Feuille d'exercices n°3

Exercice 1.

Déterminer les valeurs propres et sous-espaces propres de l'endomorphisme $f \in \mathcal{L}(\mathbb{R}[X])$ défini par

$$\forall P \in \mathbb{R}[X], \ f(P) = (X+1)(X-3)P'(X) - XP(X).$$

Exercice 2.

Déterminer les valeurs propres et sous-espaces propres de l'endomorphisme $\varphi \in \mathcal{L}(\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R}))$ défini par

$$\forall f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}), \ \varphi(f) = f'.$$

Exercice 3.

Est-ce que les matrices suivantes sont diagonalisables dans $M_3(\mathbb{R})$?

Le cas échéant, déterminer une matrice de passage et une matrice diagonale convenant.

$$A = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 3 & 2 \\ -2 & 5 & 2 \\ 2 & -3 & 0 \end{pmatrix}, \qquad C = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}.$$

Exercice 4.

Déterminer sans calcul si les matrices suivantes sont diagonalisables dans $M_4(\mathbb{R})$:

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 \end{pmatrix}, \qquad B = \begin{pmatrix} 42 & 1 & 2 & 3 \\ 0 & 42 & 4 & 5 \\ 0 & 0 & 42 & 6 \\ 0 & 0 & 0 & 42 \end{pmatrix}.$$

Exercice 5.

On définit $u, v \in \mathcal{L}(C^0([-\pi, \pi], \mathbb{R}))$ par

$$\forall f \in \mathcal{C}^0([-\pi,\pi],\mathbb{R}), \quad u(f) : \begin{cases} [-\pi,\pi] \to \mathbb{R} \\ x \mapsto \int_{-\pi}^{\pi} \cos(x-t) f(t) dt \end{cases}$$

et

$$\forall f \in C^0([-\pi, \pi], \mathbb{R}), \quad v(f) : \begin{cases} [-\pi, \pi] \to \mathbb{R} \\ x \mapsto \int_{-\pi}^{\pi} \sin(x - t) f(t) dt \end{cases}$$

- 1. Vérifier que u et v sont bien définies et sont bien des endormophismes de $\mathcal{C}^0([-\pi,\pi],\mathbb{R})$.
- 2. Déterminer les valeurs propres et sous-espaces propres de u et de v.

Exercice 6.

Soit $f \in \mathcal{L}(E)$ où E est un \mathbb{K} -espace vectoriel de dimension finie.

Montrer que si $F \subset E$ est un sous-espace vectoriel stable par f alors $\chi_{f_{1F}}|\chi_f$.

Exercice 7.

Soit E un espace vectoriel réel de dimension finie impaire. Montrer que pour tout endomorphisme $f \in \mathcal{L}(E)$, il existe une droite vectorielle de E stable par f.

Indice : étudier l'application polynomiale induite par χ_f .

Exercice 8.

Soit
$$A = \begin{pmatrix} 0 & -8 & 6 \\ -1 & -8 & 7 \\ 1 & -14 & 11 \end{pmatrix} \in M_3(\mathbb{R})$$
. Montrer que A est inversible et calculer A^k pour tout $k \in \mathbb{Z}$.

Exercice 9.

- 1. Montrer que si $A \in M_{n,p}(\mathbb{K})$ et $B \in M_{p,n}(\mathbb{K})$ alors $(-X)^n \chi_{BA}(X) = (-X)^p \chi_{AB}(X)$. *Indice*: travailler par blocs dans $M_{n+p}(\mathbb{K})$.
- 2. En déduire que si $A, B \in M_n(\mathbb{K})$ alors $\operatorname{Sp}_{\mathbb{K}}(AB) = \operatorname{Sp}_{\mathbb{K}}(BA)$.
- 3. Démontrer directement l'énoncé de la question précédente (i.e. sans polynôme caractéristique).

Exercice 10. *Matrice compagnon : très important!*

1. (i) Montrer que
$$\chi_A(X) = (-1)^n \left(X^n - \sum_{k=0}^{n-1} a_k X^k \right)$$
 où
$$(0 \cdots \cdots \cdots 0)$$

$$A = \begin{pmatrix} 0 & \cdots & \cdots & 0 & a_0 \\ 1 & 0 & \cdots & \cdots & 0 & a_1 \\ 0 & 1 & 0 & \cdots & 0 & a_2 \\ 0 & 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & 0 & \cdots & 0 & 1 & a_{n-1} \end{pmatrix} \in M_n(\mathbb{K}).$$

- (ii) Montrer que A est diagonalisable si et seulement si $X^n \sum_{k=0}^{n-1} a_k X^k$ est scindé à racines simples.
- 2. En utilisant 1.(i), donner une condition nécessaire et suffisante sur $P(X) = \sum_{k=0}^{n} \alpha_k X^k \in \mathbb{K}_{\leq n}[X]$ pour qu'il existe une matrice $A \in M_n(\mathbb{K})$ telle que $\chi_A = P$.

Exercice 11.

Soit
$$A = \begin{pmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{pmatrix} \in M_4(\mathbb{R}).$$

1. Calculer A^tA .

2. En déduire χ_A .

3. Déterminer les valeurs propres et les sous-espaces propres de A sur \mathbb{C} .

4. En déduire que A est diagonalisable dans $M_4(\mathbb{C})$.

Exercice 12.

Trigonaliser dans
$$M_3(\mathbb{R})$$
 les matrices suivantes : $A = \begin{pmatrix} 1 & 4 & -2 \\ 0 & 6 & -3 \\ -1 & 4 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 2 & -1 & -1 \\ 2 & 1 & -2 \\ 3 & -1 & -2 \end{pmatrix}$.

Exercice 13.

- 1. Soit $A \in M_n(\mathbb{C})$. Montrer que les propriétés suivantes sont équivalentes : (i) A est nilpotente (i.e. $\exists k \in \mathbb{N}, A^k = 0$) (ii) $\operatorname{Sp}_{\mathbb{C}}(A) = \{0\}$ (iii) $\chi_A(x) = (-1)^n X^n$ (iv) $A^n = 0$
- 2. Quid du cas réel?

Exercice 14.

Soit $A \in M_n(\mathbb{C})$ telle que $A \sim 2A$ (i.e. $\exists P \in GL_n(\mathbb{C})$ telle que $2A = PAP^{-1}$). Montrer que *A* est nilpotente.