University of Toronto – MAT334H1-F – LEC0101 Complex Variables

13 - Cauchy's residue theorem

Jean-Baptiste Campesato

October 30th, 2020 and November 2nd, 2020

Theorem 1 (Cauchy's residue theorem).

Let $U \subset \mathbb{C}$ be open. Let $S \subset U$ be finite. Assume that $f: U \setminus S \to \mathbb{C}$ is holomorphic/analytic.

Let $\gamma:[a,b]\to\mathbb{C}$ be a positively oriented piecewise smooth simple closed curve on $U\setminus S^*$ whose inside † is entirely included in U. Then ‡

$$\int_{\gamma} f(z) dz = 2i\pi \sum_{z \in \text{Inside}(\gamma)} \text{Res}(f, z)$$

Corollary 2. Let $U \subset \mathbb{C}$ be open and simply-connected. Let $S \subset U$ be finite.

Assume that $f: U \setminus S \to \mathbb{C}$ *is holomorphic/analytic.*

Let $\gamma:[a,b]\to\mathbb{C}$ be a positively oriented piecewise smooth simple closed curve on $U\setminus S$. Then

$$\int_{\gamma} f(z) dz = 2i\pi \sum_{z \in \text{Inside}(\gamma)} \text{Res}(f, z)$$

Proof of Cauchy's residue theorem.

We may find pairwise disjoints disks $\overline{D_{r_k}(z_k)} \subset U$ where $\{z_1,\ldots,z_n\}$ are the points of S enclosed in γ .

We apply Green's theorem to $T = \overline{\text{Inside}(\gamma)} \setminus \left(\bigcup_{k=1}^{n} D_{r_k}(z_k)\right)$, then

$$\int_{\gamma} f(z) dz - \sum_{k=1}^{n} \int_{\gamma_{k}} f(z) dz = i \iint_{T} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) = 0$$

where $\gamma_k:[0,1]\to\mathbb{C}$ is defined by $\gamma_k(t)=z_k+r_ke^{2i\pi t}$. The last equality is due to the Cauchy–Riemann equations.

Then
$$\int_{\gamma} f(z)dz = \sum_{k=1}^{n} \int_{\gamma_k} f(z)dz = 2i\pi \sum_{k=1}^{n} \text{Res}(f, z_k).$$

^{*} i.e. γ doesn't pass through any point of S.

[†] See Jordan's curve theorem, September 28.

[‡] The following sum is finite since $Res(f, z) \neq 0$ only for $z \in S$.

Corollary 3. Let $S \subset \mathbb{C}$ be finite. Assume that $f : \mathbb{C} \setminus S \to \mathbb{C}$ is holomorphic/analytic. Then

$$\operatorname{Res}(f,\infty) + \sum_{z \in S} \operatorname{Res}(f,z) = 0$$

Remark 4. We may rewrite the above conclusion as $\sum_{z \in \widehat{S}} \text{Res}(f, z) = 0$.

Proof. Take r > 0 such that $S \subset D_r(0)$ and define $\gamma : [0,1] \to \mathbb{C}$ by $\gamma(t) = re^{2i\pi t}$. Then

$$\sum_{z \in S} \operatorname{Res}(f, z) = \frac{1}{2i\pi} \int_{\gamma} f(z) dz \quad \text{ by Cauchy's residue theorem}$$
$$= -\operatorname{Res}(f, \infty)$$

Example 5. $\int_{-\infty}^{+\infty} \frac{P(x)}{O(x)} dx$ (rational function)

Assume that P and Q are two polynomials and that Q has no real root. Set $f(z) = \frac{P(z)}{Q(z)}$

We know that $\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} dx$ is convergent if and only if $\deg Q \ge \deg P + 2$, let's assume the latter.

Define $\gamma_R : [0,1] \to \mathbb{C}$ by $\gamma_R(t) = Re^{i\pi t}$.

For R > 0 big enough, all the poles of f whose imaginary part is positive are included within the upper-half disk centered at 0 and of radius R.

