The 14th Whitney Problems Workshop C^m and Sobolev functions on subsets of \mathbb{R}^n

C^m SOLUTIONS OF SEMIALGEBRAIC EQUATIONS

Joint work with E. BIERSTONE and P.D. MILMAN

Jean-Baptiste Campesato

August 19, 2021

Semialgebraic geometry ●○○	The problems	The results	The proof
Semialgebraic geometr	y – Definitions		

Semialgebraic geometry	The problems	The results	The proof
●○○	000	000	
Semialgebraic geometr	y – Definitions		

Definition: semialgebraic sets

Semialgebraic subsets of \mathbb{R}^n are elements of the boolean algebra spanned by sets of the form

 $\{x \in \mathbb{R}^n : f(x) \ge 0\}$

where $f \in \mathbb{R}[x_1, \dots, x_n]$.

Semialgebraic geometry	The problems	The results	The proof
●○○	000	000	
Semialgebraic geometry	y – Definitions		

Definition: semialgebraic sets

Semialgebraic subsets of \mathbb{R}^n are elements of the boolean algebra spanned by sets of the form

 $\{x \in \mathbb{R}^n : f(x) \ge 0\}$

where $f \in \mathbb{R}[x_1, \dots, x_n]$.

Remark

Given $f \in \mathbb{R}[x_1, \dots, x_n]$, the following sets are semialgebraic

 $\{x \in \mathbb{R}^n \ : \ f(x) > 0\}, \ \{x \in \mathbb{R}^n \ : \ f(x) \le 0\}, \ \{x \in \mathbb{R}^n \ : \ f(x) < 0\}, \ \{x \in \mathbb{R}^n \ : \ f(x) = 0\}, \ \{x \in \mathbb{R}^n \ : \ f(x) \neq 0\}$

Semialgebraic geometry	The problems	The results	The proof
●○○	000	000	
Semialgebraic geometry	y – Definitions		

Definition: semialgebraic sets

Semialgebraic subsets of \mathbb{R}^n are elements of the boolean algebra spanned by sets of the form

 $\{x \in \mathbb{R}^n : f(x) \ge 0\}$

where $f \in \mathbb{R}[x_1, \dots, x_n]$.

Remark

Given $f \in \mathbb{R}[x_1, \dots, x_n]$, the following sets are semialgebraic

 $\{x \in \mathbb{R}^n : f(x) > 0\}, \{x \in \mathbb{R}^n : f(x) \le 0\}, \{x \in \mathbb{R}^n : f(x) < 0\}, \{x \in \mathbb{R}^n : f(x) = 0\}, \{x \in \mathbb{R}^n : f(x) \neq 0\}$

Definition: semialgebraic functions

Let $X \subset \mathbb{R}^n$. A function $f : X \to \mathbb{R}^p$ is semialgebraic if its graph $\Gamma_f \subset \mathbb{R}^{n+p}$ is semialgebraic.

Semialgebraic geometry ○●○	The problems	The results	The proof
Semialgebraic geometr	ry – Tarski–S	eidenberg theorem	
Theorem (Tarski-Seidenberg): sem	ialgebraic sets are c	losed under projections	
If $S \subset \mathbb{R}^{n+1}$ is semialgebraic then so	is $\pi(S)$, where π : \mathbb{I}	$\mathbb{R}^{n+1} \to \mathbb{R}^n, \ \pi(x_1, \dots, x_{n+1}) = (x_1, \dots, x_{n+1})$	<i>x_n</i>).

Semialgebraic geometry ○●○	The problems	The results 000	The proof
Semialgebraic geome	etry – Tarski-	-Seidenberg theorem	
Theorem (Tarski–Seidenberg): s	emialgebraic sets a	e closed under projections	
If $S \subset \mathbb{R}^{n+1}$ is semialgebraic then so is $\pi(S)$, where $\pi : \mathbb{R}^{n+1} \to \mathbb{R}^n$, $\pi(x_1, \dots, x_{n+1}) = (x_1, \dots, x_n)$.			
Remark			

If $f : X \to \mathbb{R}^p$ is semialgebraic then so is X.

Semialgebraic geometry ○●○	The problems	The results	The proof
Semialgebraic ge	ometry – Tarski–Se	eidenberg theorem	
Theorem (Tarski–Seidenbe	erg): semialgebraic sets are cl	osed under projections	

If $S \subset \mathbb{R}^{n+1}$ is semialgebraic then so is $\pi(S)$, where $\pi : \mathbb{R}^{n+1} \to \mathbb{R}^n$, $\pi(x_1, \dots, x_{n+1}) = (x_1, \dots, x_n)$.

Remark

If $f : X \to \mathbb{R}^p$ is semialgebraic then so is X.

Corollary: elimination of quantifiers

Let $S \subset \mathbb{R}^{n+1}$ be semialgebraic, then the following sets are too

$$\left\{ (x_1, \dots, x_n) \in \mathbb{R}^n \ : \ \exists y, (x_1, \dots, x_n, y) \in S \right\} = \pi(S)$$
$$\left\{ (x_1, \dots, x_n) \in \mathbb{R}^n \ : \ \forall y, (x_1, \dots, x_n, y) \in S \right\} = \mathbb{R}^n \setminus \pi(\mathbb{R}^{n+1} \setminus S)$$

Semialgebraic geometry ○●○	The problems	The results	The proof
Semialgebraic ge	eometry – Tarski–Se	eidenberg theorem	
Theorem (Tarski–Seident	perg): semialgebraic sets are cl	osed under projections	

If $S \subset \mathbb{R}^{n+1}$ is semialgebraic then so is $\pi(S)$, where $\pi : \mathbb{R}^{n+1} \to \mathbb{R}^n$, $\pi(x_1, \dots, x_{n+1}) = (x_1, \dots, x_n)$.

Remark

If $f : X \to \mathbb{R}^p$ is semialgebraic then so is X.

