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Semialgebraic geometry — Definitions

Definition: semialgebraic sets

Semialgebraic subsets of R” are elements of the boolean algebra spanned by sets of the form

{xeR" : f(x)>0}
where f € R[x,, ..., x,].
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Semialgebraic geometry — Definitions

Definition: semialgebraic sets |

Semialgebraic subsets of R” are elements of the boolean algebra spanned by sets of the form

{(xeR" : f(x)>0}

where f € R[x,, ..., x,].

Remark

Given f € R[x,, ..., x,], the following sets are semialgebraic

{xeR" : f(x)>0}, {xeR" : f(x) <0}, {xeR" : f(x) <0}, {xeR" : f(x)=0}, {xeR"
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Semialgebraic geometry — Definitions

Definition: semialgebraic sets |

Semialgebraic subsets of R” are elements of the boolean algebra spanned by sets of the form

{(xeR" : f(x)>0}

where f € R[x,, ..., x,].

Given f € R[x,, ..., x,], the following sets are semialgebraic

{xeR" : f(x)>0}, {xeR" : f(x) <0}, {xeR" : f(x) <0}, {xeR" : f(x)=0}, {xeR" : f(x);éO}J

Definition: semialgebraic functions

Let X c R". Afunction f : X — R” is semialgebraic if its graph ', ¢ R"*” is semialgebraic. J
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Semialgebraic geometry — Tarski-Seidenberg theorem

Theorem (Tarski—Seidenberg): semialgebraic sets are closed under projections

If S ¢ R™! is semialgebraic then so is 7(S), where x : R™!' = R", 7(x, ..., %,.;) = (X}, ..., X,)-
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Semialgebraic geometry — Tarski-Seidenberg theorem

Theorem (Tarski—Seidenberg): semialgebraic sets are closed under projections
e X)) = (g, e, X)) J

If S ¢ R"™! is semialgebraic then so is 7(S), where 7 : R*™! — R”, x(x,,

If £ : X - R” is semialgebraic then so is X. J
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Semialgebraic geometry — Tarski-Seidenberg theorem

Theorem (Tarski—Seidenberg): semialgebraic sets are closed under projections

If S ¢ R™! is semialgebraic then so is 7(S), where x : R™!' = R", 7(x, ..., %,.;) = (X}, ..., X,)- J

If £ : X - R” is semialgebraic then so is X. J

Corollary: elimination of quantifiers

Let S c R"*! be semialgebraic, then the following sets are too
{xp,....x,) €R" 1 Ty, (x,....%,,y) €S} = n(S)
{Gf, 0 x,) €R" 1 Vy, (x,....,X,,») €S} =R"\ 7(R™'\ S)
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Semialgebraic geometry — Tarski-Seidenberg theorem

Theorem (Tarski—Seidenberg): semialgebraic sets are closed under projections

If S c R™! is semialgebraic then so is (), where 7 : R™! — R™, 7(x;, ..., %,. ) = (X;,...,X,).
g 1 n+l 1 n

Remark

If £ : X - R” is semialgebraic then so is X.

Corollary: elimination of quantifiers I

Let S c R"*! be semialgebraic, then the following sets are too
{xp,....x,) €R" 1 Ty, (x,....%,,y) €S} = n(S)
{x....x,) ER" 1 ¥y, (x,....x,,y) € S} =R"\ 7(R"™"\ S)

4

Example

i=1

n
If A c R” is semialgebraic, then so is A := {x €R" : Ve € (0,+0), Iy € A, Z(x,. —y)’ < sz}.

g
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Semialgebraic geometry
o

A semialgebraic version of Whitney’s extension theorem

Theorem — Kurdyka—Pawtucki, 1997, 2014
Thamrongthanyalak, 2017
Kocel-Cynk—Pawtucki—Valette, 2019

Given a semialgebraic C" Whitney field on a closed subset X c R”",
i.e. afamily (f, : X — R)qen Of continuous semialgebraic functions such that

|a|<m

fars()
VzEX.VaeN lal<m = f,)- ) “Z—x-»= o (Ix=yI""),
piémetal Pt e

there exists a C" semialgebraic function F : R" — R such that D*F,y = f, and F is Nash on R" \ X.