Then, by Cauchy's residue theorem, $\int_{-R}^{R} f(z)dz + \int_{\gamma_{R}} f(z)dz = 2i\pi \sum_{z \in +\frac{\alpha}{2}(z) > 0} \text{Res}(f, z).$

But
$$\left| \int_{\gamma_R} f \right| \le \pi R \sup_{\gamma_R} |f| \xrightarrow[R \to +\infty]{} 0 \text{ since } \lim_{|z| \to \infty} z f(z) = 0.$$

Hence
$$\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} dx = 2i\pi \sum_{z \text{ s.t. } \Im(z) > 0} \text{Res}\left(\frac{P}{Q}, z\right).$$

Example 6. Compute $\int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{(x^2+a^2)(x^2+b^2)}$ où 0 < a < b. The poles of $f(z) = \frac{1}{(z^2+a^2)(z^2+b^2)}$ are -ia, ia, -ib and ib which are simple. Hence

$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{(x^2 + a^2)(x^2 + b^2)} = 2i\pi \operatorname{Res}(f, ia) + 2i\pi \operatorname{Res}(f, ib)$$
$$= \frac{2i\pi}{2i(b^2 - a^2)a} + \frac{2i\pi}{2i(a^2 - b^2)b}$$
$$= \frac{\pi}{ab(a+b)}$$

Example 7.
$$\int_0^{2\pi} R(\cos t, \sin t) dt.$$

Set
$$z = e^{it}$$
 then $\cos(t) = \frac{1}{2} \left(z + \frac{1}{z} \right)$, $\sin(t) = \frac{1}{2i} \left(z - \frac{1}{z} \right)$, and $\frac{dz}{iz} = dt$.

Set
$$f(z) = \frac{1}{iz}R\left(\frac{1}{2}\left(z+\frac{1}{z}\right),\frac{1}{2i}\left(z-\frac{1}{z}\right)\right)$$
. Then $\int_0^{2\pi}R(\cos t,\sin t)dt = \int_{S^1}f(z)dz = 2i\pi\sum_{z\in D_1(0)}\operatorname{Res}(f,z)$.

Example 8. Compute
$$\int_0^{2\pi} \frac{a}{a^2 + \sin^2 t} dt$$
 where $a > 0$.
Set $f(z) = \frac{1}{iz} \frac{a}{a^2 - \frac{1}{4} \left(z - \frac{1}{z}\right)^2} = -\frac{4iaz}{(z^2 + 2az - 1)(z^2 - 2az - 1)}$.

Note that the singularity at 0 of the LHS is removable since we may extend f through 0 using the RHS, so that Res(f, 0) = 0.

Then, the only poles of f within the unit disk are $z_1 = -a + \sqrt{a^2 + 1}$ and $z_2 = a - \sqrt{a^2 + 1}$ which are simple. Hence

$$\int_0^{2\pi} \frac{a}{a^2 + \sin^2 t} dt = 2i\pi \operatorname{Res}(f, z_1) + 2i\pi \operatorname{Res}(f, z_2) = \frac{2\pi}{\sqrt{a^2 + 1}}$$

Remark 9 (Jordan's lemma). The following trick called, *Jordan's lemma*, can be very useful. Let $\gamma_R: [0, \pi] \to \mathbb{C}$ be defined by $\gamma_R(t) = Re^{it}$ (i.e. upper half circle centered at 0 of radius R).

$$\begin{split} \left| \int_{\gamma_R} g(z) e^{iz} \mathrm{d}z \right| &= \left| \int_0^\pi g(Re^{it}) e^{iR(\cos t + i \sin t)} iRe^{it} \mathrm{d}t \right| \\ &\leq \int_0^\pi \left| g(Re^{it}) e^{iR(\cos t + i \sin t)} iRe^{it} \right| \mathrm{d}t \\ &\leq R \sup_{\gamma_R} |g| \int_0^\pi e^{-R \sin t} \mathrm{d}t \\ &= 2R \sup_{\gamma_R} |g| \int_0^{\pi/2} e^{-R \sin t} \mathrm{d}t \\ &\leq 2R \sup_{\gamma_R} |g| \int_0^{\pi/2} e^{-2Rt/\pi} \mathrm{d}t \quad \text{by Jordan's inequality: } \forall x \in \left[0, \frac{\pi}{2}\right], \, \frac{2}{\pi} x \leq \sin(x) \leq x \\ &\leq \pi \sup_{\gamma_R} |g| \left(1 - e^{-R}\right) \\ &\leq \pi \sup_{\gamma_R} |g| \end{split}$$

Example 10.
$$\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} e^{iax} dx.$$

We want to compute $I(a) \coloneqq \int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} e^{iax} dx$ where P, Q are real polynomials and $a \in \mathbb{R}$.

Assume that *Q* has no real root.

Note that I(-a) = I(a), so we may restrict our attention to a > 0.

The integral is convergent if and only if $\deg Q \ge \deg P + 1$ (integration by parts), so we assume the latter.

Define $\gamma_R: [0,1] \to \mathbb{C}$ by $\gamma_R(t) = Re^{i\pi t}$.

For R > 0 big enough, all the poles of $f(z) = \frac{P(z)}{Q(z)}e^{iaz}$ whose imaginary part is positive are included within the upper-half disk centered at 0 and of radius R.

