# University of Toronto – MAT334H1-F – LEC0101 Complex Variables

# 14 - Zeroes of analytic functions

Jean-Baptiste Campesato

November 4<sup>th</sup>, 2020

#### Reviews from Oct 16 - Zeroes

#### Definition 1.

Let  $U \subset \mathbb{C}$  be open and  $f: U \to \mathbb{C}$  be holomorphic/analytic. Let  $z_0 \in U$  be such that  $f(z_0) = 0$ . We define the **order of vanishing of** f **at**  $z_0$  by  $m_f(z_0) \coloneqq \min \left\{ n \in \mathbb{N} : f^{(n)}(z_0) \neq 0 \right\}$ . Note that  $m_f(z_0) > 0$  since  $f(z_0) = 0$ .

**Proposition 2.** Let  $U \subset \mathbb{C}$  be open and  $f: U \to \mathbb{C}$  be holomorphic/analytic. Let  $z_0 \in U$  be such that  $f(z_0) = 0$ .

Denote the power series expansion of f at  $z_0$  by  $f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$ .

Then  $m_f(z_0) = \min \{ n \in \mathbb{N} : a_n \neq 0 \}.$ 

**Proposition 3.** Let  $U \subset \mathbb{C}$  be open and  $f: U \to \mathbb{C}$  be holomorphic/analytic. Then  $z_0$  is a zero of order n of f if and only if there exists  $g: U \to \mathbb{C}$  holomorphic such that  $f(z) = (z - z_0)^n g(z)$  and  $g(z_0) \neq 0$ .

# Reviews from Oct 16 – Analytic continuation

**Theorem 4.** Let  $U \subset \mathbb{C}$  be a **domain** and  $f: U \to \mathbb{C}$  be a holomorphic/analytic function. If there exists  $z_0 \in U$  such that  $\forall n \in \mathbb{N}_{\geq 0}, \ f^{(n)}(z_0) = 0$  then  $f \equiv 0$  on U.

**Corollary 5.** Let  $U \subset \mathbb{C}$  be a **domain** and  $f,g:U \to \mathbb{C}$  be holomorphic/analytic functions. If f and g coincide in the neighborhood of a point,

i.e. 
$$\exists z_0 \in U$$
,  $\exists r > 0$ ,  $\forall z \in D_r(z_0) \cap U$ ,  $f(z) = g(z)$ ,

then they coincide on U,

i.e. 
$$\forall z \in U, f(z) = g(z)$$
.

#### Isolated zeroes

It is actually possible to strengthen the previous results.

**Theorem 6.** Let  $U \subset \mathbb{C}$  be a domain and  $f: U \to \mathbb{C}$  be a holomorphic/analytic function.

Then either  $f \equiv 0$  or the zeroes of f are isolated  $\star$ :

 $if \ f(z_0)=0 \ then \ there \ exists \ r>0 \ such \ that \ D_r(z_0)\subset U \ and \ \forall z\in D_r(z_0)\setminus \{z_0\}, \ f(z)\neq 0.$ 

*Proof.* Assume that  $z_0$  is a non-isolated zero of f.

We know that f admits a power series expansion  $f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$  in a neighborhood of  $z_0$ .

Assume by contradiction that there exists a smallest  $n \in \mathbb{N}_{\geq 0}$  such that  $a_n \neq 0$  then  $f(z) = (z - z_0)^n g(z)$  where g is holomorphic and  $g(z_0) \neq 0$ .

For every  $n \in \mathbb{N}_{>0}$ ,  $\exists w_n \in \left(D_{\underline{1}}(z_0) \cap U\right) \setminus \{z_0\}$ ,  $f(w_n) = 0$ . But then  $g(w_n) = 0$  since  $w_n \neq z_0$ 

Then, since  $w_n \xrightarrow[n \to +\infty]{} z_0$ , by continuity  $g(z_0) = \lim_{n \to +\infty} g(w_n) = 0$ . Which leads to a contradiction.

