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Semialgebraic geometry The problems The results The proof

Semialgebraic geometry – Definitions

Definition: semialgebraic sets
Semialgebraic subsets of ℝ𝑛 are elements of the boolean algebra spanned by sets of the form

{𝑥 ∈ ℝ𝑛 ∶ 𝑓(𝑥) ≥ 0}

where 𝑓 ∈ ℝ[𝑥1, … , 𝑥𝑛].

Remark
Given 𝑓 ∈ ℝ[𝑥1, … , 𝑥𝑛], the following sets are semialgebraic

{𝑥 ∈ ℝ𝑛 ∶ 𝑓(𝑥) > 0} , {𝑥 ∈ ℝ𝑛 ∶ 𝑓(𝑥) ≤ 0} , {𝑥 ∈ ℝ𝑛 ∶ 𝑓(𝑥) < 0} , {𝑥 ∈ ℝ𝑛 ∶ 𝑓(𝑥) = 0} , {𝑥 ∈ ℝ𝑛 ∶ 𝑓(𝑥) ≠ 0}

Definition: semialgebraic functions
Let 𝑋 ⊂ ℝ𝑛. A function 𝑓 ∶ 𝑋 → ℝ𝑝 is semialgebraic if its graph Γ𝑓 ⊂ ℝ𝑛+𝑝 is semialgebraic.
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Semialgebraic geometry – Tarski–Seidenberg theorem
Theorem (Tarski–Seidenberg): semialgebraic sets are closed under projections

If 𝑆 ⊂ ℝ𝑛+1 is semialgebraic then so is 𝜋(𝑆), where 𝜋 ∶ ℝ𝑛+1 → ℝ𝑛, 𝜋(𝑥1, … , 𝑥𝑛+1) = (𝑥1, … , 𝑥𝑛).

Remark
If 𝑓 ∶ 𝑋 → ℝ𝑝 is semialgebraic then so is 𝑋.

Corollary: elimination of quantifiers

Let 𝑆 ⊂ ℝ𝑛+1 be semialgebraic, then the following sets are too

{(𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛 ∶ ∃𝑦, (𝑥1, … , 𝑥𝑛, 𝑦) ∈ 𝑆} = 𝜋(𝑆)

{(𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛 ∶ ∀𝑦, (𝑥1, … , 𝑥𝑛, 𝑦) ∈ 𝑆} = ℝ𝑛 ⧵ 𝜋(ℝ𝑛+1 ⧵ 𝑆)

Example

If 𝐴 ⊂ ℝ𝑛 is semialgebraic, then so is 𝐴 ≔
{

𝑥 ∈ ℝ𝑛 ∶ ∀𝜀 ∈ (0, +∞), ∃𝑦 ∈ 𝐴,
𝑛

∑
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2 < 𝜀2
}

.
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A semialgebraic version of Whitney’s extension theorem

Theorem – Kurdyka–Pawłucki, 1997, 2014
Thamrongthanyalak, 2017
Kocel-Cynk–Pawłucki–Valette, 2019

Given a semialgebraic 𝒞𝑚 Whitney field on a closed subset 𝑋 ⊂ ℝ𝑛,
i.e. a family (𝑓𝛼 ∶ 𝑋 → ℝ)𝛼∈ℕ𝑛

|𝛼|≤𝑚
of continuous semialgebraic functions such that

∀𝑧 ∈ 𝑋, ∀𝛼 ∈ ℕ𝑛, |𝛼| ≤ 𝑚 ⟹ 𝑓𝛼 (𝑥) − ∑
|𝛽|≤𝑚−|𝛼|

𝑓𝛼+𝛽 (𝑦)
𝛽! (𝑥 − 𝑦)𝛽 = 𝑜

𝑋∋𝑥,𝑦→𝑧
(‖𝑥 − 𝑦‖𝑚−|𝛼|) ,

there exists a 𝒞𝑚 semialgebraic function 𝐹 ∶ ℝ𝑛 → ℝ such that 𝐷𝛼 𝐹|𝑋 = 𝑓𝛼 and 𝐹 is Nash on ℝ𝑛 ⧵ 𝑋.

