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Proposition 1. ∀𝑥, 𝑦 ∈ ℝ, (𝑥 < 𝑦 ⟹ ∃𝑞 ∈ ℚ, 𝑥 < 𝑞 < 𝑦)
i.e. between two real numbers there is always a rational number.

Proof. Let 𝑥, 𝑦 ∈ ℝ satisfying 𝑥 < 𝑦. Set 𝜀 = 𝑦 − 𝑥 > 0.
Since ℝ is archimedean ⋆ , there exists 𝑛 ∈ ℕ>0 such that 𝑛𝜀 > 1, i.e. 1

𝑛 < 𝜀.
Set 𝑚 = ⌊𝑛𝑥⌋ + 1, then 𝑛𝑥 < 𝑚 ≤ 𝑛𝑥 + 1 ⟹ 𝑥 < 𝑚

𝑛 ≤ 𝑥 + 1
𝑛 < 𝑥 + 𝜀 = 𝑦.

Furthermore, 𝑞 = 𝑚
𝑛 ∈ ℚ satisfies 𝑥 < 𝑞 < 𝑦. ■

Proposition 2. If 𝐼 ⊂ ℝ is an interval which is non-empty and not reduced to a singleton then
𝐼 ∩ ℚ ≠ ∅.

Proof. Since 𝐼 is non-empty and not reduced to a singleton, there exist 𝑥, 𝑦 ∈ 𝐼 with 𝑥 < 𝑦.
Then, by Proposition 1, there exists 𝑞 ∈ ℚ such that 𝑥 < 𝑞 < 𝑦.
Since 𝐼 is an interval, 𝑞 ∈ 𝐼 . Hence 𝑞 ∈ 𝐼 ∩ ℚ ≠ ∅. ■

Proposition 3 (ℚ is dense in ℝ). ℚ = ℝ

Proof. Since ℚ ⊂ ℝ, it is enough to show the other inclusion.
Let 𝑥 ∈ ℝ. Let 𝜀 > 0. Then 𝐵(𝑥, 𝜀) = (𝑥 − 𝜀, 𝑥 + 𝜀) is an interval which is non-empty and
not reduced to a singleton. Hence, by Proposition 2, 𝐵(𝑥, 𝜀) ∩ ℚ ≠ ∅.
Hence ℝ ⊂ ℚ. ■

Proposition 4. ∀𝑥, 𝑦 ∈ ℝ, (𝑥 < 𝑦 ⟹ ∃𝑠 ∈ ℝ ⧵ ℚ, 𝑥 < 𝑠 < 𝑦)
i.e. between two real numbers there is always an irrational number.

Proof. By Proposition 1, there exists 𝑞 ∈ ℚ such that 𝑥 < 𝑞 < 𝑦. Still by Proposition 2, there
exists 𝑝 ∈ ℚ such that 𝑥 < 𝑝 < 𝑞.
Hence we obtained 𝑝, 𝑞 ∈ ℚ such that 𝑥 < 𝑝 < 𝑞 < 𝑦.
Set 𝑠 = 𝑝 + √2

2 (𝑞 − 𝑝). Then 𝑠 ∈ ℝ ⧵ ℚ (otherwise, by contradiction, √2 would be in ℚ)

and 𝑝 < 𝑠 < 𝑞 (notice that 0 < √2
2 < 1 so 𝑠 is a number between 𝑝 and 𝑞).

We obtained 𝑠 ∈ ℝ ⧵ ℚ such that 𝑥 < 𝑠 < 𝑦. ■

Proposition 5. If 𝐼 ⊂ ℝ is an interval which is non-empty and not reduced to a singleton then
𝐼 ∩ (ℝ ⧵ ℚ) ≠ ∅.

Proof. Follow the proof of Proposition 2 but using Proposition 4. ■
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Proposition 6. 𝜕ℚ = ℝ

Proof. Let 𝑥 ∈ ℝ. Let 𝜀 > 0.
Then, by Proposition 2, 𝐵(𝑥, 𝜀) ∩ ℝ ∩ ℚ ≠ ∅ and, by Proposition 5, 𝐵(𝑥, 𝜀) ∩ ℝ ∩ ℚ𝑐 ≠ ∅.
Hence ℝ ⊂ 𝜕ℚ. The other inclusion is obvious. ■

Proposition 7. ℚ̊ = ∅

Proof. ℚ̊ = ℝ ∩ ℚ̊ = 𝜕ℚ ∩ ℚ̊ = ∅ ■

Proposition 8. ℝ ⧵ ℚ = ℝ,
∘

⏞ℝ ⧵ ℚ = ∅, 𝜕 (ℝ ⧵ ℚ) = ℝ

Proof. Recall that 𝜕 (ℝ ⧵ ℚ) = 𝜕ℚ = ℝ.

Then ℝ ⧵ ℚ ⊃ 𝜕 (ℝ ⧵ ℚ) = ℝ and
∘

⏞ℝ ⧵ ℚ = ∅ as above. ■

A useful consequence of the density of ℚ in ℝ is that any real number can be approxi-
mated by rationals:

Proposition 9. For any 𝑥 ∈ ℝ, there exists a sequence (𝑎𝑘) of rationals converging to 𝑥,
i.e. such that (∀𝑘, 𝑎𝑘 ∈ ℚ) and lim

𝑘→+∞
𝑎𝑘 = 𝑥.

Proof. Let 𝑘 ∈ ℕ>0. Then (𝑥 − 1
𝑘 , 𝑥 + 1

𝑘 ) is an intervalwhich is non-empty and not reduced

to a singleton. Hence, by Proposition 2, there exists 𝑎𝑘 ∈ (𝑥 − 1
𝑘 , 𝑥 + 1

𝑘 ) ∩ ℚ.
We constructed a sequence such that 𝑎𝑘 ∈ ℚ and |𝑥 − 𝑎𝑘| < 1

𝑘 −−−−−→
𝑘→+∞

0 ■

Example 10. The set 𝑆 = {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑥 ∈ ℚ and 𝑦 ∈ ℚ} ⊂ ℝ2 is not closed.
Indeed, by Proposition 9, there exists (𝑢𝑘) a sequence of rationals whose limit is √2.
Then ∀𝑘, (𝑢𝑘, 0) ∈ 𝑆.
Hence (√2, 0) = lim

𝑘→+∞
(𝑢𝑘, 0) ∈ 𝑆 but (√2, 0) ∉ 𝑆.

Furthermore 𝑆 ≠ 𝑆 and 𝑆 is not closed.

Notice also that 𝑆 is not open.
Indeed, let 𝜀 > 0, then there exists 𝑛 ∈ ℕ>0 big enough such that 0 < √2

𝑛 < 𝜀.

So (
√2
𝑛 , 0) ∈ 𝐵(0, 𝜀) ∩ 𝑆𝑐 .

Furthermore 0 ∈ 𝑆 but ∀𝜀 > 0, 𝐵(0, 𝜀) ⊄ 𝑆.
Hence 𝑆 is not open.

We may conclude that 𝑆 is neither closed nor open without explicitely computing its in-
terior or closure.


