌋 𒐈 𒐊 are not equal). The more convenient symbol 𒑊 was later used instead of the empty
space (but it is not the number 0, just a placeholder symbol for the positional numeral system).

See below a problem set submission by a MAT246 student circa 1700BC.

Figure 1: YBC 7289, clay tablet, between 1800BC and 1600BC.

It shows (extremely accurate) approximations of √2 ≃ 1 + 24
60 + 51

602 + 10
603

and of 30√2 ≃ 42 + 25
60 + 35

602 (diagonal of the square of side length 30, see above de square)
Yale Babylonian Collection,
Original picture from https://commons.wikimedia.org/wiki/File:YBC-7289-OBV-REV.jpg

https://commons.wikimedia.org/wiki/File:YBC-7289-OBV-REV.jpg


10 Modular arithmetic

B The Chinese Remainder Theorem for more than two equations
You won’t need the following result in MAT246, I’ve just added it because it was asked on Piazza (@82).

Theorem 38 (Chinese remainder theorem). Let 𝑘 ∈ ℕ ⧵ {0, 1}.
Let 𝑛1, 𝑛2, … , 𝑛𝑘 ∈ ℕ ⧵ {0, 1} be pairwise coprine, i.e. ∀𝑖, 𝑗 ∈ {1, … , 𝑘}, 𝑖 ≠ 𝑗 ⟹ gcd(𝑛𝑖, 𝑛𝑗) = 1.
Let 𝑎1, … , 𝑎𝑘 ∈ ℤ. Then there exists 𝑥 ∈ ℤ satisfying

⎧
⎪
⎨
⎪
⎩

𝑥 ≡ 𝑎1 (mod 𝑛1)
𝑥 ≡ 𝑎2 (mod 𝑛2)

⋮
𝑥 ≡ 𝑎𝑘 (mod 𝑛𝑘)

The proof follows closely the one of Theorem 27 but applied to 𝑛𝑖 and 𝑛1 … 𝑛𝑖−1𝑛𝑖+1 … 𝑛𝑘.

Proof. Let 𝑖 ∈ {1, … , 𝑘}. Then gcd(𝑛𝑖, 𝑛1 … 𝑛𝑖−1𝑛𝑖+1 … 𝑛𝑘) = 1.
So, by Bézout’s identity, there exists 𝑢𝑖, 𝑣𝑖 ∈ ℤ such that 𝑢𝑖𝑛𝑖 + 𝑣𝑖𝑛1 … 𝑛𝑖−1𝑛𝑖+1 … 𝑛𝑘 = 1.
Set 𝑒𝑖 = 𝑣𝑖𝑛1 … 𝑛𝑖−1𝑛𝑖+1 … 𝑛𝑘 then 𝑒𝑖 ≡ 1 (mod 𝑛𝑖), and for 𝑗 ∈ {1, … , 𝑘} ⧵ {𝑖}, 𝑒𝑖 ≡ 0 (mod 𝑛𝑗).

Therefore 𝑥 =
𝑘

∑
𝑖=1

𝑎𝑖𝑒𝑖 is a suitable solution. ■
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