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Reviews from Oct 16 – Zeroes

Definition 1.
Let 𝑈 ⊂ ℂ be open and 𝑓 ∶ 𝑈 → ℂ be holomorphic/analytic. Let 𝑧0 ∈ 𝑈 be such that 𝑓(𝑧0) = 0.
We define the order of vanishing of 𝑓 at 𝑧0 by 𝑚𝑓 (𝑧0) ≔ min{𝑛 ∈ ℕ ∶ 𝑓 (𝑛)(𝑧0) ≠ 0}.
Note that 𝑚𝑓 (𝑧0) > 0 since 𝑓(𝑧0) = 0.

Proposition 2. Let 𝑈 ⊂ ℂ be open and 𝑓 ∶ 𝑈 → ℂ be holomorphic/analytic. Let 𝑧0 ∈ 𝑈 be such that 𝑓(𝑧0) = 0.

Denote the power series expansion of 𝑓 at 𝑧0 by 𝑓(𝑧) =
+∞

∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛.

Then 𝑚𝑓 (𝑧0) = min{𝑛 ∈ ℕ ∶ 𝑎𝑛 ≠ 0}.

Proposition 3. Let 𝑈 ⊂ ℂ be open and 𝑓 ∶ 𝑈 → ℂ be holomorphic/analytic. Then 𝑧0 is a zero of order 𝑛 of 𝑓 if and
only if there exists 𝑔 ∶ 𝑈 → ℂ holomorphic such that 𝑓(𝑧) = (𝑧 − 𝑧0)𝑛𝑔(𝑧) and 𝑔(𝑧0) ≠ 0.

Reviews from Oct 16 – Analytic continuation

Theorem 4. Let 𝑈 ⊂ ℂ be a domain and 𝑓 ∶ 𝑈 → ℂ be a holomorphic/analytic function.
If there exists 𝑧0 ∈ 𝑈 such that ∀𝑛 ∈ ℕ≥0, 𝑓 (𝑛)(𝑧0) = 0 then 𝑓 ≡ 0 on 𝑈 .

Corollary 5. Let 𝑈 ⊂ ℂ be a domain and 𝑓, 𝑔 ∶ 𝑈 → ℂ be holomorphic/analytic functions.
If 𝑓 and 𝑔 coincide in the neighborhood of a point,

i.e. ∃𝑧0 ∈ 𝑈, ∃𝑟 > 0, ∀𝑧 ∈ 𝐷𝑟(𝑧0) ∩ 𝑈, 𝑓(𝑧) = 𝑔(𝑧),

then they coincide on 𝑈 ,
i.e.∀𝑧 ∈ 𝑈, 𝑓(𝑧) = 𝑔(𝑧).



2 Zeroes of analytic functions

Isolated zeroes
It is actually possible to strengthen the previous results.

Theorem 6. Let 𝑈 ⊂ ℂ be a domain and 𝑓 ∶ 𝑈 → ℂ be a holomorphic/analytic function.
Then either 𝑓 ≡ 0 or the zeroes of 𝑓 are isolated ⋆ :
if 𝑓(𝑧0) = 0 then there exists 𝑟 > 0 such that 𝐷𝑟(𝑧0) ⊂ 𝑈 and ∀𝑧 ∈ 𝐷𝑟(𝑧0) ⧵ {𝑧0}, 𝑓 (𝑧) ≠ 0.

Proof. Assume that 𝑧0 is a non-isolated zero of 𝑓 .

We know that 𝑓 admits a power series expansion 𝑓(𝑧) =
+∞

∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛 in a neighborhood of 𝑧0.

Assume by contradiction that there exists a smallest 𝑛 ∈ ℕ≥0 such that 𝑎𝑛 ≠ 0 then 𝑓(𝑧) = (𝑧−𝑧0)𝑛𝑔(𝑧) where
𝑔 is holomorphic and 𝑔(𝑧0) ≠ 0.
For every 𝑛 ∈ ℕ>0, ∃𝑤𝑛 ∈ (𝐷 1

𝑛
(𝑧0) ∩ 𝑈) ⧵ {𝑧0}, 𝑓 (𝑤𝑛) = 0. But then 𝑔(𝑤𝑛) = 0 since 𝑤𝑛 ≠ 𝑧0

Then, since 𝑤𝑛 −−−−−→
𝑛→+∞

𝑧0, by continuity 𝑔(𝑧0) = lim
𝑛→+∞

𝑔(𝑤𝑛) = 0. Which leads to a contradiction.

