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Theorem 1 (Cauchy’s residue theorem).

Let U c C be open. Let S C U be finite. Assume that f : U \ S — C is holomorphic/analytic.

Lety : [a,b] — C be a positively oriented piecewise smooth simple closed curve on U \ S * whose inside " is entirely
included in U. Then*

/f(z)dz=2i7r Z Res(f, z)
Y

z€Inside(y)

Corollary 2. Let U C C be open and simply-connected. Let S C U be finite.
Assume that f : U\ S — C is holomorphic/analytic.
Let y : [a,b] — C be a positively oriented piecewise smooth simple closed curve on U \ S. Then

/ f(z)dz = 2in Z Res(f, z)
Y

z€Inside(y)

Proof of Cauchy’s residue theorem.

(o2 7
e e ¢

We may find pairwise disjoints disks D, (zp)cU where {z, ..., z,} are the points of .S enclosed in y.

We apply Green'’s theorem to T' = Inside(y) \ (U D, (z k)), then
i=1

S Cfr{oF  af\ _
/yf(Z)dz—l;/ka(z)dz—z//T<E+la_y>_0

where 7, : [0,1] - C is defined by y,(t) = z; + re*™.
The last equality is due to the Cauchy-Riemann equations.

Then / f(dz=)" [ f(z)dz=2ix ) Res(f,z). [
v k=1""7k k=1

*i.e. y doesn't pass through any point of S.
See Jordan’s curve theorem, September 28.
fThe following sum is finite since Res(f, z) # 0 only for z € S.
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Corollary 3. Let S C C be finite. Assume that f : C\ .S — C is holomorphic/analytic. Then

Res(f, o) + Z Res(f,z) =0

zeS

Remark 4. We may rewrite the above conclusion as Z Res(f,z) =0.

zeC

Proof. Take r > 0 such that .S c D,(0) and define y : [0,1] = Cby y(t) = re?”' Then

2 Res(f, z) = i / f(z)dz by Cauchy’s residue theorem
r

z€S
= —Res(f, o)
|
+00
Example 5. P dx (rational function)
—o O() p
Assume that P and Q are two polynomials and that Q has no real root. Set f(z) = QEZ
+00
We know that / ggx; dx is convergent if and only if deg O > deg P + 2, let’s assume the latter.
o X

Then Illim zf(z) = 0.

Z|—> 00

3
R
—R R

Define yg : [0, 1] — C by yx(t) = Re'™.
For R > 0 big enough, all the poles of f whose imaginary part is positive are included within the upper-half
disk centered at 0 and of radius R.

R
Then, by Cauchy’s residue theorem, / f(z)dz + f(z)dz =2in Z Res(f, z).
-R

YR z s.t. 3(z)>0
But / f| £ aRsup|f| —— Osince lim zf(z)=0.
- YR R—+0 |z| =00
+00 P
Hence (x) dx = 2ix Z Res <£, z).
- Q(X) z s.t. F(z)>0 Q
+oo dx
Example 6. Compute / oul<a<b.
oo (X2 4 a?)(x2 + b2)
The poles of f(z) = are —ia, ia, —ib and ib which are simple. Hence
P /) (22 + a®)(z%2 + b?) P
/ ” dx = 2iz Res(f,ia) + 2ix Res(f, ib)
—eo (X2 +a?)(x2+ b2 ’ ’
_ 2im + 2irn
2i(b2 —a?)a  2i(a%? - b2)b
T

"~ ab(a+ b)
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2
Example 7. R(cost,sint)dz.
0

Set z = €' then cos(t) = % (z + %), sin(z) = % (z - 1), and % =dt.

Set f(z) = iR(% <z+%),2ii (z— %)) Then/o

T

mmmmmm=/f@a=mn§:Rmﬁn
Sl

z€D,(0)

2r
Example 8. Compute / 2 ___drwherea> 0.
. 0 a*+sin’t 4
Set f(z) = — a S =- 19z .
iz 5 1 1 (22 4+2az - 1)(z2 -2az-1)
as — y zZ— Z

Note that the singularity at 0 of the LHS is removable since we may extend f through 0 using the RHS, so
that Res(f,0) = 0.

Then, the only poles of f within the unit disk are z; = —a+ Va? + 1 and z, = a — Va? + 1 which are simple.
Hence

2

2
/ — 42 _dr= 2iz Res(f, z) + 2ix Res(f, z,) =
0

a® +sin’t 241

Remark 9 (Jordan’s lemma). The following trick called, Jordan’s lemma, can be very useful.
Let yg : [0, 7] — C be defined by yx(t) = Re" (i.e. upper half circle centered at 0 of radius R).

/ g(2)e'*dz
YR

— ’/” g(Reit)eiR(cost+isint)l-Reitdt
0

< /ﬂ |g(Reit)eiR(cost+isint)l-Reit| dr
0 . |
< Rsup |g|/ e Rsintqy
YR 0
/2 )
= 2Rsup|g|/ e~ Rsintqy
YR 0

/2
<2Rsup |g| / e 2RITqt by Jordan’s inequality: Vx € [O, %] , 2x <sin(x) < x
YR 0 T

<msuplg| (1-e%)

YR

< rmsup|g|
YR

e P(X) eiax

—0 O()

We want to compute I(a) :=

Example 10.

+00 P(x)
—o Q)
Assume that Q has no real root.