Corollary: elimination of quantifiers

Let $S \subset \mathbb{R}^{n+1}$ be semialgebraic, then the following sets are too

$$\left\{ (x_1, \dots, x_n) \in \mathbb{R}^n : \exists y, (x_1, \dots, x_n, y) \in S \right\} = \pi(S)$$

$$\left\{ (x_1, \dots, x_n) \in \mathbb{R}^n : \forall y, (x_1, \dots, x_n, y) \in S \right\} = \mathbb{R}^n \setminus \pi(\mathbb{R}^{n+1} \setminus S)$$

Example

If
$$A \subset \mathbb{R}^n$$
 is semialgebraic, then so is $\overline{A} := \left\{ x \in \mathbb{R}^n : \forall \varepsilon \in (0, +\infty), \exists y \in A, \sum_{i=1}^n (x_i - y_i)^2 < \varepsilon^2 \right\}.$

Semialgebraic geometry	The problems	The results	The proof
000			

A semialgebraic version of Whitney's extension theorem

Theorem – Kurdyka–Pawłucki, 1997, 2014 Thamrongthanyalak, 2017 Kocel-Cynk–Pawłucki–Valette, 2019

Given a semialgebraic C^m Whitney field on a closed subset $X \subset \mathbb{R}^n$, i.e. a family $(f_{\alpha} : X \to \mathbb{R})_{\alpha \in \mathbb{N}^n}$ of continuous semialgebraic functions such that $|\alpha| \leq m$

$$\forall z \in X, \, \forall \alpha \in \mathbb{N}^n, \, |\alpha| \le m \implies f_{\alpha}(x) - \sum_{|\beta| \le m - |\alpha|} \frac{f_{\alpha+\beta}(y)}{\beta!} (x-y)^{\beta} = \underset{X \ni x, y \to z}{o} \left(||x-y||^{m-|\alpha|} \right),$$

there exists a C^m semialgebraic function $F : \mathbb{R}^n \to \mathbb{R}$ such that $D^{\alpha}F_{|X} = f_{\alpha}$ and F is Nash on $\mathbb{R}^n \setminus X$.

Nash := semialgebraic and analytic.

Semialgebraic geometry	The problems	The results	The proof
	000		
	a materia a successi a lava lava t	- 14 - 0	

Are there solutions preserving semialgebraicity?

For Whitney's Extension Problem

For the Brenner–Fefferman–Hochster–Kollár Problem

Semialgebraic geometry	The problems ●○○	The results	The proof
Are there solutions pres	serving semialgebrai	city?	

For Whitney's Extension Problem

Let $f : X \to \mathbb{R}$ be a semialgebraic function where $X \subset \mathbb{R}^n$ is closed.

If *f* admits a C^m extension $F : \mathbb{R}^n \to \mathbb{R}$, does it admit a semialgebraic C^m extension $\tilde{F} : \mathbb{R}^n \to \mathbb{R}$?

For the Brenner–Fefferman–Hochster–Kollár Problem

Semialgebraic geometry	The problems ●○○	The results	The proof
Are there solutions pres	serving semialgebrai	icity?	

For Whitney's Extension Problem

Let $f : X \to \mathbb{R}$ be a semialgebraic function where $X \subset \mathbb{R}^n$ is closed.

If f admits a C^m extension $F : \mathbb{R}^n \to \mathbb{R}$, does it admit a semialgebraic C^m extension $\tilde{F} : \mathbb{R}^n \to \mathbb{R}$?

For the Brenner–Fefferman–Hochster–Kollár Problem

Let $f_1, \ldots, f_r, \varphi : \mathbb{R}^n \to \mathbb{R}$ be semialgebraic functions. If the equation $\varphi = \sum \varphi_i f_i$ admit a C^m solution $(\varphi_i)_i$, does it admit a semialgebraic C^m solution?

Semialgebraic geometry	The problems ●○○	The results	The proof
Are there solutions pres	erving semialgebrai	city?	

For Whitney's Extension Problem

Let $f : X \to \mathbb{R}$ be a semialgebraic function where $X \subset \mathbb{R}^n$ is closed.

If *f* admits a C^m extension $F : \mathbb{R}^n \to \mathbb{R}$, does it admit a semialgebraic C^m extension $\tilde{F} : \mathbb{R}^n \to \mathbb{R}$?

For the Brenner–Fefferman–Hochster–Kollár Problem

Let $f_1, \ldots, f_r, \varphi : \mathbb{R}^n \to \mathbb{R}$ be semialgebraic functions. If the equation $\varphi = \sum \varphi_i f_i$ admit a C^m solution $(\varphi_i)_i$, does it admit a semialgebraic C^m solution?

- Aschenbrenner–Thamrongthanyalak (2019): $\forall n$, for m = 1 and m = 0, respectively.
- Fefferman–Luli (2021): $\forall m$, for n = 2.
- Bierstone–C.–Milman (2021): $\forall n, \forall m$, with a loss of differentiability.

Semialgebraic geometry ୦୦୦	The problems ○●○	The results	The proof
Strategy for the semialge	braic C^1 extension	problem	
(Aschenbrenner-Thamro	ongthanyalak, 2019	3)	

Semialgebraic geometry	The problems	The results	The proof
	000		

• Set
$$S := \left\{ (x, y, v) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n : \begin{array}{l} x \in X, \ y = f(x), \\ \forall \varepsilon > 0, \ \forall \delta > 0, \ \forall a, b \in B_{\delta}(x), \ |f(b) - f(a) - v \cdot (b - a)| \le \varepsilon ||b - a|| \end{array} \right\}.$$

Semialgebraic geometry	The problems	The results	The proof
	000		

Let $f : X \to \mathbb{R}$ be a semialgebraic function admitting a C^1 extension $F : \mathbb{R}^n \to \mathbb{R}$.

• Set
$$S \coloneqq \left\{ (x, y, v) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n : \begin{array}{l} x \in X, \ y = f(x), \\ \forall \varepsilon > 0, \ \forall \delta > 0, \ \forall a, b \in B_{\delta}(x), \ |f(b) - f(a) - v \cdot (b - a)| \le \varepsilon ||b - a|| \end{array} \right\}.$$

• Then *S* is semialgebraic,

Semialgebraic geometry	The problems	The results	The proof
	000		

- Set $S \coloneqq \left\{ (x, y, v) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n : \begin{array}{l} x \in X, \ y = f(x), \\ \forall \varepsilon > 0, \ \forall \delta > 0, \ \forall a, b \in B_{\delta}(x), \ |f(b) f(a) v \cdot (b a)| \le \varepsilon ||b a|| \end{array} \right\}.$
- Then *S* is semialgebraic, and, $\forall x \in X$, $(x, F(x), \nabla F(x)) \in S$.

Semialgebraic geometry	The problems	The results	The proof
	000		

- Set $S \coloneqq \left\{ (x, y, v) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n : \begin{array}{l} x \in X, \ y = f(x), \\ \forall \varepsilon > 0, \ \forall \delta > 0, \ \forall a, b \in B_{\delta}(x), \ |f(b) f(a) v \cdot (b a)| \le \varepsilon ||b a|| \end{array} \right\}.$
- Then *S* is semialgebraic, and, $\forall x \in X$, $(x, F(x), \nabla F(x)) \in S$.
- Semialgebraic Michael's Selection Lemma: there exists $\sigma : X \to S$ semialgebraic and continuous such that $\pi_x \circ \sigma = id$ where $\pi_x(x, y, v) = x$.