Hence ∀𝑛 ∈ ℕ≥0, 𝑓 (𝑛)(𝑧0) = 𝑛!𝑎𝑛 = 0 and 𝑓 ≡ 0 on 𝑈 by Theorem 4. ■

Corollary 7. Let 𝑈 ⊂ ℂ be a domain and 𝑓, 𝑔 ∶ 𝑈 → ℂ be holomorphic/analytic functions.
If 𝑓 − 𝑔 admits a non-isolated zero

i.e. ∃𝑧0 ∈ 𝑈, ∀𝑟 > 0, ∃𝑧 ∈ (𝑈 ∩ 𝐷𝑟(𝑧0)) ⧵ {𝑧0}, 𝑓 (𝑧) − 𝑔(𝑧) = 𝑓(𝑧0) − 𝑔(𝑧0) = 0

then 𝑓 and 𝑔 coincide on 𝑈 ,
i.e.∀𝑧 ∈ 𝑈, 𝑓(𝑧) = 𝑔(𝑧).

Corollary 8. Let 𝑈 ⊂ ℂ be a domain and 𝑓, 𝑔 ∶ 𝑈 → ℂ be holomorphic/analytic functions.
Let (𝑧𝑛)𝑛∈ℕ be a sequence of terms in 𝑈 which is convergent to ̃𝑧 in 𝑈 and such that ∀𝑛 ∈ ℕ, 𝑓(𝑧𝑛) = 0.
Then 𝑓 ≡ 0 on 𝑈 .

Remark 9. The fact that the limit ̃𝑧 ∈ 𝑈 is very important.
Indeed, let 𝑓 ∶ ℂ ⧵ {0} → ℂ be defined by 𝑓(𝑧) = sin(

𝜋
𝑧 ).

Then 𝑓 (
1
𝑛 ) = 0 but 𝑓 ≢ 0 on ℂ ⧵ {0}.

Hence, it is possible for the zeroes of 𝑓 to accumulate at a point of the boundary of the domain (including
∞, see for instance 𝑧𝑛 = 𝜋𝑛 for 𝑓 = sin).

Homework 10. Let 𝑈 ⊂ ℂ be a domain and 𝑓, 𝑔 ∶ 𝑈 → ℂ be holomorphic/analytic on 𝑈 .
Prove that if 𝑓𝑔 ≡ 0 on 𝑈 then either 𝑓 ≡ 0 or 𝑔 ≡ 0.

Homework 11. Let 𝑈 = 𝐷1(0). Find all the holomorphic functions 𝑓 ∶ 𝑈 → ℂ satisfying respectively:

1. 𝑓 (
1
𝑛 ) = 1

𝑛2

2. 𝑓 (
1
2𝑛 ) = 𝑓 (

1
2𝑛+1 ) = 1

𝑛

⋆ Otherwise stated, if you attend MAT327, either 𝑓 is constant equal to 0 or {𝑧 ∈ 𝑈 ∶ 𝑓(𝑧) = 0} is discrete.
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Reviews from Oct 23 – Poles

Theorem 12. Let 𝑈 ⊂ ℂ be open and 𝑧0 ∈ 𝑈 . Assume that 𝑓 ∶ 𝑈 ⧵{𝑧0} → ℂ is holomorphic/analytic. Then TFAE:

1. 𝑧0 is a pole of 𝑓 , i.e. lim
𝑧→𝑧0

|𝑓 (𝑧)| = +∞.

2. There exist 𝑛 ∈ ℕ>0 and 𝑔 ∶ 𝑈 → ℂ analytic such that 𝑔(𝑧0) ≠ 0 and 𝑓(𝑧) = 𝑔(𝑧)
(𝑧 − 𝑧0)𝑛 on 𝑈 ⧵ {𝑧0}.

3. 𝑧0 is not a removable singularity of 𝑓 and there exists 𝑛 ∈ ℕ>0 such that lim𝑧→𝑧0
(𝑧 − 𝑧0)𝑛+1𝑓(𝑧) = 0.

Definition 13. The integer 𝑛 > 0 in (2) is uniquely defined and we say that 𝑓 admits a pole of order 𝑛 at 𝑧0.

Proposition 14. The order of the pole 𝑧0 is also:

• The order of vanishing of 1/𝑓 at 𝑧0.

• The smallest 𝑛 such that lim
𝑧→𝑧0

(𝑧 − 𝑧0)𝑛+1𝑓(𝑧) = 0.

The argument principle

Lemma 15 (Logarithmic residue).

• If 𝑧0 is an isolated zero of 𝑓 then Res(
𝑓 ′

𝑓 , 𝑧0) is the order of 𝑧0.

• If 𝑧0 is an isolated pole of 𝑓 then −Res(
𝑓 ′

𝑓 , 𝑧0) is the order of 𝑧0.