Nash := semialgebraic and analytic.
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The problems
[ ]

Are there solutions preserving semialgebraicity?

For Whitney’s Extension Problem

For the Brenner—Fefferman—Hochster—Kollar Problem
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The problems
[ ]

Are there solutions preserving semialgebraicity?

For Whitney’s Extension Problem

Let f : X —» R be a semialgebraic function where X c R" is closed.
If £ admits a C™ extension F : R" — R, does it admit a semialgebraic C™ extension F : R" — R?

For the Brenner—Fefferman—Hochster—Kollar Problem
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The problems
[ ]

Are there solutions preserving semialgebraicity?

For Whitney’s Extension Problem

Let f : X —» R be a semialgebraic function where X c R" is closed.
If £ admits a C™ extension F : R" — R, does it admit a semialgebraic C™ extension F : R" — R?

For the Brenner—Fefferman—Hochster—Kollar Problem

Let f1,.... f,, @ : R" > R be semialgebraic functions.
If the equation ¢ = Y ¢, f; admit a C™ solution (¢;);, does it admit a semialgebraic C" solution?
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The problems
[ ]

Are there solutions preserving semialgebraicity?

For Whitney’s Extension Problem

Let f : X —» R be a semialgebraic function where X c R" is closed.
If £ admits a C™ extension F : R" — R, does it admit a semialgebraic C™ extension F : R" — R?

For the Brenner—Fefferman—Hochster—Kollar Problem

Let f1,..., f,, ¢ : R" > R be semialgebraic functions.
If the equation ¢ = Y ¢, f; admit a C™ solution (¢;);, does it admit a semialgebraic C" solution?

¢ Aschenbrenner—-Thamrongthanyalak (2019): Vn, for m = 1 and m = 0, respectively.
¢ Fefferman—Luli (2021): Vm, for n = 2.
¢ Bierstone—C.-Milman (2021): Vn, Vm, with a loss of differentiability.
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The problems
o

Strategy for the semialgebraic C' extension problem

(Aschenbrenner—Thamrongthanyalak, 2019)

Let f : X — R be a semialgebraic function admitting a C! extension F : R" — R.
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The problems
o

Strategy for the semialgebraic C' extension problem

(Aschenbrenner—Thamrongthanyalak, 2019)

Let f : X — R be a semialgebraic function admitting a C! extension F : R" — R.

= n no. x€X,y= f(x),
* Sets= {(x’y’”)ER XRXRY S v 0,V6 > 0. Va.b e By(x), |f(b)—f(a)—v-(b—a)|SEIIb—aH}'
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The problems
o

Strategy for the semialgebraic C' extension problem

(Aschenbrenner—Thamrongthanyalak, 2019)

Let f : X — R be a semialgebraic function admitting a C! extension F : R" — R.

= n no. x€X,y= f(x),
* Sets= {(x’y’”)ER XRXRY S v 0,V6 > 0. Va.b e By(x), |f(b)—f(a)—v-(b—a)|SEIIb—aH}'

® Then S is semialgebraic,
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The problems
o

Strategy for the semialgebraic C' extension problem

(Aschenbrenner—Thamrongthanyalak, 2019)

Let f : X — R be a semialgebraic function admitting a C! extension F : R" — R.

= n no. x€X,y= f(x),
* Sets= {(x’y’”)ER XRXRY S v 0,V6 > 0. Va.b e By(x), |f(b)—f(a)—v-(b—a)|Sellb—a||}'

® Then S is semialgebraic, and, Vx € X, (x, F(x), VF(x)) € S.
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The problems
o

Strategy for the semialgebraic C' extension problem

(Aschenbrenner—Thamrongthanyalak, 2019)

Let f : X — R be a semialgebraic function admitting a C! extension F : R" — R.

— n ,,‘XEX,y=f(x),
* Sets= {(x’y’”)e RIXRXRT g6 5 0,¥6> 0, Ya,b € Byx), 17(6) - f(@) v (b a)| Sellb—a||}'
® Then S is semialgebraic, and, Vx € X, (x, F(x), VF(x)) € S.