Hence  $\forall n \in \mathbb{N}_{\geq 0}$ ,  $f^{(n)}(z_0) = n! a_n = 0$  and  $f \equiv 0$  on U by Theorem 4.

**Corollary 7.** Let  $U \subset \mathbb{C}$  be a domain and  $f,g:U \to \mathbb{C}$  be holomorphic/analytic functions. If f-g admits a non-isolated zero

i.e. 
$$\exists z_0 \in U, \ \forall r > 0, \ \exists z \in \left( U \cap D_r(z_0) \right) \setminus \{z_0\}, \ f(z) - g(z) = f(z_0) - g(z_0) = 0$$

then f and g coincide on U,

i.e. 
$$\forall z \in U$$
,  $f(z) = g(z)$ .

**Corollary 8.** Let  $U \subset \mathbb{C}$  be a domain and  $f, g: U \to \mathbb{C}$  be holomorphic/analytic functions. Let  $(z_n)_{n \in \mathbb{N}}$  be a sequence of terms in U which is convergent to  $\tilde{z}$  in U and such that  $\forall n \in \mathbb{N}$ ,  $f(z_n) = 0$ . Then  $f \equiv 0$  on U.

**Remark 9.** The fact that the limit  $\tilde{z} \in U$  is very important.

Indeed, let  $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$  be defined by  $f(z) = \sin\left(\frac{\pi}{z}\right)$ .

Then  $f\left(\frac{1}{n}\right) = 0$  but  $f \not\equiv 0$  on  $\mathbb{C} \setminus \{0\}$ .

Hence, it is possible for the zeroes of f to accumulate at a point of the boundary of the domain (including  $\infty$ , see for instance  $z_n = \pi n$  for  $f = \sin$ ).

**Homework 10.** Let  $U \subset \mathbb{C}$  be a domain and  $f,g : U \to \mathbb{C}$  be holomorphic/analytic on U. Prove that if  $fg \equiv 0$  on U then either  $f \equiv 0$  or  $g \equiv 0$ .

**Homework 11.** Let  $U = D_1(0)$ . Find all the holomorphic functions  $f: U \to \mathbb{C}$  satisfying respectively:

1. 
$$f\left(\frac{1}{n}\right) = \frac{1}{n^2}$$

$$2. f\left(\frac{1}{2n}\right) = f\left(\frac{1}{2n+1}\right) = \frac{1}{n}$$

<sup>\*</sup> Otherwise stated, if you attend MAT327, either f is constant equal to 0 or  $\{z \in U : f(z) = 0\}$  is discrete.

#### **Reviews from Oct 23 – Poles**

**Theorem 12.** Let  $U \subset \mathbb{C}$  be open and  $z_0 \in U$ . Assume that  $f : U \setminus \{z_0\} \to \mathbb{C}$  is holomorphic/analytic. Then TFAE:

- 1.  $z_0$  is a pole of f, i.e.  $\lim_{z \to z_0} |f(z)| = +\infty$ .
- 2. There exist  $n \in \mathbb{N}_{>0}$  and  $g: U \to \mathbb{C}$  analytic such that  $g(z_0) \neq 0$  and  $f(z) = \frac{g(z)}{(z-z_0)^n}$  on  $U \setminus \{z_0\}$ .
- 3.  $z_0$  is not a removable singularity of f and there exists  $n \in \mathbb{N}_{>0}$  such that  $\lim_{z \to z_0} (z z_0)^{n+1} f(z) = 0$ .

**Definition 13.** The integer n > 0 in (2) is uniquely defined and we say that f admits a **pole of order** n **at**  $z_0$ .

**Proposition 14.** *The order of the pole z\_0 is also:* 

- The order of vanishing of 1/f at  $z_0$ .
- The smallest n such that  $\lim_{z \to z_0} (z z_0)^{n+1} f(z) = 0$ .

# The argument principle

Lemma 15 (Logarithmic residue).

- If  $z_0$  is an isolated zero of f then  $\operatorname{Res}\left(\frac{f'}{f}, z_0\right)$  is the order of  $z_0$ .
- If  $z_0$  is an isolated pole of f then  $-\operatorname{Res}\left(\frac{f'}{f},z_0\right)$  is the order of  $z_0$ .