Nash ≔ semialgebraic and analytic.
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Semialgebraic geometry The problems The results The proof

Are there solutions preserving semialgebraicity?

For Whitney’s Extension Problem

Let 𝑓 ∶ 𝑋 → ℝ be a semialgebraic function where 𝑋 ⊂ ℝ𝑛 is closed.
If 𝑓 admits a 𝒞𝑚 extension 𝐹 ∶ ℝ𝑛 → ℝ, does it admit a semialgebraic 𝒞𝑚 extension ̃𝐹 ∶ ℝ𝑛 → ℝ?

For the Brenner–Fefferman–Hochster–Kollár Problem

Let 𝑓1, … , 𝑓𝑟, 𝜑 ∶ ℝ𝑛 → ℝ be semialgebraic functions.
If the equation 𝜑 = ∑ 𝜑𝑖𝑓𝑖 admit a 𝒞𝑚 solution (𝜑𝑖)𝑖, does it admit a semialgebraic 𝒞𝑚 solution?

• Aschenbrenner–Thamrongthanyalak (2019): ∀𝑛, for 𝑚 = 1 and 𝑚 = 0, respectively.
• Fefferman–Luli (2021): ∀𝑚, for 𝑛 = 2.

• Bierstone–C.–Milman (2021): ∀𝑛, ∀𝑚, with a loss of differentiability.
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Strategy for the semialgebraic 𝒞1 extension problem
(Aschenbrenner–Thamrongthanyalak, 2019)

Let 𝑓 ∶ 𝑋 → ℝ be a semialgebraic function admitting a 𝒞1 extension 𝐹 ∶ ℝ𝑛 → ℝ.

• Set 𝑆 ≔ {(𝑥, 𝑦, 𝑣) ∈ ℝ𝑛 × ℝ × ℝ𝑛 ∶ 𝑥 ∈ 𝑋, 𝑦 = 𝑓(𝑥),
∀𝜀 > 0, ∀𝛿 > 0, ∀𝑎, 𝑏 ∈ 𝐵𝛿 (𝑥), |𝑓 (𝑏) − 𝑓(𝑎) − 𝑣 ⋅ (𝑏 − 𝑎)| ≤ 𝜀‖𝑏 − 𝑎‖}.

• Then 𝑆 is semialgebraic, and, ∀𝑥 ∈ 𝑋, (𝑥, 𝐹 (𝑥), ∇𝐹 (𝑥)) ∈ 𝑆.
• Semialgebraic Michael’s Selection Lemma:

there exists 𝜎 ∶ 𝑋 → 𝑆 semialgebraic and continuous such that 𝜋𝑥 ∘ 𝜎 = id where 𝜋𝑥(𝑥, 𝑦, 𝑣) = 𝑥.
• Set 𝐺 ≔ 𝜋𝑣 ∘ 𝜎 ∶ ℝ𝑛 → ℝ𝑛 where 𝜋𝑣(𝑥, 𝑦, 𝑣) = 𝑣, then 𝐺 is semialgebraic, continuous and satisfies

∀𝑐 ∈ 𝑋, 𝑓(𝑏) = 𝑓(𝑎) + 𝐺(𝑎) ⋅ (𝑏 − 𝑎) + 𝑜
𝑋∋𝑎,𝑏→𝑐

(‖𝑏 − 𝑎‖). ■

This strategy does not generalize to 𝑚 > 1 since the unknown (𝑓𝛼 )𝛼∈ℕ𝑛⧵{0}
|𝛼|≤𝑚

can’t be described as a section.