® Semialgebraic Michael's Selection Lemma:
there exists o : X — S semialgebraic and continuous such that z, - o = id where = (x, y,v) = x.
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The problems
o

Strategy for the semialgebraic C' extension problem

(Aschenbrenner—Thamrongthanyalak, 2019)

Let f : X — R be a semialgebraic function admitting a C! extension F : R" — R.
x € X, y= f(x),

° Set.S:= {(x,y,v) ER"XRXR" : Vs€> O,J\;a I(O,)Va,b € By 1f ) — f@ — v+ (b—a)] < ellp—al }
® Then S is semialgebraic, and, Vx € X, (x, F(x), VF(x)) € S.
® Semialgebraic Michael's Selection Lemma:

there exists o : X — S semialgebraic and continuous such that z, - o = id where = (x, y,v) = x.
° SetG:=m,.0 : R" > R" where n,(x, y,v) = v, then G is semialgebraic, continuous and satisfies

Vee X, f(b)=f(a)+G(a)-(b—a)+ Xsfb%(llb —al)). |
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The problems
o

Strategy for the semialgebraic C' extension problem

(Aschenbrenner—Thamrongthanyalak, 2019)

Let f : X — R be a semialgebraic function admitting a C! extension F : R" — R.
x € X, y= f(x),

° Set.S:= {(x,y,v) ER"XRXR" : Vs€> O,J\;a I(O,)Va,b € By 1f ) — f@ — v+ (b—a)] < ellp—al }
® Then S is semialgebraic, and, Vx € X, (x, F(x), VF(x)) € S.
® Semialgebraic Michael's Selection Lemma:

there exists o : X — S semialgebraic and continuous such that z, - o = id where = (x, y,v) = x.
° SetG:=m,.0 : R" > R" where n,(x, y,v) = v, then G is semialgebraic, continuous and satisfies

Vee X, f(b)=f(a)+G(a)-(b—a)+ Xsfb%(llb —al)). |

This strategy does not generalize to m > 1 since the unknown (f,)«enn (0} can’'t be described as a section.
|a|<m

For instance, if m = 2, fe, needs to satisfy

fo®) = fo @+ X fo e/ @b, —a) + o (b al.
j=1 a,b—c
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The problems
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Strategy for the planar semialgebraic extension problem (Fefferman—Luli, 2021)

Let f : X — R be semialgebraic. X=XUX+:X+ Cy=yx) <x
X :y=0
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The problems
o

Strategy for the planar semialgebraic extension problem (Fefferman—Luli, 2021)

Let f : X — R be semialgebraic. X=Xuxt X 1y=yx<x
© Let F : R* > R be a ¢ function such that F|, = f and J,, F = 0. X -

(0,0
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The problems
o

Strategy for the planar semialgebraic extension problem (Fefferman—Luli, 2021)

Let f : X — R be semialgebraic. X=Xuxt X 1y=yx<x
© Let F : R* > R be a ¢ function such that F|, = f and J,, F = 0. X -

Set f;(x) = dlyF(x, 0) and f}H(x) = dlyF(x, w(x)). (0,0)
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The problems
o

Strategy for the planar semialgebraic extension problem (Fefferman—Luli, 2021)

Let f : X — R be semialgebraic. X=Xuxt X 1y=yx<x
© Let F : R* > R be a ¢ function such that F|, = f and J,, F = 0. X -

Set f;(x) = dlyF(x, 0) and f}H(x) = dlyF(x, w(x)). Then (0,0)

@ fo_(X)=f(x,0)
(i) fo(x)= f(x l//(X))

i) fi(x )—Z"' f,+k<x)+ o (¥e)
@) fix= o (x’” ")
w fF (x)— o (x")

x—0t

(%) 3
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The problems
o

Strategy for the planar semialgebraic extension problem (Fefferman—Luli, 2021)

Let f : X — R be semialgebraic. X=Xuxt X 1y=yx<x
© Let F : R* > R be a ¢ function such that F|, = f and J,, F = 0. X" :y=0

Set f;(x) = dlyF(x, 0) and f}H(x) = dlyF(x, w(x)). Then (0,0)

