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Reviews from Oct 16 — Zeroes

Definition 1.

Let U c Cbeopenand f : U — C be holomorphic/analytic. Let z, € U be such that f(zy) = 0.
We define the order of vanishing of f at z, by m (z() := min {n eN : f"(zy) # 0}.

Note that m;(zy) > 0 since f(zq) = 0.

Proposition 2. Let U ¢ Cbeopenand f : U — C be holomorphic/analytic. Let z, € U be such that f(zy) = 0.

+0o0

Denote the power series expansion of f at zy by f(z) = 2 a,(z — zp)".
n=0

Then my(zg) =min{n €N : a, #0}.

Proposition 3. Let U C C be open and f : U — C be holomorphic/analytic. Then z is a zero of order n of f if and
only if there exists g : U — C holomorphic such that f(z) = (z — z,)"g(z) and g(zy) # 0.

Reviews from Oct 16 — Analytic continuation

Theorem 4. Let U C C bea domain and f : U — C be a holomorphic/analytic function.
If there exists zy € U such that Vn € Ny, f(z) =0then f =0on U.

Corollary 5. Let U C C bea domainand f,g : U — C be holomorphic/analytic functions.
If f and g coincide in the neighborhood of a point,

ie.dzpe U, Ir>0,Vze D.(zp)NU, f(z) = g(z2),

then they coincide on U,
ie.Vze U, f(z)=g(2).



2 Zeroes of analytic functions

Isolated zeroes
It is actually possible to strengthen the previous results.

Theorem 6. Let U C C be a domain and f : U — C be a holomorphic/analytic function.
Then either f = 0 or the zeroes of f are isolated * :
if f(zy) = O then there exists r > 0 such that D,(zq) C U and Vz € D,(zy) \ {2y}, f(z) # 0.

Proof. Assume that z is a non-isolated zero of f.
+0o0

We know that f admits a power series expansion f(z) = Z a,(z — zy)" in a neighborhood of z.

n=0
Assume by contradiction that there exists a smallest n € N, such that a, # 0 then f(z) = (z—z()"g(z) where
g is holomorphic and g(z,) # 0.

Foreveryn e N, 3w, € <D1(zo) N U> \ {29}, f(w,) = 0. But then g(w,) = 0 since w,, # z,

Then, since w, — = % by continuity g(z,) = liIJJrn g(w,) = 0. Which leads to a contradiction.
n—T+0o0 n—100

Hence Vn € Ny, f™(z) = nla, =0and f = 0 on U by Theorem 4. |

Corollary 7. Let U C C be a domain and f,g : U — C be holomorphic/analytic functions.
If f — g admits a non-isolated zero

ie.dzp €U, Vr>0,3z € (UND,(z9)) \ {20}, f(2) — g(2) = f(z0) — g(2z0) =0

then f and g coincide on U,
ie.Vze U, f(z)=g(2).

Corollary 8. Let U C C be a domain and f,g : U — C be holomorphic/analytic functions.
Let (z,),en be a sequence of terms in U which is convergent to Z in U and such that Vn € N, f(z,) = 0.
Then f =0on U.

Remark 9. The fact that the limit Z € U is very important.
Indeed, let f : C\ {0} — C be defined by f(z) = sin (%)

Thenf(%) —0but f #00nC\ {0}.

Hence, it is possible for the zeroes of f to accumulate at a point of the boundary of the domain (including
o, see for instance z, = zn for f = sin).

Homework 10. Let U C C be a domain and f,g : U — C be holomorphic/analytic on U.
Prove that if fg =0 on U then either f =0 or g = 0.

Homework 11. Let U = D;(0). Find all the holomorphic functions f : U — C satisfying respectively:
1\ _ 1
Lr()=%

2. f(2_1n>=f(2n1+1>=%

* Otherwise stated, if you attend MAT327, either f is constant equalto O or {z € U : f(z) = 0} is discrete.
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Reviews from Oct 23 — Poles
Theorem 12. Let U C Cbe openand z, € U. Assumethat f : U\ {zy} — C is holomorphic/analytic. Then TFAE:

1. zgisapoleof f,ie lim |f(z)| = +oo.
Z=2z9

8(2) —onU \ {20}

2. Thereexist n € Nygand g : U — C analytic such that g(z,) # 0 and f(z) = m
— 2y

3. z is not a removable singularity of f and there exists n € Ny, such that lim (z — zy)""! f(z) = 0.
z—2)

Definition 13. The integer n > 0 in (2) is uniquely defined and we say that f admits a pole of order » at z.
Proposition 14. The order of the pole z, is also:
o The order of vanishing of 1/f at z,,.

e The smallest n such that lim (z — zy)"" f(z) = 0.
z—12

The argument principle

Lemma 15 (Logarithmic residue).

o If z,, is an isolated zero of f then Res (fT/ zo> is the order of z,.

o If z, is an isolated pole of f then — Res (fT,, zo) is the order of z.