For instance, if 𝑚 = 2, 𝑓e𝑖
needs to satisfy

𝑓e𝑖 (𝑏) = 𝑓e𝑖 (𝑎) +
𝑛

∑
𝑗=1

𝑓e𝑖+e𝑗 (𝑎)(𝑏𝑗 − 𝑎𝑗) + 𝑜
𝑋∋𝑎,𝑏→𝑐

(‖𝑏 − 𝑎‖).
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Strategy for the planar semialgebraic extension problem (Fefferman–Luli, 2021)

𝑋− ∶ 𝑦 = 0

𝑋+ ∶ 𝑦 = 𝜓(𝑥) ≤ 𝑥𝑋 = 𝑋− ∪ 𝑋+

(0, 0)

Let 𝑓 ∶ 𝑋 → ℝ be semialgebraic.

1 Let 𝐹 ∶ ℝ2 → ℝ be a 𝒞𝑚 function such that 𝐹|𝑋 = 𝑓 and 𝐽(0,0)𝐹 = 0.
Set 𝑓 −

𝑙 (𝑥) ≔ 𝜕𝑙
𝑦𝐹 (𝑥, 0) and 𝑓 +

𝑙 (𝑥) ≔ 𝜕𝑙
𝑦𝐹 (𝑥, 𝜓(𝑥)). Then

(∗)

⎧⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

(𝑖) 𝑓 −
0 (𝑥) = 𝑓(𝑥, 0)

(𝑖𝑖) 𝑓 +
0 (𝑥) = 𝑓(𝑥, 𝜓(𝑥))

(𝑖𝑖𝑖) 𝑓 +
𝑙 (𝑥) =

𝑚−𝑙

∑
𝑘=0

𝜓(𝑥)𝑘

𝑘! 𝑓 −
𝑙+𝑘(𝑥) + 𝑜

𝑥→0+
(𝜓(𝑥)𝑚−𝑙)

(𝑖𝑣) 𝑓 −
𝑙 (𝑥) = 𝑜

𝑥→0+ (𝑥𝑚−𝑙)
(𝑣) 𝑓 +

𝑙 (𝑥) = 𝑜
𝑥→0+ (𝑥𝑚−𝑙)

2 According to the definable choice: there exist ̃𝑓 ±
𝑙 semialgebraic satisfying (∗).

3 Then ̃𝐹 (𝑥, 𝑦) = 𝜃−(𝑥, 𝑦)
(

𝑚

∑
𝑙=0

̃𝑓 −
𝑙 (𝑥)
𝑙! 𝑦𝑙

)
+ 𝜃+(𝑥, 𝑦)

(

𝑚

∑
𝑙=0

̃𝑓 +
𝑙 (𝑥)
𝑙! (𝑦 − 𝜓(𝑥))𝑙

)
is a semialgebraic 𝒞𝑚

extension of 𝑓 in a neighborhood of the origin such that 𝐽(0,0) ̃𝐹 = 0.
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𝑙 semialgebraic satisfying (∗).

3 Then ̃𝐹 (𝑥, 𝑦) = 𝜃−(𝑥, 𝑦)
(

𝑚

∑
𝑙=0

̃𝑓 −
𝑙 (𝑥)
𝑙! 𝑦𝑙

)
+ 𝜃+(𝑥, 𝑦)

(

𝑚

∑
𝑙=0

̃𝑓 +
𝑙 (𝑥)
𝑙! (𝑦 − 𝜓(𝑥))𝑙

)
is a semialgebraic 𝒞𝑚

extension of 𝑓 in a neighborhood of the origin such that 𝐽(0,0) ̃𝐹 = 0.
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Semialgebraic geometry The problems The results The proof

The main results: statements

Theorem – Bierstone–C.–Milman, 2021
Given 𝑋 ⊂ ℝ𝑛 closed and semialgebraic, there exists 𝑟 ∶ ℕ → ℕ satisfying the following property:
if 𝑓 ∶ 𝑋 → ℝ semialgebraic admits a 𝒞𝑟(𝑚) extension, then it admits a semialgebraic 𝒞𝑚 extension.