@O fo ) =f(x.0)
(i) fo(x)= f(x W(X))

i) fi(x )—Z"' f,+k<x)+ o (¥e)
@) fix= o (x’” ")
w fF (x)— o (x")

x—=0F

(%) 3

@ According to the definable choice: there exist £, semialgebraic satisfying ().
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The problems
o

Strategy for the planar semialgebraic extension problem (Fefferman—Luli, 2021)

Let f : X — R be semialgebraic. X=Xuxt X 1y=yx<x
© Let F : R* > R be a ¢ function such that F|, = f and J,, F = 0. X -

Set f;(x) = dlyF(x, 0) and f}H(x) = dlyF(x, w(x)). Then (0,0)

@O fo ) =f(x.0)
(i) fo(x)= f(x W(X))

i) fi(x )—Z"' f,+k<x)+ o (¥e)
@) fix= o (x’” ")
w fF (x)— o (x")

x—0t

(%) 3

@ According to the definable choice: there exist £, semialgebraic satisfying ().

m - m  F+
® Then F(x,y) = 67(x,y) (Z my’) + 67 (x,y) (Z /i y- z,l/(x))’> is a semialgebraic ™"
1=0 : 1=0
extension of f in a neighborhood of the origin such that J,, F = 0.
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The results
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The main results: statements

Theorem — Bierstone—C.—Milman, 2021

Given X c R” closed and semialgebraic, there exists r : N — N satisfying the following property:
if £ : X - R semialgebraic admits a "™ extension, then it admits a semialgebraic C™ extension.
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The results
@00

The main results: statements

Theorem — Bierstone—C.—Milman, 2021

Given X c R” closed and semialgebraic, there exists r : N — N satisfying the following property:
if £ : X - R semialgebraic admits a "™ extension, then it admits a semialgebraic C™ extension.

Theorem — Bierstone—C.—Milman, 2021

Given A : R" — M, ,(R) semialgebraic, there exists r : N — N such that:
if F : R" - R” semialgebraic may be written F(x) = A(x)G(x) where G is C"™,
then F(x) = A(x)G(x) where G(x) is semialgebraic and C™.
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The results
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Main results: towards a common generalization

The extension problem |

Let X c R" be semialgebraic and closed.

By resolution of singularities, there exists ¢ : M — R”
Nash and proper defined on a Nash manifold such
that X = o(M).

Giveng : R" > Rand f : X - R, we have
gx = f ifand only if

Vy e M, glo(») = f()

where f = f o .
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The results
oeo

Main results: towards a common generalization

The extension problem 1 The equation problem

Let X c R" be semialgebraic and closed. Consider an equation

By resolution of singularities, there exists ¢ : M — R” A(X)G(x) = F(x), x € R".
Nash and proper defined on a Nash manifold such

By resolution of singularities, there exists
¢ : M — R" Nash and proper defined on a Nash
manifold such that after composition, we get

that X = o(M).

Giveng : R" > Rand f : X - R, we have

gx = /f it and only i AWGeW) = F(), ye M
Vy e M, glo(y) = f(») where A := A - ¢ is now Nash and F = F o .
where f = f o . ) )
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The results
ooe

The main result

Theorem — Bierstone—C.—Milman, 2021

LetA: R" - M, ,(R) be Nash and let ¢ : M — R" be Nash and proper defined on M C RN a
Nash submanifold.

Then there exists r : N — N satisfying the following property.

If £ : M — R? semialgebraic may be written

F(x) = A(x)g(e(x))
for a C"™ function g : R" — RY then

() = A(x)g(e(x))

for a semialgebraic C™ function g.
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The proof
e0

Heart of the proof: induction on dimension

Proposition: the induction step

Let B C (M) be semialgebraic and closed.
There exist B’ C B semialgebraic satisfying dim B’ < dim B and 7 : N — N such that if

O f: M- RPis C'®, semialgebraic and 1(k)-flat on ¢~!(B’), and
® f=A-(ge° ) admits a C'® solution g,
then there exists a semialgebraic C* function g : R” - RYs.t. f — A- (g ¢) is k-flat on ¢! (B). |
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The proof
e0