Proof.

e Assume that f(z) = (z — z5)"g(z) in a neighborhood of z, where g is analytic and g(z;) # 0. Then
F@ o, @)

o S mE 2T

We conclude using that ‘Z—/ is holomorphic in a neighborhood of z,.

e 2, is a pole of order m of f if and only if it is a zero of order m of % We conclude using that
Ay ) (f’ >
Res| ——,zy | = —Res | —, z
( arf)"" £

The previous lemma holds at co:
Lemma 16.

e If co is an isolated zero of f then Res (fT, oo) is the order of co.

e If co is an isolated pole of f then — Res (fTI, oo) is the order of oo.

Proof. oo is an isolated zero (resp. pole) of order m of f if and only if 0 is an isolated zero (resp. pole) of
order m of g(z) = f(1/z).

Then m = Res (%,0) = Res (;—211;,((11/;)),0> = Res (fT’ oo). [ ]




4 Zeroes of analytic functions

Theorem 17 (The argument principle).

Let U C C be open. Let S C U be finite. Let f : U \ S — C be holomorphic/analytic.

Lety : [a,b] — C be piecewise smooth positively oriented simple closed curve on U which doesn’t pass through a zero
or a pole of f and such that its inside is entirely included in U.

Then
1 [f@,
ﬂ/}, f(z) dZ = Zf,)/ Pf,J/

where
o Z,, is the number of zeroes of f enclosed in y counted with their multiplicites/orders,
o P, is the number of poles of f enclosed in y counted with their multiplicites/orders.

fl

Proof. We apply Cauchy’s residue theorem to 7 and then we use the above lemma:

L [F@ (f’ > <f’ f
— dz = Z Res| —.,z ) = Z Res| —,zo | + Z Res|=—7.z0 ) =Z2;,,-P;, N
2in 14 f(@ z€Inside(y) f z zero of f f z pole of f f

Remark 18. The value L / /(2 dz involved in the previous slide is equal to the number of counterclock-

2z J, f(2)
wise turns made by f(z) as z goes through y.

Indeed, if we set 7(¢) = f o y then / (Z)dz = /ldw.
7

y f(2) w
Assume for instance that 7 : [0, 1] — C is defined by 7(1) = z, + re?™" where n € Z.
Then L ldw = n which is the number of counterclockwise turns made by 7 around z,,.
ir [; w

7
Then the conclusion of the previous statement can be rewritten as

changes of arg(f(z)) as z goes through y
2

=Zsy,—Pr,y

That’s why it is called the argument principle.

Rouché’s theorem

Theorem 19 (Rouché’s theorem — version 1).

Let U c C be open, f,g : U — C be two holomorphic/analytic functions on U, and y : [a,b] — C be a piecewise
smooth simple closed curve on U whose inside is also included in U.

Assume that

Vi € [a,b], [g(rD)] < |/ ()]

Then f and f + g have the same number of zeroes inside y, counted with multiplicities.

!/
PrOOf- For 7 € [0, 1], set ga,(z) = f(z2) + (1 —t)g(z) and h(t) 1 /(pz(z) 1z,
2i 14 ;ct(z)
The function 4 is continuous since (o doesn’t vanish on Y, indeed for z € %

lo,(2)] 2 [f(2)] + A =Dlg2)] 2 |f(2)] = [g(2)] >0

Hence h is a continuous function taking values in Z (by the principle argument), so it is constant.
Hence h(0) = h(1),ie. Z;,,, — Pry,, = Z;, — P;, by the principle argument.
But these functions have no poles in the inside of y, hence Z,,, , = Z ,. |
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Theorem 20 (Rouché’s theorem — version 2).

Let U c C be open, f,g : U — C be two holomorphic/analytic functions on U, and y : [a,b] — C be a piecewise
smooth simple closed curve on U whose inside is also included in U.

Assume that

Vzey, [f(2)-g@)| <|f(2)]

Then f and g have the same number of zeroes inside y, counted with multiplicities.

Proof. That’s an immediate consequence of the previous version since z is a zero of order n of g iff it is a
zero of order n of —g. [ |

Theorem 21 (Rouché’s theorem — version 3).

Let U c Cbeopen, f,g : U — C be two holomorphic/analytic functions on U, and y : [a,b] — C be a piecewise
smooth simple closed curve on U whose inside is also included in U.

Assume that

Vzey, [f(2)+g(2)] <|f(2)

Then f and g have the same number of zeroes inside y, counted with multiplicities.

Proof. Since z, is a zero of order n of g iff it is a zero of order n of —g. n

We already proved the Fundamental Theorem of Algebra (or d’Alembert-Gauss theorem) using Liouville’s
theorem (Oct 21): a non-constant complex polynomial admits at least one root.
Here is another proof using Rouché’s theorem.

Theorem 22. A complex polynomial of degree n has exactly n complex roots (counted with multiplicity).

Proof. Assume that P(z) = a,z" + Q(z) where Q is a polynomial of degree < n and a, # 0.

If we take R > 0 big enough then |Q(z)| < |a,z"| ony : [0,1] — C defined by y(7) = Re*™.

By Rouché’s theorem, P(z) = a,z"+Q(z) and a,z" have the same number of zeroes counted with multiplicity.
|