Semialgebraic geometry	The problems	The results	The proof
	000		

- Set $S \coloneqq \left\{ (x, y, v) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n : \begin{array}{l} x \in X, \ y = f(x), \\ \forall \varepsilon > 0, \ \forall \delta > 0, \ \forall a, b \in B_{\delta}(x), \ |f(b) f(a) v \cdot (b a)| \le \varepsilon ||b a|| \end{array} \right\}.$
- Then *S* is semialgebraic, and, $\forall x \in X$, $(x, F(x), \nabla F(x)) \in S$.
- Semialgebraic Michael's Selection Lemma: there exists $\sigma : X \to S$ semialgebraic and continuous such that $\pi_x \circ \sigma = id$ where $\pi_x(x, y, v) = x$.
- Set $G \coloneqq \pi_v \circ \sigma$: $\mathbb{R}^n \to \mathbb{R}^n$ where $\pi_v(x, y, v) = v$, then G is semialgebraic, continuous and satisfies $\forall c \in X, \ f(b) = f(a) + G(a) \cdot (b-a) + \underset{X \ni a, b \to c}{o} (\|b-a\|).$

Semialgebraic geometry	The problems	The results	The proof
	000		

Let $f : X \to \mathbb{R}$ be a semialgebraic function admitting a C^1 extension $F : \mathbb{R}^n \to \mathbb{R}$.

• Set
$$S \coloneqq \left\{ (x, y, v) \in \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n : \begin{array}{l} x \in X, \ y = f(x), \\ \forall \varepsilon > 0, \ \forall \delta > 0, \ \forall a, b \in B_{\delta}(x), \ |f(b) - f(a) - v \cdot (b - a)| \le \varepsilon ||b - a|| \end{array} \right\}.$$

- Then *S* is semialgebraic, and, $\forall x \in X$, $(x, F(x), \nabla F(x)) \in S$.
- Semialgebraic Michael's Selection Lemma: there exists $\sigma : X \to S$ semialgebraic and continuous such that $\pi_x \circ \sigma = id$ where $\pi_x(x, y, v) = x$.
- Set $G \coloneqq \pi_v \circ \sigma$: $\mathbb{R}^n \to \mathbb{R}^n$ where $\pi_v(x, y, v) = v$, then G is semialgebraic, continuous and satisfies $\forall c \in X, \ f(b) = f(a) + G(a) \cdot (b-a) + \underset{X \ni a, b \to c}{o} (||b-a||).$

This strategy does not generalize to m > 1 since the unknown $(f_{\alpha})_{\alpha \in \mathbb{N}^m \setminus \{\mathbf{0}\}}$ can't be described as a section. For instance, if m = 2, $f_{\mathbf{e}}$ needs to satisfy

$$f_{\mathbf{e}_{i}}(b) = f_{\mathbf{e}_{i}}(a) + \sum_{j=1}^{n} f_{\mathbf{e}_{i}+\mathbf{e}_{j}}(a)(b_{j}-a_{j}) + \underset{X \ni a, b \to c}{o}(||b-a||).$$

Semialgebraic geometry	The problems	The results	The proof
	000		

Let $f : X \to \mathbb{R}$ be semialgebraic.

 $X = X^{-} \cup X^{+} \qquad X^{+} : y = \psi(x) \le x$ (0,0) $X^{-} : y = 0$

Semialgebraic geometry	The problems ○○●	The results	The proof
Strategy for the planar semia	algebraic extension prob	lem (Fefferman–Luli, 20	021)

Let $f : X \to \mathbb{R}$ be semialgebraic.

1 Let $F : \mathbb{R}^2 \to \mathbb{R}$ be a C^m function such that $F_{|X} = f$ and $J_{(0,0)}F = 0$.

$$X = X^{-} \cup X^{+} \quad X^{+} : y = \psi(x) \le x$$
(0,0)
$$X^{-} : y = 0$$

Semialgebraic geometry	The problems	The results	The proof
	000		

Let $f : X \to \mathbb{R}$ be semialgebraic.

1 Let $F : \mathbb{R}^2 \to \mathbb{R}$ be a C^m function such that $F_{|X} = f$ and $J_{(0,0)}F = 0$. Set $f_l^-(x) := \partial_y^l F(x, 0)$ and $f_l^+(x) := \partial_y^l F(x, \psi(x))$. (0,0)

$$X = X^{-} \cup X^{+} \quad X^{+} : y = \psi(x) \le x$$

Semialgebraic geometry	The problems	The results	The proof
	000		

Let $f : X \to \mathbb{R}$ be semialgebraic.

1 Let $F : \mathbb{R}^2 \to \mathbb{R}$ be a C^m function such that $F_{|X} = f$ and $J_{(0,0)}F = 0$. Set $f_l^-(x) \coloneqq \partial_y^l F(x, 0)$ and $f_l^+(x) \coloneqq \partial_y^l F(x, \psi(x))$. Then

$$X = X^{-} \cup X^{+} \qquad X^{+} : y = \psi(x) \le x$$
(0,0)
$$X^{-} : y = 0$$

$$(*) \begin{cases} (i) & f_0^{-}(x) = f(x, 0) \\ (ii) & f_0^{+}(x) = f(x, \psi(x)) \\ (iii) & f_l^{+}(x) = \sum_{k=0}^{m-l} \frac{\psi(x)^k}{k!} f_{l+k}^{-}(x) + \sum_{x \to 0^+} (\psi(x)^{m-l}) \\ (iv) & f_l^{-}(x) = \sum_{x \to 0^+} (x^{m-l}) \\ (v) & f_l^{+}(x) = \sum_{x \to 0^+} (x^{m-l}) \end{cases}$$

Semialgebraic geometry	The problems	The results	The proof
	000		

Let $f : X \to \mathbb{R}$ be semialgebraic.

1 Let $F : \mathbb{R}^2 \to \mathbb{R}$ be a C^m function such that $F_{|X} = f$ and $J_{(0,0)}F = 0$. Set $f_l^-(x) \coloneqq \partial_y^l F(x,0)$ and $f_l^+(x) \coloneqq \partial_y^l F(x,\psi(x))$. Then

$$X = X^{-} \cup X^{+} \qquad X^{+} : y = \psi(x) \le x$$
(0,0)
$$X^{-} : y = 0$$

$$* \left\{ \begin{array}{ll} (i) & f_0^-(x) = f(x,0) \\ (ii) & f_0^+(x) = f(x,\psi(x)) \\ (iii) & f_l^+(x) = \sum_{k=0}^{m-l} \frac{\psi(x)^k}{k!} f_{l+k}^-(x) + \sum_{x \to 0^+} (\psi(x)^{m-l}) \\ (iv) & f_l^-(x) = \sum_{x \to 0^+} (x^{m-l}) \\ (v) & f_l^+(x) = \sum_{x \to 0^+} (x^{m-l}) \end{array} \right.$$

2 According to the definable choice: there exist \tilde{f}_l^{\pm} semialgebraic satisfying (*).

Semialgebraic geometry	The problems	The results	The proof
	000		

Let $f : X \to \mathbb{R}$ be semialgebraic.