Heart of the proof: induction on dimension

Proposition: the induction step

Let B C (M) be semialgebraic and closed.
There exist B’ C B semialgebraic satisfying dim B’ < dim B and 7 : N — N such that if

O f: M- RPis C'®, semialgebraic and 1(k)-flat on ¢~!(B’), and
® f=A-(ge° ) admits a C'® solution g,
then there exists a semialgebraic C* function g : R” - RYs.t. f — A- (g ¢) is k-flat on ¢! (B).

y

Then, up to subtracting by A - (g - ¢) on both side, we get an equation
f=A-(g°9)

where f is now semialgebraic and k-flat on ¢~!(B).
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The proof
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Heart of the proof: induction on dimension

Strategy: construction of a semialgebraic Whitney field

Gy =Y g‘;(_ ly= e OBy

|la|<I
vanishing on B’ such that

Vb€ B\ B',Va e ¢ '(b), T' f(X) = T) A(X) G(b, T!p(x)) mod (x)'*'R[x]”
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The proof
(o] J

Heart of the proof: induction on dimension

Strategy: construction of a semialgebraic Whitney field

Gy =Y g‘;(_ ly= e OBy

|la|<I
vanishing on B’ such that

Vb€ B\ B',Va e ¢ '(b), T' f(X) = T) A(X) G(b, T!p(x)) mod (x)'*'R[x]”

A - Whitney regularity

Given B, there exists p € N such that if G is a Whitney field of order I > kp on B\ B’ theniitis a
Whitney field of order k on B.
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The proof

The module of relations at b € (M)

We consider the equation at the level of Taylor polynomials:

T, f(x) = T, A(X) G(b, T, p(x)) mod (x)"*'R[x]” (1)
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The proof

The module of relations at b € (M)

We consider the equation at the level of Taylor polynomials:

T, f(x) = T, A(X) G(b, T, p(x)) mod (x)"*'R[x]” (1)

B - Chevalley’s function

Given I € N, there exists r > I such that the derivatives of g of order </ can be expressed in
terms of the derivatives of f of order < r.
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The proof

The module of relations at b € (M)

We consider the equation at the level of Taylor polynomials:

T! f(x) = T/ A(X) G(b, T (X)) mod (x)""'R[x]? (1)

B - Chevalley’s function

Given I € N, there exists r > I such that the derivatives of g of order </ can be expressed in
terms of the derivatives of f of order < r.

Formally, we stratify B = |_|:‘;“1‘X A, such that for each 7, there exists r > I satisfying
Vb e A, m;(R.(D) = m;(R,_ (b))

where
* R,(b) is the module of relations at b € o(M) formed by the G € R[y]? satisfying the
homogeneous equation associated to (1) for all a € ¢~ (b), and,
* 7, is the truncation up to degree /.
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The proof
(]

Hironaka’s formal division

* F=YF,,y* €R[y,.....y,]’ where y* = (0,...,0,y;" - y,",0,...,0).
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The proof
(]

Hironaka’s formal division

* F=YF,,y* €R[y,.....y,]’ where y* = (0,...,0,y;" - y,",0,...,0).
* The setN"x {1,...,p} 3 (a, ) is totally ordered by lex(|a|, j, a;, ..., a,).
® supp F = {(a.j) : Fg,; #0} e exp F := min(supp F)
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The proof
(]

Hironaka’s formal division

* F=YF,,y* €R[y,.....y,]’ where y* = (0,...,0,y;" - y,",0,...,0).
®* ThesetN"x{l,...,p} D (a,)) is totally ordered by lex(|a|, j, af, ..., a,).
® supp F = {(a.j) : Fg,; #0} ® exp F := min(supp F)

Theorem — Hironaka 1964, Bierstone—Milman 1987
Letd,,....d, € R[y]"

i—1 q
Set A, =exp®, +N', A = (exp®, +N") \ | J A, and A= (N"x (1,....pH \ | J A,
k=1

k=1
Then VF € R[y]*, 3'0; € R]y], R € R[y]? such that
q
* F=) 0® +R
i=1

® exp®, +suppO, C A,

® suppRCA
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The proof
o

Diagram of initial exponents

Let M c R[y]” be a R[y]-submodule.
The diagram of initial exponents of M is

N(M):={expF : Fe M\ {0}} cN"x{1,...,p}
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The proof
o