Proof.

• Assume that  $f(z) = (z - z_0)^m g(z)$  in a neighborhood of  $z_0$  where g is analytic and  $g(z_0) \neq 0$ . Then  $\frac{f'(z)}{f(z)} = m(z - z_0)^{-1} + \frac{g'(z)}{g(z)}$ .

We conclude using that  $\frac{g'}{g}$  is holomorphic in a neighborhood of  $z_0$ .

•  $z_0$  is a pole of order m of f if and only if it is a zero of order m of  $\frac{1}{f}$ . We conclude using that

$$\operatorname{Res}\left(\frac{(1/f)'}{(1/f)}, z_0\right) = -\operatorname{Res}\left(\frac{f'}{f}, z_0\right)$$

The previous lemma holds at  $\infty$ :

#### Lemma 16.

- If  $\infty$  is an isolated zero of f then  $\operatorname{Res}\left(\frac{f'}{f},\infty\right)$  is the order of  $\infty$ .
- If  $\infty$  is an isolated pole of f then  $-\operatorname{Res}\left(\frac{f'}{f},\infty\right)$  is the order of  $\infty$ .

*Proof.*  $\infty$  is an isolated zero (resp. pole) of order *m* of *f* if and only if 0 is an isolated zero (resp. pole) of

order 
$$m$$
 of  $g(z) = f(1/z)$ .  
Then  $m = \operatorname{Res}\left(\frac{g'}{g}, 0\right) = \operatorname{Res}\left(\frac{-1}{z^2} \frac{f'(1/z)}{f(1/z)}, 0\right) = \operatorname{Res}\left(\frac{f'}{f}, \infty\right)$ .

# **Theorem 17** (The argument principle).

Let  $U \subset \mathbb{C}$  be open. Let  $S \subset U$  be finite. Let  $f : U \setminus S \to \mathbb{C}$  be holomorphic/analytic.

Let  $\gamma:[a,b]\to\mathbb{C}$  be piecewise smooth positively oriented simple closed curve on U which doesn't pass through a zero or a pole of f and such that its inside is entirely included in U. Then

$$\frac{1}{2i\pi} \int_{\gamma} \frac{f'(z)}{f(z)} dz = Z_{f,\gamma} - P_{f,\gamma}$$

where

- $Z_{f,\gamma}$  is the number of zeroes of f enclosed in  $\gamma$  counted with their multiplicites/orders,
- $P_{f,\gamma}$  is the number of poles of f enclosed in  $\gamma$  counted with their multiplicites/orders.

*Proof.* We apply Cauchy's residue theorem to  $\frac{f'}{f}$  and then we use the above lemma:

$$\frac{1}{2i\pi} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{z \in \text{Inside}(\gamma)} \text{Res}\left(\frac{f'}{f}, z\right) = \sum_{z \text{ zero of } f} \text{Res}\left(\frac{f'}{f}, z_0\right) + \sum_{z \text{ pole of } f} \text{Res}\left(\frac{f'}{f}, z_0\right) = Z_{f, \gamma} - P_{f, \gamma} \quad \blacksquare$$

**Remark 18.** The value  $\frac{1}{2i\pi} \int_{\gamma} \frac{f'(z)}{f(z)} dz$  involved in the previous slide is equal to the number of counterclockwise turns made by f(z) as z goes through  $\gamma$ .

Indeed, if we set 
$$\tilde{\gamma}(t) = f \circ \gamma$$
 then  $\int_{\gamma} \frac{f'(z)}{f(z)} dz = \int_{\tilde{\gamma}} \frac{1}{w} dw$ .

Assume for instance that  $\tilde{\gamma}:[0,1]\to\mathbb{C}$  is defined by  $\tilde{\gamma}(t)=z_0+re^{2i\pi nt}$  where  $n\in\mathbb{Z}$ .

Then  $\frac{1}{2i\pi} \int_{z}^{z} \frac{1}{w} dw = n$  which is the number of counterclockwise turns made by  $\tilde{\gamma}$  around  $z_0$ .

