

January 30th, 2019

Jean-Baptiste Campesato

MAT137Y1 - LEC0501 - Calculus! - Jan 30, 2019

Jean-Baptiste Campesato

For Monday (Feb 4), watch the videos:

For Wednesday (Feb 6), watch the videos:

For next week

Volumes: 10.1

Volumes: 10.2

• Sequences: 11.1, 11.2

MAT137Y1 - LEC0501 - Calculus! - Jan 30, 2019

Integral of products of secant and tangent

To integrate

$$\int \sec^n x \tan^m x \, dx$$

- If ???, then try the substitution $u = \tan x$.
- If |???|, then try the substitution $u = \sec x$.

Hint: You will need

•
$$\frac{d}{dx} [\tan x] = \dots$$
 • $\frac{d}{dx} [\sec x] = \dots$

•
$$\frac{d}{dx}[\sec x] = ...$$

• The trig identity involving sec and tan

Practice: Integrals with trigonometric functions

Compute the following antiderivatives.

Once you get them to a form from where it is easy to finish, you may stop: we are only interested in the method!

$$\int \sin^4 x \, dx$$

$$\mathbf{3} \int e^{\cos x} \cos x \sin^5 x \, dx \qquad \mathbf{6} \int \csc x \, dx$$

Useful trig identities

$$\sin^2 x + \cos^2 x =$$

$$\sin^2 x + \cos^2 x = 1$$
 $\sin^2 x = \frac{1 - \cos(2x)}{2}$

$$\tan^2 x + 1 = \sec^2 x$$

$$\tan^2 x + 1 = \sec^2 x$$
 $\cos^2 x = \frac{1 + \cos(2x)}{2}$

Rational integrals

- 2 Reduce to common denominator $\frac{2}{x} \frac{3}{x+3}$

- **6** Compute $\int \frac{1}{x^3 x} dx$

Jean-Baptiste Campesato

MAT137Y1 - LEC0501 - Calculus! - Jan 30, 2019

5

Repeated factors

- Compute $\int \frac{1}{(x+1)^n} dx$ for n > 1
- $2 \text{ Compute } \int \frac{x}{(x+1)^2} dx$
- Compute $\int \frac{x^3}{(x+1)^2} dx$

Jean-Baptiste Campesato

MAT137Y1 – LEC0501 – Calculus! – Jan 30, 2019

Irreducible quadratics

- Compute $\int \frac{1}{x^2+1} dx$ and $\int \frac{x}{x^2+1} dx$.
- $2 \text{ Compute } \int \frac{2x+3}{x^2+1} \, dx$
- **3** Compute $\int \frac{x^2}{x^2+1} dx$

A reduction formula – Homework

Let
$$I_n = \int_0^{2\pi} \sin^n x \, dx$$
.

- Compute I_0 and I_1 .
- 2 Starting with I_n , use integration by parts. Then use the main trig identity to obtain an equation involving I_n and I_{n-2} .
- **3** Compute I_8 and I_{55} .