Proof.

• Assume that 𝑓(𝑧) = (𝑧 − 𝑧0)𝑚𝑔(𝑧) in a neighborhood of 𝑧0 where 𝑔 is analytic and 𝑔(𝑧0) ≠ 0. Then
𝑓 ′(𝑧)
𝑓(𝑧) = 𝑚(𝑧 − 𝑧0)−1 + 𝑔′(𝑧)

𝑔(𝑧) .

We conclude using that 𝑔′

𝑔 is holomorphic in a neighborhood of 𝑧0.

• 𝑧0 is a pole of order 𝑚 of 𝑓 if and only if it is a zero of order 𝑚 of 1
𝑓 . We conclude using that

Res(
(1/𝑓)′

(1/𝑓 ) , 𝑧0) = −Res(
𝑓 ′

𝑓 , 𝑧0)

■

The previous lemma holds at ∞:

Lemma 16.

• If ∞ is an isolated zero of 𝑓 then Res(
𝑓 ′

𝑓 , ∞) is the order of ∞.

• If ∞ is an isolated pole of 𝑓 then −Res(
𝑓 ′

𝑓 , ∞) is the order of ∞.

Proof. ∞ is an isolated zero (resp. pole) of order 𝑚 of 𝑓 if and only if 0 is an isolated zero (resp. pole) of
order 𝑚 of 𝑔(𝑧) = 𝑓(1/𝑧).
Then 𝑚 = Res(

𝑔′

𝑔 , 0) = Res(
−1
𝑧2

𝑓 ′(1/𝑧)
𝑓(1/𝑧) , 0) = Res(

𝑓 ′

𝑓 , ∞). ■



4 Zeroes of analytic functions

Theorem 17 (The argument principle).
Let 𝑈 ⊂ ℂ be open. Let 𝑆 ⊂ 𝑈 be finite. Let 𝑓 ∶ 𝑈 ⧵ 𝑆 → ℂ be holomorphic/analytic.
Let 𝛾 ∶ [𝑎, 𝑏] → ℂ be piecewise smooth positively oriented simple closed curve on 𝑈 which doesn’t pass through a zero
or a pole of 𝑓 and such that its inside is entirely included in 𝑈 .
Then

1
2𝑖𝜋 ∫𝛾

𝑓 ′(𝑧)
𝑓(𝑧) d𝑧 = 𝑍𝑓,𝛾 − 𝑃𝑓,𝛾

where

• 𝑍𝑓,𝛾 is the number of zeroes of 𝑓 enclosed in 𝛾 counted with their multiplicites/orders,

• 𝑃𝑓,𝛾 is the number of poles of 𝑓 enclosed in 𝛾 counted with their multiplicites/orders.

Proof. We apply Cauchy’s residue theorem to 𝑓 ′

𝑓 and then we use the above lemma:
1

2𝑖𝜋 ∫𝛾

𝑓 ′(𝑧)
𝑓(𝑧) d𝑧 = ∑

𝑧∈Inside(𝛾)
Res(

𝑓 ′

𝑓 , 𝑧) = ∑
𝑧 zero of 𝑓

Res(
𝑓 ′

𝑓 , 𝑧0) + ∑
𝑧 pole of 𝑓

Res(
𝑓 ′

𝑓 , 𝑧0) = 𝑍𝑓,𝛾 − 𝑃𝑓,𝛾 ■

Remark 18. The value 1
2𝑖𝜋 ∫𝛾

𝑓 ′(𝑧)
𝑓(𝑧) d𝑧 involved in the previous slide is equal to the number of counterclock-

wise turns made by 𝑓(𝑧) as 𝑧 goes through 𝛾 .

Indeed, if we set ̃𝛾(𝑡) = 𝑓 ∘ 𝛾 then ∫𝛾

𝑓 ′(𝑧)
𝑓(𝑧) d𝑧 = ∫̃𝛾

1
𝑤d𝑤.

Assume for instance that ̃𝛾 ∶ [0, 1] → ℂ is defined by ̃𝛾(𝑡) = 𝑧0 + 𝑟𝑒2𝑖𝜋𝑛𝑡 where 𝑛 ∈ ℤ.
Then 1

2𝑖𝜋 ∫̃𝛾

1
𝑤d𝑤 = 𝑛 which is the number of counterclockwise turns made by ̃𝛾 around 𝑧0.

Then the conclusion of the previous statement can be rewritten as

changes of arg(𝑓 (𝑧)) as 𝑧 goes through 𝛾
2𝜋 = 𝑍𝑓,𝛾 − 𝑃𝑓,𝛾

That’s why it is called the argument principle.