Theorem – Bierstone–C.–Milman, 2021
Given 𝐴 ∶ ℝ𝑛 → ℳ𝑝,𝑞(ℝ) semialgebraic, there exists 𝑟 ∶ ℕ → ℕ such that:
if 𝐹 ∶ ℝ𝑛 → ℝ𝑝 semialgebraic may be written 𝐹 (𝑥) = 𝐴(𝑥)𝐺(𝑥) where 𝐺 is 𝒞𝑟(𝑚),
then 𝐹 (𝑥) = 𝐴(𝑥)�̃�(𝑥) where �̃�(𝑥) is semialgebraic and 𝒞𝑚.
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Main results: towards a common generalization

The extension problem
Let 𝑋 ⊂ ℝ𝑛 be semialgebraic and closed.

By resolution of singularities, there exists 𝜑 ∶ 𝑀 → ℝ𝑛

Nash and proper defined on a Nash manifold such
that 𝑋 = 𝜑(𝑀).

Given 𝑔 ∶ ℝ𝑛 → ℝ and 𝑓 ∶ 𝑋 → ℝ, we have
𝑔|𝑋 = 𝑓 if and only if

∀𝑦 ∈ 𝑀, 𝑔(𝜑(𝑦)) = ̃𝑓 (𝑦)

where ̃𝑓 ≔ 𝑓 ∘ 𝜑.

The equation problem
Consider an equation

𝐴(𝑥)𝐺(𝑥) = 𝐹 (𝑥), 𝑥 ∈ ℝ𝑛.

By resolution of singularities, there exists
𝜑 ∶ 𝑀 → ℝ𝑛 Nash and proper defined on a Nash
manifold such that after composition, we get

̃𝐴(𝑦)𝐺(𝜑(𝑦)) = ̃𝐹 (𝑦), 𝑦 ∈ 𝑀

where ̃𝐴 ≔ 𝐴 ∘ 𝜑 is now Nash and ̃𝐹 ≔ 𝐹 ∘ 𝜑.
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The main result

Theorem – Bierstone–C.–Milman, 2021
Let 𝐴 ∶ ℝ𝑛 → ℳ𝑝,𝑞(ℝ) be Nash and let 𝜑 ∶ 𝑀 → ℝ𝑛 be Nash and proper defined on 𝑀 ⊂ ℝ𝑁 a
Nash submanifold.
Then there exists 𝑟 ∶ ℕ → ℕ satisfying the following property.
If 𝑓 ∶ 𝑀 → ℝ𝑝 semialgebraic may be written

𝑓(𝑥) = 𝐴(𝑥)𝑔(𝜑(𝑥))

for a 𝒞𝑟(𝑚) function 𝑔 ∶ ℝ𝑛 → ℝ𝑞 then

𝑓(𝑥) = 𝐴(𝑥) ̃𝑔(𝜑(𝑥))

for a semialgebraic 𝒞𝑚 function ̃𝑔.
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Heart of the proof: induction on dimension

Proposition: the induction step
Let 𝐵 ⊂ 𝜑(𝑀) be semialgebraic and closed.
There exist 𝐵′ ⊂ 𝐵 semialgebraic satisfying dim 𝐵′ < dim 𝐵 and 𝑡 ∶ ℕ → ℕ such that if

1 𝑓 ∶ 𝑀 → ℝ𝑝 is 𝒞𝑡(𝑘), semialgebraic and 𝑡(𝑘)-flat on 𝜑−1(𝐵′), and
2 𝑓 = 𝐴 ⋅ (𝑔 ∘ 𝜑) admits a 𝒞𝑡(𝑘) solution 𝑔,

then there exists a semialgebraic 𝒞𝑘 function ̃𝑔 ∶ ℝ𝑛 → ℝ𝑞 s.t. 𝑓 − 𝐴 ⋅ ( ̃𝑔 ∘ 𝜑) is 𝑘-flat on 𝜑−1(𝐵).

