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Proposition 1. Vx,yeR, (x <y = g€ Q, x<g<y)
i.e. between two real numbers there is always a rational number.

Proof. Let x,y € R satisfying x < y. Sete =y —x > 0.
Since R is archimedean *, there exists n € N, such that ne > 1, i.e. % <e.

Setm= |nx|]+1,thennx<m<nx+1 = x<%§x+%<x+s=y.
Furthermore, g = % € Q satisfies x < ¢ < y. [ |

Proposition 2. If I C R is an interval which is non-empty and not reduced to a singleton then
InQ#@.

Proof. Since I is non-empty and not reduced to a singleton, there exist x, y € I with x < y.
Then, by Proposition 1, there exists g € Q such that x < g < y.
Since I is an interval, g € I. Henceq € I N Q # @. [ |

Proposition 3 (Q is dense in R). @ = R

Proof. Since Q C R, it is enough to show the other inclusion.

Let x € R. Let € > 0. Then B(x,¢) = (x — €, x + €) is an interval which is non-empty and
not reduced to a singleton. Hence, by Proposition 2, B(x,e) N Q # @.

Hence R C Q. |

Proposition4. Vx,yeR, (x <y = Ise R\ Q, x<s<y)
i.e. between two real numbers there is always an irrational number.

Proof. By Proposition 1, there exists ¢ € Q such that x < g < y. Still by Proposition 2, there
exists p € Qsuch that x < p<gq.

Hence we obtained p,q € Qsuch thatx < p< g < y.

Sets =p+ %(q —p). Then s € R\ Q (otherwise, by contradiction, \/5 would be in Q)
and p < s < g (notice that 0 < g < 1 s0 s is a number between p and q).

We obtained s € R \ Q such that x < s < y. |

Proposition 5. If I C R is an interval which is non-empty and not reduced to a singleton then
INR\Q) #2.

Proof. Follow the proof of Proposition 2 but using Proposition 4. |

* see the Slide 3 from Tuesday, September 24.



2 Interior, closure and boundary of Q

Proposition 6. 0Q = R

Proof. Let x € R. Lete > 0.
Then, by Proposition 2, B(x,e) N RN Q # @ and, by Proposition 5, B(x,e) NR N Q° # @.
Hence R c 9Q. The other inclusion is obvious. [ |

Proposition 7. Q=0
Proof. Q=RnQ=00nQ=0 [ |

Proposition8. R\Q =R, R\Q=g,0(R\Q) =R
Proof. Recall thatd (R \ Q) =0Q =R.

Then R\ Q> d(R\Q)=Rand R\ Q = @ as above. |

A useful consequence of the density of Q in R is that any real number can be approxi-
mated by rationals:

Proposition 9. For any x € R, there exists a sequence (ay,) of rationals converging to x,
i.e. such that (Vk, a; € Q) and lim a; = x.

k—+o00

Proof. Letk € N,. Then (x - %, x4+ i) is an interval which is non-empty and not reduced

to a singleton. Hence, by Proposition 2, there exists a, € <x - %, x+ %) N Q.

We constructed a sequence such that a;, € Q and |x - ak| < % = 0 n
—+0o0

Example 10. The set .S = {(x, yeER? : xeQandye Q} c R? is not closed.

Indeed, by Proposition 9, there exists (u;) a sequence of rationals whose limit is \/5
Then Vk, (4,,0) € S.

Hence (1/2,0) = Jim (4,.0) € Sbut (1/2,0) ¢ S.
—+o0
Furthermore .S # S and S is not closed.

Notice also that .S is not open.

V2,
n

Indeed, let € > 0, then there exists n € N, big enough such that 0 <
So (%O) € B(0,¢)n S°.
Furthermore 0 € S but Ve > 0, B(0,¢) ¢ S.

Hence S is not open.

We may conclude that S is neither closed nor open without explicitely computing its in-
terior or closure.