Then the conclusion of the previous statement can be rewritten as

$$\frac{\text{changes of arg}(f(z)) \text{ as } z \text{ goes through } \gamma}{2\pi} = Z_{f,\gamma} - P_{f,\gamma}$$

That's why it is called the argument principle.

#### Rouché's theorem

**Theorem 19** (Rouché's theorem – version 1).

Let  $U \subset \mathbb{C}$  be open,  $f,g:U \to \mathbb{C}$  be two holomorphic/analytic functions on U, and  $\gamma:[a,b] \to \mathbb{C}$  be a piecewise smooth simple closed curve on U whose inside is also included in U. Assume that

$$\forall t \in [a,b], \; |g(\gamma(t))| < |f(\gamma(t))|$$

Then f and f + g have the same number of zeroes inside  $\gamma$ , counted with multiplicities.

*Proof.* For 
$$t \in [0, 1]$$
, set  $\varphi_t(z) = f(z) + (1 - t)g(z)$  and  $h(t) = \frac{1}{2i\pi} \int_{\gamma} \frac{\varphi_t'(z)}{\varphi_t(z)} dz$ .

The function h is continuous since  $\varphi_t$  doesn't vanish on  $\gamma$ , indeed for  $z \in \gamma$ 

$$|\varphi_t(z)| \ge |f(z)| + (1-t)|g(z)| \ge |f(z)| - |g(z)| > 0$$

Hence h is a continuous function taking values in  $\mathbb{Z}$  (by the principle argument), so it is constant.

Hence h(0)=h(1), i.e.  $Z_{f+g,\gamma}-P_{f+g,\gamma}=Z_{f,\gamma}-P_{f,\gamma}$  by the principle argument. But these functions have no poles in the inside of  $\gamma$ , hence  $Z_{f+g,\gamma}=Z_{f,\gamma}$ .

### **Theorem 20** (Rouché's theorem – version 2).

Let  $U \subset \mathbb{C}$  be open,  $f,g: U \to \mathbb{C}$  be two holomorphic/analytic functions on U, and  $\gamma: [a,b] \to \mathbb{C}$  be a piecewise smooth simple closed curve on U whose inside is also included in U.

Assume that

$$\forall z \in \gamma, |f(z) - g(z)| < |f(z)|$$

Then f and g have the same number of zeroes inside  $\gamma$ , counted with multiplicities.

*Proof.* That's an immediate consequence of the previous version since  $z_0$  is a zero of order n of g iff it is a zero of order n of -g.

# **Theorem 21** (Rouché's theorem – version 3).

Let  $U \subset \mathbb{C}$  be open,  $f,g:U \to \mathbb{C}$  be two holomorphic/analytic functions on U, and  $\gamma:[a,b] \to \mathbb{C}$  be a piecewise smooth simple closed curve on U whose inside is also included in U.

Assume that

$$\forall z \in \gamma, |f(z) + g(z)| < |f(z)|$$

Then f and g have the same number of zeroes inside  $\gamma$ , counted with multiplicities.

*Proof.* Since  $z_0$  is a zero of order n of g iff it is a zero of order n of -g.

We already proved the Fundamental Theorem of Algebra (or d'Alembert–Gauss theorem) using Liouville's theorem (Oct 21): a non-constant complex polynomial admits at least one root. Here is another proof using Rouché's theorem.

**Theorem 22.** A complex polynomial of degree n has exactly n complex roots (counted with multiplicity).

*Proof.* Assume that  $P(z) = a_n z^n + Q(z)$  where Q is a polynomial of degree < n and  $a_n \ne 0$ . If we take R > 0 big enough then  $|Q(z)| < |a_n z^n|$  on  $\gamma : [0,1] \to \mathbb{C}$  defined by  $\gamma(t) = Re^{2i\pi t}$ . By Rouché's theorem,  $P(z) = a_n z^n + Q(z)$  and  $a_n z^n$  have the same number of zeroes counted with multiplicity.

Ĺ