Then, up to subtracting by 𝐴 ⋅ ( ̃𝑔 ∘ 𝜑) on both side, we get an equation

𝑓 = 𝐴 ⋅ (𝑔 ∘ 𝜑)

where 𝑓 is now semialgebraic and 𝑘-flat on 𝜑−1(𝐵).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) 𝒞𝑚 solutions of semialgebraic equations 11 / 20



Semialgebraic geometry The problems The results The proof

Heart of the proof: induction on dimension

Proposition: the induction step
Let 𝐵 ⊂ 𝜑(𝑀) be semialgebraic and closed.
There exist 𝐵′ ⊂ 𝐵 semialgebraic satisfying dim 𝐵′ < dim 𝐵 and 𝑡 ∶ ℕ → ℕ such that if

1 𝑓 ∶ 𝑀 → ℝ𝑝 is 𝒞𝑡(𝑘), semialgebraic and 𝑡(𝑘)-flat on 𝜑−1(𝐵′), and
2 𝑓 = 𝐴 ⋅ (𝑔 ∘ 𝜑) admits a 𝒞𝑡(𝑘) solution 𝑔,

then there exists a semialgebraic 𝒞𝑘 function ̃𝑔 ∶ ℝ𝑛 → ℝ𝑞 s.t. 𝑓 − 𝐴 ⋅ ( ̃𝑔 ∘ 𝜑) is 𝑘-flat on 𝜑−1(𝐵).

Then, up to subtracting by 𝐴 ⋅ ( ̃𝑔 ∘ 𝜑) on both side, we get an equation

𝑓 = 𝐴 ⋅ (𝑔 ∘ 𝜑)

where 𝑓 is now semialgebraic and 𝑘-flat on 𝜑−1(𝐵).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) 𝒞𝑚 solutions of semialgebraic equations 11 / 20
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Heart of the proof: induction on dimension

Strategy: construction of a semialgebraic Whitney field

𝐺(𝑏, y) = ∑
|𝛼|≤𝑙

𝑔𝛼 (𝑏)
𝛼! y𝛼 ∈ 𝒞0(𝐵)[y]

vanishing on 𝐵′ such that

∀𝑏 ∈ 𝐵 ⧵ 𝐵′, ∀𝑎 ∈ 𝜑−1(𝑏), 𝑇 𝑙
𝑎𝑓(x) ≡ 𝑇 𝑙

𝑎𝐴(x) 𝐺(𝑏, 𝑇 𝑙
𝑎𝜑(x)) mod (x)𝑙+1ℝJxK𝑝

A - Whitney regularity
Given 𝐵, there exists 𝜌 ∈ ℕ such that if 𝐺 is a Whitney field of order 𝑙 ≥ 𝑘𝜌 on 𝐵 ⧵ 𝐵′ then it is a
Whitney field of order 𝑘 on 𝐵.
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The module of relations at 𝑏 ∈ 𝜑(𝑀)
We consider the equation at the level of Taylor polynomials:

𝑇 𝑟
𝑎 𝑓(x) ≡ 𝑇 𝑟

𝑎 𝐴(x) 𝐺(𝑏, 𝑇 𝑟
𝑎 𝜑(x)) mod (x)𝑟+1ℝJxK𝑝 (1)

B - Chevalley’s function
Given 𝑙 ∈ ℕ, there exists 𝑟 ≥ 𝑙 such that the derivatives of 𝑔 of order ≤ 𝑙 can be expressed in
terms of the derivatives of 𝑓 of order ≤ 𝑟.