Diagram of initial exponents

Let M c R[y]” be a R[y]-submodule.
The diagram of initial exponents of M is

N(M):={expF : Fe M\ {0}} cN"x (1,....p}

Note that M'(M) has finitely many vertices (a;, j;), i = 1, ..., q.
For each one, we pick a representative ®;, € M, i.e. exp®; = (a;, j;).
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The proof
o

Diagram of initial exponents

Let M c R[y]” be a R[y]-submodule.
The diagram of initial exponents of M is

N(M):={expF : Fe M\ {0}} cN"x (1,....p}

Note that M'(M) has finitely many vertices (a;, j;), i = 1, ..., q.
For each one, we pick a representative ®;, € M, i.e. exp®; = (a;, j;).

Let F € R[y]”. Then F € M if and only if its remainder by the formal division w.r.t. the &; is 0.

Particularly ®,, ..., ®, generate M.
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The proof
o

Diagram of initial exponents

Let M c R[y]? be a R[y]-submodule.
The diagram of initial exponents of M is

N(M):={expF : Fe M\ {0}} cN"x{1,...,p}

Note that M'(M) has finitely many vertices (a;, j;), i = 1, ..., q.
For each one, we pick a representative &, € M, i.e. exp®; = (a;, j;).

Let F € R[y]”. Then F € M if and only if its remainder by the formal division w.r.t. the &; is 0.

Particularly ®,, ..., ®, generate M.

Proof. Write F =

q
0,%; + R with supp R c N (M)°. -

i=1
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The proof
{ ]

Diagram of initial exponents and module of relations

Lemma — Chevalley’s function

Let/ eN.
There exists (A,), a stratification of B such that given a stratum A, there exists r > [ satisfying

° Vb e A, ;(R(b) =mR,_ b)),
* N'(R,(b)) is constant on A_.
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The proof
{ ]

Diagram of initial exponents and module of relations

Lemma — Chevalley’s function

Let/ eN.
There exists (A,), a stratification of B such that given a stratum A, there exists r > [ satisfying

° Vb e A, ;(R(b) =mR,_ b)),
* N'(R,(b)) is constant on A_.

We set

T

B= | A
dim A, <dim B

so that vz, A, \ A, C B'.
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The proof
@00

Construction of G on A,

For b € B and t > r, by assumption there exists W, € R[y] such that

T, f(x) = T,AX) W,(T,pX)) mod X)"'R[x]’, Vae ¢ '(b).
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The proof
@00

Construction of G on A,

For b € B and t > r, by assumption there exists W, € R[y] such that

T f(x) = T'A®X) W, (T p(x)) mod (x)"'R[x]?, Vae ¢ '(b).

Let’s fix a stratum A, and b € A..
By formal division, we may write W,(y) = X, Q,(y)®,(y) + V,(b,y) Where the @, are as above for R,(b).
Note that the remainder V_(b,y) € R[y]‘ satisfies

Wyy) = Vi(b.y) €R(b) and  suppV,(b.y) C N (R, (b)) -
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The proof
@00

Construction of G on A,

For b € B and t > r, by assumption there exists W, € R[y] such that

T, f(x) = T,AX) W,(T,pX)) mod X)"'R[x]’, Vae ¢ '(b).

Let’s fix a stratum A, and b € A..
By formal division, we may write W,(y) = X, Q,(y)®,(y) + V,(b,y) Where the @, are as above for R,(b).
Note that the remainder V_(b,y) € R[y]‘ satisfies

Wyy) = Vi(b.y) €R(b) and  suppV,(b.y) C N (R, (b)) -

G.(by) :=m (VT(b, y)) is a semialgebraic Whitney field of order / on A, satisfying (1).
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The proof
oeo

G is a Whitney field of order / on A,

To simplify the situation, we omit ¢.
Thanks to Borel's lemma with parameter, it is enough to check that Db,uG’T‘l(b, y) = Dy ,G.(b,y).
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The proof
oeo

G is a Whitney field of order / on A,

To simplify the situation, we omit ¢.
Thanks to Borel's lemma with parameter, it is enough to check that Db,UG’;I(b, y) = Dy ,G.(b,y).