1 Let $F : \mathbb{R}^2 \to \mathbb{R}$ be a C^m function such that $F_{|X} = f$ and $J_{(0,0)}F = 0$. Set $f_l^-(x) \coloneqq \partial_y^l F(x, 0)$ and $f_l^+(x) \coloneqq \partial_y^l F(x, \psi(x))$. Then

$$X = X^{-} \cup X^{+} \quad X^{+} : y = \psi(x) \le x$$
(0,0)
$$X^{-} : y = 0$$

$$*) \begin{cases} (i) & f_{0}^{-}(x) = f(x,0) \\ (ii) & f_{0}^{+}(x) = f(x,\psi(x)) \\ (iii) & f_{l}^{+}(x) = \sum_{k=0}^{m-l} \frac{\psi(x)^{k}}{k!} f_{l+k}^{-}(x) + \sum_{x \to 0^{+}} (\psi(x)^{m-l}) \\ (iv) & f_{l}^{-}(x) = \sum_{x \to 0^{+}} (x^{m-l}) \\ (v) & f_{l}^{+}(x) = \sum_{x \to 0^{+}} (x^{m-l}) \end{cases}$$

2 According to the definable choice: there exist \tilde{f}_l^{\pm} semialgebraic satisfying (*).

3 Then
$$\tilde{F}(x, y) = \theta^{-}(x, y) \left(\sum_{l=0}^{m} \frac{\tilde{f}_{l}^{-}(x)}{l!} y^{l} \right) + \theta^{+}(x, y) \left(\sum_{l=0}^{m} \frac{\tilde{f}_{l}^{+}(x)}{l!} (y - \psi(x))^{l} \right)$$
 is a semialgebraic C^{m} extension of f in a neighborhood of the origin such that $J_{(0,0)}\tilde{F} = 0$.

Semialgebraic geometry	The problems	The results ●○○	The proof
The second second second second			

The main results: statements

Theorem – Bierstone–C.–Milman, 2021

Given $X \subset \mathbb{R}^n$ closed and semialgebraic, there exists $r : \mathbb{N} \to \mathbb{N}$ satisfying the following property: if $f : X \to \mathbb{R}$ semialgebraic admits a $C^{r(m)}$ extension, then it admits a semialgebraic C^m extension.

Semialgebraic geometry		The problems	The results ●○○	The proof
	1			

The main results: statements

Theorem – Bierstone–C.–Milman, 2021

Given $X \subset \mathbb{R}^n$ closed and semialgebraic, there exists $r : \mathbb{N} \to \mathbb{N}$ satisfying the following property: if $f : X \to \mathbb{R}$ semialgebraic admits a $C^{r(m)}$ extension, then it admits a semialgebraic C^m extension.

Theorem – Bierstone–C.–Milman, 2021

Given $A : \mathbb{R}^n \to \mathcal{M}_{p,q}(\mathbb{R})$ semialgebraic, there exists $r : \mathbb{N} \to \mathbb{N}$ such that: if $F : \mathbb{R}^n \to \mathbb{R}^p$ semialgebraic may be written F(x) = A(x)G(x) where *G* is $C^{r(m)}$, then $F(x) = A(x)\tilde{G}(x)$ where $\tilde{G}(x)$ is semialgebraic and C^m .

Semialgebraic geometry	The problems	The results ○●○	The proof
		11	

Main results: towards a common generalization

The extension problem

Let $X \subset \mathbb{R}^n$ be semialgebraic and closed.

By resolution of singularities, there exists φ : $M \to \mathbb{R}^n$ Nash and proper defined on a Nash manifold such that $X = \varphi(M)$.

Given $g : \mathbb{R}^n \to \mathbb{R}$ and $f : X \to \mathbb{R}$, we have $g_{|X} = f$ if and only if

$$\forall y \in M, g(\varphi(y)) = \tilde{f}(y)$$

where $\tilde{f} \coloneqq f \circ \varphi$.

Semialgebraic geometry	The problems	The results	The proof
		000	

Main results: towards a common generalization

The extension problem

Let $X \subset \mathbb{R}^n$ be semialgebraic and closed.

By resolution of singularities, there exists $\varphi : M \to \mathbb{R}^n$ Nash and proper defined on a Nash manifold such that $X = \varphi(M)$.

Given $g : \mathbb{R}^n \to \mathbb{R}$ and $f : X \to \mathbb{R}$, we have $g_{|X} = f$ if and only if

 $\forall y \in M, g(\varphi(y)) = \tilde{f}(y)$

where $\tilde{f} \coloneqq f \circ \varphi$.

The equation problem

Consider an equation

 $A(x)G(x) = F(x), x \in \mathbb{R}^n$.

By resolution of singularities, there exists $\varphi : M \to \mathbb{R}^n$ Nash and proper defined on a Nash manifold such that after composition, we get

 $\tilde{A}(y)G(\varphi(y)) = \tilde{F}(y), \ y \in M$

where $\tilde{A} \coloneqq A \circ \varphi$ is now Nash and $\tilde{F} \coloneqq F \circ \varphi$.

Semialgebraic geometry	The problems	The results ○○●	The proof
The main result			

Theorem – Bierstone–C.–Milman, 2021

Let $A : \mathbb{R}^n \to \mathcal{M}_{p,q}(\mathbb{R})$ be Nash and let $\varphi : M \to \mathbb{R}^n$ be Nash and proper defined on $M \subset \mathbb{R}^N$ a Nash submanifold.

Then there exists $r : \mathbb{N} \to \mathbb{N}$ satisfying the following property.

If $f : M \to \mathbb{R}^p$ semialgebraic may be written

 $f(x) = A(x)g(\varphi(x))$

for a $C^{r(m)}$ function $g : \mathbb{R}^n \to \mathbb{R}^q$ then

 $f(x) = A(x)\tilde{g}(\varphi(x))$

for a semialgebraic C^m function \tilde{g} .

Semialgebraic geometry	The problems	The results	The proof ●OOOOOOOOO
I have the fight a second of the shore			

Heart of the proof: induction on dimension

Proposition: the induction step

Let $B \subset \varphi(M)$ be semialgebraic and closed. There exist $B' \subset B$ semialgebraic satisfying dim $B' < \dim B$ and $t : \mathbb{N} \to \mathbb{N}$ such that if **1** $f : M \to \mathbb{R}^p$ is $C^{t(k)}$, semialgebraic and t(k)-flat on $\varphi^{-1}(B')$, and **2** $f = A \cdot (g \circ \varphi)$ admits a $C^{t(k)}$ solution g, then there exists a semialgebraic C^k function $\tilde{g} : \mathbb{R}^n \to \mathbb{R}^q$ s.t. $f - A \cdot (\tilde{g} \circ \varphi)$ is k-flat on $\varphi^{-1}(B)$.