Note that I(—a) = I(a), so we may restrict our attention to a > 0.
The integral is convergent if and only if deg QO > deg P + 1 (integration by parts), so we assume the latter.

¢'“*dx where P, Q are real polynomials and a € R.
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>

Define yg : [0, 1] — C by yx(t) = Re'™.
For R > 0 big enough, all the poles of f(z) = %emz whose imaginary part is positive are included within
the upper-half disk centered at 0 and of radius R.

R
Then / f(z)dz + f(z)dz =2ir 2 Res(f,z) (%)
-R

YR z s.t. F(z)>0

But, by Jordan’s lemma,
/ —P(Z) e*dz
e Q(2)

Hence, by taking R — +o0 in (x), we get

<rmsup|P/Q| —— 0
YR R—+

+o00
P e'™dx = 2irx Z Res <—P(Z) ez, z>

- 0(x) zs.t. 3(z)>0 0(2)
+o0
Example 11. Compute / cos(x) dx where a > 0.
oo X2+ a?

+o0 +00 ix
Note that / cos(x) dx=R < / e—dx).
N o X2+ a?

1z

The poles of f(z) = 2e_ are ia and —ia which are simple.
z

+ o2
h ide, [ —€" 4z =2izR 2ine " = ¢
By the previous slide, ———dz =2izRes(f,ia) = 2in— = 7 —.
yHep /_oo z2 + a2 /. ia) 2ia a
+o00 —a
Hence / cos(x) dx=z%—.
oo X2 4 a? a
+o0 xP
Example 12. / dx, n,p e N.
0 1 + x"

p

1+ x"

+00
We know that the integral / dx is convergent if and only if n > p + 2.
0

zP iZ
anda=-en.

n

Set f(z) = ]

We consider the following sector of the circle centered at 0 and of radius R, such that the only pole of f
enclosed in its inside is a.

S
a*R

(X?)
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Lety : [O, 27”] — C be defined by y (1) = Reé".

By the residue theorem, 2iz Res(f,a) = / f+ / [+ / f.
[0,R] y [a2R.0]

ap+1 _ ap+1

o Res(f,a) = -2 =

na"—1 na n

R 2pwp R
° / f(z)dz = —a2/ Ldt — _02(p+1)/ t dr
[azR,O] o 1+ a?nn o 1+

/ f(z)dz
v

ap+1 +oo P +00 P
Hence, by taking the limit as R — +o0, we get —2izr—— = / dx — g?P+D / dx.
0 0

< 2—”Rsup | f| —— Osince lim zf(z) = 0.
n ¥ R—+00 Z—00

n 14 xn 1+ xn
+oo D . p+] .
X 2ir  a V1 2i 1
Finall dx = — == = .
ina Y/O 1+ x» x n q2e+h — 1 nartl — g=+D) o (kDT
n
* gint
Example 13. / Tdt.
0
S
A
(N - R
—R —r|r R

Define yg : [0,1] = C by yg(t) = Re’™ and y, : [0, 1] — C by y,(t) = re'™.

ez eiz -r eit R eit
By Cauchy’s integral theorem [ —dz—- [ —dz+ / —dr + / —dr =0.
YR z Vr z -R 4 r t

iz
e
/ —dz
rr %

e Since 0 is a simple pole of f(z) = %, we have that f(z) = Res(f,0)z~! + g(z) where g is holomorphic.

Then / f(z)dz = / Res(f,0)z"'dz + / g(z)dz but / Res(f,0)z"'dz = Res(f, 0)ix and
Yr

Tr Tr Yr
/ g(2)dz
e

r

e By Jordan’s lemma:

<rzmsup|l/z] —— 0
YR R—+0

<unzrsup|g| — 0.
¥ r—0

Hence [/ f(z)dz — Res(f,0)iz = ix.
Yr =

R R it _ it R it R it R it —r it iz iz
ELLLY P l € ¢ &= l e—dt—i £ _dr= l e—dt+i Ldr= l Ldz- | &dz
B t 2i J, t 2i J, t 2i J, t 2i f, ¢t 2i J_p t 2i\J, z e Z

+oo .
Hence, taking r — 0 and R — +o0 we get that / %ntdt =
0
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Example 14.
P ,A 1+ 12

We set f(z) = (10g z) but for that we need to fix a branch of the logarithm.

Let’s fix log : C\ {zy : y <0} — C defined by log z = log | z| + i Arg(z) where Arg(z) € (—%,3%).

R
A

-~

- - R
—R —r|r R

Define yg : [0,1] = C by yg(t) = Re’™ and y, : [0, 1] — C by y,(t) = re'™.

—-r

3

By Cauchy’s residue theorem f(z)dz - / f(z)dz + f(z)dz + / f(z)dz =2izrRes(f,i) = ——
YR Yr

2
e Since |logz| < |Inr|+7ony,, [ f(z)dz < ﬂ'l‘(l Inrl+7) 0.
v, 142 r—+o0 or 0
e Since z = te'” on [—-R, —r], we have
2 2 R R
/ f(z)dZ—/ (lnt+m) / (lnt) / Int dt—/ 4
, 1+12 s 1412
+o0 2 +00 +o00 2 3
By taking the limits » — 0and R — 400 we get/ (In ) dt+2 / In t—— / (n t) =-Z.
,Jo 1+ o 1+ 1+ﬂ 4
+00

Cq (In7) 7’

C d th 1 part, t dt = —.
onsidering the real part, we ge /0 s 2