Applying D, , — Dy, to

y,v
Tif(y) =T,A(Y) V, (by) mod (y) ' R[y]”

we get
0=T;A®y) (Dy, V" (b.y) - Dy, V, (by)) mod (y)"*'R[y]”
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The proof
oeo

G is a Whitney field of order / on A,

To simplify the situation, we omit ¢.
Thanks to Borel's lemma with parameter, it is enough to check that Db,UG’;I(b, y) = Dy ,G.(b,y).

Applying D, , — Dy, to

y.u
T;f(y) =T, A(y)V, (b,y) mod (y)"'R[y]”
we get
0=T;A®y) (Dy, V" (b.y) - Dy, V, (by)) mod (y)"*'R[y]”
therefore
Dy, V{7 (b,y) = Dy, V, (b,y) € R,_(b)
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The proof
oeo

G is a Whitney field of order / on A,

To simplify the situation, we omit ¢.
Thanks to Borel's lemma with parameter, it is enough to check that Db,UG’;I(b, y) = Dy ,G.(b,y).

Applying D, , — Dy, to

y.u
T./ ) =T;A¥) V. (b,y) mod (¥)*'R[y]’
we get
0=T;AW) (Dy, V¢~ (b.y) = Dy, V, (by)) mod (' R[y]”
therefore
D, V' (b.y) = Dy, V, (b,y) € R,_(b)
hence, by Chevalley’s function,

D, G (b,Y) — Dy .G (b,¥) € m1_{(R,_ (b)) = m,_1 (R,(b))
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The proof
oeo

G is a Whitney field of order / on A,

To simplify the situation, we omit ¢.
Thanks to Borel's lemma with parameter, it is enough to check that D,,,UG’T‘I(b, y) = Dy ,G.(b,y).

Applying D, , — Dy, to

y.u
T, f(y) = T, A(Y)V, (b,y) mod (y)*"'R[y]”
we get
0=T;A®y) (Dy, V" (b.y) - Dy, V, (by)) mod (y)"*'R[y]”
therefore
D, V' (b.y) = Dy, V, (b,y) € R,_(b)
hence, by Chevalley’s function,
Dy, G (b,¥) = Dy ,G.(b,¥) € 71 (R,_ (b)) = 1 (R, (b))
but
supp (D;,,GL' (5.¥) — Dy ,G,(b.Y)) C N (R, (B))F /

consequently, D, ,G,~'(b,y) — Dy, ,G,(b.y) = 0. ]
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The proof
ooe

Gluing between strata

C - gluing between strata: the Lojasiewicz inequality

Fix a stratum A,. There exists c e Nsuch thatift >r+octhen lim G.(b,y)=0.
b—>A\A,

The constant term of the equation is flat on B' hence on A, \ A, C B'.
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The proof

Summary

b
We constructed G(b,y) = 2 g‘;—(')y“ a semialgebraic Whitney field of order k on B such that

la|<k
Vb € B, Va € ¢~ (b), TX f(x) = TFAX) G(b, T* p(x)) mod (x)*"'R[x]”

Hence we obtain g : R” — R? semialgebraic and C* such that f — A - (g - @) is k-flat on ¢~ (B).
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The proof

Summary

8o(b)

We constructed G(b,y) = 2 ==

la|<k

y¢ a semialgebraic Whitney field of order k on B such that

Vb € B, Va € ¢~ (b), TX f(x) = TFAX) G(b, T* p(x)) mod (x)*"'R[x]”

Hence we obtain g : R” — R? semialgebraic and C* such that f — A - (g - @) is k-flat on ¢~ (B).

Loss of differentiability

For k € N, we set [ > kp, then r > r(I) and finally ¢(k) := ¢ > r + o where
A. pis an upper bound of Whitney’s loss of differentiability (induction step).
B. r : N - Nis an upper bound of the Chevalley functions on the various strata.
C. o is an upper bound of tojasiewicz’s loss of differentiability on each stratum.
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