Semialgebraic geometry	The problems	The results 000	The proof ●OOOOOOOOO
Heart of the proof: indu	ction on dimension		

Proposition: the induction step

Let $B \subset \varphi(M)$ be semialgebraic and closed. There exist $B' \subset B$ semialgebraic satisfying dim $B' < \dim B$ and $t : \mathbb{N} \to \mathbb{N}$ such that if 1 $f : M \to \mathbb{R}^p$ is $C^{t(k)}$, semialgebraic and t(k)-flat on $\varphi^{-1}(B')$, and 2 $f = A \cdot (g \circ \varphi)$ admits a $C^{t(k)}$ solution g, then there exists a semialgebraic C^k function $\tilde{g} : \mathbb{R}^n \to \mathbb{R}^q$ s.t. $f - A \cdot (\tilde{g} \circ \varphi)$ is k-flat on $\varphi^{-1}(B)$.

Then, up to subtracting by $A \cdot (\tilde{g} \circ \varphi)$ on both side, we get an equation

 $f = A \cdot (g \circ \varphi)$

where *f* is now semialgebraic and *k*-flat on $\varphi^{-1}(B)$.

			00000000
Semialgebraic geometry	The problems	The results	The proof

Heart of the proof: induction on dimension

Strategy: construction of a semialgebraic Whitney field

$$G(b, \mathbf{y}) = \sum_{|\alpha| \le l} \frac{g_{\alpha}(b)}{\alpha!} \mathbf{y}^{\alpha} \in C^{0}(B)[\mathbf{y}]$$

vanishing on B' such that

$$\forall b \in B \setminus B', \forall a \in \varphi^{-1}(b), T_a^l f(\mathbf{x}) \equiv T_a^l A(\mathbf{x}) G(b, T_a^l \varphi(\mathbf{x})) \mod (\mathbf{x})^{l+1} \mathbb{R}[\![\mathbf{x}]\!]^p$$

			00000000
Semialgebraic geometry	The problems	The results	The proof

Heart of the proof: induction on dimension

Strategy: construction of a semialgebraic Whitney field

$$G(b, \mathbf{y}) = \sum_{|\alpha| \le l} \frac{g_{\alpha}(b)}{\alpha!} \mathbf{y}^{\alpha} \in C^{0}(B)[\mathbf{y}]$$

vanishing on B' such that

$$\forall b \in B \setminus B', \forall a \in \varphi^{-1}(b), T_a^l f(\mathbf{x}) \equiv T_a^l A(\mathbf{x}) G(b, T_a^l \varphi(\mathbf{x})) \mod (\mathbf{x})^{l+1} \mathbb{R}[\![\mathbf{x}]\!]^p$$

A - Whitney regularity

Given *B*, there exists $\rho \in \mathbb{N}$ such that if *G* is a Whitney field of order $l \ge k\rho$ on $B \setminus B'$ then it is a Whitney field of order *k* on *B*.

Semialgebraic geometry	The problems	The results	The proof
	000	000	○○●○○○○○○○
The module of relations	at $b \in \varphi(M)$		

We consider the equation at the level of Taylor polynomials:

$$T_a^r f(\mathbf{x}) \equiv T_a^r A(\mathbf{x}) G(b, T_a^r \varphi(\mathbf{x})) \mod (\mathbf{x})^{r+1} \mathbb{R}[\![\mathbf{x}]\!]^p \tag{1}$$

Semialgebraic geometry	The problems 000	The results	The proof ○○●○○○○○○○
The module of relations	at $b \in \varphi(M)$		

We consider the equation at the level of Taylor polynomials:

$$\Gamma_a^r f(\mathbf{x}) \equiv T_a^r A(\mathbf{x}) G(b, T_a^r \varphi(\mathbf{x})) \mod (\mathbf{x})^{r+1} \mathbb{R}[\![\mathbf{x}]\!]^p$$
(1)

B - Chevalley's function

Given $l \in \mathbb{N}$, there exists $r \ge l$ such that the derivatives of g of order $\le l$ can be expressed in terms of the derivatives of f of order $\le r$.

Semialgebraic geometry	The problems 000	The results	The proof ○○●○○○○○○○
The module of relations	at $b \in \varphi(M)$		

We consider the equation at the level of Taylor polynomials:

$$T_a^r f(\mathbf{x}) \equiv T_a^r A(\mathbf{x}) G(b, T_a^r \varphi(\mathbf{x})) \mod (\mathbf{x})^{r+1} \mathbb{R}[\![\mathbf{x}]\!]^p$$
(1)

B - Chevalley's function

Given $l \in \mathbb{N}$, there exists $r \ge l$ such that the derivatives of g of order $\le l$ can be expressed in terms of the derivatives of f of order $\le r$.

Formally, we stratify $B = \bigsqcup_{\tau=1}^{\tau_{\max}} \Lambda_{\tau}$ such that for each τ , there exists $r \ge l$ satisfying

$$\forall b \in \Lambda_{\tau}, \ \pi_l(\mathcal{R}_r(b)) = \pi_l(\mathcal{R}_{r-1}(b))$$

where

- *R_r(b)* is the module of relations at b ∈ φ(M) formed by the G ∈ ℝ[**y**]^q satisfying the homogeneous equation associated to (1) for all a ∈ φ⁻¹(b), and,
- π_l is the truncation up to degree *l*.

Semialgebraic geometry ୦୦୦	The problems	The results	The proof ○○○●○○○○○○
Hironaka's formal divisi	on		

•
$$F = \sum F_{(\alpha,j)} \mathbf{y}^{(\alpha,j)} \in \mathbb{R}\llbracket y_1, \dots, y_n \rrbracket^p$$
 where $\mathbf{y}^{(\alpha,j)} = (0, \dots, 0, y_1^{\alpha_1} \cdots y_n^{\alpha_n}, 0, \dots, 0).$

Semialgebraic geometry ೦೦೦	The problems	The results	The proof ○○○●○○○○○○
Hironaka's formal divisi	on		

- $F = \sum F_{(\alpha,j)} \mathbf{y}^{(\alpha,j)} \in \mathbb{R}[\![y_1, \dots, y_n]\!]^p$ where $\mathbf{y}^{(\alpha,j)} = (0, \dots, 0, y_1^{\alpha_1} \cdots y_n^{\alpha_n}, 0, \dots, 0).$
- The set $\mathbb{N}^n \times \{1, \dots, p\} \ni (\alpha, j)$ is totally ordered by $lex(|\alpha|, j, \alpha_1, \dots, \alpha_n)$.
- supp $F := \{(\alpha, j) : F_{(\alpha, j)} \neq 0\}$ exp $F := \min(\operatorname{supp} F)$