Then
$$\int_{-R}^{R} f(z)dz + \int_{\gamma_R} f(z)dz = 2i\pi \sum_{z \text{ s.t. } \mathfrak{F}(z)>0} \operatorname{Res}(f,z) \quad (*)$$

But, by Jordan's lemma,

$$\left| \int_{\gamma_R} \frac{P(z)}{Q(z)} e^{iz} dz \right| \le \pi \sup_{\gamma_R} |P/Q| \xrightarrow[R \to +\infty]{} 0$$

Hence, by taking $R \to +\infty$ in (*), we get

$$\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} e^{iax} dx = 2i\pi \sum_{z \text{ s.t. } \mathfrak{F}(z) > 0} \text{Res}\left(\frac{P(z)}{Q(z)} e^{iaz}, z\right)$$

Example 11. Compute
$$\int_{-\infty}^{+\infty} \frac{\cos(x)}{x^2 + \alpha^2} dx$$
 where $\alpha > 0$.

Note that
$$\int_{-\infty}^{+\infty} \frac{\cos(x)}{x^2 + \alpha^2} dx = \Re\left(\int_{-\infty}^{+\infty} \frac{e^{ix}}{x^2 + \alpha^2} dx\right).$$

The poles of $f(z) = \frac{e^{iz}}{z^2 + \alpha^2}$ are $i\alpha$ and $-i\alpha$ which are simple.

By the previous slide,
$$\int_{-\infty}^{+\infty} \frac{e^{iz}}{z^2 + \alpha^2} dz = 2i\pi \operatorname{Res}(f, i\alpha) = 2i\pi \frac{e^{-\alpha}}{2i\alpha} = \pi \frac{e^{-\alpha}}{\alpha}.$$

Hence
$$\int_{-\infty}^{+\infty} \frac{\cos(x)}{x^2 + \alpha^2} dx = \pi \frac{e^{-\alpha}}{\alpha}.$$

Example 12.
$$\int_0^{+\infty} \frac{x^p}{1+x^n} dx, \ n, p \in \mathbb{N}.$$

We know that the integral $\int_0^{+\infty} \frac{x^p}{1+x^n} dx$ is convergent if and only if $n \ge p+2$.

Set
$$f(z) = \frac{z^p}{1+z^n}$$
 and $a = e^{i\frac{\pi}{n}}$.

We consider the following sector of the circle centered at 0 and of radius R, such that the only pole of f enclosed in its inside is a.

Let $\gamma: \left[0, \frac{2\pi}{n}\right] \to \mathbb{C}$ be defined by $\gamma(t) = Re^{it}$.

By the residue theorem, $2i\pi \operatorname{Res}(f, a) = \int_{[0,R]} f + \int_{\gamma} f + \int_{[a^2R,0]} f$.

•
$$\operatorname{Res}(f, a) = \frac{a^p}{na^{n-1}} = \frac{a^{p+1}}{na^n} = -\frac{a^{p+1}}{n}.$$

•
$$\int_{[a^2R,0]} f(z)dz = -a^2 \int_0^R \frac{a^{2p}t^p}{1 + a^{2n}t^n} dt = -a^{2(p+1)} \int_0^R \frac{t^p}{1 + t^n} dt$$

•
$$\left| \int_{\gamma} f(z) dz \right| \le \frac{2\pi}{n} R \sup_{\gamma} |f| \xrightarrow[R \to +\infty]{} 0 \text{ since } \lim_{z \to \infty} z f(z) = 0.$$

Hence, by taking the limit as
$$R \to +\infty$$
, we get $-2i\pi \frac{a^{p+1}}{n} = \int_0^{+\infty} \frac{x^p}{1+x^n} dx - a^{2(p+1)} \int_0^{+\infty} \frac{x^p}{1+x^n} dx$.
Finally $\int_0^{+\infty} \frac{x^p}{1+x^n} dx = \frac{2i\pi}{n} \frac{a^{p+1}}{a^{2(p+1)}-1} = \frac{\pi}{n} \frac{2i}{a^{p+1}-a^{-(p+1)}} = \frac{\pi}{n \sin \frac{(p+1)\pi}{n}}$.

Example 13. $\int_0^{+\infty} \frac{\sin t}{t} dt.$

Define $\gamma_R: [0,1] \to \mathbb{C}$ by $\gamma_R(t) = Re^{i\pi t}$ and $\gamma_r: [0,1] \to \mathbb{C}$ by $\gamma_r(t) = re^{i\pi t}$. By Cauchy's integral theorem $\int_{\gamma_R} \frac{e^{iz}}{z} \mathrm{d}z - \int_{\gamma_r} \frac{e^{iz}}{z} \mathrm{d}z + \int_{-R}^{-r} \frac{e^{it}}{t} \mathrm{d}t + \int_r^R \frac{e^{it}}{t} \mathrm{d}t = 0$.