Formally, we stratify 𝐵 = ⨆𝜏max
𝜏=1 Λ𝜏 such that for each 𝜏, there exists 𝑟 ≥ 𝑙 satisfying

∀𝑏 ∈ Λ𝜏 , 𝜋𝑙(ℛ𝑟(𝑏)) = 𝜋𝑙(ℛ𝑟−1(𝑏))

where
• ℛ𝑟(𝑏) is the module of relations at 𝑏 ∈ 𝜑(𝑀) formed by the 𝐺 ∈ ℝJyK𝑞 satisfying the

homogeneous equation associated to (1) for all 𝑎 ∈ 𝜑−1(𝑏), and,
• 𝜋𝑙 is the truncation up to degree 𝑙.
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B - Chevalley’s function
Given 𝑙 ∈ ℕ, there exists 𝑟 ≥ 𝑙 such that the derivatives of 𝑔 of order ≤ 𝑙 can be expressed in
terms of the derivatives of 𝑓 of order ≤ 𝑟.

Formally, we stratify 𝐵 = ⨆𝜏max
𝜏=1 Λ𝜏 such that for each 𝜏, there exists 𝑟 ≥ 𝑙 satisfying

∀𝑏 ∈ Λ𝜏 , 𝜋𝑙(ℛ𝑟(𝑏)) = 𝜋𝑙(ℛ𝑟−1(𝑏))

where
• ℛ𝑟(𝑏) is the module of relations at 𝑏 ∈ 𝜑(𝑀) formed by the 𝐺 ∈ ℝJyK𝑞 satisfying the

homogeneous equation associated to (1) for all 𝑎 ∈ 𝜑−1(𝑏), and,
• 𝜋𝑙 is the truncation up to degree 𝑙.
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Hironaka’s formal division
• 𝐹 = ∑ 𝐹(𝛼,𝑗)y(𝛼,𝑗) ∈ ℝJ𝑦1, … , 𝑦𝑛K𝑝 where y(𝛼,𝑗) = (0, … , 0, 𝑦𝛼1

1 ⋯ 𝑦𝛼𝑛
𝑛 , 0, … , 0).

• The set ℕ𝑛 × {1, … , 𝑝} ∋ (𝛼, 𝑗) is totally ordered by lex(|𝛼|, 𝑗, 𝛼1, … , 𝛼𝑛).
• supp 𝐹 ≔ {(𝛼, 𝑗) ∶ 𝐹(𝛼,𝑗) ≠ 0} • exp 𝐹 ≔ min(supp 𝐹 )

Theorem – Hironaka 1964, Bierstone–Milman 1987
Let Φ1, … , Φ𝑞 ∈ ℝJyK𝑝.

Set Δ1 ≔ exp Φ1 + ℕ𝑛, Δ𝑖 ≔ (exp Φ𝑖 + ℕ𝑛) ⧵
𝑖−1

⋃
𝑘=1

Δ𝑘, and Δ ≔ (ℕ𝑛 × {1, … , 𝑝}) ⧵
𝑞

⋃
𝑘=1

Δ𝑘.

Δ

Δ3

Δ2

Δ1
Then ∀𝐹 ∈ ℝJyK𝑝, ∃!𝑄𝑖 ∈ ℝJyK, 𝑅 ∈ ℝJyK𝑝 such that

• 𝐹 =
𝑞

∑
𝑖=1

𝑄𝑖Φ𝑖 + 𝑅

• exp Φ𝑖 + supp 𝑄𝑖 ⊂ Δ𝑖

• supp 𝑅 ⊂ Δ
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Diagram of initial exponents
Let 𝑀 ⊂ ℝJyK𝑝 be a ℝJyK-submodule.
The diagram of initial exponents of 𝑀 is

𝒩 (𝑀) ≔ {exp 𝐹 ∶ 𝐹 ∈ 𝑀 ⧵ {0}} ⊂ ℕ𝑛 × {1, … , 𝑝}

Note that 𝒩 (𝑀) has finitely many vertices (𝛼𝑖, 𝑗𝑖), 𝑖 = 1, … , 𝑞.
For each one, we pick a representative Φ𝑖 ∈ 𝑀 , i.e. exp Φ𝑖 = (𝛼𝑖, 𝑗𝑖).

Corollary
Let 𝐹 ∈ ℝJyK𝑝. Then 𝐹 ∈ 𝑀 if and only if its remainder by the formal division w.r.t. the Φ𝑖 is 0.