Semialgebraic geometry	The problems	The results	The proof ○○○●○○○○○○
Hironaka's formal divisi	on		

•
$$F = \sum F_{(\alpha,j)} \mathbf{y}^{(\alpha,j)} \in \mathbb{R}\llbracket y_1, \dots, y_n \rrbracket^p$$
 where $\mathbf{y}^{(\alpha,j)} = (0, \dots, 0, y_1^{\alpha_1} \cdots y_n^{\alpha_n}, 0, \dots, 0).$

- The set $\mathbb{N}^n \times \{1, \dots, p\} \ni (\alpha, j)$ is totally ordered by $lex(|\alpha|, j, \alpha_1, \dots, \alpha_n)$.
- supp $F \coloneqq \{(\alpha, j) : F_{(\alpha, j)} \neq 0\}$ exp $F \coloneqq \min(\operatorname{supp} F)$

Theorem – Hironaka 1964, Bierstone–Milman 1987

Let $\Phi_1, \dots, \Phi_q \in \mathbb{R}[\![\mathbf{y}]\!]^p$. Set $\Delta_1 := \exp \Phi_1 + \mathbb{N}^n$, $\Delta_i := (\exp \Phi_i + \mathbb{N}^n) \setminus \bigcup_{k=1}^{i-1} \Delta_k$, and $\Delta := (\mathbb{N}^n \times \{1, \dots, p\}) \setminus \bigcup_{k=1}^q \Delta_k$. Then $\forall F \in \mathbb{R}[\![\mathbf{y}]\!]^p$, $\exists ! Q_i \in \mathbb{R}[\![\mathbf{y}]\!]^p$, $R \in \mathbb{R}[\![\mathbf{y}]\!]^p$ such that • $F = \sum_{i=1}^q Q_i \Phi_i + R$ • $\exp \Phi_i + \operatorname{supp} Q_i \subset \Delta_i$ • $\operatorname{supp} R \subset \Delta$

Semialgebraic geometry	The problems	The results	The proof ○○○○●○○○○○
Diagram of initial expon	ents		
Let $M \subset \mathbb{R}[\![\mathbf{y}]\!]^p$ be a $\mathbb{R}[\![\mathbf{y}]\!]$ -submo The diagram of initial exponents of	dule. of <i>M</i> is		↑ L_

 $\mathcal{N}(M) \coloneqq \{ \exp F \ : \ F \in M \setminus \{0\} \} \subset \mathbb{N}^n \times \{1, \dots, p\}$

Semialgebraic geometry	The problems	The results 000	The proof ○○○○●○○○○○
Diagram of initial expon	ents		

Let $M \subset \mathbb{R}[\![\mathbf{y}]\!]^p$ be a $\mathbb{R}[\![\mathbf{y}]\!]$ -submodule. The *diagram of initial exponents* of *M* is

ອ

 $\mathcal{N}(M) \coloneqq \{ \exp F : F \in M \setminus \{0\} \} \subset \mathbb{N}^n \times \{1, \dots, p\}$

Note that $\mathcal{N}(M)$ has finitely many vertices (α_i, j_i) , i = 1, ..., q. For each one, we pick a representative $\Phi_i \in M$, i.e. $\exp \Phi_i = (\alpha_i, j_i)$.

Semialgebraic geometry	The problems	The results 000	The proof ○○○○●○○○○○
Diagram of initial expon	ients		

Let $M \subset \mathbb{R}[\![\mathbf{y}]\!]^p$ be a $\mathbb{R}[\![\mathbf{y}]\!]$ -submodule. The *diagram of initial exponents* of *M* is

 $\mathcal{N}(M) \coloneqq \{ \exp F : F \in M \setminus \{0\} \} \subset \mathbb{N}^n \times \{1, \dots, p\}$

Note that $\mathcal{N}(M)$ has finitely many vertices (α_i, j_i) , i = 1, ..., q. For each one, we pick a representative $\Phi_i \in M$, i.e. $\exp \Phi_i = (\alpha_i, j_i)$.

Corollary

Let $F \in \mathbb{R}[\![\mathbf{y}]\!]^p$. Then $F \in M$ if and only if its remainder by the formal division w.r.t. the Φ_i is 0.

Particularly Φ_1, \ldots, Φ_q generate *M*.

Semialgebraic geometry	The problems	The results	The proof
	000	000	○○○○●○○○○○
Diagram of initial expon	ents		

Let $M \subset \mathbb{R}[\![\mathbf{y}]\!]^p$ be a $\mathbb{R}[\![\mathbf{y}]\!]$ -submodule. The *diagram of initial exponents* of *M* is

 $\mathcal{N}(M) \coloneqq \{ \exp F : F \in M \setminus \{0\} \} \subset \mathbb{N}^n \times \{1, \dots, p\}$

Note that $\mathcal{N}(M)$ has finitely many vertices (α_i, j_i) , i = 1, ..., q. For each one, we pick a representative $\Phi_i \in M$, i.e. $\exp \Phi_i = (\alpha_i, j_i)$.

Corollary

Let $F \in \mathbb{R}[\![\mathbf{y}]\!]^p$. Then $F \in M$ if and only if its remainder by the formal division w.r.t. the Φ_i is 0.

Particularly Φ_1, \ldots, Φ_q generate *M*.

Proof. Write
$$F = \sum_{i=1}^{q} Q_i \Phi_i + R$$
 with supp $R \subset \mathcal{N}(M)^c$.

Semialgebraic geometry	The problems	The results	The proof

Diagram of initial exponents and module of relations

Lemma – Chevalley's function

Let $l \in \mathbb{N}$.

There exists $(\Lambda_{\tau})_{\tau}$ a stratification of *B* such that given a stratum Λ_{τ} , there exists $r \ge l$ satisfying

- $\forall b \in \Lambda_{\tau}, \ \pi_l(\mathcal{R}_r(b)) = \pi_l(\mathcal{R}_{r-1}(b)),$
- $\mathcal{N}(\mathcal{R}_r(b))$ is constant on Λ_{τ} .

Semialgebraic geometry	The problems 000	The results 000	The proof ○○○○○●○○○○

Diagram of initial exponents and module of relations

Lemma – Chevalley's function

Let $l \in \mathbb{N}$.