- By Jordan's lemma: $\left| \int_{\gamma_R} \frac{e^{iz}}{z} dz \right| \le \pi \sup_{\gamma_R} |1/z| \xrightarrow[R \to +\infty]{} 0$
- Since 0 is a simple pole of $f(z) = \frac{e^{iz}}{z}$, we have that $f(z) = \text{Res}(f, 0)z^{-1} + g(z)$ where g is holomorphic.

Then
$$\int_{\gamma_r} f(z) dz = \int_{\gamma_r} \operatorname{Res}(f, 0) z^{-1} dz + \int_{\gamma_r} g(z) dz \text{ but } \int_{\gamma_r} \operatorname{Res}(f, 0) z^{-1} dz = \operatorname{Res}(f, 0) i\pi \text{ and }$$

$$\left| \int_{\gamma_r} g(z) dz \right| \leq \pi r \sup_{\gamma_r} |g| \xrightarrow[r \to 0]{} 0.$$

Hence $\int_{\gamma_r} f(z) dz \xrightarrow[r \to 0]{} \operatorname{Res}(f, 0) i\pi = i\pi.$

$$\int_{r}^{R} \frac{\sin t}{t} dt = \frac{1}{2i} \int_{r}^{R} \frac{e^{it} - e^{-it}}{t} dt = \frac{1}{2i} \int_{r}^{R} \frac{e^{it}}{t} dt - \frac{1}{2i} \int_{r}^{R} \frac{e^{-it}}{t} dt = \frac{1}{2i} \int_{r}^{R} \frac{e^{it}}{t} dt + \frac{1}{2i} \int_{-R}^{-r} \frac{e^{it}}{t} dt = \frac{1}{2i} \left(\int_{\gamma_{r}} \frac{e^{iz}}{z} dz - \int_{\gamma_{R}} \frac{e^{iz}}{z} dz \right)$$
Hence, taking $r \to 0$ and $R \to +\infty$ we get that
$$\int_{0}^{+\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}.$$

Example 14.
$$\int_0^{+\infty} \frac{(\log t)^2}{1+t^2} dt$$
.

We set $f(z) = \frac{(\log z)^2}{1+z^2}$ but for that we need to fix a branch of the logarithm.

Let's fix $\log : \mathbb{C} \setminus \{iy : y \le 0\} \to \mathbb{C}$ defined by $\log z = \log |z| + i \operatorname{Arg}(z)$ where $\operatorname{Arg}(z) \in \left(-\frac{\pi}{2}, 3\frac{\pi}{2}\right)$.

Define $\gamma_R: [0,1] \to \mathbb{C}$ by $\gamma_R(t) = Re^{i\pi t}$ and $\gamma_r: [0,1] \to \mathbb{C}$ by $\gamma_r(t) = re^{i\pi t}$. By Cauchy's residue theorem $\int_{\gamma_R} f(z) \mathrm{d}z - \int_{\gamma_r} f(z) \mathrm{d}z + \int_{-R}^{-r} f(z) \mathrm{d}z + \int_r^R f(z) \mathrm{d}z = 2i\pi \operatorname{Res}(f,i) = -\frac{\pi^3}{4}$.

- Since $|\log z| \le |\ln r| + \pi$ on γ_r , $\int_{\gamma_r} f(z) dz \le \pi r \frac{(|\ln r| + \pi)^2}{1 + r^2} \xrightarrow[r \to +\infty \text{ or } 0]{} 0$.
- Since $z = te^{i\pi}$ on [-R, -r], we have

$$\int_{-R}^{-r} f(z) dz = \int_{r}^{R} \frac{(\ln t + i\pi)^{2}}{1 + t^{2}} dt = \int_{r}^{R} \frac{(\ln t)^{2}}{1 + t^{2}} dt + 2i\pi \int_{r}^{R} \frac{\ln t}{1 + t^{2}} dt - \int_{r}^{R} \frac{\pi^{2}}{1 + t^{2}} dt$$

By taking the limits $r \to 0$ and $R \to +\infty$ we get $\int_0^{+\infty} \frac{(\ln t)^2}{1+t^2} \mathrm{d}t + 2i\pi \int_0^{+\infty} \frac{\ln t}{1+t^2} \mathrm{d}t - \frac{\pi^3}{2} + \int_0^{+\infty} \frac{(\ln t)^2}{1+t^2} \mathrm{d}t = -\frac{\pi^3}{4}$. Considering the real part, we get $\int_0^{+\infty} \frac{(\ln t)^2}{1+t^2} \mathrm{d}t = \frac{\pi^3}{8}$.