Particularly Φ1, … , Φ𝑞 generate 𝑀 .

Proof. Write 𝐹 =
𝑞

∑
𝑖=1

𝑄𝑖Φ𝑖 + 𝑅 with supp 𝑅 ⊂ 𝒩 (𝑀)𝑐 . ■
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Diagram of initial exponents and module of relations

Lemma – Chevalley’s function
Let 𝑙 ∈ ℕ.
There exists (Λ𝜏)𝜏 a stratification of 𝐵 such that given a stratum Λ𝜏 , there exists 𝑟 ≥ 𝑙 satisfying

• ∀𝑏 ∈ Λ𝜏 , 𝜋𝑙(ℛ𝑟(𝑏)) = 𝜋𝑙(ℛ𝑟−1(𝑏)),
• 𝒩 (ℛ𝑟(𝑏)) is constant on Λ𝜏 .

We set
𝐵′ ≔ ⋃

dim Λ𝜏 <dim 𝐵
Λ𝜏

so that ∀𝜏, Λ𝜏 ⧵ Λ𝜏 ⊂ 𝐵′.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) 𝒞𝑚 solutions of semialgebraic equations 16 / 20



Semialgebraic geometry The problems The results The proof

Diagram of initial exponents and module of relations

Lemma – Chevalley’s function
Let 𝑙 ∈ ℕ.
There exists (Λ𝜏)𝜏 a stratification of 𝐵 such that given a stratum Λ𝜏 , there exists 𝑟 ≥ 𝑙 satisfying

• ∀𝑏 ∈ Λ𝜏 , 𝜋𝑙(ℛ𝑟(𝑏)) = 𝜋𝑙(ℛ𝑟−1(𝑏)),
• 𝒩 (ℛ𝑟(𝑏)) is constant on Λ𝜏 .

We set
𝐵′ ≔ ⋃

dim Λ𝜏 <dim 𝐵
Λ𝜏

so that ∀𝜏, Λ𝜏 ⧵ Λ𝜏 ⊂ 𝐵′.

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) 𝒞𝑚 solutions of semialgebraic equations 16 / 20



Semialgebraic geometry The problems The results The proof

Construction of 𝐺 on Λ𝜏

For 𝑏 ∈ 𝐵 and 𝑡 ≥ 𝑟, by assumption there exists 𝑊𝑏 ∈ ℝ[y]𝑞 such that

𝑇 𝑡
𝑎𝑓(x) ≡ 𝑇 𝑡

𝑎𝐴(x) 𝑊𝑏(𝑇 𝑡
𝑎𝜑(x)) mod (x)𝑡+1ℝJxK𝑝, ∀𝑎 ∈ 𝜑−1(𝑏).

Let’s fix a stratum Λ𝜏 and 𝑏 ∈ Λ𝜏 .
By formal division, we may write 𝑊𝑏(y) = ∑ 𝑄𝑖(y)Φ𝑖(y) + 𝑉𝜏(𝑏, y) where the Φ𝑖 are as above for ℛ𝑟(𝑏).
Note that the remainder 𝑉𝜏(𝑏, y) ∈ ℝ[y]𝑞 satisfies

𝑊𝑏(y) − 𝑉𝜏(𝑏, y) ∈ ℛ𝑟(𝑏) and supp 𝑉𝜏(𝑏, y) ⊂ 𝒩 (ℛ𝑟(𝑏))𝑐 .

Lemma
𝐺𝜏(𝑏, y) ≔ 𝜋𝑙 (𝑉𝜏(𝑏, y)) is a semialgebraic Whitney field of order 𝑙 on Λ𝜏 satisfying (1).