There exists $(\Lambda_{\tau})_{\tau}$ a stratification of *B* such that given a stratum Λ_{τ} , there exists $r \ge l$ satisfying

- $\forall b \in \Lambda_{\tau}, \ \pi_l(\mathcal{R}_r(b)) = \pi_l(\mathcal{R}_{r-1}(b)),$
- $\mathcal{N}(\mathcal{R}_r(b))$ is constant on Λ_{τ} .

We set

$$B' \coloneqq \bigcup_{\dim \Lambda_\tau < \dim B} \Lambda_\tau$$

so that $\forall \tau, \overline{\Lambda_{\tau}} \setminus \Lambda_{\tau} \subset B'$.

Semialgebraic geometry ೦೦೦	The problems	The results	The proof ○○○○○●○○○
Construction of G on Λ_{a}	T I I I I I I I I I I I I I I I I I I I		

For $b \in B$ and $t \ge r$, by assumption there exists $W_b \in \mathbb{R}[\mathbf{y}]^q$ such that

```
T_a^t f(\mathbf{x}) \equiv T_a^t A(\mathbf{x}) W_b(T_a^t \varphi(\mathbf{x})) \mod (\mathbf{x})^{t+1} \mathbb{R}[\![\mathbf{x}]\!]^p, \quad \forall a \in \varphi^{-1}(b).
```

Semialgebraic geometry	The problems	The results 000	The proof ○○○○○●○○○
Construction of G on Λ			

For $b \in B$ and $t \ge r$, by assumption there exists $W_b \in \mathbb{R}[\mathbf{y}]^q$ such that

```
T_a^t f(\mathbf{x}) \equiv T_a^t A(\mathbf{x}) W_b(T_a^t \varphi(\mathbf{x})) \mod (\mathbf{x})^{t+1} \mathbb{R}[\![\mathbf{x}]\!]^p, \quad \forall a \in \varphi^{-1}(b).
```

Let's fix a stratum Λ_{τ} and $b \in \Lambda_{\tau}$. By formal division, we may write $W_b(\mathbf{y}) = \sum Q_i(\mathbf{y})\Phi_i(\mathbf{y}) + V_{\tau}(b, \mathbf{y})$ where the Φ_i are as above for $\mathcal{R}_r(b)$. Note that the remainder $V_{\tau}(b, \mathbf{y}) \in \mathbb{R}[\mathbf{y}]^q$ satisfies

 $W_b(\mathbf{y}) - V_{\tau}(b, \mathbf{y}) \in \mathcal{R}_r(b) \text{ and } \sup V_{\tau}(b, \mathbf{y}) \subset \mathcal{N}(\mathcal{R}_r(b))^c.$

Semialgebraic geometry	The problems	The results	The proof ○○○○○●○○○
Construction of G on Λ			

For $b \in B$ and $t \ge r$, by assumption there exists $W_b \in \mathbb{R}[\mathbf{y}]^q$ such that

```
T_a^t f(\mathbf{x}) \equiv T_a^t A(\mathbf{x}) W_b(T_a^t \varphi(\mathbf{x})) \mod (\mathbf{x})^{t+1} \mathbb{R}[\![\mathbf{x}]\!]^p, \quad \forall a \in \varphi^{-1}(b).
```

Let's fix a stratum Λ_{τ} and $b \in \Lambda_{\tau}$. By formal division, we may write $W_b(\mathbf{y}) = \sum Q_i(\mathbf{y})\Phi_i(\mathbf{y}) + V_{\tau}(b, \mathbf{y})$ where the Φ_i are as above for $\mathcal{R}_r(b)$. Note that the remainder $V_{\tau}(b, \mathbf{y}) \in \mathbb{R}[\mathbf{y}]^q$ satisfies

 $W_b(\mathbf{y}) - V_\tau(b, \mathbf{y}) \in \mathcal{R}_r(b)$ and $\operatorname{supp} V_\tau(b, \mathbf{y}) \subset \mathcal{N}(\mathcal{R}_r(b))^c$.

Lemma

 $G_{\tau}(b, \mathbf{y}) \coloneqq \pi_l \left(V_{\tau}(b, \mathbf{y}) \right)$ is a semialgebraic Whitney field of order *l* on Λ_{τ} satisfying (1).

Semialgebraic geometry	The problems	The results	The proof ○○○○○○○●○○
G is a Whitney field of c	order l on Λ_{τ}		

To simplify the situation, we omit φ .

Thanks to Borel's lemma with parameter, it is enough to check that $D_{b,v}G_{\tau}^{l-1}(b, \mathbf{y}) = D_{\mathbf{y},v}G_{\tau}(b, \mathbf{y})$.

Semialgebraic geometry	The problems	The results	The proof ○○○○○○●○○

To simplify the situation, we omit φ .

Thanks to Borel's lemma with parameter, it is enough to check that $D_{b,v}G_{\tau}^{l-1}(b, \mathbf{y}) = D_{\mathbf{y},v}G_{\tau}(b, \mathbf{y})$.

Applying $D_{b,v} - D_{\mathbf{y},v}$ to $T_a^r f(\mathbf{y}) \equiv T_a^r A(\mathbf{y}) V_{\tau}(b, \mathbf{y}) \mod (\mathbf{y})^{r+1} \mathbb{R}[\![\mathbf{y}]\!]^p$

we get

$$0 \equiv T_a^r A(\mathbf{y}) \left(D_{b,v} V_\tau^{r-1}\left(b, \mathbf{y} \right) - D_{\mathbf{y},v} V_\tau \left(b, \mathbf{y} \right) \right) \ \, \mathrm{mod} \ \, (\mathbf{y})^{r+1} \mathbb{R}[\![\mathbf{y}]\!]^p$$

Semialgebraic geometry	The problems	The results	The proof ○○○○○○○●○○

To simplify the situation, we omit φ .

Thanks to Borel's lemma with parameter, it is enough to check that $D_{b,v}G_{\tau}^{l-1}(b, \mathbf{y}) = D_{\mathbf{y},v}G_{\tau}(b, \mathbf{y})$.

Applying $D_{b,v} - D_{\mathbf{y},v}$ to $T_a^r f(\mathbf{y}) \equiv T_a^r A(\mathbf{y}) V_{\tau}(b, \mathbf{y}) \mod (\mathbf{y})^{r+1} \mathbb{R}[\![\mathbf{y}]\!]^p$

we get

$$0 \equiv T_a^r A(\mathbf{y}) \left(D_{b,v} V_{\tau}^{r-1} \left(b, \mathbf{y} \right) - D_{\mathbf{y},v} V_{\tau} \left(b, \mathbf{y} \right) \right) \mod (\mathbf{y})^{r+1} \mathbb{R}[\![\mathbf{y}]\!]^p$$

therefore

$$D_{b,v}V_{\tau}^{r-1}\left(b,\mathbf{y}\right) - D_{\mathbf{y},v}V_{\tau}\left(b,\mathbf{y}\right) \in \mathcal{R}_{r-1}(b)$$

Semialgebraic geometry	The problems	The results	The proof ○○○○○○○●○○

To simplify the situation, we omit φ .