Rouché’s theorem

Theorem 19 (Rouché’s theorem – version 1).
Let 𝑈 ⊂ ℂ be open, 𝑓, 𝑔 ∶ 𝑈 → ℂ be two holomorphic/analytic functions on 𝑈 , and 𝛾 ∶ [𝑎, 𝑏] → ℂ be a piecewise
smooth simple closed curve on 𝑈 whose inside is also included in 𝑈 .
Assume that

∀𝑡 ∈ [𝑎, 𝑏], |𝑔(𝛾(𝑡))| < |𝑓(𝛾(𝑡))|

Then 𝑓 and 𝑓 + 𝑔 have the same number of zeroes inside 𝛾 , counted with multiplicities.

Proof. For 𝑡 ∈ [0, 1], set 𝜑𝑡(𝑧) = 𝑓(𝑧) + (1 − 𝑡)𝑔(𝑧) and ℎ(𝑡) = 1
2𝑖𝜋 ∫𝛾

𝜑′
𝑡 (𝑧)

𝜑𝑡(𝑧)d𝑧.

The function ℎ is continuous since 𝜑𝑡 doesn’t vanish on 𝛾 , indeed for 𝑧 ∈ 𝛾

|𝜑𝑡(𝑧)| ≥ |𝑓(𝑧)| + (1 − 𝑡)|𝑔(𝑧)| ≥ |𝑓(𝑧)| − |𝑔(𝑧)| > 0

Hence ℎ is a continuous function taking values in ℤ (by the principle argument), so it is constant.
Hence ℎ(0) = ℎ(1), i.e. 𝑍𝑓+𝑔,𝛾 − 𝑃𝑓+𝑔,𝛾 = 𝑍𝑓,𝛾 − 𝑃𝑓,𝛾 by the principle argument.
But these functions have no poles in the inside of 𝛾 , hence 𝑍𝑓+𝑔,𝛾 = 𝑍𝑓,𝛾 . ■
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Theorem 20 (Rouché’s theorem – version 2).
Let 𝑈 ⊂ ℂ be open, 𝑓, 𝑔 ∶ 𝑈 → ℂ be two holomorphic/analytic functions on 𝑈 , and 𝛾 ∶ [𝑎, 𝑏] → ℂ be a piecewise
smooth simple closed curve on 𝑈 whose inside is also included in 𝑈 .
Assume that

∀𝑧 ∈ 𝛾, |𝑓 (𝑧) − 𝑔(𝑧)| < |𝑓(𝑧)|
Then 𝑓 and 𝑔 have the same number of zeroes inside 𝛾 , counted with multiplicities.

Proof. That’s an immediate consequence of the previous version since 𝑧0 is a zero of order 𝑛 of 𝑔 iff it is a
zero of order 𝑛 of −𝑔. ■

Theorem 21 (Rouché’s theorem – version 3).
Let 𝑈 ⊂ ℂ be open, 𝑓, 𝑔 ∶ 𝑈 → ℂ be two holomorphic/analytic functions on 𝑈 , and 𝛾 ∶ [𝑎, 𝑏] → ℂ be a piecewise
smooth simple closed curve on 𝑈 whose inside is also included in 𝑈 .
Assume that

∀𝑧 ∈ 𝛾, |𝑓 (𝑧) + 𝑔(𝑧)| < |𝑓(𝑧)|
Then 𝑓 and 𝑔 have the same number of zeroes inside 𝛾 , counted with multiplicities.

Proof. Since 𝑧0 is a zero of order 𝑛 of 𝑔 iff it is a zero of order 𝑛 of −𝑔. ■

We already proved the Fundamental Theorem of Algebra (or d’Alembert–Gauss theorem) using Liouville’s
theorem (Oct 21): a non-constant complex polynomial admits at least one root.
Here is another proof using Rouché’s theorem.

Theorem 22. A complex polynomial of degree 𝑛 has exactly 𝑛 complex roots (counted with multiplicity).

Proof. Assume that 𝑃 (𝑧) = 𝑎𝑛𝑧𝑛 + 𝑄(𝑧) where 𝑄 is a polynomial of degree < 𝑛 and 𝑎𝑛 ≠ 0.
If we take 𝑅 > 0 big enough then |𝑄(𝑧)| < |𝑎𝑛𝑧𝑛| on 𝛾 ∶ [0, 1] → ℂ defined by 𝛾(𝑡) = 𝑅𝑒2𝑖𝜋𝑡.
By Rouché’s theorem, 𝑃 (𝑧) = 𝑎𝑛𝑧𝑛+𝑄(𝑧) and 𝑎𝑛𝑧𝑛 have the same number of zeroes countedwithmultiplicity.

■