J.-B. Campesato (joint work with E. Bierstone and P.D. Milman) 𝒞𝑚 solutions of semialgebraic equations 17 / 20
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𝐺 is a Whitney field of order 𝑙 on Λ𝜏
To simplify the situation, we omit 𝜑.
Thanks to Borel’s lemma with parameter, it is enough to check that 𝐷𝑏,𝑣𝐺𝑙−1

𝜏 (𝑏, y) = 𝐷y,𝑣𝐺𝜏(𝑏, y).

Applying 𝐷𝑏,𝑣 − 𝐷y,𝑣 to
𝑇 𝑟

𝑎 𝑓(y) ≡ 𝑇 𝑟
𝑎 𝐴(y) 𝑉𝜏 (𝑏, y) mod (y)𝑟+1ℝJyK𝑝

we get
0 ≡ 𝑇 𝑟

𝑎 𝐴(y) (𝐷𝑏,𝑣𝑉 𝑟−1
𝜏 (𝑏, y) − 𝐷y,𝑣𝑉𝜏 (𝑏, y)) mod (y)𝑟+1ℝJyK𝑝

therefore
𝐷𝑏,𝑣𝑉 𝑟−1

𝜏 (𝑏, y) − 𝐷y,𝑣𝑉𝜏 (𝑏, y) ∈ ℛ𝑟−1(𝑏)
hence, by Chevalley’s function,

𝐷𝑏,𝑣𝐺𝑙−1
𝜏 (𝑏, y) − 𝐷y,𝑣𝐺𝜏(𝑏, y) ∈ 𝜋𝑙−1(ℛ𝑟−1(𝑏)) = 𝜋𝑙−1(ℛ𝑟(𝑏))

but
supp (𝐷𝑏,𝑣𝐺𝑙−1

𝜏 (𝑏, y) − 𝐷y,𝑣𝐺𝜏(𝑏, y)) ⊂ 𝒩 (ℛ𝑟(𝑏))𝑐

consequently, 𝐷𝑏,𝑣𝐺𝑙−1
𝜏 (𝑏, y) − 𝐷y,𝑣𝐺𝜏(𝑏, y) = 0. ■
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Gluing between strata

C - gluing between strata: the Łojasiewicz inequality
Fix a stratum Λ𝜏 . There exists 𝜎 ∈ ℕ such that if 𝑡 ≥ 𝑟 + 𝜎 then lim

𝑏→Λ𝜏 ⧵Λ𝜏
𝐺𝜏(𝑏, y) = 0.

The constant term of the equation is flat on 𝐵′ hence on Λ𝜏 ⧵ Λ𝜏 ⊂ 𝐵′.
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Summary

We constructed 𝐺(𝑏, y) = ∑
|𝛼|≤𝑘

𝑔𝛼 (𝑏)
𝛼! y𝛼 a semialgebraic Whitney field of order 𝑘 on 𝐵 such that

∀𝑏 ∈ 𝐵, ∀𝑎 ∈ 𝜑−1(𝑏), 𝑇 𝑘
𝑎 𝑓(x) ≡ 𝑇 𝑘

𝑎 𝐴(x) 𝐺(𝑏, 𝑇 𝑘
𝑎 𝜑(x)) mod (x)𝑘+1ℝJxK𝑝

Hence we obtain 𝑔 ∶ ℝ𝑛 → ℝ𝑞 semialgebraic and 𝒞𝑘 such that 𝑓 − 𝐴 ⋅ (𝑔 ∘ 𝜑) is 𝑘-flat on 𝜑−1(𝐵).

Loss of differentiability
For 𝑘 ∈ ℕ, we set 𝑙 ≥ 𝑘𝜌, then 𝑟 ≥ 𝑟(𝑙) and finally 𝑡(𝑘) ≔ 𝑡 ≥ 𝑟 + 𝜎 where
A. 𝜌 is an upper bound of Whitney’s loss of differentiability (induction step).
B. 𝑟 ∶ ℕ → ℕ is an upper bound of the Chevalley functions on the various strata.
C. 𝜎 is an upper bound of Łojasiewicz’s loss of differentiability on each stratum.
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