Thanks to Borel's lemma with parameter, it is enough to check that $D_{b,v}G_{\tau}^{l-1}(b, \mathbf{y}) = D_{\mathbf{y},v}G_{\tau}(b, \mathbf{y})$.

Applying $D_{b,v} - D_{\mathbf{y},v}$ to $T_a^r f(\mathbf{y}) \equiv T_a^r A(\mathbf{y}) V_{\tau}(b, \mathbf{y}) \mod (\mathbf{y})^{r+1} \mathbb{R}[\![\mathbf{y}]\!]^p$

we get

$$0 \equiv T_a^r A(\mathbf{y}) \left(D_{b,v} V_\tau^{r-1} \left(b, \mathbf{y} \right) - D_{\mathbf{y},v} V_\tau \left(b, \mathbf{y} \right) \right) \mod (\mathbf{y})^{r+1} \mathbb{R}[\![\mathbf{y}]\!]^p$$

therefore

$$D_{b,v}V_{\tau}^{r-1}(b,\mathbf{y}) - D_{\mathbf{y},v}V_{\tau}(b,\mathbf{y}) \in \mathcal{R}_{r-1}(b)$$

hence, by Chevalley's function,

$$D_{b,v}G_{\tau}^{l-1}(b, \mathbf{y}) - D_{\mathbf{y},v}G_{\tau}(b, \mathbf{y}) \in \pi_{l-1}(\mathcal{R}_{r-1}(b)) = \pi_{l-1}(\mathcal{R}_{r}(b))$$

Semialgebraic geometry	The problems	The results	The proof ○○○○○○○●○○

To simplify the situation, we omit φ .

Thanks to Borel's lemma with parameter, it is enough to check that $D_{b,v}G_{\tau}^{l-1}(b, \mathbf{y}) = D_{\mathbf{y},v}G_{\tau}(b, \mathbf{y})$.

Applying $D_{b,v} - D_{\mathbf{y},v}$ to $T_a^r f(\mathbf{y}) \equiv T_a^r A(\mathbf{y}) V_{\tau}(b, \mathbf{y}) \mod (\mathbf{y})^{r+1} \mathbb{R}[\![\mathbf{y}]\!]^p$

we get

$$0 \equiv T_a^r A(\mathbf{y}) \left(D_{b,v} V_{\tau}^{r-1} \left(b, \mathbf{y} \right) - D_{\mathbf{y},v} V_{\tau} \left(b, \mathbf{y} \right) \right) \mod (\mathbf{y})^{r+1} \mathbb{R}[\![\mathbf{y}]\!]^p$$

therefore

$$D_{b,v}V_{\tau}^{r-1}(b,\mathbf{y}) - D_{\mathbf{y},v}V_{\tau}(b,\mathbf{y}) \in \mathcal{R}_{r-1}(b)$$

hence, by Chevalley's function,

$$D_{b,v}G_{\tau}^{l-1}(b, \mathbf{y}) - D_{\mathbf{y},v}G_{\tau}(b, \mathbf{y}) \in \pi_{l-1}(\mathcal{R}_{r-1}(b)) = \pi_{l-1}(\mathcal{R}_{r}(b))$$

but

$$\operatorname{supp}\left(D_{b,v}G_{\tau}^{l-1}(b, \mathbf{y}) - D_{\mathbf{y},v}G_{\tau}(b, \mathbf{y})\right) \subset \mathcal{N}(\mathcal{R}_{r}(b))^{c}$$

 $\text{consequently, } D_{b,v}G_{\tau}^{l-1}(b,\textbf{y}) - D_{\textbf{y},v}G_{\tau}(b,\textbf{y}) = 0.$

Semialgebraic geometry	The problems	The results	The proof ○○○○○○○○●○
Gluing between strata			

C - gluing between strata: the Łojasiewicz inequality

Fix a stratum Λ_{τ} . There exists $\sigma \in \mathbb{N}$ such that if $t \ge r + \sigma$ then $\lim_{b \to \overline{\Lambda_{\tau}} \setminus \Lambda_{\tau}} G_{\tau}(b, \mathbf{y}) = 0$.

The constant term of the equation is flat on B' hence on $\overline{\Lambda_{\tau}} \setminus \Lambda_{\tau} \subset B'$.

Semialgebraic geometry	The problems	The results	The proof ○○○○○○○●
Summary			

We constructed $G(b, \mathbf{y}) = \sum_{|\alpha| \le k} \frac{g_{\alpha}(b)}{\alpha!} \mathbf{y}^{\alpha}$ a semialgebraic Whitney field of order *k* on *B* such that

 $\forall b \in B, \forall a \in \varphi^{-1}(b), T_a^k f(\mathbf{x}) \equiv T_a^k A(\mathbf{x}) G(b, T_a^k \varphi(\mathbf{x})) \mod (\mathbf{x})^{k+1} \mathbb{R}[\![\mathbf{x}]\!]^p$

Hence we obtain $g : \mathbb{R}^n \to \mathbb{R}^q$ semialgebraic and C^k such that $f - A \cdot (g \circ \varphi)$ is k-flat on $\varphi^{-1}(B)$.

Semialgebraic geometry	The problems	The results 000	The proof ○○○○○○○○●
Summary			

We constructed $G(b, \mathbf{y}) = \sum_{|\alpha| \le k} \frac{g_{\alpha}(b)}{\alpha!} \mathbf{y}^{\alpha}$ a semialgebraic Whitney field of order *k* on *B* such that

 $\forall b \in B, \, \forall a \in \varphi^{-1}(b), \, T_a^k f(\mathbf{x}) \equiv T_a^k A(\mathbf{x}) \, G(b, T_a^k \varphi(\mathbf{x})) \, \, \operatorname{mod} \, \, (\mathbf{x})^{k+1} \mathbb{R}[\![\mathbf{x}]\!]^p$

Hence we obtain $g : \mathbb{R}^n \to \mathbb{R}^q$ semialgebraic and \mathcal{C}^k such that $f - A \cdot (g \circ \varphi)$ is k-flat on $\varphi^{-1}(B)$.

Loss of differentiability

For $k \in \mathbb{N}$, we set $l \ge k\rho$, then $r \ge r(l)$ and finally $t(k) \coloneqq t \ge r + \sigma$ where

- A. ρ is an upper bound of Whitney's loss of differentiability (induction step).
- B. $r : \mathbb{N} \to \mathbb{N}$ is an upper bound of the Chevalley functions on the various strata.
- C. σ is an upper bound of Łojasiewicz's loss of differentiability on each stratum.